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Abstract

Signal detection, channel decoding and parameter estimation are described in a uni-
fied manner. First, we introduce the graph representation and the vocabulary used in
probabilistic processing of information. Then, we study six important situations in com-
munication and coding theory: Probabilistic detection of quadrature amplitude modula-
tions (QAM) on additive white gaussian noise (AWGN) channel, soft-input soft-output
(SISO) decoding of binary convolutional and binary block codes, iterative APP equal-
ization on inter-symbol interference (ISI) channels, iterative APP detection on multiple
antenna (MIMO) channels, probabilistic multiuser detection on code division multiple
access (CDMA) channels, and APP decoding of binary low-density parity check codes
(LDPCQ), generalized low density (GLD/Tanner) codes and binary parallel Turbo codes.
Secondly, we recall the maximum likelihood pilot based channel estimation, and how
channel state information (CSI) is essential in probabilistic signal detection and channel
decoding. Then, we describe the Expectation-Maximization algorithm as a recursive low
complexity approach to ML estimation. We show how the EM can be integrated into
the decoding of graph codes and graph systems. Two approaches for processing data and
pilots in the EM algorithm are given. Finally, we discuss the relationships between the
EM and other algorithms in communications, coding and information theory.

Keywords: A posteriori probability (APP) decoding, a posteriori probability detection,
Forward-Backward algorithm, Expectation-Maximization (EM) algorithm, maximum likeli-
hood (ML) estimation, LDPC codes, Turbo codes.

1 On the extrinsic information in iterative detectors/decoders

We show in this document that the strict definition of extrinsic information (Extr) is unique
and its expression is always given by a sum-product formula. This is true for all iterative
soft-input soft-output (SISO) receivers and decoders, including multiuser detection, multi-
ple antenna detection, equalization of inter-symbol interference channels, decoding of turbo
codes, low density parity-check codes and all kind of codes on graphs. On the other hand, the
definition of the a posteriori probability (APP) is also unique, but its expression may show a
slight difference depending on the existence or the absence of direct channel observation.

*This memorandum can be downloaded in pdf and ps formats from The Channel Coding Page at the
following URL, http://www.comelec.enst.fr/~boutros/coding



In the sequel, the symbol «x means proportional to and the symbol ~ means equivalent
to or isomorphic to. We briefly study 6 different situations where we give the a posteriori
probability expression and its decomposition into a product of independent quantities in or-
der to extract the extrinsic probability. All these situations can be described by a unified
framework: an encoder generating sequences transmitted on a discrete memoryless channel
(DMC). These sequences belong to a code C and are called codewords in both finite and
infinite length cases. The soft-output decoder may be asked to produce soft information on
both the encoder binary input and the encoder Euclidean output. The generalization to non-
binary inputs and non-Euclidean outputs is straightforward. For simplicity, our DMC is an
additive white gaussian noise (AWGN) channel. Soft-input soft-output receivers, including
both detectors and decoders, are also called APP receivers or probabilistic receivers.

At time instant ¢, let z; denote a M-QAM modulation symbol, where M = 2™. Let b;
denote a binary element belonging to the label of z;, and let y; denote the channel output.
The a posteriori probability of b; is defined as APP(b;) = P(b;|ly,C), where y is the vector
of all channel outputs, 2 = 1... N. An identical definition is made for APP(z;). Notice that
an equivalent definition is APP(b;) = p(bj,y|C) o P(b;ly,C). We will restrict our study to
the first convention and will use conditional distributions instead of joint distributions. The
proof of all given formulas is trivial and needs basic knowledge in probability theory and com-
munication theory. The non-initiated reader should consult basic books such as Probability,
Random Variables and Stochastic Processes by Athanasios Papoulis, Digital Communications,
by John Proakis and Elements of Information Theory by Cover and Thomas.

2 Introducing a graph representation and some vocabulary

Let us consider a universal variable v represented by a variable node v as illustrated in Fig. 1.
The variable may represent a binary element b;, a QAM symbol z;, an element of a finite field
GF(Q), or any other kind of symbols belonging to a finite set used in Communication and
Coding theory. We assume that v is connected to L sub-graphs denoted by Graph £, where
£=1...L. The sub-graphs are not connected together, i.e., the total graph has no cycles.

