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Version Abrégée

Nous étudions dans cette thése des techniques et des stratégies de codage de canal
adaptées aux canaux a évanouissements par bloc dans un systeme mono-utilisateur.
Le canal a évanouissements par bloc est un modéle simplifié du canal de commu-
nication sans fil qui varie lentement dans le temps avec de fortes contraintes sur le
délai de transmission. Ce modele est particulierement intéressant pour les applica-
tions pratiques lorsque la communication utilise un nombre fini de degrés de liberté
du canal. Ce nombre est habituellement appelé ordre de diversité. Du point de vue de
I'ingénieur, le but final est de concevoir des stratégies de transmission qui exploitent
efficacement les degrés de liberté disponibles pour améliorer la qualité et la fiabilité
des communications. Les lents sauts en fréquence et en temps, typiques des sytemes
GSM ou EDGE, et la modulation a porteuses multiples utilisant le multiplexage par
fréquences orthogonales (OFDM) sont des exemples pratiques de tels systemes de
communication. Contrairement aux canaux de communication standards, le canal a
évanouissements par bloc a une capacité nulle au sens de Shannon parce qu'il subsiste
une probabilité, appelée probabilité de coupure “outage”, que le débit d'information
ne soit pas supporté par le canal. Par conséquent, pour des blocs a grande longueur,
la probabilité d’erreur, c’est a dire, la probabilité que I'information émise soit mal
décodée par le récepteur, sera au moins aussi grande que la probabilité de coupure.

Dans le cas ou émetteur et récepteur ont tous les deux une seule antenne pour com-
muniquer, nous examinons les limites théoriques de tels canaux a évanouissements
par bloc. En étudiant le comportement asymptotique de la probabilité de coupure,
nous montrons que les performances des schémas de codage physiquement réalisables,
construits par des constellations discretes de signaux de modulation, sont déterminées
par une borne fondamentale sur I'ordre de diversité atteignable. Cela aboutit au com-
promis débit-diversité optimal. Ce compromis optimal induit le concept d'expansion
de la constellation des signaux étant donné qu'il peut étre avantageux de trans-
mettre avec de grandes constellations pour atteindre de meilleures performances.
Nous introduisons une nouvelle famille de codes concaténés qui approchent les lim-
ites mentionnées ci-dessus pour des constellations arbitraires en utilisant des algo-
rithmes de décodage probabilistique itératif avec une complexité constante par bit
d’information. Nous analysons les performances d'ensemble sous décodage optimal a



maximum de vraissemblance et nous montrons que le décodage itératif a des perfor-
mances tres proches du décodeur optimal, contrairement au cas des canaux gaussiens
sans évanouissements et ceux avec évanouissements parfaitement entrelacés. Nous
montrons que les codes proposés ont des performances proches de la probabilité de
coupure du canal pour toutes les longueurs de bloc alors que les codes standards
basés sur les treillis et spécialement concus pour le canal a évanouissements par bloc
présentent une dégradation importante quand la longueur de bloc augmente. De plus,
nous montrons que la structure de codage proposée dépasse en performance les codes
concaténés paralleles ou séries conventionnels.

Nous étudions aussi des stratégies de codage pour les canaux a évanouissements
par bloc avec des antennes multiples. Sur de tels canaux, selon les critéres tradi-
tionnels, la construction de schémas de codage efficaces atteignant la diversité maxi-
male est difficile et conduit habituellement a des algorithmes de décodage complexes.
Nous proposons une conception plus simple basée sur une construction pragmatique
qui conduit a des algorithmes de décodage itératif a faible complexité. Nous nous
concentrons sur I'impact de I'expansion de la constellation sur I'ordre maximal de
diversité. En particulier, nous étudions deux méthodes différentes pour atteindre
la diversité maximale en adaptant la taille de la constellation. Nous considérons
I'expansion classique dans le plan complexe selon Ungerbock et I'expansion multi-
dimensionnelle basée sur des réseaux de points. Au moyen de différents décodeurs
échangeant de messages souples, nous comparons les deux approches et nous mon-
trons que I'expansion multi-dimensionnelle est, en général, toujours avantageuse en
raison de sa grande flexibilité de conception. Nous donnons une évaluation complete
des performances ainsi qu’une comparaison avec les schémas classiques d'Alamouti
et V-BLAST pour le cas intéressant d'un canal OFDM a antennes multiples, typique
des standards de la prochaine génération de réseaux locaux sans-fil.



Abstract

In this thesis we study coding strategies for single-user block-fading channels. The
block-fading channel is a simplified model of slowly varying wireless communication
channels with stringent delay constraints. This model is particularly important in
practical applications where communication spans a finite number of degrees of free-
dom of the channel. The number of such degrees of freedom is usually referred to as
diversity. From an engineering perspective, the ultimate goal is to design transmission
strategies that efficiently exploit the available degrees of freedom in order to commu-
nicate more reliably. Slow time-frequency hopping, typical of GSM or EDGE systems,
and multi-carrier modulation employing orthogonal division multiplexing (OFDM), are
practical examples of such communication systems. As opposed to standard commu-
nication channels, the block-fading channel has zero capacity in the strict Shannon
sense, since there is an irreducible probability that the transmitted data rate is not
supported by the channel, namely the information outage probability. Therefore, for
large block length, the probability of error, i.e., the probability that the transmitted
information is decoded in error at the receiver, will be at least as large as the outage
probability.

In the case of both transmitter and receiver having one single antenna to communi-
cate, we examine the theoretical limits of such block-fading channels. By studying the
asymptotic behavior of the outage probability, we show that the performance of prac-
tical coding schemes, constructed over discrete signal constellations, is determined by
a fundamental bound on the achievable diversity. This gives rise to the optimal rate-
diversity trade-off. This optimal trade-off induces the concept of signal constellation
expansion, since, in order to achieve better performance it may be advantageous to
transmit with large signal sets. We introduce a new family of concatenated codes that
approach the aforementioned limits for arbitrary signal constellations with constant
decoding complexity per information bit using message passing iterative decoding al-
gorithms. We analyze the ensemble performance under optimal maximum-likelihood
decoding and we show that iterative message passing decoding performs very close
to the optimal decoder, differently from non-faded AWGN and fully-interleaved fad-
ing channels. We show that the proposed codes perform close to the the outage
probability of the channel for any block length, while standard trellis-based codes
specifically designed for the block-fading channel exhibit significant degradation as



the block length gets large. Moreover, we show that the proposed coding structure
significantly outperforms conventional parallel or serial concatenated codes.

We also study coding strategies in multiple-antenna block-fading channels. For
such multiple-antenna channels, constructing efficient coding schemes that achieve
full diversity based traditional code design criteria is difficult and usually leads to
complex decoding algorithms. We propose simpler designs based on pragmatic con-
structions that lead to low-complexity iterative message passing decoders. We focus
on the impact of signal constellation expansion on the achievable diversity. In par-
ticular, we study two different approaches of achieving full diversity by appropriately
expanding the signal constellation. We consider classical complex-plane Ungerbock’s
style expansion and multidimensional lattice-like expansion. By means of several mes-
sage passing decoders, we compare both approaches and we show that, in general,
multidimensional expansion is always advantageous due to its higher design flexibility.
We report extensive performance evaluation and comparison of the proposed coding
schemes with classical schemes, namely Alamouti and V-BLAST, for the relevant case
of an OFDM multiple-antenna channel arising in next generation wireless local-area
network standards.
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Introduction and Thesis Outline

Wireless communication systems are characterized by time varying communi-
cation channels. These channel time variations are mainly due to multipath
propagation, user mobility and changes in the environment. Such variations are
usually called fading. If the transmitted signal bandwidth is large, the different
frequency subbands undergo significantly different fading attenuation. Equiv-
alently, the transmitted signal is spread in the time domain, i.e., the channel
induces inter-symbol interference (ISI). These effects usually referred to as fre-
quency selectivity or time dispersion. Moreover, the relative motion between
the transmitter and the receiver determines the time variation of the channel
characteristics.

In this thesis, we study data transmission over wireless local area network
systems, for which, very large spectral efficiencies are required in multiple trans-
mission modes. In such an environment, the motion of the user is very limited,
as we can think of the user with a portable computer sitting on a desk commu-
nicating with the access point. Therefore, we shall regard such channels as low
time diversity-channels with some degree of frequency selectivity. In particular,
we will consider a classical indoor networks setting, namely, orthogonal frequency
division multiplexing (OFDM) modulation. Under simple assumptions, OFDM
reduces the frequency-selective channel to a set of non-interfering parallel chan-
nels in frequency, each of which, suffering a single (flat) fading attenuation. In
such indoor OFDM environments it is common practice to assume that during
the transmission of one packet the channel remains essentially constant. This
is a very simple but interesting case of a channel that critically depends on bad
fading values, since, when the fading is such that most of the parallel channels
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are severely attenuated, the transmitted packet may not be correctly recovered
at the receiver.

Historically OFDM was introduced in [1], but it was not really considered an
interesting option due to technological limitations until recently where it has been
adopted as the main transmission strategy in many standards. In particular, it
has been selected for digital audio and video broadcasting (DAB / DVB) [2, 3],
for high-speed modem transmission using Asymmetric Digital Subscriber Line
(ADSL) [4] and for the wireless Local Area Networks (LAN) standards HIPER-
LAN/2 [5] in Europe, IEEE802.11a in North America and ARIB HiSWAN in
Japan. In this work, we shall study the HIPERLAN/2 application, even though
the physical layers of these wireless LAN systems are compatible.

The above systems have motivated the introduction of the block-fading chan-
nel, first presented in [6], to model such small temporal fading variations. In
particular, with this model, the transmitted packets span a fixed and usually
small number of fading realizations. As we will see in Chapter 5, this simple
model can be used to efficiently deal with the frequency variations in OFDM sys-
tems with reduced temporal variation as in wireless indoor networks. Moreover,
the study of the block-fading channel is itself a subject of significant theoretical
relevance, due to the non-ergodic nature of the channel since the transmitted
codewords will only span a finite number of degrees of freedom. Strictly speaking
the block-fading channel has zero capacity, meaning that, at a given fixed rate,
we cannot make the error probability arbitrarily small. The relevant fundamental
limits in such non-ergodic fading channels are then the outage capacity and the
outage probability [6, 7].

This thesis studies coded modulation schemes in single user slowly varying
block-fading channels with applications to high rate indoor wireless systems using
orthogonal frequency division multiplexing (OFDM). In particular, we study the
single-input single-output (SISO) channel that models slow frequency hopping or
OFDM and the multiple-input multiple-output (MIMO) channel that models the
transmission over multiple-transmit multiple-receive antenna channels.

The outline of the thesis is as follows:

e [n Chapter 2 we first review some basic material on the block-fading chan-
nel. In particular, we describe the SISO and MIMO block-fading channels
and we review its information-theoretic limits. In particular, we introduce
the notions of outage probability, outage capacity and the diversity ver-
sus multiplexing trade-off. From this, we give some perspectives for code
design, that will motivate the material presented in the rest of the thesis.

e Chapter 3 focuses on the SISO block-fading channel and studies its in-
formation theoretic limits with discrete signal constellations and discusses
code design criteria. In particular, we rigurously prove that coded modu-
lations over a finite signal set achieve the optimal rate-diversity trade-off



given by the Singleton bound on the block-diversity of the code. Up to
present, there has only been nuerical evidence of this fact. We introduce
the novel family of blockwise concatenated codes and we analyze it by means
of maximum-likelihood decoding error probability upper bounds and tight
approximations. We show that blockwise concatenated codes achieve the
optimal rate-diversity trade-off. Moreover, we show that belief propagation
iterative decoding performs very close to maximume-likelihood on the block-
fading channel, even for relatively short block lengths. We also show that
the proposed codes perform close to the information outage probability for
any block length. This is the dual threshold behavior of capacity achieving
codes in ergodic channels in block-fading channels. This represents a major
improvement to existing schemes based on trellis terminated convolutional
codes, for which the error probability grows almost linearly with the block
length. The material of this chapter is reported in part in [8, 9, 10, 11].

Chapter 4 studies the impact of signal constellation expansion on the achiev-
able diversity in MIMO block-fading channels by comparing two different
signal constellation expansion methods: a) expansion of the complex QAM
constellation; b) multidimensional expansion through lattice-based linear
constellations. The role of the block diversity as the relevant design pa-
rameter when using iterative receivers is highlited. In particular, we com-
pare such approaches under message passing iterative decoding. We study
several low-complexity decoders and we focus on their rate versus decod-
ing complexity trade-off in order to achieve the maximal diversity. We
show that multidimensional signal constellation expansion that inherently
achieves full diversity, can be advantageous over complex-plane expansion
due to its inherent design flexibility. The material of this chapter is reported
in part in [12, 13, 14].

Chapter 5 is devoted to the application of the results of the previous chap-
ters to slowly varying indoor channels that use OFDM. In particular, we
compare the BICM NSTC approach described in Chapter 4 with other more
classical approaches for space-time coding that use orthogonal and quasi-
orthogonal precoders, full-rate linear rotations, and standard V-BLAST,
over MIMO OFDM channels. We perform this comparison under the frame-
work of HIPERLAN/2, and we will consider two channel environments: a
typical office environment for NLOS propagation conditions with indepen-
dent antenna channels, and a more realistic indoor channel generated by a
ray tracing program. We show that, under both scenarios, with very simple
and low-complexity iterative decoders, BICM NSTCs remarkably outper-
form all other approaches at the same spectral efficiencies. The material of
this chapter is reported in part in [14, 15, 16].
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Then, conclusions, future work perspectives and open problems are given in
Chapter 6. We report some complementary material in the Appendices. Specifi-
cally, Appendix A, introduces a very simple and powerful method for accurately
evaluating the error probability of bit-interleaved coded modulation based on a
Gaussian approximation of the tail of the average log-likelihood ratio distribu-
tion. The material of this appendix is reported in part in [17, 18]. This method
will be used in the maximume-likelihood analysis of the codes proposed in Chapter
3. Next, Appendix B reviews the computation of the average multivariate weight
enumerator for the turbo-like code ensembles proposed in Chapter 3. It also pro-
vides the corresponding asymptotic extension and describes a way to compute
the product weight enumerator of a given code. This will be useful again in
Chapter 3 for the maximum-likelihood analysis of blockwise concatenated codes.
In Appendix C we provide the proofs of some of the results presented in Chapter
3. Appendix D is devoted to the extension of the tangential-sphere bound for the
block-fading channel. Finally, Appendix E introduces a density evolution algo-
rithm for iterative interference cancellation decoder analysis in MIMO channels,
which complements some of the results presented in Chapter 4. The material of
this appendix is reported in part in [13].



The Block-Fading Channel:
Background

This chapter reviews some background material on the block-fading channel. The
block-fading channel was introduced in [6] (see also [7]) in order to model slowly-
varying fading, where codewords span only a fixed number Npg of fading degrees of
freedom, regardless of the code block length. This model is particularly relevant
in wireless communication systems involving slow time-frequency hopping (e.g.,
GSM, EDGE) or multicarrier modulation using orthogonal frequency division
multiplexing (OFDM). Despite its extreme simplification, it serves as a useful
model to develop coding design criteria which turn out to be useful in more general
settings of correlated slowly-varying fading. In particular, we consider single-
output (SISO) and multiple-input multiple-output (MIMO) single user point-to-
point block-fading channels. For both channels, we first review the system model,
where the main assumptions used throughout the thesis are set. Then, we review
their the information-theoretic limits and also give some perspectives for code
design.

2.1 The SISO Block-Fading Channel

In this section we will review some basic material on the SISO block-fading chan-
nel used in this thesis. Of particular interest are the notions of diversity, outage
probability and outage capacity. We will review these aspects and highlight the
relevant code design criteria that will be subsequently used throughout the thesis.
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2.1.1 System Model

We consider a single-user SISO block-fading channel with Ng fading blocks per
codeword, where each block has I complex dimensions. A whole codeword spans
then NpL complex dimensions. We assume that the fading is flat, constant over
a block and i.i.d. from block to block and from one codeword to the next. Then,
the discrete-time complex baseband equivalent channel is given by,

yb:\/ﬁhbxb+zb, bzl,...,NB (21)

where y;, € C denotes the received signal at block b, x, € CL is the portion of
the transmitted signal assigned to block b, h; represents the b-th scalar fading
coefficient and z, is the b-th vector of i.i.d. complex circularly symmetric Gaussian
noise samples ~ N¢(0,1). We assume that codewords are constructed over a
signal constellation X C C. We will also assume that the signal constellation is
normalized in energy, i.e., E[|z[*] = 1. Without any loss of generality, we also
assume that the fading is also normalized such that E[|h;]?] = 1. Then, the
average signal-to-noise ratio (SNR) is given by p while the instantaneous SNR of
block b is |hy|?p. For the sake of notation simplicity we will define 7, 2 |hy|? as
the fading power gain. We can express channel 2.1 in a more compact form as,

Y = JpHX + Z (2.2)
where Y = [y1,...,yn,]7 € CV8*land X = [xy,...,xy,]" € CVEXL are ob-
tained by rowwise stacking the corresponding block signals, H = diag(h) €
CNe*NB with h = (hy,...,hy,) and Z = [zy,...,2zy5,]T € CVEXL,

Throughout this thesis, we shall assume that channel state information at the
receiver (CSIR) is perfectly available, i.e., the fading coefficients of h have been
perfectly estimated at the receiver and ideal coherent detection is possible. On
the other hand, we assume that no channel state information at the transmitter
(CSIT) is available.

The collection of all possible transmitted codewords X forms a coded modula-
tion scheme M over X’ whose transmission rate (in bits per complex dimension)
is given by,

1 K
R = 1 = — 2.3
o lom 1Ml = 5 (23)
where K = log, | M| is the number of information bits conveyed in one codeword
assuming that all codewords are equally likely. Let ¢ : {1,..., |M|} — XNexE

such that ¢(m) = X, and ¢ : CV2*E — {1,... | M|} such that o(Y) = m be the
encoding and decoding functions associated to the coded modulation M, where
m and m denote the transmitted message and its corresponding decoder output
estimate. We define the error probability as P,(p) 2 Pr(m # m). The block
diagram of the coding scheme described above is illustrated in Figure 2.1.
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Figure 2.1: Block diagram of the SISO block-fading channel.

Conditioned on the channel parameters H and the transmitted codeword X,
the channel transition is given by

1

TivB

P(Y[X,H) = —— e Y -v7HXIE (2.4)

where [|A[% = trace(AFA) =3 S |anm|? is the squared Frobenius norm of
the matrix A. We say that ¢ represents the optimal maximum-likelihood (ML)
decoding function if ¢ selects the decoder output message m according to,

A = arg  max_ p(Y|é(m),H)

{1, M|}
= argme{rlr’}.iﬂM‘}l|Y—\/5H¢>(m)||%- (2.5)

Throughout this thesis, we consider a family of codes for which ML decoding
is only possible through exhaustive enumeration of the candidate messages m. We
shall then consider other decoding rules ¢ that approximate the ML performance
with much less complexity.

2.1.2 Fundamental Limits

This section reviews well known results on the limiting performance of commu-
nication schemes in block-fading channels [6, 7, 19, 20]. In particular, we review
the notions of outage and diversity.
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Let I(Py,H) 2 7.2/ (X; Y|H) denote the mutual information (per complex

dimension) between input and output, for a given realization of the fading coeffi-
cients H and NgL-dimensional input probability assignment Py, satisfying the in-
put power constraint E[|z|?] = 1. Since H is random, I(Py, H) is in general a ran-
dom variable that represents the instantaneous mutual information of the channel,
whose cumulative distribution function is defined as Fj(2) 2 Pr(I(Py,H) < z).
Let also

A(z) ={h e C"® : I(Py,H) < z} (2.6)

denote the set of fading states such that I(Py,H) < z. Obviously, Fi(z) =
Pr(A(z)). Then, the channel e-capacity (as a function of the SNR p), or outage
capacity, is given by [21],

Ce(p) =sup sup{z € R : Fi(2) <¢€} (2.7)

Px

and the Shannon channel capacity,

Clp) = lim Ce(p). (2.8)
For fading distributions such that P(|h| < 0) > 0, for any § > 0 (e.g., Rayleigh
or Rice fading), we have C(p) = 0 for all p € R, implying that no positive rate
is achievable. Therefore, it seems natural to take as the relevant performance
measure over this block-fading channel the optimal error probability, or optimal
outage probability, which is given by,

e(p) = inf Fi(R) (2.9)

namely, for large block length L, it is the probability (minimized over the input
distributions) that the transmission rate R is not supported by that channel real-
ization. In other words, it represents the probability that the channel parameters
belong to the outage region A(R).

Notice that for short block length L it may be possible to find codes with
error probability smaller than €(p) given in (2.9). However, in the limit of large
L and fixed coding rate R, no code has error probability smaller than €(p). A
lower bound to the word error rate (WER) of any code for any finite length L is
provided by Fano Inequality and reads [22],

: 1 1
P.(p) > 1}£1Xf]E {max {1 — ET(PX,H) T RNOL OH (2.10)

that converges to €(p) as L — oo. In many cases, the input distribution is fixed by
some system constraint. Hence, it is customary to define the information outage

probability [7, 6] as Py (p, R) 2 Fr(R) for given Py, p and R. The goodness of
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a coding scheme for the block-fading channel is then measured by its ability to
approach the outage probability for large block length L.
Since the channel model given in (2.1) corresponds to a set of Np non-

interfering parallel channels, each of which is used a fraction - of time, we

N
can express the instantaneous mutual information as, ’
1 &
I(Py,H) = — J 2.11
(P, H) Ng bz; x (o) ( )

where Jx(pyp) is the mutual information of a standard additive white Gaussian
noise (AWGN) channel with input distribution Py over X with SNR. p~,. There-
fore, when the entries of the codewords of M are ~ N¢(0,1) we have that,

Np
1
I(Py,H) = N > logy(1+ py). (2.12)
b=1

Figure 2.2 shows the outage probability as a function of the transmission rate
R, for a SISO block-fading channel with Gaussian inputs with Ng = 2,4,16 and
100 fading blocks per codeword under Rayleigh fading, i.e., hy ~ N¢(0,1). The
SNR is p = R%, where ]]f,—’(; is the signal-to-noise ratio per information bit. We
fix ﬁ—’; = 10 dB. We clearly observe that there is no rate with error probability
strictly zero, but rather, the more blocks we have, the more ergodic the channel
looks, and the steeper the outage curve is. Indeed, for the ergodic channel, i.e.,
Np — oo, the outage probability is a step function: for rates below the channel
capacity the outage probability is strictly zero, and for rates above the channel
capacity, the outage probability is one.

Let now define the SNR reliability function dj; as the maximum achievable

SNR exponent of error probability for codes in a given family of interest, namely,

log Pe(p,
d*Bé sup lim _M

2.13
MEeF P30 log p ( )

where p denotes the channel SNR, P.(p, M) is the error probability of a given
coded modulation scheme M, and the supremum is taken over all coded modula-
tion schemes in the family F. In other words, d% € {1,2,..., Ng} is the optimal
asymptotic slope of the error probability with SNR. This is commonly referred
to as the optimal diversity gain of the coded modulation family F. We will then
be interested in characterizing the diversity as a function of the rate, i.e., the
function d(R). We also define dg)(R) as the random coding SNR exponent, i.e.,
the optimal asymptotic slope of the error probability curve of random codes.

In the case of independent Rayleigh fading, the fading power gains -, are
Chi-squared with two degrees of freedom, i.e., v ~ f,(2) = e *1{z > 0}, where
1{&} denotes the indicator function of the event &, then, the following result can
be obtained from [22],



12 2. The Block-Fading Channel: Background

oo
2R AN
o o
S

7 8 9 10

R (bit/s/Hz)

Figure 2.2: Outage probability with Gaussian inputs for a SISO block-fading
channel with Ng = 2,4,16 and 100 fading blocks per codeword as a function of
R for ]]f,—’(; =10 dB.

Lemma 1 Consider the block-fading channel (2.1) with i.i.d. Rayleigh fading,
under the average input power constraint ﬁ VB E[|xy|?] < 1. The SNR relia-
bility function for any block length L > 1 and fized rate R is given by d5(R) = Np,
and it is achieved by Gaussian random codes, i.e., the random coding SNR expo-

nent dg)(R) of the Gaussian i.i.d. ensemble for any L > 1 is also equal to Np.

Proof. Although Lemma 1 follows as a corollary of [22, Th. 2|, we provide
an explicit proof in Appendix C for the sake of completeness and because it
is instructive to illustrate the proof technique used for the results presented in
Chapter 3. The proof of Lemma 1 deals with the more general case of coding
schemes with rate increasing with SNR as R(p) = rlogp, where r € [0, 1], and
shows that! P9 (p,7logp) = p~V2U=") where the optimal SNR exponent Np(1—
r) can be achieved by coding schemes of any block length L > 1. The details are
given in Appendix C.1. O

The assumption of Rayleigh fading can be relaxed by noticing that in the proof
of Lemma 1 only the near-zero behavior of the fading power gain distribution

IThe exponential equality and inequalities notation =, > and < were introduced in [22]. We
write f(z) = z¢ to indicate that that lim, ., % =d. > and < are used similarly.
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is relevant. For Rayleigh fading, we have Pr(y, < ) ~ ¢, for small § > 0.
Hence, the above results hold for all block-fading channels with i.i.d. fading
with power gain distribution with this behavior. More in general, as argued in
[22], for a fading distribution with near-zero behavior Pr(y, < §) ~ 7, the
SNR reliability function is given by Ddg(R). For example, this is the case of
independent Rayleigh fading with a D antenna receiver using D-fold maximal-
ratio combining [23].