The sub-graph Graph £ represents a constraint given by an error-correcting code, the
channel memory, or any type of constraints. The graph in Fig. 1 suggests that v must satisfy
L independent constraints. A direct observation obs(v) may also be available as shown in
the flow from the channel sub-graph to the node v. For example, if v = z; and the DMC
channel is defined by p(y;|z;), then the probability obs(v) = obs(z;) o p(yi|z;) is a direct
channel observation. The exact expression is obtained by normalizing the channel likelihoods,
obs(z;) = p(yilz:)/ 32 ; p(yjlz;) € [0...1].

Given the L constraints and the total channel observation, y = (y1,¥o,...,yn) defined in
section 1, Graph £ generates a probabilistic information Extry(v) illustrated by the flow
outgoing the sub-graph box and incoming the variable node. This information is independent
from any Extrg(v), for all k # £. Furthermore, Fxtry(v) is independent from any possible
direct observation on v. Hence, Extry(v) is called extrinsic information on v generated
by Graph £. Finally, the a posteriori probability of v is given by the product of all incoming
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Figure 1: Graph representation of information flow, local neighborhood of v.

probabilistic informations'

L
APP(v) x obs(v) X H Extry(v) (1)
=1

As usual, the proportionality factor is determined by writing that >, APP(v) = 1. Now, let
us focus on the edge linking the variable node and any of the L sub-graphs, e.g. Graph 2.
The information flow from v to Graph 2 obtained by summing all extrinsics generated by the
other sub-graphs is called a priori information. Thus, looking to the flow incoming Graph
2, we can define the a priori information my(v) = Exztry(v), £ # 2. Sub-graphs 1,3,4,... L
act like L — 1 genies delivering a priori information m(v) oc [], . me(v) to Graph 2. We can
rewrite the a posteriori probability as the product of the two opposite information flows on
the edge linking v and Graph 2,

APP(v) xx obs(v) x w(v) x Extra(v) (2)
The above equation is universal and the reader should recall it literally

APP = Observation x A Priori x Extrinsic

The code C defined in section 1 for the unified framework is given by the constraints im-
posed by the L subgraphs on all variable nodes. If C; denotes a code associated to the
constraints in Graph £, then

L
C=()Ce (3)
=1

n practice, for finite length codes, this does not yield the exact a posteriori probability value due to the
presence of cycles in the graph of Fig. 1.



The sub-graphs contain other variable nodes? than v. These variable nodes, not necessarily of
the same kind as v, may receive their own direct observation and are not illustrated in Fig. 1.
Therefore, as shown in the examples of section 3, the extrinsic probabilities { Exztry(v)} de-
pend on the observation vector y, or a part of this vector, even if obs(v) is not available.

How decoding iterations are defined and why ?

Finally, before terminating this section that describes elementary notions on graph represen-
tation for probabilistic receivers, the author would like to elucidate the definition of iteration.
Therefore, we draw around the variable node v more details about the constraints and other
variables in the local neighborhood. This is illustrated in Fig. 2. Edges and nodes correspond-
ing to direct channel observations are not displayed. Variables are drawn as small circles and
constraints are drawn as squares. The information flow is assumed to be directed from the
graph boundaries to its center. The graph is not necessarily regular. It is equivalent to a
tree where the information flow is directed upward, from its leaves toward its root. In Fig 2,
the squares are organized in shells around v and deliver their extrinsic messages to variable
nodes. Similarly, the variable nodes deliver their a priori and observation messages to the
squares located on the inferior shell. When messages propagate from one shell to another,
we say that the receiver performs one APP detection/decoding iteration. Obviously, APP(v)
that depends on all observations and all constraints cannot be determined after one iteration.
If C has infinite length, then the theoretical number of iterations to be applied is infinite.
In practice, C has a finite length, the graph is not a tree (cycles are present), and a limited
number of iterations is required to reach a quasi steady-state in most conditions.
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Figure 2: Representation of decoding iterations in the code graph. The information propaga-
tion graph is equivalent to a tree where the flow is directed from its leaves to-wards its root.
Tterative processing of information is also known as message passing or belief propagation.

Fig. 1 shows the local neighborhood of the variable node v, not the detailed graph which includes all
variables and all constraints.