Figures 2.3 and 2.4 clearly illustrate the operational meaning of Lemma 1. We
first notice, that for a fixed rate R, as the number of blocks increases, the outage
probability curve gets steeper. Again, as Ng — oo it will converge to the step
function indicating the capacity threshold, i.e., channel parameter above which,
we can transmit as reliably as desired. Notice that, Lemma 1 states that Gaussian
codes achieve dj(R) = Np, which is indeed independent of R. This is clearly
seen in Figure 2.4, where for different rates, the outage probability curves are all
parallel with the same asymptotic slope. While this is true for Gaussian inputs,
as we shall see in Chapter 3 this will not be the case with coded modulation
schemes constructed over a discrete signal constellation. In fact, in this case,
dy(R) will depend on R, and specifically, for a fixed constellation, the higher R
is, the lower dj(R) will be. This will induce the concept of signal constellation
expansion, as we shall see further on.

10°

10"

10 12 14 16 18 20
E /N, (dB)

Figure 2.3: Outage probability with Gaussian inputs for a SISO block-fading
channel with Np = 2,4,16 and 100 fading blocks per codeword as a function of
SNR for R = 2 bit/s/Hz.
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Figure 2.4: Outage probability with Gaussian inputs for a SISO block-fading
channel with Np = 4 fading blocks per codeword as a function of SNR for R =
1,2,3 and 4 bit/s/Hz.

We shall then compare different coded modulation schemes by their corre-
sponding SNR gap to the outage probability. We say that a coded modulation
scheme M is good if, as L gets large, its error probability approaches the outage
probability limit. Similarly, a coded modulation is said to be weakly good if its
error probability, as L gets large, becomes independent of L and thus, shows a
fixed SNR gap to the outage probability as the slope becomes the same.

2.1.3 Code Design

Coding for the block-fading channel has been considered in a number of recent
works (e.g., [24, 19, 25, 26] and references therein). The design criteria for codes
over the block-fading channel differ significantly with respect to the standard
design criteria for codes over the AWGN channel or over the fully-interleaved
fading channel. The key difference, as remarked in the previous sections is that
the block-fading channel is not information stable [21, 20].

We will be interested in constructing efficient coded modulation schemes over
discrete signal constellations X of cardinality |X'| = 2", where M is the number
of bits that can be conveyed per constellation symbol. Let us now evaluate the
probability of error of such codes. Conditioned on the fading states, and under
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ML decoding, the union bound on the error probability is given by,

P.(plH) <) Y P(X)P(X - X'[H) (2.14)
X X'#X

where P(X — X'|H) is the conditional pairwise error probability, the probability
of deciding in favor of X’ when X has been transmitted, conditioned on the fading
realization. Then, the average error probability is,

Fe(p) = E[P.(p[H)]
< Y Y PX)P(X—X) (2.15)

X'£X

where P(X — X') 2 E[P(X — X'|H)| denotes the average (over the fading
states) pairwise error probability. Consider for example that M is binary, i.e., it is
obtained by simply concatenating a binary code C € FY with BPSK modulation.
Then, the pairwise error probability can be written as,

P(X - X') = E[P(X — X|H)| (2.16)
= E [Q < 5‘5)] (2.17)

(2.18)

where

A
Q2 [T
V2m
is the Gaussian tail function and 6 = 421):1 wyy, 1s the squared Euclidean dis-
tance corresponding to a pairwise error event that associates Hamming weight
wy, to the portion of the codeword assigned to block b. Then, (2.17) can be
upperbounded by,

1
PX—X) < SE [e*ﬂEinl wm] (2.19)
Np
1 1
< = . 2.20
- 2 ;)Iillz 1+ PWy ( )

We define the block diversity of a binary code C mapped onto N blocks as the
blockwise Hamming distance,

A .
dp = min [{b € [1,...,Ng] : w, #0}. (2.21)

Then, as apparent from (2.20), at high SNR the slope of P,(p) is dominated by
dp, i.e. the number of nonzero rows of X —X’. If we now look at M as a code of
length Ny over the alphabet X" with cardinality |X'|", dp represents nothing but
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the minimum distance of the code under this representation. Then, any bound
on the minimum distance applies here. In particular, the Singleton Bound yields
that [24, 19],

dp(R) < dsp 21+ LNB <1 - %)J (2.22)
where R is defined in (2.3) and [z denotes the largest integer smaller than or
equal to x. Then, (2.20) suggests that one should search for codes attaining
the Singleton bound with equality, namely, maximum distance separable (MDS)
codes. In [27, Th. 1], it is shown that, for binary codes, the Singleton bound
is tight for any R € (0,1]. The achievability proof in [27, Th. 1] is based on
the existence of maximum distance separable (MDS) codes over Fyr (e.g., Reed-
Solomon codes).

However, it is well known that, as opposed to ergodic channels, the union
bound can be very loose in the block-fading channel, and especially for small Np,
it may not even converge in the SNR region of practical interest [24, 19, 25, 26].
Therefore, it is natural to ask whether or not it is possible to do better by looking
at a more meaningful criteria. This question is answered in Chapter 3, where, by
analyzing the asymptotic behavior of the outage probability with discrete signal
sets, we prove that the optimal rate-diversity trade-off d(R) is indeed given by
the Singleton bound. Numerical examples in [24, 19] showed evidence of this fact,
but there was no formal proof of this result so far.

2.2 The MIMO Block-Fading Channel

Multiple-antenna or MIMO channels model transmission systems where either the
transmitter, the receiver or both have multiple antennas available for transmission
/ reception (see Figure 2.5). Multiple antenna transmission has emerged as a key
technology to achieve high spectral and power efficient communication in fading
channels ever since the landmark works by Telatar [28] and by Foschini and Gans
[29], which illustrate huge advantages from an information-theoretic perspective.
Coded modulation schemes that are able to exploit the degrees of freedom in both
space and time/frequency were named space-time codes after [30]. Since [30] and
[31], multiple antennas have been used to enhance transmission robustness by
exploiting the available degrees of freedom to increase diversity, i.e., the number
of channels across which the transmitted symbols go through. This is somewhat
in contrast with the ideas exposed in [28, 29|, for which multiple antennas are
used to communicate higher rates. In [22], the authors link both concepts and
pose a fundamental trade-off between the achievable diversity and the increase
in transmission rate, named as multiplexing gain, in multiple antenna systems.
This is usually referred to as the diversity versus multiplexing trade-off. In this
section we will review some basic material on the MIMO block-fading channel.
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In particular, we will briefly review the extension of the outage and diversity
concepts, and will present the aforementioned results of [22].
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Figure 2.5: Multiple transmit and multiple receive antenna environment.

2.2.1 System Model

We consider a MIMO block-fading channel with Np transmit and Ng receive
antennas respectively and Np fading blocks per codeword. Again, a codeword
spans NgL complex dimensions. We assume that the fading coefficients are flat,
constant during a block and i.i.d., from block to block and from one codeword to
the next. Then, the discrete-time complex baseband equivalent channel is given
by,

Y, =pHX,+Z, b=1,...,Np (2.23)

where Y, € CN2*L is the received signal matrix corresponding to the b-th block,
H, € CV#*N7 ig the fading channel matrix corresponding to block b with i.i.d.
entries ~ Ng(0,1), i.e, Rayleigh fading, X, € CM % is the b-th block of the
transmitted codeword, Z;, € CN2*! is the corresponding noise matrix with i.i.d.
samples ~ Ng(0,1). We assume that the symbols transmitted from a given
antenna have unit energy, i.e., E[|z|?] = 1. The channel is normalized such that
NTINRtrace(]E[Hbe]) =1, for 1 < b < Np, so the average SNR per receive
antenna is Npp and the average SNR per transmit antenna is p. The simple case
of quasistatic fading is obtained by letting N = 1 in (2.23). Again, we assume
perfect CSIR and no CSIT. Notice that now, we can again express (2.23) using
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(2.2), where now, rowwise stacking the signals corresponding to eack block, yields

X1 Yl Zl
X: : ECNBNTXL, Y: : GCNBNRXL, Z: : ECNBNRXL
XNB YNB ZNB
(2.24)
and
H, ... 0
H = diag(Hy,...,Hy,) = | ¢ .. : | € CNeNrxNeAT (2.25)
0 ... Hy,

is the block diagonal channel matrix.

Similarly to the SISO case, we say that the collection of all possible trans-
mitted codewords X forms a space-time coding scheme S over X C C whose
transmission rate (in bits per complex dimension) is given by,

1 K

R=——1 S|l=——
NpL g, |S| Nyl

(2.26)

where K = log, |S| is the number of information bits conveyed in one codeword.
Let ¢ : {1,...,|S|} — XNeNrxl guch that ¢(m) = X, and ¢ : CNeNexl
{1,...,]8|} such that ¢(Y) = m be the encoding and decoding functions asso-
ciated to the space-time code S, where m and m denote again the information
message and its corresponding decoder output estimate. The error probability is

P.(p) 2 Pr(m # m). The corresponding block diagram is shown in Figure 2.6.
The ML decoder is again given by (2.5), where now, X,Y,Z and H are given in
(2.24) and (2.25) respectively.

2.2.2 Fundamental Limits

In the MIMO block-fading channel, the outage probability is a relevant fundamen-
tal limit. Strictly speaking MIMO block-fading channels have Shannon capacity
zero, due to its non-ergodic nature, and all the discussion in the previous section
is valid also here. However, there are some differences that we shall tackle in this
section.

Notice that the mutual information I(Px, p), can be again expressed as (2.11),
since the channel (2.23) represents a set of parallel MIMO channels each of them
used a fraction NLB of the time. When the entries of the codewords of S are i.i.d.
~ N¢(0,1), we have that,

Np
1
I(Py,p) = N > " log, det(Iy, + H,QH) (2.27)
b=1
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Figure 2.6: Block diagram of the MIMO block-fading channel model (2.23).

where Q = diag(q) is the input covariance. At large SNR, Q = ply,. is optimal.
However, at low SNR the optimal input covariance matrix is still an open prob-
lem. Recent results seem to indicate that the optimal input covariance, i.e., the
covariance matrix that minimizes the outage probability, is in the line with that
conjectured by Telatar in [28], namely, it uniformly distributes power across a
set, of transmit antennas whose size depends on SNR and R. However, no formal
proofs are available and it is still an open problem in general. Thus, we shall
consider the simple case of Q = pIy, for all the SNR and rate ranges. Since in
this work we are mostly concerned by achieving diversity, this simple covariance
matrix is optimal.

Figure 2.7 shows the outage probability for a MIMO block-fading channel
with Gaussian inputs with Ny = 2 transmit antennas, Np = 2 receive antennas,
Np = 1,2 and 16 fading blocks per codeword, with R = 2 bit/s/Hz. We observe
that again, as the number of blocks increases, the outage curve becomes steeper,
and eventually converge for large Np to the step function of the channel capacity
threshold.

Let us now examine the diversity vs. multiplexing trade-off of [22]. The ca-
pacity of the ergodic MIMO channel, i.e., a MIMO channel for which the channel
matrix changes at every time instant, is given by [28],

C(p) = Ellog, det(Ly, + pHH)] (2.28)

where H € CV#*Nt hag iid. ~ Ng(0,1) entries. For large enough SNR, (2.28)
behaves like min{ Ny, N} log,(p), in contrast to the classical log,(p) behavior of
single-antenna systems. We can then communicate at a rate up to min{ Nr, Ng}
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Figure 2.7: Outage probability with Gaussian inputs for a MIMO block-fading
channel with Np = 2 transmit antennas, Np = 2 receive antennas, Ng = 1,2 and
16 fading blocks per codeword as a function of SNR for R = 2 bit/s/Hz.

times larger than in the SISO case. This rate scaling is usually referred to as the
multiplexing gain, and represents the number of parallel channels between trans-
mitter and receiver. In [22] the authors considered a family of space-time codes
{S(p)} indexed by their operating SNR p, such that the code S(p) transmits at
a rate R(p) and has error probability P.(p, S(p)). Notice that for such codes, the
rate does depend on SNR. For such family of space-time codes, the multiplexing
gain is defined as,

P A iy 24P (2.29)
p—oo log(p)
while the diversity gain is defined as,
log P,
pP—>00 logp

In [22], the authors determined that the optimal trade-off d*(r) is given by the
piecewise linear function,

d*(r) = Ng(Np —1)(Ng — 1) (2.31)

where 7 is an integer between 0 and min{ Ny, Np}. Qualitatively, the diversity
vs. multiplexing trade-off says that, both diversity and multiplexing gains can
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be achieved simultaneously, but that, the more we invest in maximizing one of
them, will come at the expense of reducing the other. This is clearly seen in
Figure 2.8 where we show the optimal diversity vs. multiplexing trade-off in
MIMO block-fading channels with Ng = 1,2 and Ny =4, Ny = 4.

35 T
-e- N7t
-0~ Ng=2

30 s N

d'

r=R(p)/log(p)

Figure 2.8: Optimal diversity vs. multiplexing trade-off in MIMO block-fading
channels with Ny =4, Np =4 and Ng =1, 2.

For practical space-time coding schemes S, we have the following [32]:

Proposition 1 Let S(R) be a space-time coding scheme that supports an arbitrary
rate R, and let P,(p,S(R)) denote its error probability. Then, S achieves the
optimal diversity versus multiplezing trade-off if

Pe(p? S(R)) = aPOU‘D(pa R)a VRa P € R—I— (232)
where « is a constant such that lim, . o/ logp = 0.

Proposition 1 implies that the SNR gap between the actual performance of
the optimal space-time coding scheme S(R) and the outage probability should
be independent of the transmission rate and the SNR. This is an empirical way
of verifying if the optimal trade-off is achieved. Notice that in Proposition 1 the
constant « is arbitrary, i.e., it does not capture the coding gain of S(R).

2.2.3 Code Design

Code design for the MIMO block-fading channel has been studied in several
works. Tarokh et al. in [30] and Guey et al. in [33], derived design criteria for
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the quasistatic fading case. In a more recent work [34], EIl Gamal and Hammons,
generalized the previous design to the general block-fading channel. These works,
analyzed the worst case pairwise error probability using ML decoding. As we have
seen, the error probability can be upperbounded by,

P.p) <) Y P(X)P(X = X)) (2.33)
X X'#£X

where P(X — X') = E[P(X — X'|H)]| is the average (over the channel states)
pairwise error probability. The conditional pairwise error probability for the
MIMO Rayleigh case can be upperbounded as as,

HX%XHﬂzzQ(Mﬂ2?E> (2.34)

B
< H exp <_§ trace(HbDbD,fIHbH)) (2.35)
b=1
where
D, X, - X!
D=| : |2X-X'= : (2.36)
DNB XNB - XINB

is the codeword difference matrix. Then, using the decomposition DD}’ =
UbAbUfl and the fact that Hb = HbUb ~ Hb,
) Ab,t)] (2.37)

e (5
_ fifi<1+pA“>NR (2.38)

b=1 t=1
b=1 t=1

P(X—X) <

where \y; is the ¢-th eigenvalue of D,D}’. Then, as p gets large, it is clear that
the SNR exponent of (2.38) is dominated by the rank of D,D, i.e., number of
nonzero eigenvalues of DyD}’. Therefore, for large SNR, the error probability
behaves as

P(X — X') < G p'r R (2.39)
where dp is the rank diversity of S defined as,
dr £ min rank(X — X) (2.40)
X,X'eS
and
G, 2 IT (4xe0) ™= (2.41)
bt

)\b t>0
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gives the asymptotic coding gain. Thus, we would search for code constructions
that maximize both the rank diversity and the product of eigenvalues, which give
the asymptotic slope and coding gain of the pairwise error probability. These
are the so-called rank diversity and the eigenvalue product criteria. The difficulty
in constructing codes satisfying the above criteria is that the rank diversity is
usually hard to evaluate and it is barely related to the algebraic properties of the
code, with the exception of binary codes over BPSK or QPSK [35, 34].

A simple upper bound on the rank diversity is given by the block diversity
described before. This argument comes from the assumption of a genie-aided
decoder that produces observables of the transmitted symbols of one antenna,
assuming that the symbols from all other antennas are known. Under this as-
sumption, the channel (2.23) decomposes into a set of NyNp parallel channels,
i.e., the problem of code design over MIMO channels reduces to the SISO case,
where the Singleton bound again plays a key role. We shall study this in more
detail in Chapter 4, where we will show that very simple coding strategies using
this criterion can achieve full-diversity with no explicit verification of the rank
criterion. Notice that such a pragmatic design strongly depends on the abil-
ity to design good receivers, i.e., receivers that are able to perform close to the
genie-aided decoder. As we shall see also in Chapter 4, this is possible by us-
ing low-complexity iterative strategies. The main focus of Chapter 4 will be on
constructing full-diversity space-time codes, and specifically, on the role of signal
constellation expansion on the achievable diversity in MIMO channels.
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Coded Modulation in the SISO
Block-Fading Channel

In this chapter we consider coded modulation schemes for the SISO block-fading
channel. We show that coded modulations of rate R bit/complex dimension, over
a finite signal set X C C of size 2, achieve the optimal rate-diversity trade-off
given by the Singleton bound for R € (0, M]. Furthermore, we show also that
bit-interleaved coded modulation achieves the same optimal rate-diversity trade-
off. We present a novel coded modulation construction based on blockwise con-
catenation that systematically yields Singleton-bound achieving turbo-like codes
defined over an arbitrary signal set X C C. The proposed blockwise concate-
nation significantly outperforms conventional serial and parallel turbo codes in
the block-fading channel. We analyze the ensemble average performance under
Maximum-Likelihood (ML) decoding of the proposed codes by means of upper
bounds and tight approximations. We show that, differently from the AWGN and
fully-interleaved fading cases, Belief-Propagation iterative decoding performs very
close to ML on the block-fading channel, even for relatively short block lengths.
We also show that, at constant decoding complexity per information bit, the
proposed codes perform close to the information outage probability for any block
length, while standard block codes (e.g., obtained by trellis-termination of convo-
lutional codes) have a gap from outage that increases with the block length: this
is a different and more subtle manifestation of the so-called “interleaving gain”
of turbo codes.
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3.1 Introduction

Coding for the block-fading channel has been considered in a number of recent
works (e.g., [24, 19, 25, 26] and references therein). The design criteria for codes
over the block-fading channel differ significantly with respect to the standard de-
sign criteria for codes over the AWGN channel or over the fully-interleaved fading
channel. Using union bound arguments [24, 19, 25, 26] and error exponent cal-
culations [27], it was shown that in Rayleigh fading the error probability behaves
like O(SNR#) for large SNR. The exponent dg, an integer in [0, Np], is referred
to as the code block diversity and is given by the minimum number of blocks on
which any two distinct codewords differ (block-wise Hamming distance). If the
code is constructed over a finite alphabet (signal set), there exists a trade-off be-
tween the achievable block diversity and the coding rate. More precisely, a code
over an alphabet X’ of cardinality |X|, partitioned into Ny blocks of length L, can
be seen as a code over the alphabet X' of cardinality |X'|" with block length Np.
Hence, any upper bound on the minimum Hamming distance of |X'|"-ary codes
of length Ny and size A yields an upper bound on the achievable block diversity
for a given coding rate R = ﬁ log, A. In [27, Th. 1], it is shown that for binary
codes the Singleton bound is tight for any R € (0,1]. The achievability proof
in [27, Th. 1] is based on the existence of maximum distance separable (MDS)
codes over F,z (e.g., Reed-Solomon codes).

Consider the SNR reliability function dj defined in (2.13) as the maximum
achievable SNR, exponent of error probability for codes in a given family of in-
terest,

d3 2 sup lim — log Pe(p, M)
MEF P70 log p

(3.1)

where p denotes the channel SNR, P.(p, M) is the error probability of a given
coding scheme M, and the supremum is taken over all coding schemes in the
family F.

As illustrated in Chapter 2, in [22], a MIMO block-fading channel with N = 1
fading blocks is considered and no restriction is imposed on the family of coding
schemes (other than the classical average input power constraint). In [22], a
coding scheme is defined as a sequence of codes indexed by their operating SNR,
with rate R(p) = rlog p for some r > 0, and d}; as a function of r is determined
for codes satisfying the input power constraint and given finite block length.

In this work, we consider a SISO block-fading channel with arbitrary (but
fixed) number Np of fading blocks. We are interested in the ensemble of coded
modulations, i.e., codes over some given finite signal set X C C with fixed rate
R that, obviously, cannot be larger than M = log, |X| bit/complex dimension.
We study the SNR exponent (3.1) as a function of the coding rate, denoted by
d5(R). This represents the optimal rate-diversity trade-off for the given family
of codes. We prove that d%(R) is indeed given by the Singleton bound, and we
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find an explicit expression for the random-coding SNR error exponent, denoted
by % (R), which lowerbounds d%(R) and is tight for all R provided that the code
block length grows rapidly enough with respect to log(p): namely, the code block
length must be superlinear in the channel SNR expressed in dB. Furthermore,
we show that the popular pragmatic Bit-Interleaved Coded Modulation (BICM)
scheme [36] achieves the same dg)(R) (and hence dj(R), subject to the same
condition on the block length growth rate).

Then, we focus on the systematic construction of codes achieving the opti-
mal SNR exponent and we introduce a turbo-like code construction suited to the
block-fading channel. Notice that standard code ensemble analysis and optimiza-
tion techniques based on Density Evolution [37] and on various approximations
thereof, such as the ubiquitous EXtrinsic Information Transfer (EXIT) functions
[38], are not useful over the block-fading channel. In fact, these techniques aim at
finding the iterative decoding threshold, defined as the minimum SNR at which
the bit error rate (BER) vanishes after infinitely many iterations of the Belief-
Propagation (BP) iterative decoder, for a given code ensemble in the limit of
infinite block length. In our case, since the block-fading channel is affected by
a finite number Np of fading coefficients that do not average out as the block
length grows to infinity, the iterative decoding threshold is a random variable that
depends on the channel realization. Hence, one should optimize the distribution
of the fixed points of the Density Evolution with respect to the code ensemble:
clearly, a very difficult and mostly impractical task.

For our codes we provide upper bounds and tight approximations to the error
probability under maximum-likelihood (ML) decoding. While ML decoding is
generally infeasible due to its complexity, we show by simulation that the iterative
Belief-Propagation (BP) “turbo” decoder performs very close to the ML error
probability. This fact stands in stark contrast with the typical behavior of turbo
and LDPC codes on the AWGN and fully interleaved fading channels [39, 40, 41,
42, 43], where ML bounds are able to predict accurately the “error floor region”
but are quite inaccurate in the “waterfall region” of the BER curve. Hence, our
bounds and approximations are relevant, in the sense that they indeed provide
very accurate performance evaluation of turbo-like coded modulation in the block-
fading channel under BP iterative decoding.

The proposed coded modulation schemes outperform standard turbo-coded or
LDPC-coded modulation and outperform also previously proposed trellis codes
for the block-fading channel [24, 25, 26]. In particular, by using asymptotic
weight enumerator techniques, we argue that the word-error rate (WER) of our
codes is almost independent of the block length, while the component encoders
are fixed, i.e., the decoding complexity of the BP decoder is linear with the block
length. On the contrary, in the case of block codes obtained by trellis termination
of trellis codes, the WER increases (roughly linearly) with the block length for
linear decoding complexity. We interpret this fact as another manifestation of the
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so-called “interleaving gain” typical of turbo codes, even though, in block-fading,
no “waterfall” behavior of the error curve is visible, even for very large block
length.

The rest of the chapter is organized as follows. Section 3.2 recalls the system
model introduced in Chapter 2 and presents some of the basic assumptions that
we will use throughout the chapter. Section 3.3 presents the coding theorems
for the rate-diversity trade-off of coded modulation and BICM. In Section 3.4
we present our novel turbo-like coded modulation scheme, we provide useful up-
per bounds and approximations of its error probability under ML decoding and
we show that the error probability is (asymptotically) independent of the block
length. Also, several examples of code constructions and performance compar-
isons are provided. Section 3.5 summarizes the conclusions of this work. Proofs
and computation details of the error bounds and approximations are reported in
the appendices.

3.2 System model

Recall the discrete-time complex baseband equivalent channel model introduced
in the previous chapter,

Y = JpHX + Z (3.2)
where Y € CV2*L' is the received signal matrix, X € CV2*L_is the transmit-
ted signal matrix, H = diag(hy,...,hy,) € CVE*NE ig the matrix of channel

coefficients and Z =€ CV2*L is the noise matrix with i.i.d. complex circularly-
symmetric Gaussian entries ~ N¢(0,1). We consider codes constructed over a
complex signal-set X (e.g., QAM/PSK) of cardinality 2V, i.e., the components
of X are points in the constellation X'. The overall codeword block length is NgL
(complex dimensions). Without loss of generality, we assume normalized fading,
such that E[|h,[*] = 1 and unit-energy signal set X (i.e., 273" . |z]* = 1).
Therefore, p denotes the average received SNR and the instantaneous SNR on
block b is given by v,p, where 7, = |hy|* denotes the fading power gain.

The collection of all possible transmitted codewords X forms a coded mod-
ulation scheme over X. We are interested in schemes M(C, i, X') obtained by
concatenating a binary linear code C of length Ng LM and rate r bit/symbol with
a memoryless one-to-one symbol mapper p : F3Y — X. The resulting coding rate
(in bit/complex dimension) is given by R = rM.

In this work we assume that the vector of fading coefficients h = (hy, ..., hy,)
is perfectly known at the receiver and not known at the transmitter. It is worth-
while to notice that in the limit of L — oo and fixed Np, the capacity and, more
generally, the outage capacity, of the block-fading channel does not depend on
the assumption of perfect channel knowledge at the receiver [7]. Therefore, in
this limit such assumption is not optimistic.
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Let m € {1,...,|M]|} denote the information message and ¢(m) = X denote
the codeword corresponding to m. We shall then consider the following decoders:

1. As shown in the previous chapter, the ML decoder is given by

m=arg min Y- VPpHG(m)|[5,. (3.3)

2. We consider also the suboptimal decoder that consists of producing, for each
received symbol, the posterior probabilities of the binary coded symbols in
its label (defined by the symbol mapper p), and then feeding these probabil-
ities to a ML decoder for the binary code C over the resulting binary-input
continuous-output channel. Since this scheme is particularly effective if
used in conjunction with BICM [36], we shall refer to it as the BICM-ML
decoder (even though it can also be used without an explicit bit-interleaver
between C and p). For a coded binary symbol mapped to the m-th label
position of the k-th modulation symbol of block b, the “bit-wise” posterior
log-probability ratio is given by

Z exp (_|yb,k - \/ﬁhbeZ)

zeXT"

Z exp (— |y — v/ hwz]?)

zeX "

£b,k,m = IOg (34)

where X" denotes the signal subset of all points in X whose label has value
a € {0,1} in position m. Let again m denote the information message and
let ¢c(m) = C € C denote the codeword of C corresponding to m, where
dc = {1,...,|M|} — FY, is the corresponding encoding function. The
component of C mapped to the m-th label position of the k-th modulation
symbol of block b is denoted by ¢ m(m). Then, the BICM-ML decoding
rule is given by
Ng L M

m = arg _max Z Z Z(l — 2¢p 1, (M) Lo om, (3.5)

b=1 k=1 m=1

In all cases, the average word-error rate (WER) as a function of SNR, averaged
over the fading, is defined as P.(p) = Pr(m # m) where a uniform distribution of
the messages is assumed.

As it will be clear in the following, both the ML and the BICM-ML decoders
are practically infeasible for the class of coded modulation schemes proposed in
this work. Hence, the suboptimal turbo decoder based on Belief-Propagation
(BP) will be used instead. Nevertheless, the two decoders defined above are
easier to analyze and provide a benchmark to compare the performance of the
BP decoder. Since BP iterative decoding is standard and well-known, for the
sake of space limitation we shall omit the detailed BP decoder description. The
reader is referred to e.g. [44] for details.
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3.3 Optimal rate-diversity trade-off

For the ensemble M(C, i, X') where C is a random binary linear code, Py is the
uniform i.i.d. distribution over X. Under this probability assignment, we have
that

I(Py,h) = ZJX Yop) (3.6)

where

Jv ( _ 9= MZE log, Z —|Vs(z—a")+Z|2+|Z|? (37)

reX r'eX

is the mutual information of an AWGN channel with input X ~ Uniform(X) and
SNR s (expectation in (3.7) is with respect to Z ~ N¢(0,1)).

We define the BICM channel associated to the original block-fading channel
by including the mapper j, the modulator X and the BICM-ML posterior log-
probability ratios computer (3.4) as part of the channel and not as a part of a
(suboptimal) encoder and decoder. Following [36], the associated BICM channel
can be modeled as set of M binary-input symmetric-output channels, where the
input and output of the m-th channel over the b-th fading block are given by
{cogm + k=1,...,LM} and {Lyppm = k =1,...,LM}, respectively. The
resulting mutual information is given by

3 it
z r'eXx
Tepon(s) = M =2 M;%{B;m]}z log Z o—IV3a—a)+ 22 (3:8)
' eXm

Notice that the expectation over Z ~ N¢(0,1) in (3.7) and (3.8) can be easily
evaluated by using the Gauss-Hermite quadrature rules which are tabulated in
[45] and can be computed using for example the algorithms described in [46].

The information outage probabilities of the block-fading channel with i.i.d.
input X ~ N¢(0,1), X ~ Uniform(X) and that of the associated BICM channel
are denoted by P% (p, R), P¥ (p,R) and by PP'M(p, R), respectively. From
the data processing inequality and the fact that the proper complex Gaussian
distribution maximizes differential entropy [47], we obtain that

Pois(p. R) < Poy(p. B) < Pi™ M (p. R) (3.9)

for all R and p.

By evaluating the outage probability for a given signal set X we can assess
the performance loss incurred by the suboptimal coded modulation ensemble
M(C,p, X). Furthermore, by evaluating the outage probability of the BICM
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channel, we can assess the performance loss incurred by the suboptimal BICM-
ML decoder with respect to the ML decoder.

For the sake of simplicity, we consider independent Rayleigh fading, i.e., the
fading coefficients hy, are i.i.d., ~ N¢(0, 1) and the fading power gains ~, are Chi-
squared with two degrees of freedom, i.e., v, ~ f,(2) = e *1{z > 0}, where 1{£}
denotes the indicator function of the event £. This assumption will be discussed
and relaxed at the end of this section.

We are interested in the SNR reliability function (3.1) of the block-fading
channel. In the previous chapter we have shown that Lemma 1, that follows as
a corollary of the analysis in [22], yields the SNR reliability function subject to
the average input power constraint. Now, for the considered coded modulation
ensemble, we have the following result:

Theorem 1 Consider the block-fading channel (3.2) with i.i.d. Rayleigh fading
and input signal set X of cardinality 2M. The SNR reliability function of the
channel is upperbounded by the Singleton bound

(R) < dsp(R) 21 + LNB <1 - %)J (3.10)

The random coding SNR exponent of the coded modulation ensemble M(C,p, X)
defined previously, with block length L(p) satisfying hmp_><X> logp = [ and rate R,
18 lowerbounded by

dyy) (R) > BNpM log(2) (1 - %) : (3.11)
for 0 <3< Mlog( ) and
d%)(R) > dsp(R) — 1+ min {1,5M10g(2) [NB <1 — %) — dsp(R) + 1} }
(3.12)

for Mlog < g < 0.
Furthermore the SNR random coding exponent of the associated BICM chan-
nel satisfies the same lower bounds (3.11) and (3.12).

Proof. See Appendix C.2. O
An immediate consequence of Theorem 1 is the following

Corollary 1 The SNR reliability function of the block-fading channel with input
X and of the associated BICM channel is given by dj(R) = dsg(R) for all R €
(0, M, except for the Ng discontinuity points of dsg(R), i.e., for the values of R
for which Ng(1 — R/M) is an integer.
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Proof. We let § — oo in the random coding lower bound (3.11) and we obtain

. R
dss(R) > dy(R) > d)(R) > [NB (1 - Mﬂ
where the rightmost term coincides with dgp(R) for all points R € (0, M| where
dsp(R) is continuous. O
The following remarks are in order:

1. The codes achieving the optimal diversity order d%(R) in Theorem 1 are
found in the ensemble M(C, i, X) with block length that increases with
SNR faster than log(p). This is due to the fact that, differently from the
Gaussian ensemble (Lemma 1), for a given discrete signal set X there is a
non-zero probability that two codewords are identical, for any finite length
L. Hence, we have to make L increase with p rapidly enough such that this
probability does not dominate the overall probability of error. Nevertheless,
it is easy to find explicit constructions achieving the optimal Singleton
bound block-diversity dsp(R) for several cases of Np and finite L [24, 25].
Typically, the WER of diversity-wise optimal codes behaves like Kp 455
for large p. The coefficient K yields a horizontal shift of the WER vs.
SNR curve (in a log-log chart) with respect to the outage probability curve
P (p, R) that we refer to as “gap from outage”.

out

Codes found in previous works [24, 19, 25, 26] have a gap from outage that
increases with the block length L. On the contrary, the gap from outage of
the class of codes proposed in this work is asymptotically independent of the
block length. We say that a code ensemble is good if it achieves vanishing
gap from outage as L — co. We say that a code ensemble is weakly good if
it achieves constant gap from outage as L — oo. In Section 3.4.3 we show
that the proposed codes are weakly good under ML decoding.

2. For any given coding rate R, we can achieve “full diversity” dsg(R) = N by
considering a signal set large enough. In fact, by letting M sufficiently large
in (3.10) we have dgp(R) = Np for any desired rate R. This corresponds
to the intuitive argument that large signal sets approach Gaussian codes.!

Again, we can relax the assumption of Rayleigh fading by noticing that in
the proof of Theorem 1 only the near-zero behavior of the fading power gain
distribution has a role. For Rayleigh fading, we have Pr(~, < 0) = 4, for small
0 > 0. Hence, the above results hold for all block-fading channels with i.i.d.

'For finite SNR, expanding the signal set without proper shaping incurs shaping loss. How-
ever, in terms of SNR exponent this effect is not seen as shaping involves only a fixed gap from
outage. Using the definition introduced above, we might say that codes found in our ensemble
of coded modulation schemes over larger and larger QAM complex constellations can be weakly
good, but cannot be good due to the inherent shaping loss.



3.3. Optimal rate-diversity trade-off 33

fading with power gain distribution with this behavior. More in general, as
argued in [22], for a fading distribution with near-zero behavior Pr(vy, < §) ~ 67,
the SNR reliability function is given by Ddgg(R). For example, this is the case
of independent Rayleigh fading with a D antenna receiver using D-fold maximal-
ratio combining [23].

Figure 3.1 shows dgp(R) (Singleton bound) and the random coding lower
bounds for the two cases M log(2) = 1/2 and SM log(2) = 2, in the case Np = 8
and M = 4 (X is a 16-ary signal set). It can be observed that as [ increases
(for fixed M), the random coding lower bound coincides over a larger and larger
support with the Singleton upper bound. However, in the discontinuity points it
will never coincide.
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Figure 3.1: SNR reliability function and random coding exponents dg)(R) for
N =8 and M = 4.

In order to illustrate the operational meaning of the above results and mo-
tivate the code construction in the following section, we show in Figure 3.2 the
outage probability curves as a function of SNR with i.i.d. Rayleigh fading for
the case of Np = 8 and spectral efficiencies R = 1, 1.5,2 bit/complex dimension
for Gaussian inputs, 8-PSK and 16-QAM constellations and the corresponding
Gray-mapped BICM [36]. In these log-log charts, the SNR exponent determines
the slope of the outage probability curve at high SNR, (small outage probability).
We notice that Gaussian inputs always show the steepest slope and that this is
independent of R for high SNR (in agreement with Lemma 1). For R = 1, we
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observe that both modulations (and the corresponding BICM curves) have the
same slope (we have dgp(1) = 7 for both modulations). However, for R = 1.5,
the curves show different slopes since dgp(1.5) = 5 for 8-PSK while dgp(1.5) =6
for 16-QAM. This effect is even more evident for R = 2, where dgp(2) = 4 for
8-PSK and dgp(2) = 5 for 16-QAM. Notice also that, in all cases, the SNR loss
incurred by BICM-ML decoding is very small.
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Figure 3.2: Outage probability for Ny =8, R = 1,1.5, 2 bit/complex dimension,
Gaussian inputs, 8-PSK and 16-QAM modulations. Thick solid lines correspond
to Gaussian inputs, thin solid lines to 8-PSK, dashed lines to 8-PSK with BICM
(Gray mapping), dashed-dotted lines to 16-QAM and dotted lines to 16-QAM
with BICM (Gray mapping).

3.4 Blockwise concatenated coded modulation

In this section we introduce a general construction for MDS coded modulation
schemes M(C, u, X') for the the block-fading channel and we provide bounds and
approximations to their error probability under ML and BICM-ML decoding.

3.4.1 Code construction

Figure 3.3 shows the proposed encoder structure for M(C, uu, X') that we refer to as
Blockwise Concatenated Coding (BCC). The binary linear code C is formed by the
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concatenation of a binary linear outer code C? of rate 7o and block length NpL,,
partitioned into Np blocks of length L,. The blocks are separately interleaved
by the permutations (71, ..., 7y, ) and the result is fed into the Np encoders for
the inner code C! of rate r; and length Ly = LM. Thus, the total length of C
is NgLp (binary symbols). Finally, the output of each component inner code is
mapped onto a sequence of signals in X by the one-to-one symbol mapper u. We
denote by K the number of information bits per codeword. In particular, the
codes considered make use of bit-interleaving between the inner encoder and the
mapper [36], denoted in Figure 3.3 by the permutations (r{',..., 7% ). However,
we hasten to say that mapping through interleavers is not necessary for the
construction and more general mappings could be envisaged. The rate of the
resulting blockwise concatenated code is R = ror; M.

When the outer code is a simple repetition code of rate ro = 1/Np and
the inner codes are rate-one accumulators [48], the resulting BCC is referred
to as Repeat and Blockwise Accumulate (RBA) code. Since interleavers and
inner encoding are performed on a blockwise basis, the block diversity of the
concatenated code coincides with the block diversity of the outer code. For
example, a RBA code has always full diversity dg = Ng. When both outer and
inner codes are convolutional codes, we will refer to the resulting structure as
blockwise concatenated convolutional codes (BCCC).

As anticipated in the Introduction, practical decoding of BCC resorts to the
well-known BP iterative decoding algorithm over the code graph [44]. In par-
ticular, when either C° or C! are convolutional codes, the well-known forward-
backward decoding algorithm is used over the subgraph representing the corre-
sponding trellis [49)].

7 I —F

Figure 3.3: The general encoder for Blockwise Concatenated Coding.

Figure 3.4 illustrates the effectiveness of blockwise concatenation with re-
spect to standard turbo-like codes designed for ergodic channels. In particular,
we compare the WER of a binary R = 1/2 RBA and BCCC (with convolutional
(5,7)s outer code and inner accumulators) with that of their standard counter-
parts (namely, a Repeat and Accumulate (RA) code and a Serially Concatenated
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Convolutional Code (SCCC)), mapped over Np = 2 fading blocks with 10 de-
coding iterations of the BP decoder. In all cases, the block length corresponds
to K = 1024 information bits per codeword. We observe a significant difference
in the slope of the WER curve, due to the fact that blockwise concatenation
preserves dp of the outer code while standard concatenation does not.

[[ — RBA 10it
[l = = RA10it
. BCCC (5,7), + Acc 10it

o SCCC (5.7), + Acc 101t

1074 | I I I I I I I I
10 12 14 16 18 20
E b/N o (dB)

Figure 3.4: WER obtained by BP decoding (simulation with 10 iterations) of
binary RBA, RA, BCCC and SCCC of rate R = 1/2 for Np = 2 and K = 1024.

In order to show that we can construct MDS BCCs, Figure 3.5 illustrates the
FER performance obtained by simulation with BP decoding of binary r = 1/2
BCCCs (5, 7)s and (25, 35)g both with with inner accumulators, and best known
4 and 64 states CCs [26] mapped over Np = 8 fading blocks with block length of
1024 information bits. Notice that (5,7)s is not MDS, since dgp = 4 while the
Singleton bound yields dsp < 5, and therefore the corresponding BCCC (and of
course itself) will show some performance degradation at high SNR. Indeed, we
can appreciate a steeper slope of the BCCC with (25, 35)g and the 64 states CC
since both are MDS codes. Moreover, we observe clear advantage of BCCCs over
standard CCs at this block length (this point will be further discussed in depth
in section 3.4.3).
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Figure 3.5: FER r = 1/2 BCCCs and CCs mapped over Np = 8 fading blocks.

3.4.2 Upper bounds on ML decoding error probability

For the sake of simplicity we consider first codes over the QPSK with Gray
labeling, or, equivalently, over BPSK. This case is particularly simple since the
squared Euclidean distance between the constellation points is proportional to
the Hamming distance between their binary labels. A tight upper bound on the
WER of binary codes mapped over QPSK with Gray mapping and transmitted
over Np fading blocks, is given by Malkamaki and Leib (M&L) in [25], and reads

Np
P.(p) <E |min\< 1, Z Ay, @ /pr*ybwb (3.13)
b=1

Wi, WNg

where Awl,.,.waB is the Multivariate Weight Enumeration Function (MWEF) of C
[50] which accounts for the number of pairwise error events with output Hamming
weights per block wy, ..., wy,, £ = 2 for BPSK and k£ = 1 for QPSK. Expectation
in (3.13) is with respect to the fading power gains (y,...,7n5,). In order to
compute (3.13), we need to compute a multivariate expectation that does not
break into the individual expectation of each term in the union bound because
of the min{1,-}. Hence, in practice, we have to resort to Monte Carlo methods.

In [51], Byun, Park and Lee presented a simpler upper bound to (3.13) in the
context of MLi decoding of trellis space-time codes. Unfortunately, the bound in
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[51] upperbounds (3.13) only if the sum over wy, ..., wy, contains a single term.
Nevertheless, we shall demonstrate through several examples that this technique,
referred to as the BPL approzimation, if applied to full diversity codes (i.e., codes
with blockwise Hamming distance dg = Np) yields a very good approximation of
the WER, with the advantage that it is much easier to compute than the M&L
bound.

Assuming dp = Np, which implies that minw, > 0 for allb =1,..., Ny, the
BPL approximation takes on the form

Np
P.(p) SE |min < 1, ZAApQ kpAy N Z% (3.14)
Ap b=1

where A, 2 Hé\g wy is the product weight and Ax, is the Product Weight
Enumeration Function (PWEF) of C, i.e., the number of codewords of C with
product weight A,. In this way, only product weights have to be enumerated.
Moreover, by noticing that

Np
=3 3.15)
b=1

is central chi-squared with 2Np degrees of freedom and mean Np, (3.14) becomes,

P.(p) /+OO min 17ZAAPQ< /prll,/NBz> fy(2)dz (3.16)
0 A
where
Ne-lo
f1(2) = P (3.17)

is the pdf of v. In this way, only product weights have to be enumerated and
the computation of (3.16) requires one-dimensional integration, that is easily
computed numerically.

Union bound-based techniques are known to be loose for turbo codes and other
capacity-approaching code ensembles such as LDPC and RA codes over AWGN
or fully-interleaved fading channels. As a matter of fact, improved bounding tech-
niques are needed in ergodic channels order to obtain meaningful upper bounds
in the SNR range between the capacity threshold and the cut-off rate threshold
(39, 40, 41, 42, 43]. Among those, the tangential-sphere bound (TSB) is known
to be the tightest. The TSB can be simply extended to the block-fading channel
for each fixed realization of the fading vector h (for more details the reader is
referred to Appendix D). Then, an outer Monte Carlo average over the fading is
required. Since the TSB requires the optimization of certain parameters for each
new fading realization, the computation of the TSB is very intensive. A slight
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simplification is obtained by applying the TSB technique to the PWEF, as in
the BPL approximation. The resulting approximation (referred to as BPL-TSB)
requires only a single variate expectation.

The following examples illustrate the bounds and the approximations de-
scribed above for BPSK and QPSK with Gray mapping. The MWEF and PWEF
are obtained as described in Appendix B. In particular, Figures 3.6 and 3.7 com-
pare the simulation (with 10 iterations of the BP decoder) with the ML bounds
and approximations for RBA codes of R = 1/2 with K = 256 and K = 1024
information bits per codeword respectively over Ng = 2 fading blocks. The statis-
tical average in the M & L bound and in the TSB are computed by Monte Carlo.
We observe an excellent matching between the performance of BP decoding and
the bounds on ML decoding, even for such short block lengths, in contrast to the
AWGN case. We also notice that the TSB is only marginally tighter than the
M&L bound and, due to its computational complexity, is useless in this context.
The BPL approximation predicts almost exactly the WER of the RBA code for
all block lengths. Based on such examples (and on very extensive numerical com-
putations not reported here for the sake of space limitation) we conclude that the
performance of BCCs on block-fading channels can be predicted very accurately
by very simple ML analysis techniques.
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Figure 3.6: WER obtained by BP decoding simulation with 10 iterations and
ML bounds and approximations for binary RBA of R = 1/2 and K = 256 over
Ng = 2 blocks.
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Figure 3.7: WER obtained by BP decoding simulation with 10 iterations and
ML bounds for binary RBA of R = 1/2 and 1024 information bits per frame,
over Ng = 2 blocks.

For general signal sets X and modulator mappings p the above bounds are
no longer valid since the squared Euclidean distance between signals depends, in
general, on the individual labels and not only on the labels Hamming distance.
Assuming bit-interleaving between the inner binary codes and the modulator
mapping, we can make use of the BICM Bhattacharyya union bound developed
in [36], combined with the “limit before average” approach of [25]. We then
obtain

. 1 w
Po(p) SE |min {1, Y 0 Au w5 [ [ Bolos s )™ (3.18)

where

$ e eap

g-m M 1 2 exm
Bb(p7 H, X) é W ZZ Z E i €f|m(xfm’)+2|2 (319)

z'exm

is the Bhattacharyya factor of the BICM channel associated to the b-th fading
block, with SNR v,p.
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The bound (3.18) holds under the assumption that the mapping u is sym-
metrized, as explained in [36], i.e., that a random i.i.d. scrambling sequence,
known both at the transmitter and at the receiver, chooses at every symbol with
probability 1/2 either the mapping p or its complement fi, obtained by replacing
all binary labels by their modulo-2 complement.? The factor 1/2 in front of the
Bhattacharyya union bound follows from the fact that, under the symmetrized
mapping assumption, the associated BICM channel with inputs ¢4, and out-
puts Ly, defined in (3.4) is binary-input output-symmetric (see [52]). The
expectation in (3.19) can be efficiently computed by Gauss-Hermite quadratures.

As shown in Appendix A, the tail of the pdf of the bit-wise posterior log-
probability ratio (3.4) at the output of the associated BICM channel is very close
to the corresponding output of a binary-input AWGN channel with fading power
gain

G = —% log By(p, 1, X) (3.20)
Moreover, for given fading gain 7, we have (see Appendix A for details)
2

52.
lim Cb = mm% (321)

p—00 4

where 2, is the minimum squared Euclidean distance of X'. Under this Gaussian

approximation, we obtain

P.(p) SE

mln{ Z Ay, . Sy, @

W1, WN g

QPiwab }]7 (3.22)

and the corresponding BPL approximation (for full diversity codes)

P.(p) 5

mln{ ZAA Q ZpAII/NB ZQ, }] (3.23)

b=1

Unfortunately, in this case 21];\231 (p is no longer chi-squared distributed (from
(3.21) it follows that it is chi-squared in the limit of high SNR). Therefore,
(3.23) has to be computed via a Monte Carlo average, reducing only slightly
the computational burden with respect to (3.22). We will refer to (3.18) as the
M&L-Bhattacharyya bound and to (3.22) as the M&L-GA.

We hasten to say that, although the proposed methods are just approximation,
they represent so far the only alternative to extensive simulation. Indeed, they

2If the mapping p and the constellation X’ are such that, for all label positions m =1,..., M,
the log-probability ratio defined in (3.4) is symmetrically distributed, that is, pz, , .. (2|co,km =
a) = pcy i (—2|Cbk,m = @), then the scrambling assumption is not needed.
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might be regarded as the analogous for the block-fading channel to the EXIT
chart “analysis” commonly used for fully-interleaved fading channels and AWGN
channels: they are both based on approximating a complicated binary-input
output-symmetric channel by a binary-input AWGN channel, “matched” in some
sense to the former.

In Figure 3.8 we show the WER (obtained by simulation with 10 iterations
of the BP decoder) and the various upper bounds and approximations on ML
decoding error probability described above, for a RBA code of rate r = 1/2 over
Np = 2 fading blocks and K = 256 information bits per frame, with 8-PSK and
16-QAM with Gray mapping (the corresponding spectral efficiencies are R = 1.5
and 2 bit/complex dimension). We also show the outage probability for 8-PSK
and 16-QAM BICM for the sake of comparison. Again, we observe an excellent
match between simulation with BP decoding and ML approximations, for all
modulations. We also observe that the BICM Bhattacharyya bound is looser
than the Gaussian Approximation (3.22).
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Figure 3.8: WER obtained by BP decoding simulation with 10 iterations and
ML bounds and approximations for RBA with BICM of » = 1/2 over N = 2
blocks with 8-PSK and 16-QAM with Gray mapping.
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3.4.3 Weak goodness of BCC ensembles

As introduced in Section 3.3, we say that a code ensemble over X is good if, for
block length L — oo, its WER converges to the outage probability P:¥ (p, R). We
say that a code ensemble over X is weakly good if, for block length L — oo, its
WER shows a fixed SNR gap to outage probability, asymptotically independent
of L. In this section we give an explicit sufficient condition for weak goodness in
terms of the asymptotic exponential growth rate function [53] of the multivariate
weight enumerator of specific ensembles.

The issue of weak goodness is non-trivial, as illustrated by the following ar-
gument. A code ensemble M(C, u1, X') such that, for all sufficiently large L, a
randomly generated member in the ensemble attains the Singleton bound with
probability 1 is a good candidate for weak goodness. However, this condition is
neither necessary nor sufficient. For example, the ensemble M(C, i, X') consid-
ered in Theorem 1 has a small but non-zero probability that a randomly selected
member is not blockwise MDS, nevertheless it attains the optimal SNR exponent
provided that L grows faster than logp, and hence it is weakly good. On the
contrary, the ensemble of random BCCs with given outer and non-trivial inner
encoders and the ensemble of blockwise partitioned CCs (i.e., BCCs with convo-
lutional outer encoder and rate-1 identity encoder considered in [24, 19, 25, 26])
that can be seen as BCCs with convolutional outer encoder and trivial (iden-
tity) inner encoder, attain the Singleton bound with probability 1 provided that
the outer code is blockwise MDS. Nevertheless, simulations show that while the
WER of general BCCs with recursive inner encoder is almost independent of the
block length, the WER, of CCs grows roughly linearly with the block length. For
example, Fig.3.9 shows the WER for fixed SNR versus the information block
length K, for the ensemble of R = 1/4 RBA codes and the standard 64-states
CCs with generators (135,135,147,163)s mapped over N = 4 blocks, and of
r =1/2 BCCs (with outer convolutional encoder (5, 7)s and inner accumulators)
and the 64-states CCs mapped over N = 8 blocks optimized in [26] with genera-
tors (103,147)g for the block-fading channel. The different behavior of the WER
as a function of the block length for the two ensembles is evident.