3 Six important situations in Communication/Coding theory

From section 2, expressions (1) & (2) and the related comments, any soft-input soft-output
detector /decoder used as a building block for iterative processing in a receiver can be drawn
as a box with two inputs and two outputs, see Fig. 3. The extrinsic output is determined
by means of a sum-product formula as shown in the sequel. The a posteriori output is the
product of the two inputs and the extrinsic output as shown previously.

observation obs - » APP aposteriori
Praobabilistic

Detector/Decoder
apriori m T — > FExtr extrinsic

Figure 3: General model for a building block used in iterative decoding.

The general description given in sections 1 & 2 is now clarified via 6 different situations
encountered in Communication and Coding theory. Other examples should be added in a
future version of this document.

3.1 QAM probabilistic detector on AWGN channel

In this section, the observation length is N =1, x = x1 and y = y; = y. Consider a linear
quadrature amplitude modulation M-QAM where M = 2™, m > 2 bits per symbol. The
QAM constellation is usually defined by a finite translated subset of 24Z2, A € RT. For
square constellations, we have z = Rz ++/—13z, and Rz, Sz € {+A4,434,...,£(vVM -1)A}.
The QAM symbol z = z(b) = z(b1,...by) is transmitted on a discrete memoryless channel
with additive white gaussian noise, y = = + z, where z ~ CN(0,20?). The system model is
depicted in Fig. 4.

b M-QAM| =z AWGN
mapper ~| channd

Figure 4: QAM modulation, b € GF(2)™, z € M-QAM C C, and y € C.

Given y, a QAM detector finds APP(z) as follows: APP(z) = P(z|y) «x p(y|z) x m(z). Then

—zl?
APP(z) x obs(z) x w(z) where obs(z) x p(y|zx) x exp (—%) (4)

If the a priori information is not available for QAM symbols, 7w(z) = 1/M, then
_m2
exp (_Iyzgﬂél )

_ly—a'?

Ew’ cQAM €TP ( 202

APP(z) = obs(z) = ) (5)

From (4), it is obvious that the QAM detector delivers no extrinsic information in the system
described by Fig. 4, i.e., Extr(z) = 1/M. In all cases, the a posteriori probability of QAM
complex symbols is represented by the literal expression



APP = Observation x A Priori

Even though, from a probability theory point of view, the reader should notice that Ob-
servation, A Priori and Extrinsic are probabilistic quantities of the same kind. Hence, one
may not follow a strict jargon and regard the direct observation of z as an extrinsic or a priori
information delivered by the detector. The author does not pretend that there is a unique
strict jargon in this field, one may use any vocabulary if the notations and the vocabulary
itself are perfectly clear for the readers.

Now, let the QAM detector determine APP(b;), j = 1...m. Starting from the original
definition of the a posteriori probability, we can write

APP(b;) =P(bjly) = Y Ply)ox >  pylz)r(=) (6)

{bi} kg 2€QAMIb;

In the above expression, the notation ). (b} kj means that the sum is made over the
2m=1 = M/2 values of the binary vector (bi,...,bj_1,bj+1,...,bn). Consequently, the no-
tation >° o AMp; Teans that the sum is made over the M /2 QAM symbols associated to

a label where the j'h binary element is equal to b;. Before going further, the reader should
notice that there is no direct observation for b; because the QAM mapper is a non-systematic
rate-1 encoder with a binary input in GF(2™) and a Euclidean output in C. Since o0bs(b;) is
not available, it is mathematically correct to write obs(b;) = 1/2.

Two simple cases can be distinguished while interpreting (6):
1. Absence of a priori for z. Write w(z) = 1/M, and suppress 7(z) from (6). Then,

2
2 zeQAM b; €TP (-'y%ﬁ' )
\y—w’\Z) 0

Zz’EQAM exp (— 502

APP(bj) = Extr(bj) =

2. A priori of z is present via independent a priori probabilities 7(by) for the m binary
elements in the label of z, & = 1...m. These probabilities 7(by) may be generated
by the decoder of an error-correcting code inserted in the transmitter before the QAM
mapper. In this second case, we write m(z) =[], w(bx). The APP of a binary element

becomes m
APP(bj) x Z p(y|z) H
TEQAM|b; k=1

The right-hand side of the above equality is rewritten as a product, this yields

m
APP(bj) x w(b;) x Extr(b;) where Euxtr(b;) Z p(y|z) H m(bx) (8)
TEQAM |b; k=1,k#j

In all cases, the a posteriori probability of a binary element belonging to the label of a QAM
symbol is represented by the literal expression



APP = A Priori x Extrinsic

The interpretation of (6), when a non-binary error-correcting code is inserted before the
QAM mapper, is similar to the second case described above and is left to the reader. Finally,
the graph representation of APP(z) and APP(b;), as computed by the QAM detector and
given in (4) and (8) respectively, is made in Fig. 5. The product of all flows incoming z and
b; is equal to the variable a posteriori probability. In a communication system, the model of
Fig. 5 can be realized by feeding the m binary inputs of the QAM mapper with the output of
m distinct error-correcting codes. This model is also realized by a unique error-correcting code
(e.g. a convolutional code) separated from the QAM mapper by a pseudo-random interleaver.

@ m(b1) c

QAM | Extr(b;) @ 7(b;)

7r(.77) mapper

C;

@ obs(x)

)

Cm

Figure 5: Information flow for bit and symbol nodes in probabilistic QAM detection.

3.2 SISO decoding of binary block and convolutional codes

Consider a linear binary code C(N, K ) of length N and dimension K. The code C can be
constructed algebraically, e.g. a binary BCH code, or by the proper termination of a binary
convolutional code. The description below is valid for both classical families of block and
convolutional codes. As shown in Fig. 6, the encoder input is b = (b1, bs,...,bx) where
b; € GF(2). For simplicity reasons, we assume that the encoder output belongs to a BPSK
alphabet®, x = (1, 2,...,zy5) where z; € {A}. The simple exercise of combining sections
3.1 and 3.2 is left to the reader.

C(N,K) x AWGN
encoder | channe

b

Figure 6: A binary block/convolutional code and a memoryless gaussian channel.

The channel observation is obs(z;) o p(y;|z;) = J;?exp (— (i —2:)? ), which leads to

202
obs(z;) = L )
Z 1+exp (—%)

3Binary Phase Shift Keying is equivalent to 2-QAM. A BPSK symbol «; has values +A.




The a posteriori probability of a coded symbol is APP(z;) = P(z;]y,C), and if a priori
information 7(x) is available, 7(x) = [J, 7(z¢), then we can write

APP(z;) Z Hobs Zy) x obs(x;) - w(x;) - Extr(z;) (10)
x€C|z; £=1
Extr(z;) Z Hobs zp) (11)
xeClz; Lt

When the code C is systematic, APP(b;) = APP(x;) and Extr(b;) = Extr(z;) fori=1... K.
If the code C is non-systematic, conditioning in the sum-product formula is made on b;,

APP(b;) = Extr(b;) o< Hobs (z¢) (12)
x€Clh; £=1

In some situations, the code is non-systematic and a priori information is available on infor-
mation bits, 7(x) = HJK 1 m(bj), then

K
APP(b Z Hobs zy) H ; (b;) - Extr(b;) (13)
xeC|b; £=1 7j=1
Extr(b Z Hobs xp) H w(bj) (14)
x€C|b; £=1 J#i

Version 3 of this tutorial will include material about the trellis structure of block and con-
volutional codes, and the Forward-backward algorithm. The trellis structure of rate 1/2
non-recursive non-systematic (NRNSC) and recursive systematic (RSC) convolutional codes
is given in Fig. 8. The trellis structure of the Hamming code (7,4) defined by its parity-check
matrix in (15) is drawn in Fig. 9.

/ ?
z 1 _ z 1 <+>_> -1 -1
\ Y
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Figure 7: Non-recursive (7,5) convolutional encoder (left) and recursive (1,5/7) convolutional
encoder (right). These equivalent codes (same codewords but different input-output mapping)
are both 4-state and rate 1/2.

0111100
H=[1011010|=(0 ¢ & & ¢ & ) (15)
1101001
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Figure 8: Trellis for equivalent codes NRNSC(7,5) and RSC(1,5/7). Each transition is labeled
by two output bits. In the non-systematic case, an upward transition corresponds to a 0-input
and a downward transition corresponds to a l-input. In the systematic case, the input is
indicated by the first bit in a transition label.
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Figure 9: Syndrome trellis of the binary (7,4,3) Hamming code defined by the parity-check
matrix in (15). One bit per transition. The 4 trellis sections to the left correspond to the 4
information bits. The trellis has 8 states.