We focus first on codes over the BPSK modulation. Therefore, in this case
L=Lg. Let w= (wi,...,wn,) € [0,1]V% be the vector of normalized Hamming
weights per block. The asymptotic exponential growth rate function [53] of the
multivariate weight enumerator is defined by

1
a(w) £ lim lim — log|S"* (w)| (3.24)

e—o0o Lp—oo g

where S'2 (w) is the set of codewords in the length-Lp ensemble with Hamming
weights per block satisfying

|wb/LB—wb| SG, bzl,...,NB (325)
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Figure 3.9: WER vs. block length (information bits) at Ej/Ny = 8dB for binary
BCC, RBA and trellis terminated CCs obtained by simulation (10 iterations
of BP decoding for the BCCs and ML decoding for the CCs using the Viterbi

algorithm).
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We have the following results:

Theorem 2 Consider an ensemble of codes M(C, u, X) of rate R, where X is
BPSK, transmitted over a block-fading channel with Ny blocks. Let a(w) be the
asymptotic exponential growth rate function of the ensemble multivariate weight
enumerator. For 1 < k < Npg, let W(Ng, k) € ]F;VB denote the set of binary
fading vectors with Hamming weight not smaller than Ng — k + 1, and define §
to be the infimum of all s > 0 such that

x€EW(Ng,dsg(R)) wel0,1]VB

Np
inf inf {s be wp — a(w)} >0 (3.26)
b=1
If s < 0o, then the code ensemble is weakly good.

Proof. See Appendix C.3. O]
As far as higher order coded modulations are concerned, we have the following

Corollary 2 Consider an ensemble of codes M(C, i, X) of rate R, where X is a
complex signal set of size 2M, transmitted over a block-fading channel with Ng
blocks, where modulation is obtained by (random) bit-interleaving and decoding
by the BICM-ML decoder defined by (3.5). If the underlying ensemble of binary
codes (i.e., mapping the binary symbols directly onto BPSK) is weakly good, then
the ensemble M(C, p, X) is weakly good.

Proof. See Appendix C.3. O]

The above results (and the proofs of Appendix C.3) reveal that the error
probability of weakly good codes in the regime where both the block length and
the SNR are large is dominated by the event that more than dsz(R) fading com-
ponents are small (in the sense of the proof of Theorem 2). This is precisely the
same behavior of the information outage probability for the rate R and discrete
signal set X. On the contrary, when less than dsg(R) fading components are
small, the code projected over the significant fading components has a finite ML
decoding threshold (with probability 1). Therefore, apart from some SNR, gap,
its error probability vanishes for all such fading realizations. It is also intuitively
clear that, due to this sharp threshold behavior, hitting the SNR, transition re-
gion (known as “waterfall”) for which the error probability is non-vanishing even
if the fading has less than dgg(R) small components is an event of small proba-
bility. This partially explains why BP iterative decoding performs very close to
ML in block-fading channels and why more refined bounding techniques such as
the TSB do not provide almost any improvement. In fact, it is well-known that
BP and ML perform similarly on both the high-error probability region (below
the ML decoding threshold) and in the low-error probability region (above the
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iterative decoding threshold). The gap between the ML and the iterative de-
coding thresholds seems to play a negligible role in the block-fading channel, for
ensembles of weakly good codes. The sharper and sharper transition between the
below-threshold and above-threshold regimes of random-like concatenated codes
is referred to as interleaving gain in [54, 55]. We argue that weak goodness of
BCCs in block-fading channels is another manifestation of interleaving gain, even
if on such channel no waterfall behavior is observed.

In Appendix C.3 we show also that the ensemble of trellis terminated CCs of
increasing block length considered in [24, 19, 25, 26] does not satisfy the condition
of Theorem 2. Numerical verification of Theorem 2 is needed for a specific code
ensemble. In particular, one has to show that

sup sup a(w)

=, <™ (3.27)
xEW(Np,dsp(R)) welo,1]VB Zb:l TpWh

Supported by simulations and by explicit calculation of the multivariate weight
enumerator for RBAs (see Appendix B), we conjecture this is true for the family
of random BCCs with MDS outer code and inner recursive encoders.

As an example, in Figure 3.10 we show the asymptotic WER for the RBA
ensemble of rate 1/2 with BPSK modulation, over a channel with Np = 2 fading
blocks. The asymptotic WER is computed via the asymptotic Bhattacharyya
M&L bound given by

P.(p) < Pr ( max _ow) > p) (3.28)

N,
WeoYB 3,5 Wy

and motivated in Appendix C.3. Simulations (BP iterative decoder) for block
lengths K' = 100, 1000 and 10000 information bits per codeword are shown for
comparison. This figure clearly shows that the WER of these codes becomes
quickly independent of the block length and shows fixed gap from the outage
probability.

In order to illustrate the weak goodness of BCCs with BICM and high-order
modulations, Figure 3.11 shows the asymptotic WER of an RBA code of rate
R = 2 bit/complex dimension with 16-QAM modulation (Gray mapping) over
Np = 2 fading blocks. The asymptotic WER is computed via the asymptotic
Bhattacharyya M&L bound given by

P.(p) < Pr ( max _ow) > p) (3.29)

welo,1)VB 21],\291 wpCp o

and motivated in Appendix C.3, where ¢, is defined in (3.20). Simulations (BP
iterative decoder) for block lengths K = 100,1000 and 10000 information bits
per codeword are shown for comparison.
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Figure 3.10: Asymptotic error probability (3.28) for a binary rate r = 1/2
RBA code mapped over N = 2 fading blocks and corresponding BP decoding
simulation with 30 iterations and K = 100,1000 and 10000 information bits per
codeword.
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Figure 3.11: Asymptotic error probability (3.29) for a rate R = 2 RBA code
mapped over N = 2 fading blocks with 16-QAM and Gray mapping (BICM)
and corresponding BP decoding simulation with 30 iterations for K = 100, 1000
and 10000 information bits per codeword.
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We conclude this section by pointing out an interesting fact that follows as a
consequence of asymptotic weak goodness and allows the accurate WER, evalua-
tion of codes with given block length by using weight enumerators of codes in the
same ensemble but with much smaller block length. In practice, computing the
weight enumerator of shorter codes is in general much simpler and requires much
less computational effort. This observation is illustrated by the following exam-
ple. Figure 3.12 the WER and the BPL approximation for an RBA code of rate
R = 1/4 mapped over Ng = 4 fading blocks with K = 100 information bits per
codeword. We also show the simulation of BP decoding with 10 iterations. Again,
we observe that the BPL approximation yields very accurate results. Moreover,
notice that truncating the PWEF to maximum product weigth AZ*** = 10000,
yields a too optimistic results. On the other hand, notice that with a much
shorter PWEF (computed for the RBA code with K = 20 information bits) we
are able to approximate very accurately the WER of the longer code.

As a matter of fact, the PWEF of the short code contains much more infor-
mation on the code behavior than the truncated PWEF of the long code. This
is clearly illustrated by the PWEFs in Figures 3.13(a) and 3.13(b), showing the
growth rate of the PWEF defined as

1

Fx = 0 log Az, (3.30)
as a function of the normalized product weight A, = A, /Ly? for the RBAs of rate
1/4, with 20 and 100 information bits (every mark corresponds to one pairwise
error event with normalized product weight A,). Truncation at A = 10000
corresponds to maximum normalized product 10~*, which means that only the
portion for 0 < A, < 10°* of the distribution of Figure 3.13(b) is taken into
account in the BPL approximation using the truncated enumerator. This is
clearly not sufficient to describe the RBA product weight enumerator, as opposed
to the PWEF of the short code.

3.4.4 On code optimization

So far we have seen that the BCC coding structure yields weakly good codes
suited to the block-fading channel. However, most of the shown examples were
based on the simple RBA structure. It is then natural to ask whether more
general BCCs can reduce significantly the gap from outage. In this section we
show some examples of other BCCs that in some case improve upon the RBA
of same rate. Figures 3.14 and 3.15 show the performance of BCCCs with bi-
nary rate r = 1/4, attaining full diversity, with BPSK and 16-QAM BICM (with
Gray mapping) respectively for Ny = 4 fading blocks, for K = 1024 informa-
tion bits per codeword and 40 iterations of BP decoding. The octal generators
are described in the legend. We have also considered the 4 states accumulator
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Figure 3.12: WER obtained by BP decoding simulation with 10 iterations and
BPL approximations for RBA with rate R = 1/4 and 100 information bits per
frame, over N = 4 fading blocks.

described in [56, Ch. 4] with generator (1/7)s. We observe that in both cases
the gap from outage is approximately of 1 dB. We notice from Figure 3.14 that
using more complicated outer or inner codes does not yield any significant gain.
Using the 4 states inner accumulator in an RBA scheme yields almost the same
performance that the best BCCC.

From these examples, and an extensive code search not reported here for the
sake of space limitation, it seems that some room is left for code optimization by
searching over the component code generators. However, the improvements are
not dramatic and in several cases do not justify the increasing in decoding com-
plexity. Notice also that, in the block-fading channel, codes need to be universal,
in the sense that they should offer very good performance for all fading realiza-
tions (i.e., a wide class of AWGN channels), and hence, a code which is best for
one of such AWGN channels, may not be the best for another one. Therefore,
we think that such a gap will be difficult to close, since one particular optimized
code that may have very low error probability for some channel realizations, may
fail to do so in other channels.
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Figure 3.13: PWEF growth rate for RBA of rate R = 1/4 with 20 (a) and 100
(b) information bits per frame, over Np = 4 blocks.
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Figure 3.14: WER (simulation of BP decoding with 40 iterations) of several
BCCs of rate R = 1/4 over BPSK, for Ny = 4 fading blocks with K = 1024
input bits per codeword.

3.5 Conclusions

In this chapter we have determined the SNR reliability function of codes over
given finite signal sets over the block-fading channel. Random coding obtained
by concatenating a linear binary random code to the modulator via a fixed one-to-
one mapping achieve the same optimal SNR reliability function provided that the
block length grows rapidly enough with SNR. Pragmatic BICM schemes under
suboptimal BICM-ML decoding achieve the same random coding SNR, exponent
of their non-BICM counterparts (under optimal ML decoding).

Driven by these findings, we have proposed a general structure for random-
like codes adapted to the block-fading channel, based on blockwise concatenation
and on BICM (to attain large spectral efficiency). We provided some easily
computable bounds and approximations to the WER of these codes under ML
decoding and BICM-ML decoding. Remarkably, our approximations agree very
well with the simulated performance of the iterative BP decoder.

We noticed that the proposed codes have WER almost independent of the
block length (for large block length), that shows a fixed SNR gap from outage
probability. We introduced the concept of “weak goodness” for specific ensembles
of codes having this behavior for large block length (and large SNR), and we
provided sufficient conditions for weak goodness of specific code ensembles in
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Figure 3.15: WER (simulation of BP decoding with 40 iterations) of several
BCCs of rate R = 1 over 16-QAM (BICM with Gray mapping), for N = 4
fading blocks with K = 1024 input bits per codeword.

terms of their asymptotic multivariate weight enumerator growth function.

Finally, we showed through extensive computer search and simulation of the
BP decoder that, while some improvement can be expected by careful optimiza-
tion of the component codes, weakly good BCC ensembles have very similar
behavior (Interestingly, a similar conclusion was reached in previous works on
convolutional codes for the block-fading channel [24, 19, 25, 26]).
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Coded Modulation in the MIMO
Block-Fading Channel

In this chapter we study pragmatic space-time code design for MIMO channels.
In particular, we will focus on the quasistatic case, i.e., Ng = 1. This is proba-
bly the simplest model that captures the essential features of non-ergodic MIMO
channels. More general cases are briefly outlined in Section 4.2.1, and the ap-
plication to OFDM systems is studied in Chapter 5. We briefly recall that the
signal model can be written as

Y = JGHX + Z (4.1)
where Y € C¥2 <! is the received signal, X = (xi,...,Xy,)" is the transmitted
signal drawn from the space-time code S C CN7*L H = (hy, ..., hy,) € CNr*Nr

is the Rayleigh fading channel matrix with entries i.i.d. ~ Ng(0,1), and Z €
CNe*L ig the noise matrix, with i.i.d. samples ~ N¢(0,1). We assume that the
symbols transmitted from one antenna have unit energy, i.e., E[|x|?] = 1. Thus,
p is the SNR per transmit antenna. Let us also recall that the pairwise error
probability under ML decoding can be expressed as [30],

P(X = X') < G.p e (4.2)
where G, is usually referred as the coding gain and

dr = min rank(X — X') (4.3)
X,X'€S
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is the rank diversity of S. Conventional space-time code design searches for full
diversity space-time codes S, i.e., d, = Np. Then, once full diversity is ensured,
traditional space-time code design searches for the best possible coding gain. As
anticipated in Chapter 2, a simple upper bound on the rank diversity can be
obtained by assuming a genie-aided decoder that produces observables of the
transmitted symbols of one antenna, assuming that the effect of symbols from
all other antennas has been artificially removed. In this case, the MIMO channel
(4.1) decomposes into a set of Ny non-interfering parallel channels, i.e., a SISO
block-fading channel . This upper bound is then given by the block diversity dg
studied in Chapter 3 for the SISO block-fading channel.

The main focus of this chapter is on the impact of signal constellation expan-
sion on the achievable diversity. Signal constellation expansion can be obtained
either by increasing the size of the constellation on the complex plane or by using
multidimensional linear mappings. We study two different pragmatic approaches
to construct full-diversity space-time codes. In particular, we first review a prag-
matic construction based on bit-interleaved coded modulation (BICM) [36], which
relies on the algebraic properties of the underlying binary code to achieve diver-
sity. Secondly, we consider the concatenation of a coded modulation scheme with
an inner code that is linear in the field of complex numbers (linear dispersion
(LD) code [57]). It is well known that LD codes offer poor performance for
large block length, and some sort of concatenation is needed. In both cases, full-
diversity space time codes of any desired spectral efficiency are constructed by
suitably expanding the signal constellation. In the first case, we have constella-
tion expansion in the complex plane (Ungerbock’s style expansion [58]), while in
the second, we have multidimensional expansion induced by the inner code. By
means of message passing decoding, we compare both approaches and we show
that, in general, the concatenated LD construction is always advantageous due
to its higher design flexibility.

As mentioned also in Chapter 2, the performance of some of the considered
pragmatic coding strategies relies very heavily on the ability of the decoder to
emulate the genie-aided decoder with the lowest possible complexity. In partic-
ular, this chapter also studies several low-complexity message passing iterative
decoding approaches and we will illustrate their corresponding performance vs.
complexity trade-off by means of some simple examples.

4.1 Pragmatic Space-Time Codes

We consider natural space-time codes (NSTC) coupled with BICM as a pragmatic
way to construct full-diversity space-time codes (see e.g. [59, 60, 14, 61, 62, 63]).
We nickname such scheme BICM NSTC. Such codes are formally defined by a
binary block code C C FY of length N and rate r and a spatial modulation
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function F : C — & C XN1*L such that F(c) = X, where X C C is the complex
signal constellation. We study the case where F is obtained as the concatenation
of a block/antenna parsing function P : Z, — Z% such that P(n) = (¢,£),1 <
n < N,1 <t < Np,1 < /¢ < LM that partitions a codeword ¢ € C into
sub-blocks, and blockwise BICM, where each sub-block is independently bit-
interleaved and mapped over the signal set X according to a labeling rule p :
FY — X, such that u(by,...,by) = x, where M = log, |X| (see Figure 4.1). In
the remainder of the chapter we shall only consider Gray labeling rules, since they
are more efficient in quasistatic channels [14]. This conclusion may be reversed
in fully-interleaved channels [63]. In this case, N = NpyLM. The transmission
rate of the resulting space-time code is R = r Ny M bit/s/Hz.

- T, > Modulator%—@

Block Code
—_——— C

r=k/n

= T, - Modulatorg—Q

Figure 4.1: Transmission scheme of BICM NSTC.

BICM NSTCs are designed assuming that a genie aided decoder that produces
observables of the transmitted symbols of one antenna, assuming that symbols
from all other antennas are known'. In this way, the channel decomposes into an
equivalent set of N7 non-interfering parallel channels (SISO block-fading channel
with Ny blocks),

r, =+plhlx;+v,, 1<t<Np, (4.4)

where r; is the received sequence of symbols corresponding to antenna ¢, h; is the
t-th column of H, x; is the transmitted sequence of symbols over antenna ¢ and
v, is the corresponding sequence of noise samples ~ N¢(0,1).
We define the block diversity of a space-time code S as the blockwise Hamming
distance,
dp = mi tel,...,Ny] : x,—x, #0 4.5
p=uin [{tefl,....Nr| : x—x # 0}, (4.5)
i.e., the minimum number of nonzero rows of X — X’. Then, with a genie aided
decoder, BICM NSTCs can achieve diversity dgNg (see Chapters 2 and 3). Notice
that applying BICM within a block preserves the block diversity of the binary

!The reader will notice the analogy with the case of decision feedback equalization for
frequency selective channels, where correct feedback is assumed to design the equalizer filters.
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code, since the binary labeling rule 4 is a bijective correspondence. As we have
seen in Chapter 3, the block diversity is upperbounded by the Singleton bound,
with Np blocks. In general MIMO block-fading channels with N temporal fading
blocks (see (2.23)), the number of independent parallel channels is NgpNp [14].
Consequently, with BICM NSTCs we will search for codes maximizing dgp, i.e.,
satisfying the Singleton bound with equality.

On the other hand, the evaluation of the rank diversity of BICM NSTCs can
be a very involved task especially for constellations with M > 1. For binary
BICM NSTCs, it is however possible to verify through the stacking construction
theorem whether a BICM NSTC has full rank diversity or not. In particular
consider the following:

Theorem 3 (Stacking construction [35]) Let Gy, ..., Gy, be binary matrices €
FX*Nand consider the binary linear code of rate K/(NpN) generated by

G’ - [Gl, G’Q, ey GNT]-
Let the code words ¢ = bG of C, where b € FX | be parsed as

bG;
bG,
C=F(c)= :
bG .,
Then, if for all ay,...,ayn, € Fy non all zero, the K x N matriz

Nt
M= @ ath
t=1

( @ indicates addition over the binary field Fy) has rank K, then the binary
space-time code mapped over BPSK modulation obtained from C with the above
parsing has full rank-diversity Ny (the condition is necessary and sufficient).

Now let GY be the t-th generator matrix of C. The generator matrices G/
of BICM NSTCs can be easily obtained from G¢, by simply applying the per-
mutation 7; to the columns of G¢, for t = 1,..., Np. We can now apply the
stacking construction theorem with the generator matrices of the BICM NSTC
G/}, in order to check for its a priori diversity performance under ML decoding.
Notice that for BICM NSTCs, as shown in [64], we have that d, < dg < Nr.

4.2 Pragmatic Concatenated Space-Time Codes

In this section we consider the case where the codewords X of the space-time
code § are obtained from the concatenation of an outer coded modulation scheme
CO C X" of rate rp and length n with an inner LD code (see Figure 4.2).
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Figure 4.2: Transmission scheme of pragmatic concatenated space-time code.

The inner code is formed by a parser P, that partitions the codewords ¢ € C°
into sub-blocks c[j] = [e1[j], .-, coljl], 7 = 1,...,J of length @, with J = n/Q
and by a LD space-time modulation function F defined by,

Q

S[j] = Fleli]) = D _(c[/]Gy), (4.6)

q=1

where G, € CV7*T are the LD code generator matrices. Finally, the overall
space-time codeword is given by X = [S[1]...S[J]]. Then,

Y[j] = HS[j] + Z[j], j=1,..., ] (4.7)

Equation (A.1) can be rewritten as a virtual MIMO channel with @ inputs and
N7 = NgT outputs as,

yljl =Heljl +2[j], j=1....J (4.8)
where H € CN2*? is the equivalent channel matrix given by,
H = [Ir @ HIG (4.9)

where ® is the Kronecker product, G € CNTT*@Q is the suitably reformatted
generator matrix of the LD code, y[k] = vec(Y[k]), z|k] = vec(Z[k]), N} = NgT
is the number of virtual receive antennas, and vec(A) = [al ... al]T for a matrix
A =Ja;...a]. Will refer to ) as the number of virtual transmit antennas.

In order to obtain a dual scheme to compare with, in this work, we consider
that C© is obtained by BICM, i.e, a binary code C € FY of rate r whose bit-
interleaved codewords are mapped onto the signal set X according to the binary
labeling rule p : FYY — X [36]. As inner LD code, we use the threaded alge-
braic space-time (TAST) constellations of [65]. We nickname such a transmission
scheme as BICM TAST (see Figure 4.3).

The aforementioned algebraic space-time codes rely on the threaded layering
first introduced in [66] for threaded space-time codes (TSTC). In TSTC, a number

of component encoders (or layers) N, and the component codewords ¢, € Cy ,{ =
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Figure 4.3: Transmission scheme of BICM TAST.

1,...,Np are mapped onto the array Ty, n,n, following the (layer, antenna,
time) indexing triplet
P, t)=(lt+€—1|yp,t), L=1,...,Np, 1<t<T (4.10)

thus having full spatial and temporal spans. Modulo-k£ operation is denoted by
|.|x. TAST threading (4.10) is shown in Figure 4.4 for Ny =4, N, =4 and T = 4.
The encoding functions corresponding to Cp, £ =1,..., Ny are v, = ¢,M, where
M is a rate one full-diversity linear algebraic rotation and ¢y, £ =1, ..., Ny scalar
complex coefficients chosen to be Diophantine numbers that ensure that TAST
codes achieve full diversity with ML decoding (see [65] for details). In particular,
the scaling coefficients ¢, ensure that all the difference codeword matrices have
full rank. If we set all ¢, =1, £ =1,..., Ny, most of the pairwise error events
will still be full rank, but there will be some that are not, as shown in [65].
Then some difference in the WER, performance is observed only at very large
SNR, which is the region dominated by rank-deficient error events. Therefore, it
is expected that using an inner coded modulation, this effect will be negligible,
since the inner code will remove some of the rank deficient error events.

In TAST codes, N, = min(Nr, Ng), T = Ny, Q@ = NpNp, and ¢y, { =
1,..., Ny are chosen such that |¢,| =1, £ =1,..., N;. The transmission rate of
the resulting space-time code is R = r N, M bit/s/Hz. Notice that following this
divide and conquer design, full diversity is always guaranteed by the inner code,
while coding gain is left to the outer coded modulation.

4.2.1 Extension to General Block-Fading Channels

The approaches described above can also be efficiently used in a block-fading
channel with Np blocks as the one described by (2.23). In particular, for the
BICM TAST, it suffices to find a rotation matrix of dimension Ny Npg and parse
the different threads as shown in Figure 4.5. In this case, the equivalent channel
H will have its dimensions augmented by a factor Ny [65].

In the case of BICM NSTC, under the assumption of a genie-aided decoder,
any parsing that cyclically maps the output of C over Ny Ng fading blocks would
do. However, in practice, symbols transmitted at the same time instant do in-
terfere. Then, the cyclic interleaver should be designed in the space and block
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Figure 4.4: TAST threading (4.10) for Ny = 4, N, = 4 and T' = 4. The numbers
indicate the thread index.

b=1 b=2

Figure 4.5: TAST threading for N = 4, Ngp = 2, N, = 4 and T = 4. The
numbers indicate the thread index.
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dimensions. One natural option is a parsing rule that first maps adjacent coded
symbols in one hyper-trellis step over the antennas and then over the blocks.
This parsing rule is illustrated in Figure 4.6. Notice that this parsing rule can be

time/frequency

Y

1 9| 17| 25| 33| 41| 5 |13 | 21 | 29 | 37 | 45

10| 18| 26| 34| 42| 6 |14 | 22 | 30 | 38 | 46

antenna
N

3| 11| 19| 27| 35| 43| 7 |15 | 23 | 31 | 39 | 47

4| 12| 20| 28| 36| 44| 8 |16 |24 | 32 | 40 | 48

b=1 b=2
Figure 4.6: Parsing rule for Ny =4, Ng =2, N =48 and M = 1.

coupled with efficient block interleavers. This is however not the only possibility.
In fact, one can perform a joint parsing and interleaver design such that binary
symbols from adjacent trellis steps are not transmitted at the same time-instant
[63].

4.3 Message Passing Decoding

In this section, we shall study several low-complexity receiver architectures that,
under some conditions, approach the performance of the genie-aided decoder.

Because of the pseudo-random bit interleaver present in both schemes, ML
decoding of BICM NSTC or BICM TAST is of unaffordable complexity. We shall
see that applying the belief propagation (BP) or sum-product algorithm [44] to
the space-time code dependency graph yields to several receivers that approx-
imate the optimal maximum a posteriori (MAP) detection rule by iteratively
exchanging probability messages over the graph. Recall that for graphs with cy-
cles, as for the codes studied here, BP only yields an approximation of MAP [44].
We denote by b = (by,...,bx) the information bit vector and the proportionality
symbol o indicates that the term in the right hand side (RHS) is defined up to
a multiplicative constant.