3.3 Iterative APP equalization on ISI channels

Consider an inter-symbol interference channel with memory v. The ISI channel output be-
fore addition of white gaussian noise is s; = ZZ:O hy Ti—y- The noisy output is y; = s; + 7,
where 7; is complex gaussian distributed with zero mean and variance o2 per real component,
2 =1...N. The ISI channel is equivalent to a rate-1 convolutional code defined on a complex
alphabet. The system model and channel structure are shown in Fig. 10 and 11. The channel
state is defined by the content of its tapped delay line. The trellis representation has M
transitions per state and a total of MY states. Fig. 12 illustrates the ISI trellis for M = 2
and v = 2. Let T denote the set of ISI codewords, i.e., the set of all possible paths in the ISI
trellis. Then, the a posteriori probability for a QAM symbol is evaluated as follows:

APP(z;) Z p(yls) Z prdé‘e ) (16)

s€T |x; s€T|z; £=1
x  m(xz;) X Extr(z;) (17)
N
Extr(z;) o Y]] plwilsi) J] () (18)
s€T|z; £=1 uF#i

Notice that ISI acts like a non-systematic convolutional code, no direct observation is available
for transmitted QAM symbols. The channel observation for s; is given by the classical channel
likelihood p(y;|s;) ox exp (—%) Now, let us write the expression of APP(b;), where b;
is a binary element belonging to the label of z;. The a posteriori probability of b; is obtained

by marginalization of symbol probabilities

APP(b;) = Y APP(z;) o Y m(z;) Extr(z;) (19)
zi|bj xilbj
m
APP(b Z Extr(z;) H (b)) o w(bj) Extr(b)) (20)
xilb; £
b M-QAM X I1SI y
—_— - e
mapper channel

Figure 10: Mapper for M-QAM modulation followed by an inter-symbol interference channel.
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Figure 11: Tapped delay line as a discrete model for an ISI channel of v + 1 coefficients.
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Figure 12: Trellis for a memory v = 2 inter-symbol interference channel with BPSK input.
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Figure 13: Iterative APP equalization performance for a memory v = 4 ISI channel and
BPSK input encoded with a 64-state rate 1/2 convolutional code NRNSC(133,171).
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Figure 14: Amplitude frequency response for the 5-coefficient ISI channel used above in
iterative equalization and decoding.
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3.4 Iterative APP detection on MIMO channels

Notations and definitions are similar to previous sections. The description herein will be very
compact. Assume a frequency non-selective multiple-input multiple-output (MIMO) channel
with n; transmit antennas and n, receive antennas. The channel coefficients are given by the
entries of a ny X n, matrix H = [h;;], where h;; is the complex fading of the channel path
linking transmit antenna ¢ to receive antenna j.

The channel output is y = xH + 7, where x € (M — QAM)™ C C™, y € C", and 7 is an
additive white complex gaussian noise vector perturbing the receive antennas. The system
model (not including the error-correcting code) is illustrated in Fig. 15. Expressions for a
posteriori probability and extrinsic information are similar to those found in section 3.1, the
modulation alphabet of size M is replaced by a multidimensional alphabet Q = (M —QAM )™t
of size M™ = 2mnt,

b M-QAM X MIMO y
mapper channel

Figure 15: Mapper for M-QAM modulation followed by a multiple antenna channel.

The observation of a multidimensional symbol is

ly —xH|”
b - 21
obs(x) o p(y|x) x exp ( 52 (21)
Independent a priori information is supposed to be available, 7(x) = J[;X{ =(b;). The

multidimensional a posteriori is APP(x)  obs(x)w(x). No extrinsic Extr(x) is generated by
the detector because the MIMO channel is DMC. Recalling that x = (z1, z2, ..., Zn,), where
z; € M — QAM, the a posteriori probability for a complex QAM symbol is

N

APP(z;) = Z APP(x) Z obs(x)H m(xg) o« w(z;) Extr(x;) (22)

xEQ|z; x€Q|z; =1

In the above APP, we assumed that m(z) = [[;%; 7(b(—1)m+;)- Now, the a posteriori infor-
mation for binary elements is

APP(b;) ocm(b;) Y obs(x) ] w(be) (23)

XEN|b; L£]

7

-~

Extr(b)) (24)

3.5 Probabilistic multiuser detection on CDMA channels

Notations and definitions are similar to previous sections. The description herein will be
very compact. The channel model is drawn in Fig. 16. The received sample at the joint
detector input isy =y = Zfi L wiZ; + 1, where w; is the fading coefficient for user ¢ and
K is the number of users. The CDMA channel is non-systematic. Hence, the a posteriori
probability for a symbol z; will be proportional to the product of a priori and extrinsic

13



informations without any direct observation, i.e., obs(z;) = 1/M. The Cartesian product of
the K modulation alphabets is denoted Q = (M — QAM)X. The a posteriori probability for
a transmitted M-QAM symbol by user i is

APP(z;) = P(z;|y, code constraints) o w(z;) Extr(z;) (25)
Extr(z;) o« Y plylx) [[ (=) (26)
z,EQ|z; 12

where the channel likelihood is given by

K 2
plylx) o exp (—'y‘zﬁ—l ez ) (27)

202

\ AWGN
T

Figure 16: Chip synchronous code division multiple access channel for K users.

The performance of a CDMA system with K = 4 users is illustrated in Fig. 17. The
symbols belong to a BPSK modulation, z; £ A. Each user encodes its information with a
rate R, = 1/4 16-state non-recursive non-systematic convolutional code with octal generators
(25,27,33,37). No pseudo-noise (PN) sequence spreading is applied. Hence, the spreading
factor is Sy = 1/R. = 4. The CDMA system load is K/Sy =1 = 100%. Also, the considered
users have equal amplitude w; = 1 for all 4, i.e., the K users have identical signal-to-noise
ratios per bit.

3.6 APP decoding of binary Turbo/LDPC/GLD codes

Notations and definitions are similar to previous sections. The description herein will be very
compact. Consider a binary compound error-correcting code and an ideal AWGN channel
with BPSK modulation. The system model is drawn in Fig. 18 and the compound code
structure is found in Fig. 19. The compound code (also called graph code or concatenated
code) is defined by bit nodes and constraint nodes. Let us consider the 3 most important type
of graph codes:

¢ Low-density parity-check (LDPC) codes. A codeword has length N bits, the latter
are represented by the N left nodes in the bipartite graph. For example, make dp = 3
and d. = 6. Take Cyp = SPC(d.,d. — 1,2)2 a single parity-check code. The graph has
L = d”—N check nodes. The LDPC coding rate is R, > 1 — @ = 1/2. Equality occurs
with hlgh probability for large N. This description corresponds to a regular LDPC
code. Irregular LDPC codes are obtained by defining irregular degree distributions for

14
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Figure 17: Tterative APP joint detection in CDMA with K = 4 users on a gaussian channel.
The NRNSC code is a rate 1/4 16-states (25,27,33,37) for all users. Same SNR per bit for all
users. Each user pseudo-randomly interleaves its N = 8192 bits before transmitting on the
multiple access channel. No PN spreading. System load is 100%.

bit nodes and check nodes. The decoding of an LDPC code is based on decoding of its
SPC constituent. In this case, we can apply to Cy what has been described in section
3.2. However, Cy is an SPC(d.,d. — 1,2) which leads to simpler expressions for the
extrinsic information. Let b;, j = 1...d., denote the d. bits of an SPC code, then

de

x 1= ] @ - 2p) (28)

L=1,0#]

Eztr(b; =1) =

N =

where py o m(bg = 1) obs(by; = 1). The a posteriori probability is obtained by multiplying
the 3 informations, APP(bj) o obs(b;)m(b;)Extr(bj). The input a priori of b; is obtained
by multiplying the incoming extrinsics to the check node from all other blt nodes, as
described in section 2.

e Generalized low-density (GLD/Tanner) codes. A codeword has length N bits,
the latter are represented by the N left nodes in the bipartite graph. For example, make
dp, = 2 and d, = 20. Take Cy = BCH(20,15), the binary BCH code constructed by
shortening the (31, 26)2 In general, Cy may be any binary BCH (n, k)g where n = d,.
The graph has L = %N gubcode nodes. The GLD coding rate is R, > 2 — 1. Equality
occurs with high probablllty for large N. This description corresponds to a regular GLD
code. Irregular GLD codes are obtained by defining irregular degree distributions for
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bit nodes and check nodes, and different Cy constituents. The decoding of a GLD code
is based on decoding of its Cy constituent, as described in section 3.2.