In the case of BICM NSTC?, the optimal MAP detection rule for a given
information bit b; for a particular channel realization can be expressed as,

~

b, = arg max APP;(b) (4.11)

2The case of BICM TAST is completely analogous, and it suffices to replace N by @, L by
J and H by H.
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where
APP;(b) = Y P(b|Y,H) (4.12)

beFK

bi=b
denotes the a posteriori probability (APP) on the i-th information bit com-
puted as the marginalization of the joint a posteriori pmf of the information
bits P(b|Y,H). A general method of approximating (4.12) consists of applying
the BP algorithm to the factor graph of the space-time code. A simple example
of a factor graph for BICM NSTCs with a r = 1/2 binary code C, Ny =2, M = 2
(i.e., QPSK modulation), N = 8 and L = 2 is given in Figure 4.7.

b Variable Nodes O O Q O

C Dependency Graph

¢ Variable Nodes

1 Function Nodes

z Variable Nodes

H Function Nodes (observation)

Figure 4.7: Dependency graph of BICM NSTC for r = 1/2, Ny =2, M = 2,
N =8and L =2.
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4.3.1 Belief Propagation

By applying the sum-product rule of the BP algorithm to the function nodes p, in
analogy to the case of iterative multiuser receivers for CDMA [67], we obtain that
the probability message that is passed from a p node to a ¢ node, along an edge
e at time k, corresponding to the m-th coded bit of the symbol x transmitted
over antenna ¢ is given by [44, 67],

Pili@= > » yk|xHH H PEt (), (4.13)
xcxt
m;émt’ t

for1<m< M, 1<t<Nyp,1<k<L, where

p(yr|x, H) o< exp(—|yr — \/EHX|2), (4.14)

is the conditional pdf of the received signal y, = Hxy, + z; given the input signal
x and the channel H, X" is the set of all Ny-dimensional symbols with the m-th
bit of the binary label corresponding to the symbol transmitted over antenna ¢
equal to a € Fy, which is a dummy binary variable. The corresponding expression
for the log-likelihood ratio (LLR) message is given by,

Ly (@) = log P2 =0) (4.15)
e Priila=1)

Performing the same computation at the code constraint function nodes of
the dependency graph of C, the probability message passed from a ¢ node to a
i node along an edge e at time k, corresponding to the m-th coded bit of the
symbol x transmitted over antenna t is given by,

Priwa) = > []Phija) (4.16)

ceC j#k
Cm,t, k=0

Therefore, as illustrated in the block diagrams shown in Figures 4.8 and 4.9,
for BICM NSTC and BICM TAST respectively, the BP algorithm reduces the
receiver to a MAP soft-input soft-output bitwise demodulator and a MAP soft-
input soft-output decoder of C, that exchange extrinsic information probability
messages through the iterations [68]. Messages defined by (4.16) are the extrinsic
pmf of the coded bits at the output of the soft-input soft-output decoder of
C. When C is a trellis code, the messages (4.16) are efficiently computed by the
forward-backward algorithm (BCJR) with linear complexity in N [49]. When C is
itself a concatenated or LDPC code, further iterations are needed to approximate
the MAP solution.
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Figure 4.8: Iterative decoder with the sum-product algorithm for BICM NSTC.
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Figure 4.9: Iterative decoder with the sum-product algorithm for BICM TAST.
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Notice that, |X™t = 2N7M=1"and therefore, for large Ny and/or large M,
bitwise MIMO demodulation becomes of unaffordable complexity, since an ex-
haustive enumeration of all Np-dimensional constellation points has to be per-
formed in order to compute (4.13). We will use it in some cases where we can
still compute it as a performance benchmark.

4.3.2 Soft-Input Soft-Output Sphere Decoding

We have seen that exact BP decoding induces exhaustive enumeration of the
points in X™* in order to compute (4.13), and this yields an exponentially com-
plex decoding algorithm in Ny and M. In order to avoid exhaustive enumeration,
one can only enumerate the Np-dimensional points that bring a relevant contri-
bution to (4.13). This task is efficiently accomplished by the so-called soft-input
soft-output sphere decoders.

Sphere decoding, classically refers to algorithms that perform low-complexity
search for the closest lattice point in lattice-based code constructions [69, 70,
71, 72]. In particular, such algorithms use the lattice code structure to find the
ML solution without exhaustively enumerating all the possible lattice points. In
particular, they chose the ML solution from a set of lattice points that lie in a
sphere of radius C' centered at the received point. Here we are mostly concerned
with providing decision statistics to the decoder of C, and therefore, original
sphere decoders have to be modified in order to output a list of constellation
points rather that the ML solution only. In this work, we shall use the low-
complexity approach described by Boutros et al. in [73]. In this work, rather
than enumerating all constellation the points inside a sphere centered at the
received point [74, 75], the authors propose to enumerate all constellation points
inside a sphere centered at the uncoded ML solution. This stabilizes the list size
and consequently produces a soft-output of higher quality, specially for the noise
realizations that bring the received point outside the constellation.

In particular, for the quasistatic channel, the low-complexity algorithm pro-
posed in [73] can be summarized as follows,

1. for each channel realization H compute Q and R such that B = QR
2. compute the lattice list radius Ry

3. use the Pohst method to enumerate all lattice points inside a sphere of
radius Ry, centered at the x = 0 lattice point and put them in the list Lj,

4. sort the lattice list L; with increasing FEuclidean distance to the x = 0
lattice point

5. for each symbol period 1 < k < L compute the uncoded ML point xM*
using Schnorr-Euchner enumeration
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6. translate the lattice list to the x}' point and evaluate the constellation
points that fall inside, i.e., Ly = (L + xMF) N Aor %

where, assuming transmission that X is a Gray-mapped QAM signal, such that
real and imaginary parts are independent Gray mapped PAM constellations

~ (Re{H} —Im{H}

B= (Im{H} Re{H]} (4.17)
is the generator matrix of the real lattice A induced by the MIMO channel. We
compute the lattice list radius Ry, in order to have approximately Ny, lattice points
in the sphere. This can be accomplished by choosing R, to be

XPAM:

Ny | det B| Ng!\ 7
RL:< L[ det B T) o (4.18)

Nt

As recognized in [76], significant complexity reduction in finding the uncoded
ML point x}'" can be achieved if we perform the detection in a permuted order.
In particular, as done in [77] we will use the method proposed in [78] since the
ordering can be achieved with very low complexity by appropriately modifying
the Gram-Schmidt algorithm in the QR decomposition. Remark that this is
not the optimal ordering. In particular, this optimal ordering is given by the
V-BLAST optimal ordering [79, 76].

4.3.3 Lower-Complexity Approximations

Motivated by the high complexity of BP and SD decoding, we study the impact
of lower complexity receiver architectures on the system performance of BICM
TAST and BICM NSTC. In particular, we consider interference cancellation (IC)
and linear filtering, for which the message passed from a p node to a ¢ node,
along an edge e at time k, corresponding to the m-th coded bit of the symbol =
transmitted over antenna ¢ is now given by

M

Phri(a) = > plaele, H) T Potilam). (4.19)
zeXm m'=1
m/#m

where X" is now the set of complex signal constellation points for which the
m-th position of its binary label is equal to a, 2, is the output at symbol time
k of the front-end linear filter f; of antenna t,

Nt
2tk = ftH (yk - \/ﬁzhtlfi‘tl’k> (420)

t £t
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where (dropping antenna and time indexes for simplicity),

# =E[z|EXT]=> H Pe (! (), (4.21)
zeX m=l1

is the minimum mean-square error estimate (conditional mean) of the symbol
x given the extrinsic information (briefly denoted in (4.21) by EXT) relative to
the bits in the label of x, and p,,'(z) = a is a shortcut notation to denote that
the m-th position of the bit label of = is equal to a. Figure 4.10 illustrates the
interference cancellation and filtering steps represented by equation (4.20) for
detecting the symbols of the ¢-th antenna.

Vi 2,k
AR 1 ,
NP
\/ﬁ Z htlfIA'ftl7k
14t
H —— >
*’%l,ku s 7'%NT,/€

Figure 4.10: Interference cancellation and filtering.

Given the analogy with CDMA multiuser detection, we consider first the
Unbiased Minimum Mean Squared Error (MMSE) filter as IC linear front-end f;,
which minimizes the MSE E[|z; — 2|?], and is given by

£MVSE — o, /pR 'hy, (4.22)
where
o = (ph”R'h))™* (4.23)
is the normalization constant that induces unbiasedness,
Nt
R=1I+p) hh/y (4.24)

t=1
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is the covariance matrix of the input signal to the filter, and
v = Bllz; — &)%) (4.25)

is the variance of the residual interference at antenna ¢ (see [67, 80] and references
therein).

According to (4.19), n order to compute the messages P/} (a), we need
p(zix|z, H). This corresponds to the conditional pdf of the signal at the output
of the filter, once the interference has been canceled (see Figure 4.10). It is
reasonable to approximate the residual interference plus noise at the filter output
as Gaussian, and thus we write that

1 1
H)~ — —— |z — z|? 4.26
plaaele ) =~ exp (=Ll = o) (1.20

t t

where variance of the residual interference plus noise can be computed as

of = |f,? +PZ £ Dy oy (4.27)
£t

In a practical implementation (and in the numerical computations illustrated
in section 4.4) we estimate v; as

L
1 .
nrl= § 2kl (4.28)
k=1

Notice that fMMSE has to be computed once per virtual transmit antenna and
iteration. The proposed algorithm differs from that proposed in [66] in that
the latter has to be computed once per symbol interval, transmit antenna and
iteration.

If we wish to further reduce the complexity, we can use the Matched Filter
(MF) as the linear interface, for which [81],

h
4.29
! VP2 (4.29)

which performs maximal ratio combining (MRC) of the receive antennas and does
not take into account the noise plus interference. It has to be computed only once
per channel realization, since it does not depend on the iterations, which reduces
significantly the computational burden. The residual interference plus noise is
also approximated as Gaussian [81].

Figures 4.11 and 4.12 show the block-diagram of such IC receivers for BICM
NSTC and BICM TAST respectively.
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Figure 4.11: Iterative decoder with MMSE interference cancellation for BICM
NSTC.
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Figure 4.12: Iterative decoder with MMSE interference cancellation for BICM
TAST.
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Remark 1 A large number of front-end filters coupled with soft or hard inter-
ference cancellation can be incorporated in this framework. Such modifications
import to the MIMO case well established structures for multiuser receivers in
CDMA (see [82] for some recent structure using Kalman filters).

Remark 2 In order to further reduce the complexity for trellis codes, the BCJR
module can be replaced by a weighted Viterbi decoder, in a similar way to what it
is done in [81] in the context of multiuser detection for CDMA systems.

Remark 3 There exist several variations of the presented algorithm that estimate
the interfering symbols using the a posteriori probabilities (APP) instead of the
extrinsic. See e.g. [67] and references therein. It has been shown experimentally
that such IC approaches, when they converge, they converge faster using the APPs
rather than the EXT. These algorithms violate in principle the basic rules of belief
propagation. Note however, that once the computation of the messages from p
function nodes to ¢ variable nodes is not done according to belief propagation,
but rather according to some approzimation, it is not guaranteed anymore that
propagating the EXT will yield better results than propagating the APPs.

4.4 Numerical Examples

In this section we provide several numerical examples obtained by computer sim-
ulation that illustrate the relevance of the block diversity as design parameter for
BICM NSTC, the effect of the constellation expansion on the achievable diversity
of BICM NSTC and BICM TAST and the efficiency of the several decoders to
approach the genie-aided decoder. For the sake of comparison, we include the
outage probability curves with Gaussian inputs at the corresponding spectral ef-
ficiency. Unless otherwise specified we take frames of 128 information bits and 5
decoding iterations.

4.4.1 Block Diversity vs. Rank Diversity

Figure 4.13 reports the word error rate (WER) as a function of E,/Np in a
MIMO channel with Ny = 4 and Ni = 4, using BPSK modulation and the 4
states (5,7,7,7)s convolutional code of r = 1/4. The overall spectral efficiency
is R = 1bit/s/Hz. Clearly, the block diversity of C is dg = 4. In dashed-
dotted line we show the WER for the NSTC with ML decoding. Recall that
the NSTC array is constructed using identity permutations [35], and therefore
ML decoding is possible using the Viterbi algorithm. Applying the stacking
construction theorem yields that the NSTC code is rank deficient. We have also
applied the theorem to BICM NSTC with a large number of randomly generated
interleaver permutations, and none of them gave a full-rank code. However, as the
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curves in the figure show, in the WER region of interest full-diversity performance
is achieved with the three suboptimal iterative receivers (exact BP, MMSE-IC
and MF-IC) described in the previous section. This simple example serves to
illustrate the key role that the block diversity plays to achieve full diversity in
BICM NSTC with low-complexity receivers.

Remark again that NSTC and BICM NSTC are different space-time codes
due to the presence of interleavers. Thus, it is obvious that using ML decoding
of NSTCs as performance benchmark for iterative decoding of BICM NSTC is
meaningless [83]. This is also well illustrated in this example.

10° ¢

10

101

WER

[| == Outage GlI
[| -~ NSTC ML
— BICM NSTC BP 5it
[| = = BICM NSTC MMSE-IC 5it
= BICM NSTC MF-IC 5it
I I

I 1 1
-10 -8 -6 -4

-2
E,/N, (dB)

Figure 4.13: WER for Ny = 4, Ng = 4 and R = 1bit/s/Hz, with the (5,7,7,7)s
convolutional code and BPSK modulation.

4.4.2 Impact of Signal Constellation Expansion

In this section we show some examples that compare complex-plane signal con-
stellation expansion through BICM NSTCs with multidimensional constellation
expansion through linear dispersion codes.

Figure 4.14 shows the WER performance in a Ny = 2 and Ny = 2 MIMO
channel with the 4 states (5,7)s convolutional code of r = 1/2 with QPSK and
16-QAM modulations with Gray mapping. The spectral efficiencies are R = 2,4
bit/s/Hz respectively. The block diversity of C is dg = Ny = 2, and there-
fore, BICM NSTC should achieve full diversity with a good decoder. On the
other hand, the diversity of BICM TAST is given by the TAST constellation
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and the coded modulation is only responsible for an horizontal shift of the error
curve, i.e, the coding gain. Notice that, in such concatenated scheme, we can set
¢pe=1, L =1,..., Ny without any noticeable difference in performance, since the
outer code removes most of the rank-deficient error events of the inner code. In
this way, it suffices to find a good rotation matrix M in order to construct good
BICM TAST codes. As we observe, under BP decoding and the same configu-
ration, since BICM NSTC has full block diversity, all schemes perform almost
identical regardless of their different nature. Notice that LD constellations induce
an increased peak-to-average power ratio, which can make them impractical for
applications where the power amplifier is operated close to saturation.
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10 "H — Outage GI R=2 bit/s/Hz
—8- BICM NSTC QPSK R=2 bit/s/Hz
- BICM TAST QPSK (popt R=2 bit/s/Hz
— BICM TAST QPSK ¢=1 R=2 bit/s/Hz
= = Outage G| R=4 bit/s/Hz

BICM NSTC 16QAM R=4 bit/s/Hz
—O— BICM TAST 16QAM R=4 bit/s/Hz

I I
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Figure 4.14: WER for Ny = 2 and N = 2 with (5,7)g convolutional code,
QPSK and 16-QAM with Gray mapping.

In Figure 4.15 we report the WER performance in a Ny = 2 and Np = 2
MIMO channel with the 4 states convolutional codes and QPSK and 8-PSK mod-
ulations with Gray mapping for an overall spectral efficiency of R = 3bit/s/Hz.
In this case the frame is taken to be 132 information bits long. This figure clearly
illustrates the effect of constellation expansion to achieve full diversity. In fact,
in order to achieve R = 3bit/s/Hz with QPSK, we need the rate of C be r = 3/4.
As we observe, under such configuration, BICM TAST achieves full diversity due
to its inherent multidimensional constellation expansion. On the other hand, the
diversity of BICM NSTC is governed by the Singleton bound (which in this case
yields dg = 1) and therefore under this configuration it does not achieve full-
diversity. However, R = 3bit/s/Hz can also be achieved by using a rate r = 1/2
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code (which has dg = Ny = 2) and expanding the signal constellation in the
complex plane, i.e., using 8-PSK modulation. As we observe, in this case, BICM
NSTC achieves full diversity. However, it pays about a 1dB penalty in average
power for the expansion with respect to the BICM TAST.

: = Outage GI
—&— BICM NSTC r=3/4 QPSK
[| =0— BICM NSTC r=1/2 8-PSK
—— BICM TAST QPSK

I

T ! 1
-10 -5 0 10 15 20

5
E/N, (dB)

Figure 4.15: WER for Ny = 2, Ny = 2 and R = 3bit/s/Hz, with 4 states
convolutional codes, QPSK and 8-PSK with Gray mapping.

Figure 4.16 shows the WER performance of BICM NSTC and BICM TAST
in a MIMO channel with Ny = 4 and N = 4, with the 4 states (5,7,7,7)s
convolutional code of r = 1/4, using 16 and 64 QAM modulations with Gray
mapping and MMSE-IC decoding. The corresponding spectral efficiencies are
R = 4,6 bit/s/Hz. In the case of 64-QAM we have considered frames of 120
information bits. We also plot the simulated matched filter bound (MFB), i.e.,
an ideal genie aided decoder for which the contribution of the signals other than
the one it is detecting has been removed. In this example we observe that a new
effect arises, namely, for too large spectral efficiency, even if the transmission
schemes ensure full diversity, the MMSE-IC decoder is not able to remove the
interference and achieve the correct slope. The characterization of the thresholds
of the spectral efficiency for which the MMSE-IC is able to perform close to ML or
BP is a very diffiult problem and at present there is no satisfactory explanation.
In Appendix E we derive a semi-analytical method based on a combination of
density evolution and bounding techniques, which however has complexity only
sightly lower than simulation due to the outer expectation over the quasistatic
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fading.
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Figure 4.16: WER for Ny = 4, N = 4 with (5,7,7,7)g convolutional code,
16-QAM and 64-QAM with Gray mapping, with MMSE-IC decoding.

4.5 Conclusions

In this chapter we have illustrated the effect of signal constellation expansion on
the achievable diversity in quasistatic MIMO channels by means of two simple
pragmatic space-time code structures. In particular we have compared complex
plane expansion and lattice-based expansion. We have shown that under exact
belief propagation decoding and interference cancellation approximations, con-
catenated space-time codes with inner LD codes benefit from a higher design
flexibility and show some performance advantage. However, in the same set-
ting, both schemes perform equivalent. Thus, since LD-based methods induce
an increased peak-to-average power ratio, we shall prefer the first approach in
applications where the power amplifier is driven close to saturation.
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Application to OFDM

This chapter illustrates the application of some of the proposed methods described
in the previous chapters to realistic high-rate wireless multiple-antenna commu-
nication systems using OFDM modulation. In particular, we illustrate how the
BICM NSTC scheme described in Chapter 4 compares with more standard ap-
proaches for space-time coding that employ orthogonal or quasi-orthogonal pre-
coders, multidimensional linear mappings and classical V-BLAST. We perform
this comparison under the framework of the ANTIPODE project of the French
Telecommunications Research Council RNRT for which multiple-antenna space-
time code solutions have been proposed and compared in order to increase the
spectral efficiency of HIPERLAN/2. This comparative study will be done under
two main channel scenarios: a typical office environment for NLOS propagation
with independent antenna channels based on standard channel models, and a
more realistic indoor multiple-antenna channel that includes transmit and re-
ceive antenna correlation generated with a ray tracing channel generator. We
show that under both scenarios, BICM NSTCs compare favorably, and show re-
markable performance advantage over the other approaches with extremely low-
complexity receivers. The rest of the chapter is organized as follows. We first
give a brief description of OFDM modulation and the basic models. We then
review some aspects of the HIPERLAN/2 physical layer followed by a brief de-
scription of BICM NSTC design for OFDM channels. We finally give the system
comparison.
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5.1 OFDM with Cyclic Prefix

We consider an OFDM system with N¢ subcarriers with cyclic prefix insertion in
over frequency-selective fading [84]. The Np-path discrete-time channel impulse
response is given by

M) = 3 yb(t = pT3) (1)

where Ty is the signaling period and h, is the amplitude gain corresponding to
the p-th tap delay. This channel impulse response is obtained by sampling the
real channel impulse response at the sampling rate. The delay intensity profile of
the channel is defined as the expected path power E[|h,|?], for 0 < p < P — 1.

We consider transmission of blocks of length N¢. By adding a replica of the
last Neop symbols at the beginning of the block, the channel linear convolution
becomes a circular convolution, which in the frequency domain, corresponds to
the product of Fast Fourier Transforms (FFT). Therefore, the inter-symbol inter-
ference channel (5.1) can be modeled as a set of non-interfering parallel channels
in frequency with a flat fading coefficient on each [84]. Therefore, the received
signal y. at the c-th subcarrier can be written as,

Ye =/pHxc+ 2., c=1,...,N¢ (5.2)

where H. € C is the flat frequency channel coefficient at subcarrier ¢, obtained
as the c-th component of the FFT of the channel impulse response, z. € X is the
transmitted constellation symbol drawn from X the signal constellation, which
we assume to be normalized in energy, z. € C is the noise sample distributed as
Nc(0,1), and p the SNR per sub-carrier. Notice that (5.2) shows that OFDM
channels are somehow dual in the frequency domain to block-fading channel stud-
ied in the previous chapters. However, there is an important difference: the fading
coefficients between adjacent frequency sub-carriers are in general correlated.

In an OFDM setting, the elements of diversity (degrees of freedom of the sys-
tem) are given in the time domain. However, the equivalent transmission channel
is in the frequency domain. In order to estimate the amount of diversity available
in the OFDM channel, we may be interested in characterizing how different is
the channel seen by a given subcarrier ¢ from the one seen by another subcarrier
', separated by a frequency spacing ¢. This calls for the autocorrelation of the
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frequency response,

Rp(¢) = E[H(f)H(f—¢)] (5.3)
= (i hpe—j2wfp> (i h;€j27r(f—¢)q>] (5.4)
_ Z i hh* e~ 121 f(p=a) , =727 dq (5.5)
= Y E[IP)e (5.6)

which is nothing but the Fourier Transform of the delay intensity profile. There-
fore, Ry will give us an indication on how the channel changes in frequency, i.e.,
how much frequency diversity is available in the channel.

The following example illustrates this concept. Consider the impulse re-
sponses of the typical NLOS office environment (BRAN-A [85]) rounded to the
nearest path shown in Table 5.2.1 and the impulse response of an NLOS indoor
channel extracted from the ray tracing program of [86]. The sampling frequency
is 20 MHz. We first observe that the real indoor channel offers poor frequency
diversity, due to the high correlation among the frequency sub-bands. In the best
of the cases, we would have a correlation coefficient in frequency of 0.8. More-
over, it is observed that the BRAN-A model has much more diversity, due to its
larger delay spread. We will use this in section 5.3, where we will design smart
and greedy space-time codes based on the BICM NSTC structure introduced in
the previous chapter. As we shall see, BICM NSTCs will exploit both space
and frequency diversity when available based on simple designs for the standard
block-fading channel.

5.2 HIPERLAN/2 Physical Layer

HIPERLAN/2 (HIgh PERformance Local Area Network), is a wireless local area
network (WLAN) system standard specified by the European Telecommunica-
tions Standards Institute (ETSI) [5]. HIPERLAN/2 operates at a frequency of
5GHz, and there are 19 available channels of 20MHz each in Europe, with trans-
mission rates up to 54 Mbit/s. HIPERLAN/2 physical layer has been harmonized
with the US standard IEEE802.11a and the Japanese standard ARIB HiSWAN.

The block diagram of the basic transmission system of HIPERLAN/2 is de-
scribed in Figure 5.2. HIPERLAN/2 uses BICM with several signal constellations
and puncturing for multi-mode transmission. The data bits are first encoded with
the rate 7 = 1/2 64 states convolutional encoder with octal generators (133,171)s.
Then, the encoded bits are interleaved with the bit-interleaver 7 and mapped onto
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Figure 5.1: Normalized autocorrelation of the OFDM channel of BRAN-A and
Ray Tracing impulse responses.

a signal constellation X, which in this case is either BPSK, QPSK, 16-QAM or
64-QAM. The binary labeling rule p is specified to be Gray. Then, the result-
ing signal is OFDM modulated with a modulator that performs an IFFT with
N¢ = 64 sub-carriers. Different transmission modes can be accommodated by

Data Bits 64 states BPSK, QPSK OFDM
Convolutional p- 16-QAM, 64-QAM Modulator
Encoder Modulator Ne =64

Figure 5.2: Basic transmission scheme of HIPERLAN/2.

appropriately puncturing the output of C and by using different signal sets. In
particular, the transmission modes specified for HIPERLAN/2 are given in Table
5.2. The last transmission mode at 54 Mbit/s is left optional.

The OFDM modulator of HIPERLAN/2 uses a sampling frequency of 20
MHz, with N¢ = 64 sub-carriers (size of the IFFT), 48 of which are used for data
transmission, 4 are used for phase tracking, while the rest are set to zero. The
cyclic prefix length is Nop = 16, so 80 symbols are effectively transmitted per
OFDM symbol.
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‘ Mode ‘ Transmission Rate ‘ Rate r of C ‘ Signal Set X ‘

1 6 Mbit/s 1/2 BPSK
2 9 Mbit /s 3/4 BPSK
3 12 Mbit/s 1/2 QPSK
1 18 Mbit/s 3/4 QPSK
5 27 Mbit/s 9/16 16-QAM
6 36 Mbit /s 3/4 16-QAM
7 54 Mbit/s 3/4 64-QAM

Table 5.1: Transmission modes for HIPERLAN/2.

5.2.1 Environment Description

In this section we describe the channel environment and related parameters we
used in order to compare the different space-time coding approaches. In particular
we consider a MIMO OFDM channel with Np transmit, Ng receive and Ng
subcarriers per OFDM symbol, such that the received signal Y, at sub-carrier ¢
is given by

Y.=pHX.+Z;, c=1,...,N¢ (5.7)

where H, € CN**N7 ig the flat channel matrix corresponding to the c-th sub-
carrier, X, is the corresponding transmitted signal at the c-th sub-carrier, Z. is
the noise matrix of samples i.i.d. ~ N¢(0,1).