e Parallel turbo (Turbo) codes. Make L = 2 subcode nodes. Take Cy = RSC(1,g2/91),
a recursive systematic convolutional code of rate 1/2 and generator polynomials ¢ (z)
and go(z). The N bit nodes in the left side of the graph are considered as information
bits. Make the left degree d, = 2. Make the right degree d. = N, and add N parity
bits of degree 1 to each subcode node. Then, the graph code is a rate 1/3 parallel turbo
code. If one considers L = 1 subcode node with a total degree d, = 2N, the new graph
code is an equivalent version of a turbo code with a unique constituent.

Notice that in the 3 cases above, the matching between left nodes and right nodes in the
code graph is random. Some algebraic deterministic graphs have been also studied in the
literature.

b Turbo/LDPC/GLD X AWGN
encoder | channd

Figure 18: Binary Turbo/LDPC/GLD encoder on AWGN channel, BPSK modulation.
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Figure 19: Bipartite graph for a regular binary Turbo/LDPC/GLD code.
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4 Parameter estimation via expectation-maximization (EM)

In previous sections, we explained (at least, we tried to explain) in a simplified and a universal
manner, how to write probabilistic expressions useful for decoding information in communica-
tion systems. Take the following simplistic example. The probabilistic observation of a binary
symbol b; on an ideal coherent real channel with additive white gaussian noise N (0,02) and
binary phase shift-keying modulation is computed by 9

p(yilzi = —A) 1

obs(z; = +A) = = 29
(= ) plyilzi = +A) + p(yilzi = +4) 1 4 egp (_2Ay¢) (29)

o2

The symbol amplitude A and the noise variance o2 are required in the evaluation of obs(x;). In

general, channel state information (CSI) is mandatory for detection and decoding. The source
distribution, denoted by SSI (source state information), is mandatory for non-universal source
decoding. SSI may also improve the quality of service if it is available for the channel decoder.
Thus, the parameter 6 to be estimated at the receiver side includes both SSI and CSI as indi-
cated in Fig. 20. In the simplistic example above, @ is the vector of parameters 0 = (4, o?),
the binary source is assumed to be i.i.d. and uniformly distributed, P(—A) = P(+A) = 1/2.
On a MIMO channel, when the source is uniform, parameters are § = CSI = (A, H,o?). On
a multiple access channel, CSI is given by the K channel parameters of the K users.

SSl
SR
|
!
N > O=SSI+CST <~~~ . v
i

/&) ---| Channel |CSI

v v |
“-~»Demodulatol

Figure 20: General model for a communication system. Parameters to be estimated are
the source distribution and the channel state information. Quality of service is improved by
feeding the receiver with the estimated value of system parameters.

Before revealing parameter estimation with the means of EM algorithm, the author would
like to propose an appetizer. Consider the following communication system:

e A non-uniform binary i.i.d. source with distribution 4 = P(1) = 0.1 and 1 — p = P(0).

e The source output is encoded by a linear systematic binary LDPC(N,K) encoder. No
source code in this communication system.

e LDPC code symbols are BPSK modulated and transmitted on an ideal channel, as in
the above simplistic example.
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e The CSI (A,0?) is perfectly known by the LDPC probabilistic decoder. The receiver
has no source decoder.

Then, two situations can be encountered. First, the LDPC decoder has no access to SSI, it
assumes that 4 = 1/2. In the second situation, the LDPC decoder has perfect knowledge
4= p = 0.1. In Fig. 21, the word error rate in both situations is plotted versus the signal-
to-noise ratio. The reader is invited to meditate on the illustrated performance.