We shall consider the BRAN-A channel model specified by ETSI [85], for
which the delay intensity profile is given in Table 5.2.1. The BRAN-A channel
models a typical NLOS office propagation environment. We consider zero-order
hold transmission filter, for which, the channel taps corresponding to the nearest
multiple of 50 ns are rounded. This filter is shown to provide very similar results
to other more realistic filters. Under the assumption of this zero-order hold filter,
the resulting normalized (we assume that > E[|h,|*] = 1) delay intensity profile
of the BRAN-A channel is given in Table 5.2.1.

HIPERLAN/2 is based on ATM cells of length 54 bytes, and therefore, the
number of symbols composing a packet varies depending on the selected trans-
mission mode. Here we consider a number of information bits per packet equal to
384 bits, and we shall focus on the word error rate. We also fix a target WER of
1072, We will assume perfect channel knowledge at the receiver and no channel
knowledge at the transmitter. We consider no Doppler effects and we will assume
that the channel is quasistatic in time, i.e., the channel impulse response does not
change during the transmission of a codeword and changes independently from
one codeword to the next. We will also consider a more realistic indoor channel
as the one provided by the ray-tracing simulator of France Telecom [86].
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| Delay (ns) | Path power (dB) |

0 0.0
10 -0.9
20 —1.7
30 —2.6
40 —3.5
20 —4.3
60 —5.2
70 —6.1
80 —6.9
90 —7.8
110 —4.7
140 -7.3
170 -9.9
200 —12.5
240 —13.7
290 —18.0
340 —224
390 —26.7

Table 5.2: Delay intensity profile of the ETSI BRAN-A channel model.

5.3 BICM NSTC for OFDM

In this section we give a brief description on how the BICM NSTC approach
described in the previous chapter can be adapted to efficiently work in OFDM
channels. In particular, we propose to extend the technique proposed in Section
4.2.1 to the OFDM case and we show that the proposed method yields smart and
greedy space-time codes.

Notice first, that applying the parsing rule illustrated in section 4.2.1 (Figure
4.6) assuming that Ng = Ng, i.e., treating the N¢ carriers as independent, clearly
yields to inefficient design, since N can be relatively large and the length of the
interleavers would be constrained to a very short length. Another intuitive and
more realistic option would be to take Ng = Np, i.e., the number of resolvable
paths of the channel impulse response. This approach, even if better than the
previous, will also incur some inefficiency and diversity overestimation in the
case where there is a very strong path and the rest have very low average power.
We propose to base our design on the autocorrelation of the frequency response
Ry (¢) from which we can estimate a rough number of decorrelated components,
or virtual fading blocks. We denote the number of such blocks by Ny z. We can
then apply the parsing rule described in section 4.2.1 by simply replacing Np
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| Delay (multiples of 50 ns) | Normalized path power (dB) |

1 —3.4630
—4.6006
—8.9151
—12.8223
—19.9222
—21.1202
—25.4329
—29.7891
—34.1993

QO[O ~J| O U = | W[ DD

Table 5.3: Delay intensity profile of the normalized BRAN-A channel model
assuming a zero-hold order transmission filter.

by Nyg. Notice that standard approaches perform random interleaving across
frequencies and treat the OFDM as a quasistatic channel, i.e., Nyg = 1 [60].
In the case where Nyp > 1, interleavers have to be carefully design in order
to always maintain the same frequency spacing between the carriers assigned to
different blocks. Notice that, using the same interleaver permutation in all the
virtual blocks of the same transmit antenna would do. In this way, we ensure
that the frequency diversity can be efficiently exploited.

The next example illustrates the benefits of the proposed design in MIMO
OFDM channels. Figure 5.3 illustrates the WER performance for Ny = Np =
2, (5,7)s convolutional code with BPSK modulation on the BRAN-A and Ray
Tracing OFDM channels, with No = 64, for several values of Ny g with the MAP
bitwise demodulator with 5 decoding iterations. We consider 128 information bits
per codeword. We observe significant diversity gain with Ny g > 1 virtual blocks
per OFDM symbol in both channels with respect to the design in [60], supporting
the arguments given before. As mentioned before, [60] treats the OFDM channel
as quasistatic, since P is used with Ny p = 1. As illustrated in Figure 5.1, there is
a relevant diversity difference between the two channel models, and therefore, the
relative performance gain with virtual blocks is accordingly related. We remark
that when we have a large diversity order (in space, frequency or both), we will
only observe this effect at low WER. Also, using more powerful codes will induce
such differences at low WER.

5.4 Performance Comparison with Other Schemes

In this section we compare the BICM NSTC approach described in the previ-
ous section with other space-time coding schemes for HIPERLAN/2 . We will
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Figure 5.3: WER for Ny = N = 2, (5,7)s code with BPSK, OFDM BRAN-A
and Ray Tracing models, for several Ny p.

see, that, under both, the BRAN-A channel with independent antenna channels
and the realistic channel with correlated antennas, BICM NSTCs significantly
outperform the other approaches with extremely low-complexity receivers.

We consider a variety of space-time codes proposed for the specific application
of HIPERLAN/2. A detailed description of the schemes can be found in [15]. In
the following we list the approaches described in [15] and we outline their main
features.

Concatenation with Orthogonal Precoders This approach considers the HIPER-
LAN/2 BICM described in section 5.2 followed by a space-time orthogonal pre-
coder that maps the modulated symbols onto the transmit antennas. In the case
of Ny = 2 this approach uses a classical Alamouti scheme [31] that at every
two BICM symbols zy, 2, € X transmits the orthogonal rate 1 matrix (rows
correspond the antenna dimension while columns correspond to different time

instants)
Ty 22
5 )

over the channel. As indicated in [87], there are no space-time orthogonal codes
for Nr > 2 of rate 1 symbol per channel use. Then, in order to avoid such rate
loss, the ABBA code [88] will be used instead for the case of Ny = 4 transmit
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antennas. We recall that the ABBA code is simply a rearrangement of Alamouti
matrices, i.e., every 4 BICM symbols x, xs, v3, 24 € X it transmits,

T T2 T3 Ty
—Ty X} —T) T3
T3 Ty X T2
—ry X3 —ry 2

(5.9)

This matrix is no longer orthogonal and in order to cope with the residual inter-
ference and keep low-complexity decoding, a zero-forcing (ZF) strategy is used
(88, 15].

Concatenation with Space-Frequency Linear Precoders This scheme is essen-
tially based on using threaded layering combined with a linear multidimensional
rotation. A detailed exposition of this approach can also be found in [89]. Es-
sentially it can be seen as the OFDM counterpart of BICM TAST, even though
there are several differences with the scheme presented in Chapter 4. This ap-
proach considers data streams that are independently encoded, bit-interleaved,
mapped over the signal constellation and rotated by a multidimensional linear
mapping. Then, a greedy antenna-tone assignment algorithm is performed in or-
der to exploit both space and frequency diversity. At the receiver side, MMSE-IC
decoding is performed. We shall refer to this approach as the linear precoding
(LP) scheme.

Coded V-BLAST Asin the orthogonal precoders case, this scheme treats again
the BICM described in Section 5.2 essentially as uncoded data, and cyclically
distributes the modulation symbols across the transmit antennas. At the decoder
side, the classical MMSE V-BLAST decoding algorithm is used [90, 79], that
performs a combination of linear filtering and successive interference cancellation
in the optimal detection ordering proposed in [79].

5.4.1 Comparison in the Independent BRAN-A Channel

In this section we present some numerical examples that illustrate the perfor-
mances of BICM NSTC and the aforementioned schemes in the BRAN-A channel
model, with 384 information bits per codeword and Ny = 64. We shall compare
all schemes for equal spectral efficiency and same trellis complexity, i.e., they
will all use 64 states convolutional codes. We model each separable path p of
the impulse response as an i.i.d. Gaussian random variable with zero mean and
variance E[|h,|?] and we assume no correlation among antennas. We also assume
that BICM NSTC uses the simplest possible iterative decoder, namely, the MF-
IC described in Chapter 4. We will use 5 decoding iterations. From extensive
results not shown here, we have observed that the number of virtual blocks shows
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its effect only at very low WER, and thus, in these examples, we only report the
corresponding curves for Ny = 1. As we shall see, even in this case, BICM
NSTCs show remarkable performance gain.

In Figures 5.4, 5.5, 5.6 and 5.7 we show the WER performance of all studied
schemes in the BRAN-A channel with Ny = Ng =2 with R = 1,2 bit/s/Hz and
Ny = Np =4 with R = 2,4 bit/s/Hz respectively. As we observe, BICM NSTC
outperforms in general the other schemes. In particular, in the Ny = Nr = 4
the performance advantage is remarkable. Notice also that the complexity of
the receiver is extremely low: once the channel parameters are available to the
receivers, it suffices to perform a matched filter operation and perform several 1C
iterations.
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Figure 5.4: WER for Ny = Ngp = 2, R = 1 bit/s/Hz with OFDM BRAN-A
channel.

5.4.2 Comparison in the Realistic NLOS Indoor Channel

In this section we show the results corresponding to the same comparison but
under the realistic NLOS indoor channel output of the ray-tracing program pro-
vided by France Telecom [16, 86]. This is a ray-tracing program that computes
the channel impulse responses of an indoor NLOS MIMO channel assuming a
5GHz carrier frequency, sampling frequency of 20MHz, with the antenna corre-
lation pattern defined in [16].
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Figure 5.5: WER for Ny = Ng = 2, R = 2 bit/s/Hz with OFDM BRAN-A
channel.
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Figure 5.6: WER for Ny = Ng = 4, R = 2 bit/s/Hz with OFDM BRAN-A
channel.
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Figure 5.7: WER for Ny = Ny = 4, R = 4 bit/s/Hz with OFDM BRAN-A
channel.

As we observe from Figures 5.8, 5.9, 5.10 and 5.11, where we replicate the
BRAN-A examples over the realistic channel, the relative performance between
the different approaches is essentially the same, even if, as we clearly see, the
performance curves are less steep than those of the previous case, due to the
lower diversity order of the realistic channel. Notice also that in Figure 5.11 BICM
NSTC use the MMSE-IC decoder, since, the MF-IC exhibits poor performance.
Again, as anticipated in Chapter 4, it is very difficult to analytically state the
reasons for which a given IC decoder does not converge in average to the MFB.

5.5 Conclusions

In this Chapter we have seen how BICM NSTCs can be adapted to the OFDM
channel by suitably designing the parsing rule and the bit-interleavers. We have
performed a system comparison in the framework of the HIPERLAN/2 system
with other space-time coding schemes that use orthogonal or quasi-orthogonal
precoders, multidimensional linear precoders and standard coded V-BLAST. We
have performed such comparison in two different channel environments, namely,
a typical office environment with independent pairwise antenna channels, and a
more realistic environment generated with a ray tracing simulation program that
takes into account the antenna correlation pattern. We have shown, by means
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Figure 5.8: WER for Ny = N = 2, R = 1 bit/s/Hz with the realistic NLOS
indoor OFDM channel generated with the ray tracing program simulator.
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Figure 5.10: WER for Ny = Nr = 4, R = 2 bit/s/Hz with the realistic NLOS
indoor OFDM channel generated with the ray tracing program simulator.
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Figure 5.11: WER for Ny = Np = 4, R = 4 bit/s/Hz with the realistic NLOS
indoor OFDM channel generated with the ray tracing program simulator.
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of numerical examples, that BICM NSTCs remarkably outperform the other
schemes with very low-complexity iterative decoding, thus becoming a strong
candidate for real implementation due to its design simplicity and flexibility.
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Conclusions and Future Work

In this thesis, we have focused on designing efficient coded modulation schemes
for block-fading channels. In such non-ergodic fading channels, there is a nonzero
probability that the transmitted message is decoded in error, i.e., the outage
probability. When both transmitter and receiver operate with one antenna, by
studying the asymptotic behavior of the outage probability, we have determined
the SNR reliability function of coded modulation schemes. In particular, we have
rigorously proved that coded modulation schemes constructed over a discrete
signal constellation achieve the optimal trade-off provided that the block length
grows sufficiently fast with SNR. We have also shown that pragmatic schemes
with high spectral efficiency obtained by concatenating a binary code and a dis-
crete signal constellation through BICM coupled with the suboptimal BICM-ML
decoder achieve the same optimal trade-off that their non-BICM counterparts
with optimal ML decoding. This represents an important step towards the con-
struction of practical coding schemes that transmit at large spectral efficiencies
and achieve the fundamental limits of this channel.

Motivated by this fact, we have proposed a new randomlike coded modulation
family based on the combination of a blockwise concatenation of binary codes and
BICM. We analyzed the optimal performance of such code ensembles by using
easily computable upper bounds and tight approximations on the ML, and BICM-
ML decoding error probability. As opposed to standard ergodic channels, we have
illustrated that the proposed bounds and approximations accurately match the
performance obtained by simulation of the iterative BP decoder. We have shown
that the proposed codes have an error probability almost independent of the block
length, that implies a fixed SNR gap (independent of the block length) from the
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outage probability. This stands in sharp contrast to the case of standard block
codes obtained from trellis-terminated convolutional codes specifically designed
for the block-fading channel, which show a gap from the outage probability limit
that increases with the block length. In fact, in the limit for large block length,
the error probability of such concatenated codes is given by the distribution of
their decoding threshold seen as a random variable function of the channel state.
This is the dual behavior of classical capacity achieving codes in ergodic channels.

In a second part of the thesis, we have investigated coded modulation schemes
for the multiple-antenna block-fading channel. Traditional design criteria are dif-
ficult to satisfy and usually lead to coding schemes that induce large decoding
complexity. Here we have taken a step back and we have designed pragmatic
space-time codes based on the optimistic assumption of a genie-aided decoder.
Under this assumption, code design is then reduced to classical techniques for
single-antenna block-fading channels. We have emphasized that achieving full
diversity will depend on the ability of the real decoder to emulate the genie-aided
performance. We have primarily focused the role of signal constellation expansion
to achieve full diversity and we have compared two different means of expanding
the signal constellation, namely, complex-plane and multidimensional expansion.
We have shown that under average power constraint and message passing decod-
ing, multidimensional expansion is in general advantageous due to its inherent
design flexibility. On the other hand, this is no longer true under stringent peak
power constraints, namely, in systems that operate power amplifiers close to sat-
uration, since multidimensional signal expansion induces a significant increase in
the peak-to-average power ratio.

We have also reported a comparative study of several space-time coding tech-
niques in the MIMO quasistatic OFDM channel. This channel arises in important
applications such as future generation indoor wireless LANs, for which higher
data rates than those achieved by the IEEE802.11a current standard should be
obtained by appropriately using the multiple antennas. We have seen that under
both ideal and realistic channel environments, a very simple scheme based on
a design for the SISO block-fading channel remarkably outperforms the classical
Alamouti and V-BLAST approaches as well as multidimensional rotated schemes.

6.1 Areas for Further Research

Further research is needed to establish the performance of blockwise concatenated
codes under iterative decoding. This is of particular interest in order to establish
the real performance of such codes as well as to validate how close iterative and
ML decoding perform in the block-fading channel. In order to do this, one should
have at hand a fast density evolution algorithm, since we are interested in the
distribution of the threshold seen as a random variable function of the channel
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state. This will in turn have an impact on establishing the rate regions where
iterative IC multiple-antenna receivers work properly. First sparks in this line can
be found in [91], where the authors have proposed a very fast density evolution
algorithm for standard LDPC codes.

We have not studied how LDPC codes behave in the block-fading channel.
Some simulation results can be found in [92], where the authors compare LDPC
codes with convolutional codes both with short block length. The final conclusion
was that they showed marginal improvement over convolutional codes. From
the results shown in this thesis, we believe this conclusion can be reversed, but
further research is needed in this line. For example, it is not clear the way LDPC
codes approach the optimal trade-off given by the Singleton bound, and whether
there is a specific graph design that would yield MDS LDPC codes. As done for
standard LDPC codes in ergodic channels, it is probably worth analyzing first
the performance of LDPC codes in the block-erasure channel.

We have completely ignored the impact of channel estimation in the robust-
ness of the proposed algorithms. This is indeed a crucial aspect that must be
assessed in order to fairly compare different coding strategies.

As we have seen in Chapter 4, there are some situations in which in average,
simple iterative IC decoders are not able to remove the interference from the
signals corresponding to other antennas. This major bottleneck can be overcome
by using low-complexity implementations of soft-input soft-output sphere (or list)
decoders. Preliminary results seem to indicate that further improvements have
to be done when using the shifted list decoder proposed in [73]. In this case,
the list is only based on the uncoded ML point and the properties of the induced
channel lattice. In some cases, this decision can be extremely unreliable and thus,
the effect of the feedback from the decoder of the underlying binary code should
also be taken into account in order to improve the detection list quality through
the iterations. In [76] (see also [93]) the authors recognize the importance of
combining MMSE filtering with sphere decoding. We believe that MMSE pre-
filtering can also play a significant role in soft-input soft-output sphere decoders
resulting in a decoding list of higher quality. In this way, one can perform system
comparisons for much larger spectral efficiencies, which are of real interest in high
data rate systems.

A related broad area that we have not considered is the design of efficient
coding schemes for the case when channel state information is available at the
transmitter. It is well known that channel state information at the transmitter
can yield remarkable gain. In particular, it is possible to control or remove
outage events by using power control or variable-rate transmission techniques.
The optimal power control rule is given in [20] for Gaussian inputs, which can
be computed in closed form and in most of the cases leads to zero-outage error
probability. However, to our knowledge, there are no practical coding schemes
able to approach these limits.
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Error Probability of BICM with the
Gaussian Approximation

This appendix presents a very accurate and simple to compute approximation
to the performance of BICM systems in AWGN channels. We employed this
method to compute tight error probability estimations of BCC codes with BICM
in Chapter 3. The proposed method is based on approximating the binary-
input continuous-output equivalent BICM channel by a binary-input AWGN (BI-
AWGN) channel with scaled SNR. The scaling factor can be easily computed
numerically and depends on the actual channel SNR and on the modulation signal
set and binary labeling. The key is that very good approximation results when
the Bhattacharyya parameter is used to estimate the variance of the underlying
Gaussian channel. Under such approximation, we can use all bounding techniques
known for binary codes in Gaussian channels. In particular, we use the union
and the tangential-sphere bounds and we apply such results to both convolutional
and turbo-like codes. The proposed method represents a simple yet powerful tool
for estimating the error probability of finite-length turbo-like codes with BICM.

A.1 Introduction and Motivation

Bit-interleaved coded modulation (BICM) was introduced in [94] and further gen-
eralized and elaborated in [36] as a means of coding for spectrally efficient mod-
ulations. In essence, it states that nearly optimal performance can be achieved
by concatenating a powerful binary code with a non-binary modulator, by the
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simple addition of a bit-interleaver between these two components. An additional
advantage offered by BICM is its inherent flexibility, as a single mother code may
be used for several modulations, with no additional adaptations. This is an ap-
pealing feature for future communication systems where a large set of spectral
efficiencies is needed.

The original works on BICM [94, 36], consider a decoder that for every symbol
produces soft statistics for the bits of its binary label, and feeds these values to a
ML decoder of the mother code, as if they were outputs of a virtual binary-input
continuous-output channel. We shall refer to this decoder as BICM-ML decoder
and the virtual channel as the equivalent BICM channel.

Several works have also considered iterative decoding of convolutionally en-
coded BICM with optimized mappings, showing remarkable performance increase
with respect to Gray mapping (see e.g. [38, 95]). Simple iterative decoding analy-
sis of such system has been provided in [38] based on an approximation of density
evolution techniques [37] for infinite block length. However, no such satisfactory
results have been observed when using capacity approaching codes such as turbo-
like or LDPC codes, where iterative decoding analysis is very complicated (see
[96] for recent results on the subject). Therefore it is common practice to couple
turbo-like or LDPC codes and BICM with Gray mapping, since it offers the best
performance-complexity trade-off.

Error probability bounds of finite-length BICM under BICM-ML decoding
have been derived in [36]. The metric model assumed by the BICM-ML decoder is
nearly optimal for Gray mapping and assumes no demapping iterations. A simple
union bound based on a bitwise Bhattacharyya factor was found to be quite
loose. Several refined techniques, also derived in [36], provided more accurate
results, but are much more complex to compute. In this work, we provide a very
simple method that allows for the computation of very accurate approximations
on the error probability of BICM with BICM-ML decoding, which is mainly
based on a Gaussian approximation (GA) of the binary-input BICM equivalent
channel. We verify the validity of the approximation and we apply the results
to compute tight union and tangential-sphere bounds for both convolutional and
turbo-like codes. We also illustrate how the proposed approximation can be used
to compute BICM-ML thresholds. We show that the proposed method is a simple
and powerful tool, since it yields very accurate error probability estimates with
little computational effort.

A.2 System model

We consider a classical additive white Gaussian noise (AWGN) channel, for which
the received signal at time k, y, € C is given by,

yk:\/ﬁxk—i—zk,k:l,...,L (Al)
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where x;, € C is the transmitted signal at time k£ with L the codeword length,
p = ﬁ—; is the the signal-to-noise ratio (SNR) and z; € C is the complex noise
sample at time & i.i.d. ~ Ng(0,1). We denote by X € C the complex signal
constellation (i.e. PSK, QAM). Without loss of generality we study unit energy
constellations, i.e., E[|z]*] = 1.

The codewords x = (z1,...,71) € X* are BICM codewords obtained by bit-
interleaving the codewords ¢ of the binary code C € FY of rate r = K/N, and
mapping with the mapping rule y, that maps binary labels of length M = log, |X|
over to the points of X' [94, 36]. The resulting BICM codeword length is L
modulation symbols, with L = N/M, and the spectral efficiency of such system
is R = rM bit/s/Hz.

Due to the presence of the bit-interleaver, ML decoding of BICM is only
possible by exhaustive search. Several suboptimal strategies have been used, all
derived from the belief-propagation iterative algorithm [44], for which, the bit
metrics of a given bit b being in the m-th label position of a given symbol are
given by,

p(ylb,m) o< > plyl2)P(2) (A.2)

zEX

where A" is the set of all signal constellation symbols with bit b in the label
position m, p(y|z) = %exp(—|y — /pz|?) is the channel transition probability
density function (pdf), and P(z) denotes the a priori probability of the symbol
z. When iterative demapping is performed, P(z) are given by the decoder of C.
In this work, we restrict our attention to the case of equally likely symbols where
no demapping iterations are performed, i.e. P(z) = ﬁ The suboptimal BICM-
ML decoder is known to perform near optimal for signal constellations with Gray
mapping [36, 38]. We will refer to the channel between a given binary codeword
c € C and its corresponding bit-metrics, as the equivalent binary-input BICM
channel. In particular, for a coded binary symbol mapped to the m-th label
position of the k-th modulation symbol, the bit-wise posterior log-probability
likelihood ratio (LLR) is given by

> exp (<l — vpzl)

zeXT"
> exp (< lyx — pzl)
zeX "

We also report the capacity with BICM under suboptimal BICM-ML decod-
ing, which is given by [36],

$ ez

LMo :
C=M-oy DD > B flog, X Izl | (A4)

m=1 b=0 z€X" E e

zeXbm
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which is known to be maximized for Gray or quasi-Gray binary labeling rules.
For the sake of future reference, we show in Figure A.1 the capacity with 16-QAM
inputs and the BICM capacity with 16-QAM and Gray mapping.

T
= = BICM Capacity 16-QAM Gray
— 16-QAM Capacity

Capacity (bit/s/Hz)
N

N [$2]

T T

=
o
T

0.5

0 1 1 1 1
5 10 15
E/N, (dB)

Figure A.1: Capacity for 16-QAM inputs and BICM capacity with Gray map-
ping.

A.3 The Bhattacharyya Union Bound

The Bhattacharyya Union Bound for BICM was first proposed in [36] as a simple
approach for upper bounding the error probability of BICM under BICM-ML,
i.e., ML decoding of C using the bit-metrics (A.2) with no demapper iterations.
For the frame error probability it is given by,

P. < AuB(p)” (A-5)

where A, = |S,| is the weight enumeration function (WEF) of C and accounts
for the number of pairwise error events of C at Hamming distance w, with S, =
{c € C : wy(c) = w} denoting the set of codewords with Hamming weight w,
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and B(p) is the Bhattacharyya factor which is given by,

p(y|b,m)

B(p) = IF:‘y,m,b p(y|b, m)

S elvpte=anl
M 1 /|
_ ﬁ Y Y E || . (A.6)

ot E e~ lvol@=2)+n|?
= =0 x

zeX"

where p(y|b, m) are given in (A.2), the expectation is over the joint distribution
of the received signal y, the labeling position m and the bit b as value of the
m-th label position and b denotes the binary complement. Notice that B(p)
depends actually on the signal constellation and the binary mapping. Also note
that this expectation can be easily evaluated using the Gauss-Hermite quadrature
rules which are tabulated in [45], since n ~ N¢(0,1). The results in [36] show
that (A.5) can be very loose, and therefore, not very useful as analytical tool to
describe the error probability of BICM. Reference [36] elaborates more refined
bounds on the performance of the BICM-ML decoder, which are, however, much
harder to compute.

A.4 The Gaussian Approximation

In this section we describe how the Gaussian approximation can be used to
describe the binary-input equivalent channel of BICM. Notice that the Gaus-
sian approximation of the binary-input BICM channel is commonly employed in
convergence analysis of iterative decoding based in density evolution techniques
[38, 37| for infinite block length. Consider for a moment that the binary code
C mapped over a BPSK signal constellation (i.e., X = {—1,+1}) is transmitted
across a binary-input AWGN channel with SNR ~. Then, the standard union
and Bhattacharyya bounds can be written as,

P, <ZAU,Q( ) ZA Bs(y (A7)

the Bhattacharyya factor for binary inputs Bz(fy) is given by [97],

B ply|—1)
By(v) = E, [ PO F 1)

It is also well-known that for such binary-input AWGN channel (BI-AWGN),
the log-likelihood ratio (LLR) defined as

=e . (A.8)

_ eyl —1)
L =log Pl T D) (A.9)
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is ~ N (47, 87).

Then, by comparing (A.6) with (A.8), we can approximate the equivalent
binary input BICM channel as a BILAWGN with SNR . Therefore, we can
write,

B(p)=¢e" (A.10)

from where we obtain that the signal-to-noise ratio of the equivalent binary-input
BICM channel is given by,
v = pa, (A.11)

where 1
a = ——log B(p) (A.12)
P

is the scaling factor with respect to the nominal SNR of the channel p.
It is not difficult to show that for p — oo, by simply taking a single dominant
term in the numerator and denominator of the term under /. in (A.6) we have,

M1
1 1 1,
o~ - log ol E E E exp (—Zpd (z,x )) (A.13)

m=1 b=0 TEX

where for each x € A}, the symbol 2’ is the point at minimum squared Euclidean
distance d*(x, ') from x in the complement subset X/". By letting p — oo and
using Varadhan integral lemma, we keep only the dominant term in the above
sum and we get

@, inin )
li =-mh - [ == A14
fi o= = (452 (a14
where 62 is the minimum squared Euclidean distance of the constellation. No-

tice that this asymptotic value does not depend on the binary labeling rule. Also
note that the term d‘gin represents the distance from one constellation point to the
decision threshold corresponding to its nearest neighbor. Figure A.2 shows the
SNR scaling « for BICM with 16-QAM with Gray and Set-Partitioning binary

labelings as a function of p. As predicted by the analysis above, both mappings
2

approach the asymptotic value @ = d‘j‘% = 0.1. Notice however that Gray map-
ping shows a smaller scaling thus implying that the equivalent BICM channel is
less noisy. This conclusion was already observed directly from the upper bounds
with BICM-ML decoding in [36].

We suggest to replace the BICM equivalent channel by a BI-AWGN with
scaled SNR v = ap. Therefore, any suitable bounding technique for binary codes
over the BILAWGN channel can be applied verbatim on the binary code under-
lying the BICM scheme. The resulting error probability bound will only depend
on the SNR of the actual channel p, on the scaling factor a,which incorporates
the effects of the signal constellation X and the binary labeling i, and the weight
distribution of the underlying binary code.
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Figure A.2: Signal-to-noise ratio scaling of the equivalent BILAWGN channel for
BICM with 16-QAM and Gray and Set-Partitioning mapping.

In order to verify the validity of the proposed Gaussian approximation for the
computation of error probabilities, in the following we report several numerical
examples. We plot in Figures A.3, A.4 and A.5 the simulated pdfs of the log-
likelihood ratio (A.3) given that a 0 was transmitted', denoted by LLRy, for
BICM with 16-QAM and Gray mapping at p = 10dB and p = 20dB. We also plot
the corresponding Gaussian approximation of the equivalent BILAWGN channel,
i.e., a Gaussian distribution N (4v,87). In the case of p = 10 dB, v = 1.07dB
while when p = 20 dB, v = 10.16dB. We observe that in both cases, the error
probability behavior, i.e., Pr(LLRy < 0) is approximately the same for the BICM
as for the corresponding Gaussian case, since tails of both distributions are almost
identical.

A.5 Approximations on BICM-ML Error Probability

From the results in the previous section, we here recall some BICM-ML decoding
error probability upper bounds for BICM based on the Gaussian approximation
of the binary-input BICM equivalent channel. Consider the equivalent binary-
input BICM AWGN channel with signal-to-noise ratio v described in the previous

!Notice that the LLR given that a 1 was transmitted is completely symmetric, since the
binary-input BICM channel is output symmetric (BIOS) according to the assumptions made
in [36].
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Figure A.3: Simulated pdf of the LLR given that a 0 was transmitted for BICM
with 16-QAM and Gray mapping at p = 5dB.
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Figure A.4: Simulated pdf of the LLR given that a 0 was transmitted for BICM
with 16-QAM and Gray mapping at p = 10dB.
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Figure A.5: Simulated pdf of the LLR given that a 0 was transmitted for BICM
with 16-QAM and Gray mapping at p = 20dB.

section. Then, the union bound on the frame error probability is given by,
P, ZAU,Q <\/2wpoz> : (A.15)

Notice that in order to compute the bit error probability, we should replace Ay
by

where A;, is the input-output WEF (IOWEF) of C [97].

Union bound-based techniques are known not to provide good estimates of
the error probability of capacity-approaching codes over AWGN channels. On
the contrary, improved bounding techniques such as the tangential-sphere bound
(TSB) [98, 39] have been shown to provide very accurate results. In our case, the
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tangential-sphere bound is given by?,

+eo dz 2 2 — N—-1r
P. < NPl VPL D I T A I o
R A \/27T026 2 207 -

+ Y Awr<N;2,T§1_55(ZI)2>. (A.16)

202

[o(*2) -a(22)]]

where § = 2y/w is the Euclidean distance corresponding to a pairwise error event
at Hamming distance w with unit energy, R?> = N is the squared sphere radius,

0% = (2pa)”" (A.17)

is the variance Gaussian noise corresponding to the equivalent binary-input BICM
channel,

1 xT
[(a,z) = m/() t e tdt

is the normalized incomplete gamma function and

+oo
[(z) = / t" e tdt
0

is the gamma function,

T )
55(21) - 52 2r7
1 —
4R?
52
—ry/1 — —
Qs r 4R2
and r, the cone radius, is the solution of
O I (&=2
> Ay / sinV 3 gdgp = L_f) (A.18)
w:6/2<ag 0 r (T)
with
) 1
Op =cos ' | ——x—|. (A.19)

2r 52
Vi~ R

2The tangential-sphere bound can be further improved for computing the bit-error proba-
bility using [99].
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Again, notice that the integral in (A.16) can be efficiently computed using the
Gauss-Hermite quadratures.

In Figure A.6 we illustrate the BICM-ML error probability approximations
presented above for the 64 states rate 1/2 convolutional code with 16-QAM with
Gray mapping, with a frame of K = 128 information bits. The overall spectral
efficiency is R = 2 bit/s/Hz. We have used in all bounds the truncated bit-error
distance spectrum of the code, i.e., we have considered all error events for which
w < 256. We show the bounds for the bit-error probability and we compare
them with the bit error rate simulation. We observe that the Bhattacharyya
union bound is quite loose [36], while the union bound with the Gaussian ap-
proximation denoted by UB-GA is much tighter. Moreover, as expected, the
TSB with the Gaussian approximation, denoted by TSB-GA, is the tightest and
offers a better estimate in the low-SNR regime. This suggests that there is no
loss in tightness if we use the Bhattacharyya bound, provided that we use it as a
means of estimating the variance of an underlying Gaussian channel, and then use
the standard bounding functions to estimate the error probability of the channel.

10° ¢ - BT
E : L — TSB-GA
i Q viob - - UB-GA
o ¢ [y "= Bhattacharyya UB
10 3 ; N < BERsim E
E o :
107k
10°k
& 107k
10°E
1076?
10_7g
10°® 1 1 I
0 1 2 3

EJ/N, (dB)

Figure A.6: BER ML BICM Bounds for the 64 states convolutional code of rate
1/2 with 16-QAM and Gray mapping.

Figures A.7 and A.8 illustrate the same BICM-ML bit error probability ap-
proximations and simulation for a repeat-accumulate (RA) code [48] of rate 1/4
with K = 512 and K = 1024 information bits respectively with 16-QAM with
Gray mapping. The overall spectral efficiency is R = 1 bit/s/Hz. Notice that for
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such code ensembles, the weight enumerator can be computed explicitly [48, 53].
For the sake of comparison, in Figure A.7 we plot also the corresponding (true
ML) bounds and simulation for the BPSK case. We observe the same behav-
ior of the binary case, i.e., the TSB-GA yields a good estimate of the waterfall
region while the UB-GA and the Bhattacharyya are only valid for estimating
the error floor. Similar comments apply to Figure A.9, where we show the BER
performance for the quasi-repeat and accumulate (QRA) code ensemble® with
K =1024 and 16-QAM with Gray mapping. The capacity at R = 1 bit/s/Hz is
also shown. This constitutes a simple and yet accurate finite length analysis for
turbo-like codes with BICM, since convergence analysis of iterative decoding can
be very complicated task [96].

T T T
i — TSB BPSK
1 — - UBBPSK
1

1

& sim BPSK 20 it
—— TSB GA 16-QAM H
= = UB GA 16-QAM

T

1

1

|

|

? Bhattacharyya UB 16-QA
o o O sim 16-QAM 20 it

3
E/N, (dB)

Figure A.7: BER ML BICM Bounds for the a repeat-and-accumulate code of
rate 1/4 and K = 512 with 16-QAM with Gray mapping.

A.6 BICM-ML Thresholds for Turbo-coded BICM

In [41], the author proposed a tight upper bound on the ML decoding signal-
to-noise ratio threshold =, for binary codes. For signal-to-noise ratios v > v,

3We denote the quasi-repeat and accumulate (QRA) ensemble as the serially concatenated
convolutional code ensemble of rate r = 1/¢ that has as outer code generators (in octal form)
(1,...,1,3)s and inner accumulator.
——

qg—1
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Figure A.8: BER ML BICM Bounds for the a RA code of rate 1/4 and K = 1024

with 16-QAM with Gray mapping.
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Figure A.9: BER ML BICM Bounds for the a QRA code of rate 1/4 and K =

1024 with 16-QAM with Gray mapping.
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the exponent of the simple bound of Divsalar is positive, and therefore, for large
block length P, — 0 [41]. Following the footsteps of the previous sections, we can
easily extend this result to the binary input BICM channel through the Gaussian
approximation, which yields that,

(A.20)

where w = w/N is the normalized output Hamming weight, and

i 1
a(w) = ]\11~>IICI>O N log A, N
is the asymptotic growth rate of the normalized weight enumerator A, of C [53].
For the binary RA and QRA code ensembles, table I in [53] reports the upper

bounds on the ML thresholds for BPSK modulation. As remarked in

[53] the QRA ensemble s;%niﬁcantly outperforms the RA ensemble as far as ML
thresholds are concerned.

Based on the results obtained in the previous sections, we can easily establish
the thresholds for BICM-ML decoding of turbo-coded BICM using the Gaussian
approximation. For example, by performing simple computations, when we use
BICM with 16-QAM with Gray mapping with a RA code of rate r = 1/4, as
done in Figures A.7 and A.8, the BICM-ML with the Gaussian approximation

threshold is ‘%‘ — 1.2648 dB, while the BICM capacity with BICM-ML de-

coding (A.4) for t}Ii6—QA1\/I with Gray mapping for R = 1 bit/s/Hz is at 0.6050
dB (see Figure A.1). For the sake of comparison, we show the BICM capacity
limit and the simple threshold in Figures A.8 and A.9. Table A.6 summarizes
the BICM-ML decoding simple bound thresholds (A.20) using the Gaussian ap-
proximation for the RA and QRA ensembles with 16-QAM with Gray mapping
with corresponding spectral efficiencies of R = 1,2 bit/s/Hz.

Ep
N

| Rate R | Capacity (A4)] RA | QRA |
1 bit/s/Hz 0.6050 dB 1.2648 dB | 0.8820 dB
2 bit/s/Hz 2.2671 dB 6.1512 dB | 3.1409 dB

Table A.1: Upper bounds on the BICM-ML decoding ‘ﬁ—’; ) thresholds (A.20)
t

using the Gaussian approximation for 16-QAM with Gray mapping compared to
the BICM capacity limit (A.4).

Reference [100] provides some ML thresholds based on the union bound. For

example, for the RA code ensemble of rate r = 1/4 with 16-QAM modulation

Ey
No |ip

with Gray mapping, the = 5.91 dB. As we can observe, the proposed
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thresholds are much tighter than those proposed in [100], due to the improved
threshold based on the simple bound of [41] and to the accuracy of the Gaussian
approximation of the binary-input BICM channel.

A.7 Conclusions

We have presented a very accurate and simple to compute approximation to
the error probability of BICM under BICM-ML decoding using the Gaussian
approximation of the binary-input BICM equivalent channel. We have verified the
validity of the approximation to compute error probabilities and we have applied
it to compute simple and accurate estimates of the error probability with BICM
based on union and tangential-sphere bounds for both convolutional and turbo-
like codes. We have also found accurate estimates of the BICM-ML decoding
threshold. The key result is that very good approximation is given when the
Bhattacharyya bound is used to estimate the variance of the underlying binary-
input BICM equivalent channel. The proposed method constitutes a simple and
very powerful tool for finite-length ML analysis of capacity approaching codes
with BICM. Moreover, in [18] we have shown that the Gaussian approximation
is a particular case within the general framework of saddle-point approximations
of error probabilities in binary-input output-symmetric channels.
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Multivariate Weight Enumerators

Throughout this thesis we have used extensively the multivariate weight enumer-
ating function (MWEF) and the product distance weight enumerating function
(PWEF) of binary codes partitioned into Np blocks. In this Appendix we focus
on their calculation.

B.1 MWEF of BCCs

To compute the MWEF, we assume that blockwise concatenation is performed
through a set of Np uniform interleavers [54, 55]. Then, we can compute the
average multivariate weight enumeration function according to the following

Proposition 2 Let CBCC be a blockwise concatenated code mapped over Ng fading
blocks constructed by concatenating an outer code C° mapped over Ng blocks

with input multivariate-output weight enumeration function Az(,)wl,...,wNBf and Np

inner codes C! with input-output weight enumeration functions Al{w, through N

uniform interleavers of length L. Then, the average input multivariate-output
weight enumeration function of CB¢C, Afgg--,wwf,’ s given by,
Np
o I
Ai,€1,~~~,€NB H Aebawb
BCC _ b=1
Ai,W1,...,U)NB - Z NB . (Bl)

01ty H <§w>
b

b=1
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Proof. Define the Cartesian product code Cp = C' x ... x ¢! = (C")# with
multivariate-input multivariate-output weight enumeration function Ag
Then,

,...,iNB Wiy WNp :

BCC _ P :
Ai,wl,...,wNB - E [Aél,...,éNB,wl,...,wNB 7':|
N AP
= Z P(gla SR 7£NB |Z)A€1,...,ZNB WL WN (BQ)
01y,
where E[.] denotes expectation over all uniform interleavers and P((y, ..., {xn,|7)

is the probability of having an error event of weights per block ¢y, ..., ly, at the
input of C* given the input weight i of C and it is given by,

0
. i1 el
P(ly, ... Ixgli) = = At (B.3)
(%)
pot \ Db
By construction,
Np
AZ,...,ZNB,wl,...,wNB = HAébywb (B4)
b=1
and thus we obtain (B.1). O
Remarkably, in the case of RBAs the function AR can be written in

LWL, WN

closed form in a way similar to [48] for RA codes in the AWGN channel. We

obtain v
= (L. —w, wy, — 1
1 ( [i/2] > (Wﬂ - 1)

ARBA — b=1 (B5)

LWL, WN g L Np—1
T

The MWEF of the BCC is eventually obtained as

B.2 Asymptotic MWEF of BCCs

Following in the footsteps of [53], we can derive the asymptotic exponential
growth rate of the MWEF AB¢C Let

Z,U}l,...,U)NB :

A 1
FL%l ..... 6NB = L—T'] log ALOK,(SlLﬂ— ..... 5NBL7.— (B6)
1
Ff . = ElogAgbL’wa, b=1,...,Np (B.7)
BCC A llo ABccC (B.8)
LWy WN g - L g LK,wlL,...,wNBL :
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be the normalized weight enumerators of the outer, inner and BCC codes as a
function of its corresponding exponential growth rates, where r; = L, /L is the
rate of the inner code, « = i/K is the normalized input weight, 6, = ¢,/L, for
b=1,..., Np are the normalized output weights per block of the outer code and
wp = wy/L for b=1,..., N are the normalized output weights per block of the
BCC. Moreover,

lim <LI:51,> = elmh0) = Lrih(d) (B.9)

Lr—00

where h(p) = —plog(p) — (1 —p) log(1 — p) is the binary entropy function. There-
fore, from (B.1) we find that for L — oo the asymptotic exponential growth rate
of the MWEF of the BCC is given by,

Np Np
BCC _ O 1 -
FL,‘Ul,---waB - Og]é?i(l TIFL,(Sl,...,(SNB + Z F(Sb,wb rr Z h((sb) (B]‘O)
1,..,Npg b=1 b=1

Also, the output growth rate is given by,

= max {FBCC wNB} : (B.11)

0<1<1 Ly yeeny

Again, for the case of RBA codes, we can write explicitly the asymptotic
input-output growth rate as,

FRBA = %B: {(1 — wy)h (ﬁ) + wyh <2wa)} — (Np—1)h(:) (B.12)

b=1

and thus, the asymptotic growth rate of the MWEF is given by,
RBA _ RBA
a = mnax {F wNB} (B.13)

where

As an example, in Fig. B.1 we plot the growth rate of the MWEF for a rate
r = 1/2 RBA code of length 100 information bits mapped over Np = 2 fading
blocks, computed using (3.24) and (B.5). In Fig. B.2 we plot the asymptotic
growth rate of the multivariate weight distribution for a rate r = 1/2 RBA
code mapped over Ng = 2 fading blocks. Notice that, already for block length as
shows as 100 information bits, the finite-length growth rate and its corresponding
asymptotic counterpart are indeed very similar.
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Figure B.1: Growth rate of the MWEF, Fﬁ?waB for a rate r = 1/2 RBA code

of blocklength 100 information bits per frame mapped over Ng = 2 fading blocks.
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Figure B.2: Asymptotic growth rate afff,wNB for a rate r = 1/2 RBA code
mapped over Ng = 2 fading blocks.
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B.3 PWEF of BCCs

In order to compute the approximated bounds based on [51], we need to compute
the PWEF. In the following, we propose a general algorithm to compute the
PWEF for BCCs.

1 for Apzl,...,A;’m
2 PWEF[A,] = 0
3 end for
4 for w; <...<wy, <L
Np
5 compute A, = H wy,
b=1
6 if A, < Amar
N
7 compute A = Z Auwy(n),..wn  (n)
n=1
8 PWEF[A,] = PWEF[A,] + A
9 end if
10 end for
where the multinomial coefficient
Npg!
N=—"F (B.14)
nilng!. . ny!

is the number of permutations of N elements (the components of the weight vec-
tor w = (wy, ..., wyy)), of which n; are alike, n, are alike,..., and n, are alike, and
Awl(n),...,wNB (n) denotes the MWEF corresponding to permutation n. For example,
the number A corresponding to a weight vector w = (20, 22, 45, 45, 50, 50, 50, 50)
with Np =8 is N = 5550 = 840.

It is clear from the above algorithm that the PWEF vector will have some
positions equal to 0. In particular, the positions indexed with the prime numbers
between L and A% will store a 0. The number of prime numbers between 1
and n is O(%) (see i.e. [101]). Therefore, in the limit for large n, the density
of prime numbers in a vector of size n goes to zero. This implies that in our case,
storing the PWEF vector as is, i.e., indexed by A, is more practical than storing
the PWEF and A, in separate vectors thus doubling the memory and requiring
more complicated indexing.
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In the case of RBAs, the computation of the PWEF is greatly simplified
due to the symmetry of its MWEF, since Awl(n),...,wNB(n) = Awl,__.,wNB for all

permutations n = 1,..., . In particular, steps 7 and 8 can be replaced by,
7 compute Ay, wy,
8 PWEF[A,] = PWEF[A,] + N Ay wy,

Notice that with this algorithm we can easily truncate the PWEF if we set
At < [N5. The need for truncation is evident for large L and/or Np.



Proofs

C.1 Proof of Lemma 1

Consider a family of codes for the block-fading channel (3.2) of given block length
L, indexed by their operating SNR p, such that the p-th code has rate R(p) =
rlogp (in nat), where r € [0,1], and WER (averaged over the channel fading)
P,(p). Using Fano inequality [22] it is easy to show that PS. (p, R(p)) yields an
upper bound on the best possible SNR exponent. Recall that the fading power
gains are defined as v, = |hy|?, for b = 1,..., Np, and are i.i.d. exponentially
distributed. Following in the footsteps of [22] we define the normalized log-
fading gains as a, = —log~,/logp. Hence, the joint distribution of the vector
a = (aj,...,ay,) is given by

pla) = (logpNBeXp< Zp ) -~ (C.1)

The information outage event under Gaussian inputs is given by {ZéV:BI log(1 +
pv) < Nprlogp}. By noticing that (14 pvy,) = pl'=®}+, we can write the outage
event as

A:{QERNB : i[l—ab]+§TNB} (CQ)

b=1
The probability of outage is easily seen to satisfy the exponential equality

P BE) = [ oS (C.3)
n
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Therefore, the SNR exponent of outage probability is given by the following limit

Np
1
ou =—1 | —1 A4
o () = = Jim 1 log /A exp( og(s) }bﬂjab) do (C4)

We apply Varadhan’s integral lemma [102] and we obtain

Np
dows (1) = inf ay (C.5)
U el {Z }

The constraint set is the intersection of the region defined by 302 ay, > Ng(1—7)
and the region defined by a3 € [0,1] for all b= 1,..., Ng. For all r € [0, 1], the
infimum in (C.5) is given by

dout (1) = Np(1 — 1) (C.6)

In order to show that this exponent is actually the SNR reliability function for
any L > 1, we have to prove achievability. We examine the average WER of a
Gaussian random coding ensemble. Fix L > 1 and, for any SNR p, consider the
ensemble generated with i.i.d. components with input probability Px = N¢(0,1)
and rate R(p) = rlogp. The pairwise error probability under ML decoding, for
two codewords X(0) and X(1) for given fading coefficients is upperbounded by
the Chernoff bound

P(X(0) = X()IH) < esp (<2 HX©O) - X)) (©7)

By averaging over the random coding ensemble and using the fact that the entries
of the matrix difference X(0) — X(1) are i.i.d. ~ N¢(0,2), we obtain

Np —L
1
POXO) S X < [ [1+ o] - =S80 ey
b=1
(in general, the bar denotes quantities averaged over the code ensemble). By
summing over all p"¥8L — 1 messages w # 0, we obtain the ensemble average
union bound

P.o[H) < p LEobl-alitLNar (C.9)

Next, we upperbound the ensemble average WER by separating the outage event
from the non-outage event (the complement set denoted by A) as follows:

P.(p) < Pr(A) + Pr(error, A°) (C.10)
Achievability is proved if we can show that Pr(error, A¢) < p V87 forall L > 1

and r € [0,1]. We have
Np Np

Pr(error, .A°) < / L exp (— log(p) (Z oy + L (Z[l — aply — TNB>>>
b=1 —1

AcnR B b
(C.11)
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By using again Varadhan integral lemma we obtain the lower bound on the ran-
dom coding exponent

dg)(r) > inf {Z a,+ L (Z [1— )y — TNB> } (C.12)

Qe AnR P

where A°¢ is defined explicitly by

Np

Z[l — ]y > rNp

b=1
It is easily seen that for all L > 1 and r € [0, 1] the infimum is obtained' by

ap = 1, for b=1,....k—1
. = 1+ LTNBJ —TNB
a, = 0, for b=k+1,...,Np (C.13)

where k = Ng — |[rNg|, and yields dg)(r) > Ng(1 —r). Since this lower bound
coincides with the outage probability upper bound (C.6), we obtain that dj(r) =
Ng(1 —r) and it is achieved by Gaussian codes for any L > 1. Any fixed coding
rate R corresponds to the case r = 0, from which the statement of Lemma 1
follows.

!This solution is not unique. Any configuration of the variables a; having k — 1 variables
equal to 1, Ng — k — 1 variables equal to 0 and one variable equal to 1 + |rNg| — rNp yields
the same value of the infimum. Moreover, for L = 1 also the solution a; = 0 for all b yields the
same value.
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C.2 Proof of Theorem 1

We fix the number of fading blocks Np, the coding rate R and the (unit energy)
modulation signal set X. Using Fano inequality [22] it is easy to show that
P (p, R) yields an upper bound on the best possible SNR exponent attained

by coded modulations with signal set X'. The outage probability with discrete
inputs is lower bounded by

Np
a 1
Po)l(lt(paR) > Pr N—szx(’ybp) <R>
b=1
JRL 1 I
= Pr{ M — = Z]E log, Z e_\/m(‘”—x')JrZz-HZz]) < R)
M
N b=1 ( 2 rex L z'eX
NB r )
1 1 7‘ pliab(Ifiﬁl)*}*Z‘ +|Z‘2
= Pr|— M-——S"E|log,y ¢V <R

where Z ~ N¢(0,1), and the last equality follows just from the definition of the
normalized log-fading gains a, = —log~,/log p. The inequality (a) is due to the
fact that we have a strict inequality in the probability on the right. Since the
term,

- 1=y (g —af z2 2|2 2 1 X 2
0 < 1og, (Ze Vo i ) < log, (|11e*) — PEIXLELEE

= log 2
(C.14)
and
S

Iog 2 ] < 00 (C.15)

we can apply the dominated convergence theorem [103], for which,

lim E log, (Z V] +Z|2>] _ (©16)
z'eX
=E| lim log, (Z o [V aa] +Z'2>] . (C.17)
z'eX

Since for all z € C with |z| < co and s # 0 we have that

lim e
P—00

—‘\/pl—abs+z‘2+\z\2 _ { 0 for o<1

1 for ap >1
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we have that, for large p and oy, < 1, Jx(p'=*) — M and for o, > 1, Jx(p' =) —
0. Hence, for every € > 0, we have the lower bound

1 Oz R

Pyi(p,R) > Pr|— Y 1{a, <1 < —
B / o Z0d oy (C.18)

AEORZB
where we define the event

AL R
.= RV © — N 1{o <1 < — C.19
A {ae NB; {op < 1+€} M} (C.19)

Using Varadhan’s lemma, we get the upperbound to the SNR reliability function
as

>V aeanrl® |1

dp(R) <inf  inf {EB: ab} (C.20)

It is not difficult to show that the a achieving the inner infimum in (C.20) is
given by

ap = 1+e for b=1,....,Ng—k
ap = 0, for b:NB—k+1,...,NB (021)

where £ = 0,..., Ng — 1 is the unique integer satlsfylng v < 77 < ’j;“l Since

this holds for each e > 0, we can make the bound as tlght as p0551ble by letting
€ } 0. We obtain dgp = Np — k which is equivalent to dgp(R) defined in (3.10).

In order to show that this exponent is actually the SNR reliability function,
we have to prove achievability. We examine the average WER of the coded
modulation ensemble obtained by concatenating a random binary linear code C
with the signal set X" via an arbitrary fixed one-to-one mapping p : FY — X. The
random binary linear code and the one-to-one mapping induce a uniform i.i.d.
input distribution over X'. The pairwise error probability under ML decoding, for
two codewords X (0) and X (1) for given fading coefficients is again upperbounded
by the Chernoff bound (C.7). By averaging over the random coding ensemble and
using the fact that the entries of each codeword X (0) and X(1) are i.i.d. uniformly
distributed over X, we obtain

P(X(0) — X(1)[H) < ﬁ Bf (C.22)

where we define the Bhattacharyya coefficient [97]

=2 M Z Z exp (—gfm:v - x'|2> (C.23)

rzeX ax'eXx
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By summing over all 2V85% — 1 messages w # 0, we obtain the union bound

PL(p[H) < exp (~NpLM log(2)G (p, ) (C.24)
where
é o M 77‘:D7:L‘"2p1_ab
G(p,a) =1 M NBM Zlog2 (1 +2° ; e ) (C.25)

We notice a fundamental difference between the above union bound for random
coding with discrete inputs and the corresponding union bound for random coding
with Gaussian inputs given in (C.9). With Gaussian inputs, we have that the
union bound vanishes for any finite block length L as p — co. On the contrary,
with discrete inputs the union bound (C.24) is bounded away from zero for any
finite L as p — oo. This is because with discrete inputs the probability that two
codewords coincide (i.e., have zero Euclidean distance) is positive for any finite L.
Hence, it is clear that in order to obtain a non-zero random coding SNR exponent
we have to consider a code ensemble with block length L = L(p), increasing with
p. To this purpose, we define

Lip)

B l
—oo log p’

(C.26)

By averaging over the fading and using the fact that error probability cannot be
larger than 1, we obtain

P.(p) < /RNB p~ oA min {1, exp (~NpL(p) M log(2)G (p, @)} dex  (C.27)

+

We notice that

M |:L‘7:D,|2pl_ab o 0 fOI' O{b < ]_
O e Y R T
rEx’

Hence, for ¢ > 0, a lower bound on the random coding SNR. exponent can be
obtained by replacing G(p, &) by

~ R 1

Gela) =1- 7 - N, Z]l{ab >1—¢} (C.28)

We define the event
B, = {a :G(a) < 0} (C.29)
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Hence, from (C.27) and what said above we obtain

. N
P.(p) < / pEn= da +
BnRYB

+ /BCQRNB exp (— log(p) [i ap + NBﬁMlog(2)éE(a) ) da{C.30)

By applying again Varadhan’s lemma we obtain a lower bound to the random
coding SNR exponent given by

Np Np
dg)(R) > sup min{ inf {Z ab} , inf {Z ap + NBﬁMlog(2)ée(a)}}
7 L= b=1

€>0 QEBNRY QeBenR, P
(C.31)

It is not difficult to show that the e achieving the first infimum in (C.31) is given
by

ap = 1—¢ for b=1,...,Ng—k

ap = 0, for b:NB—k+1,...,NB (032)
kt1

Ng

For the second infimum in (C.31) we can rewrite the argument in the form

where k£ = 0,..., Ng — 1 is the unique integer satisfying NLB < % <

NpBM log(2) <1 - %) + zB: lay — BM log(2)1 {ay, > 1 — €}] (C.33)

We distinguish two cases. If 0 < M log(2) < 1, then
a, — BM log(2)1 {ay, > 1 — €} (C.34)

attains its minimum at o, = 0. Hence, we obtain that the infimum is given
by NpBMlog(2) (1 —£). If BMlog(2) > 1, then (C.34) attains its absolute
minimum at oy, = 1 —¢€, and its second smallest minimum at oy, = 0. The number
of terms oy, that can be made equal to 1—e subject to the constraint o € BSNRY”
is given by |Np(1 — R/M)|. Hence, the infimum is given by

NpBM log(2) <1 - %) + (1 —€— BMlog(2)) LNB <1 - %)J (C.35)

Both the first and the second infima are simultaneously maximized by letting
€ | 0. By collecting all results together, we obtain that the random coding SNR
exponent is lower bounded by (3.11).
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The random coding SNR exponent of the associated BICM channel is immedi-
ately obtained by using again the Bhattacharyya union bound [36]. In particular,
for two randomly generated codewords C(0),C(1) € C

PG — COD < 2™ [[(1+ Bulp.n )™ (C.30)

b=1

where By(p, i, X) is defined in (3.19). The error probability averaged over the
random BICM ensemble can be upperbounded by

(C.37)

R 1 &
Pe(pH) < exp <_NBLM log(2)

1—— = — | 1+B X
M NB bz; OgZ( + b(pnu’a ))

— exp(—NsLM log(2)G'(p, o))

It is not difficult to see that

0 for ap <1

plggjlogQ (14 By(p, i1, X)) = { 1 for ap>1

Hence, for € > 0, a lower bound on the random coding SNR exponent can be
obtained by replacing G'(p, &) by G¢(a) defined in (C.28). It then follows that
the random coding SNR, exponent of the associated BICM channel satisfies the

same lower bound of the original block-fading channel.
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C.3 Proofs for section 3.4.3

Proof of Theorem 2. Let F(w) and a(w) denote the exponential growth rate
and the asymptotic exponential growth rate of the considered code ensemble over
the BPSK modulation. For each length Lg, the conditional error probability
given the fading vector h can be upperbounded by the Bhattacharyya union
bound as

P.(pH) < Z exp <_LB (Piwb% - F(‘-")))

we(o,1]
= exp(=LpGry(p,7)) (C.38)
where we define the fading power gain vector v = (71,...,vn,) and let
A 1 oL
Grg(p,v) = I, log Z exp <_LB (Pzwb% - F(‘*’)))
welo,1]VB b=1

The limit of the above exponent for Lg — oo is given by

Goo(p,y) = inf {Piwb% - a(w)} (C.39)

welo,1]VB

Let 79 > 0 be an arbitrary small quantity. We define the set

Np
Doodss(R) = {7 eRY® Y i{yn <} > dSB(R)} (C.40)

b=1
The set I, 45, (r) contains the “bad fading vectors”, i.e., the fading vectors having
dsp(R) or more small components (smaller than 7).

Using fading statistical independence, the property of the fading cdf Pr(y, <
Yo) 2 Po = Yo + o(7) (e.g., valid for Rayleigh fading) and standard bounds on
the tail of the binomial distribution, we can write

Np

Np _
Pr(Cydsn(m) = <k )p'é(l—po)NB g
k:dSB(R)
< K7 ® " + o(4g52 ™) (C.41)

for a suitable constant C; > 0.
Using (C.38), (C.39), (C.40) and (C.41), indicating by f~(z) the pdf of v we
can write, for sufficiently large p and L,

Pe(p) < E[min{1,exp(-=LpGLy(p;7))}]
< / f~(z)dz + e '8 (0Y) fy (2)dz
1N

C
70.dsB(R) FWO,dSB(R)

< Ky 4 e LG £ (2)dz + €1, + o(7257 ) (C.42)

C
FWOadSB(R)
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where €, — 0 as Lp — o0.

Recall that W(Np, k) C {0,1}"% is the set of binary vectors of length Np
with Hamming weight not smaller than Ng — k + 1. For any v € I dsn(R) there
exists x € W(Np,dsp(R)) such that yox < -« (componentwise). In fact, it is
sufficient to replace each 7, < v in 7 by 0, and each 7, > v, in v by 7. Since
by definition there are at most dsp(R) — 1 components of v smaller than -, the
resulting vector has Hamming weight at least Ng —dgp(R) + 1 and therefore (up
to the scaling by 7p) it belongs to W(Np, dsg(R)).

For v € T% ;. (r), it follows from the observation above that Go(p,7y) is
lowerbounded by

Goo(p,y) > inf inf {P’Yo bewb —a(w } 2 éOO(pa %) (C.43)

xeEW(dsB(R)) wel0,1]VB

Define § as in Theorem 2 (eq. (3.26)) and suppose that, for the given ensemble,
§is finite. Then, we let vy = 5/p and, continuing the chain of inequalities (C.42),

Po(p) < Ki7o*"'"™ + exp(—LpGoo(p,0)) fry(2)dz + 1, + o(75° ")
FfYOstB(R)
3 dsp(R)
< ,Cp—dSB(R)+€’LB+0(p—dsB(R)) (044)

where €}, — 0 as Lp — oo. This shows the weak goodness of the ensemble.

Proof of Corollary 2. For ensembles of BICM codes with random bit interleav-
ing we use the Bhattacharyya union bound with Bhattacharyya factor By(p, u, X')
defined in (3.19). Following the same approach as in the proof of Theorem 2, we
see that the upper bound to the error probability takes on the same form of
(C.42) - (C.44) prov1ded that we replace v, by (, defined in (3.20). For large

p, we have that ¢, — ‘m“% where d,;, is the minimum Euclidean distance of
the normalized signal constellation X" (see (3.20) and [17]). The scaling by the
constant factor d2;,/4 (independent of p and of L) involves at most a scaling of
the SNR threshold 5. Therefore, weak goodness of the underlying binary code
implies weak goodness of the corresponding BICM ensemble with random bit
interleaving.

Trellis terminated CCs do not satisfy Theorem 2. For simplicity, we consider
trellis terminated CCs of rate k/Npg, such that in each trellis transition the Ng
coded bits are sent to the N fading blocks (this defines the blockwise partitioning
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of the CC codeword). Then, output blocks of length L correspond exactly to
trellises of Lg trellis sections. Let

€ log |82 (w)] (C.45)

define the length-Ls MWEF exponential growth rate, such that a(w) defined in
(3.24) is given by lim, o limy,, oo FL5(w).

A simple error path in the trellis is a path that leaves state 0 and remerges for
the first time to state 0 after a certain number of trellis sections, while it coincides
with the all-zero path everywhere else. Take a fixed Hamming weight < oo
such that there exist a simple error path of length /() (independent of Lp) in the
code having Hamming weights per block |w, — | < eLp/2, forallb=1,..., Np.
Such simple error path exists for any trellis terminated CC with given encoder.
For example, we can take the minimum-length event corresponding to the free
Hamming distance of the code. It follows that, for all € > 0, sufficiently large Lpg
and w such that |w, — %| < €/2, the lower bound

155 (w)| > L — €(8) (C.46)

holds. In fact, S¥# (w) must contain all the simple error events of length at most
((B) starting at the Ly — ¢(f) + 1 distinct positions in the length-Lp trellis.
By continuity, we can write the sufficient condition of Theorem 2 as

L

SO Fer(w)

s =lim lim sup sup =
€0 LE00  xeW(Np,dsp(R) Wel0,1]VB Y _py ToWh

(C.47)

For any x € W(Ng,dsp(R)), take w in a box of side € around the point % 1e
[0,1]V2. The lower bound (C.46) implies that

1 1
—log L + O(+—
$>lim lim £ (LB)
e—0 Lp—00 ﬁL&_Fg
B

(C.48)

which clearly shows that trellis terminated CCs cannot satisfy Theorem 2.
More in general, any code ensemble such that the MWEF A, Wy increases
linearly with the block length Lpg for some Hamming weight vector w such that

|lW|s < 5 < oo cannot satisfy Theorem 2. These code ensembles have an infinite
ML decoding threshold [41] in the standard AWGN channel.

Proofs of the asymptotic union bounds (3.28) and (3.29). The M&L Bhat-
tacharyya union bound for a code over the BPSK signal set can be written as

N
Pp) <E|mind1, > et (pTetine —rw) LY (C.49)
welo, 1]V
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Since min(1, f(z)) is continuous in z for continuous f and min(1, f(z)) < 1, we
can apply the dominated convergence theorem [103] and write,

lim E|min{ 1, Z e_LB(pE‘I’LBl%w”_F(w))

feee _ welo,1)VB
= E|minq 1, lim Z e B (P o8 powp F(w)) -|
’ Lp—o0
B welo,1]VB J
N
= [E | min 1, lim Z efLB (/’ Eszl ToWp — a((.d)) (050)
LB%OO
welo,1]VB

The factor multiplying Lp in the exponent of the RHS of (C.50) is positive for a
given channel realization ~ if
a a(w)

max — —
welo,1)VB B

Z oo
b=1

Conditioning with respect to v we have that, in the limit of large L, P,(p|y) — 0
if p > p while P.(p|y) < 1 otherwise. It follows that in the limit for Ly — oo
the M&L Bhattacharyya bound takes on the form (3.28).

In the case of BICM codes with random bit interleaving (under the sym-
metrized mapping assumption), we can use the same M&L Bhattacharyya bound
by replacing 7, with ¢, defined in (3.20), and (3.29) follows.

P <p (C.51)



Tangential-Sphere Bound for
Block-Fading Channels

In this appendix we illustrate how the tangential-sphere bound can be extended
to block-fading channels. The tangential sphere bound, originally proposed by
Poltyrev in [98], and further elaborated by Sason and Shamai for turbo-like code
ensembles in [39]. Consider a binary code C of length N = NzL mapped over
BPSK modulation over the block-fading channel,

yb:hbxb—i—zb bzl,...,NB (Dl)

where the entries of z, are i.i.d. ~ N¢(0, %) Again, here we define v, = |hy|2.
Notice that this model represents exactly the same channel as (2.1), but now the
noise variance is modified accordingly to have SNR p. This modification will turn
out to be useful in the derivation of the tangential-sphere bound. We consider
that the channel coefficients are perfectly known at the receiver. Moreover, let
Awl,...,wNB denote the MWEF of C, i.e., the number of pairwise error events in C
with Hamming weight per block wy,,...,wy,.

We will now, derive the tangential-sphere bound for a given channel realiza-

tion. The tangential-sphere bound is based on the following lemma,

Lemma 2 Let A and B be two events in a given probability space. Then,

Pr(A) < Pr(AN B) + Pr(B). (D.2)
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In the tangential sphere bound, the event A represents the decoding error, and the
event B = Cy y(xn) represents an N-dimensional cone with vertex in the origin,
half angle # and with main axis x;, where xy, 2 (hix1, ..., hy,Xny) denotes the
faded codeword and Cy, the faded code. Notice that all codewords of Cy, lie in a
multidimensional sphere of N dimensions, of squared radius

Np
R=L> . (D.3)
b=1

The only difference with the standard AWGN case is that now, some components
of the faded code have different energies due to the different fading values in
different blocks.

Following the derivation in [98, 39], we show in Figure D.1 the geometry of
the tangential-sphere bound in the case of faded codewords. We now define the
standard bound parameters (see Figure D.1 for their geometric interpretation).
Let

Np
0= 42’7},11)1, (D4)
b=1

be the squared Euclidean distance of a pairwise error event with Hamming weights

per block wy, ..., wy,

ol = —, (D.5)

P (1 - E> , (D.6)

T d
Biler) = —2—i (0.7
'R
52
Qs =Tr 1-— W (D8)

and r, the radius of the cone with angle 6.
Then, the expression for the tangential-sphere bound for a given channel

INotice that this implicitly defines the conditional Euclidean distance spectrum, As account-
ing for the number of codewords with squared Euclidean distance §
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Figure D.1: Illustration of the geometry of the tangential sphere bound for the
block-fading channel.
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realization is given by,

P,(p/h) < PI5B(p|h)

+
é/ wﬂe—ﬁ/%z 1-T E,% +
00 V2mo? 2 20

£ 3 (T 7"31—56@1)2), (D.9)

g 2
4 6/2<a5 2 20—
[o(*5) -a(3)]}
o o
where
0 (D.10)
V21 Jy '
is the Gaussian tail function,
[(a,z) £ L /m v e tdt (D.11)
I'(a) Jo

is the normalized incomplete gamma function,
A [T
[(x) :/ t" e tdt (D.12)
0
is the gamma, function and r, the cone radius, is the solution of

> A / " sin™ % pdep = vl (557) (D.13)

0:0/2<ay I (%)

with

4 1
Op =cos™ ' | ——x—|. (D.14)

2r 2
Jio O
4R2

Then, the expectation which is taken over the joint distribution of ~ =

(71, -+, YNg) glves,
P.(p) < B[P (p|h)]. (D.15)

Notice that as PI5B(plh) is a probability, there is no need to use the trick if
E[min{1, P.(p/h)}] [25]. Note the high computational effort required to compute
(D.15): we have to use Montecarlo techniques to compute the average, and at
every channel realization one has to optimize the cone radius with (D.13) and

compute (D.9).
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However, we can compute an approximated tangential-sphere bound using
the technique described in [51]. Define the modified squared Euclidean distance
as

Np
8 =AANEN "y, (D.16)

b=1

where A, 2 H,],\E’l wy denotes the product weight corresponding to a pairwise
error event with weights per block wy, ..., wy,. Then, if we replace d by d' in
(D.9) and (D.13) and we redefine accordingly all the bound parameters, we can
easily compute the expectation over the fading states since

Np
7= Z o (D.17)
b=1
is central chi-squared with 2Np degrees of freedom and mean Ng, such that
Np—1
fi(2) = mt‘?_z (D.18)

is the pdf.
Then, we can compute a new approximated upper bound as,

“+o0 —+0o0
P.(p) 5/ ﬂefzf/%z 1-T (E, %) +
~Jo —o V2mo? 2 20

(N =2 7l = By(n)
+ ; AAPF( 5 : 57 : (D.19)

8’ 5’/2p<a
. 6/

Jo(2E) —o(2))] Hh(v)dv

with r' being now the solution of

0y, L-2
> A, /0 sinN—?’qsd(z;:% (D.20)
A

5.8 j2<a
H 5/

with
O R
2r' 52
1_—
4R?
that has only a single variate expectation and only needs the product enumerator,
which significantly reduces the computational complexity with respect to (D.9).

6, = cos™ (D.21)
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Approximated Density Evolution for
MIMO IC receivers

In this appendix we describe a semi-analytical technique based on density evo-
lution techniques first introduced to analyze the performance and capacity of
low-density parity check codes (LDPC) [37] and applied in [67] to analyzed the
performance of large system multiuser receivers in CDMA systems. The prin-
ciple underlying DE techniques is that, for large codeword length, the pdf of
the messages propagated by the iterative decoder at a given iteration, concen-
trates around the expected pdf resulting from a cycle-free graph. In this paper
we provide a DE algorithm based on the Gaussian approximation and improved
bounding techniques [98, 39] (see also Appendix D), in order to analyze the iter-
ative IC decoding approaches described in Chapter 4. This method captures the
diversity behavior of the code in the limit of infinite block length. We anticipate
that the proposed method, although conceptually very simple, carries a compu-
tational burden comparable to simulation mainly due to the outer expectation
over the fading states inherent in the non-ergodic nature of the channel (4.1).
However, we think that using this basic idea, we can envisage more efficient al-
gorithms that use fast density evolution techniques [91] in order to characterize
in what system settings (antenna configurations, binary code, signal constella-
tion) IC techniques can be efficiently employed. We describe the method for
BICM NSTC with BPSK modulation, while it can be easily extended to the case
of BICM TAST using the equivalent channel . The method can be extended
using the results of Appendix A to general signal constellations.
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For every realization of H, the signal-to-noise ratios at the output of the IC
filter 8% = (Bfi), o BJ(\Z,)T) at iteration 7 of the equivalent parallel channels are
given by,

(1) _ P ‘
£ + 9D [y o)
t#t

(E.1)

where we recall that ft(i) is the IC filter corresponding to antenna ¢ at iteration

v and uﬁi’ is the variance of the residual interference. The SNRs between the
different antennas may be very different from each other depending on the channel
realization. Recall that, as opposed to the CDMA case, large system arguments
cannot be invoked, and therefore, we must track the evolution of a vector of
parameters.

We characterize the error probability given by the soft-input soft-output de-
coder of the binary code C block as ¢ = f(,B(i)). In order to avoid exhaustive
simulation, we resort to improved bounding techniques, i.e., the tangential-sphere
bound, modified to handle a block-fading channel (see Appendix D). Recall that
Awl,__.,wNT denotes the MWEF of C, and that, given B(i), the squared Euclidean

distance of a pairwise error event with weights per block wy, ..., wy, is

Nt
J = 4prtﬁt(l). (E.2)
t=1

This defines the conditional Euclidean distance spectrum A,. In order to model
the error rate fed back from the decoder at each antenna and iteration, we com-
pute the symbol error rate (SER) per block, we define AZ}I,---,U)NT = P Aus, oy
Then, the tangential-sphere bound on the SER of antenna ¢ at the i-th iteration
can be written using AfUl:---waT in (D.9).

In order to avoid the computation of the log-likelihood ratios density function
at the decoder’s output, we use the so-called Gaussian Approximation (GA), and

we consider that the a posteriori L) ~ N (uf,,,24%,,). Then,

app
o= PrlLa <0 =Q1/122), (£.3)
which gives that
Happ = 2[QH(e1)]. (E.4)
We model the extrinsic
‘Céxt = ‘Cg.pp - ‘Cfn (E5)

as ~ N (Béxs 2hexe)s With péey = prgpy — py, where L~ N (uy, 2/4f,), is the
LLR at the decoder input, with p! = 443,. Therefore, the residual interference
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t, ()
tanh” (Ee; )] (E.6)

which can be easily computed using the Gauss-Hermite quadrature rules [45].
The bit error rate (BER) ¢€,(i) at each iteration can be bounded using the same
technique by replacing A% by A =35, %AM in (D.9) and (D.13), where A 5 is
the number of pairwise error events with input Hamming weight h and Euclidean
distance 6. We will nickname this density evolution method as GA-TSB-DE.

We here report some numerical examples of the proposed density evolution
algorithm for a Ny = N = 4 MIMO channel with the MMSE-IC receiver. Figure
E.1 shows the evolution with the iterations of the BER, for a given channel matrix
H for E,/Ny = 0dB, for the convolutional code (5,7,7,7)s. It can be observed
that, for this given realization of H and SNR, there is a very good correspondence
between the GA-TSB-DE method and the simulation for large codeword length
(K=100000) and not-so-large codeword length (K=128). Moreover we also see
that the MFB is achieved after 3 iterations. For the sake of completeness we also
report the BER of the ML decoder of NSTC. Notice that, for lower SNR or a
bad H, the matching between simulation and GA-TSB-DE may not be so good,
making the code work at the region where the TSB is not tight. Also, for some
bad channel matrices, the MF'B may not be achieved at all.

In Figure E.2 we show the evolution chart of the residual interference variance
vector. As observed, there is a fixed point at a very low value, which indicates
that the MFB will be closely approached. Notice that, due to the GA and TSB
on SER per block and BER, GA-TSB-DE does not yield any upper nor lower
bound on the BER performance, but only an approximation. We have computed
the truncated MWEF with a modified version of the algorithm in [104], in order
to handle multivariate simple error events. Notice that computing only simple

error events is needed for convolutional codes, and that Ay, w, <K Agmele
ety T

counts for its shifts, where AS‘rerfwaT is the MWEF for simple error events of the
convolutional code.

We finally show in Figure E.3 the Montecarlo average BER and WER per-
formance predicted by the GA-TSB-DE compared to simulation. Notice that,
strictly speaking, DE methods yield WER = 1. Therefore, in order to esti-
mate the WER, which is the relevant performance measure for the case of our
study, we have computed the TSB for the WER by using the truncated MWEF
Ay, <K ASlmplewN for K = 128. As we observe from the figure, there is a
very good matching between simulation and the prediction by GA-TSB-DE. In-
deed, GA-TSB-DE predicts very well the diversity gain of the iterative MMSE-IC
decoder and provides good performance estimation. As mentioned in a previous
section, since BICM NSTC are not full rank, its performance will cross that pre-

variances for the next iteration are

o) — 1 _




140 E. Approximated Density Evolution for MIMO IC receivers

107 T T T I
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Figure E.1: BER evolution with the iterations for a fixed H for E,/N, = 0dB
and (5,7,7,7)s CC.
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Figure E.2: Snapshot for fixed H (the same of Figure E.1) of the residual inter-
ference variance evolution for Ej,/Ny = 0dB and (5,7,7,7)s code.
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dicted by GA-TSB-DE (infinite length BICM NSTC are full rank by definition),
and will show a diversity floor effect, similar to that of turbo-codes.
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Figure E.3: Average BER and WER of BICM NSTC and NSTC (5, 7,7, 7)s code.
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