100 Lo

Tt ]
Unknown source distribution —— ]
Known source distribution ---8--- ]

10

Frame Error Rate (Word Error Probability)

4 A S A T SN (R A N SR SN S S S S VI
06 -04 -02 00 02 04 06 08 10 12 14 16 1.8 20 22 24 26
Eb/NO (dB)

Figure 21: Word error rate versus signal-to-noise ratio per bit for a systematic regular LDPC
code, dy = 3, d. = 6, rate 1/2. The code length is N = 2000 bits and dimension is K = 1000.
Channel is gaussian with BPSK input. The non-uniform binary source distribution is P(0) =
0.9 and P(1) = 0.1. Number of probabilistic decoding iterations is 100. Measure of at least
500 bit errors and 100 word errors for each plotted point.

4.1 General statement of the EM algorithm

Let x denote the symbol vector at the channel input. Let y denote the observation vector at
the channel output. In communication and coding systems, components of x (e.g. the QAM
symbols z; defined in previous sections) belong to a finite discrete alphabet. The channel
output y can be discrete (e.g. BSC) or continuous (e.g. AWGN channel). As depicted in
Fig. 22, for simplicity reasons, the general model of Fig 20 is reduced to a representation
where x is the direct source output. It is straightforward to place an encoder (systematic or
non-systematic) between the source and the channel without a major change in EM equations.

18



As indicated in Fig. 22, x is called the missing data, y is called the incomplete data, and
k = (x,y) is the complete data. Indeed, if the complete data x is available, then the source
distribution can be easily estimated from x, and the channel state information can be easily
estimated from k. When & is available, maximum-likelihood (ML) estimation of  is obtained
by maximizing the likelihood or equivalently the log-likelihood

Ovr = arg meax log p(k|0) = log p(x,y|0) (30)

In a communication system, the incomplete data is the only available observation to the
decoder. The transmitted vector x is missing, and ML estimation as in (30) cannot be
performed. In such situations, ML estimation becomes

Opr = arg max log p(y|@) (31)

Unfortunately, in many cases, analytical or numerical ML estimation by maximizing log p(y|0)
is not possible because an explicit expression for the log-likelihood does not exist, or because
maximization over 6 is an extremely difficult task. The EM algorithm provides a recursive
solution to (31). Given a current parameter value 6’ at iteration i, the EM algorithm com-
putes an update #*t!. The final EM estimate depends on the initial value #°. The EM
algorithm is numerically stable, and its convergence is relatively fast in most communication
and coding systems. In difficult scenarios, §° should be determined by the use of pilot symbols.

k: complete data, k = (x,y)
/'v v\~

-7 ~.
- ~N

x: missing data y: incomplete data (observed)

A A
| |
X i yi
SSN _ Csl
A a7

0: set of parameters to be estimated, SSI4+CSI
Figure 22: Simplified communication system model for introducing EM vocabulary.

Expectation-maximization was employed in various algorithms in the past. Dempster,
Laird and Rubin gave an exact formulation for it in 1977, proved its convergence and called
it EM algorithm. For example, the so-called Baum-Welch algorithm (known at least since

1970) includes an EM parameter estimation and a forward-backward recursion (similar to the
BCJR published in 1974).

When the symbol vector x is missing, the key idea is to replace the log-likelihood function

by its mathematical expectation over x, given the observed data and the current parameter
value. The estimation algorithm proceeds in two steps at each iteration:
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e E-step (with source a priori, SSI): Compute the auxiliary function

Q16 = Ellogp(x,yl6) | y,6 (32)
= ) logp(x,yl0) P(x]y,0") (33)
= Y logp(x,y|0) APP;(x) (34)
e M-step: Update the parameter
ot = arg max Q(6]6" (35)

When the missing data does not depend on the parameter, i.e., no a priori information on the
source distribution, then writing p(x,y|0) = p(y|x, 0)p(x) yields a new auxiliary function:

e E-step (without source a priori, no SSI): Compute the auxiliary function

Q(016) = Eflogp(ylx,0) | y,0' (36)
= ) logp(ylx,6) P(x|y,0") (37)
= Y logp(ylx,0) APPi(x) (38)

e M-step: Update the parameter
ot = arg max Q(6]6% (39)

Now, let us examine the convergence of EM recursion. What necessary condition is satisfied
if = 6" = 't! ? From (33), we can write

Q(016") o< Y logp(x,yl0) p(x,yl6") (40)

Derive with respect to 0, and force the derivative to zero at § = §* = *11,

9Q > op(x,y10) p(x,yl6") _ dp(yl0) _ (a1)
00 00 p(x,y|0) 00

The above equality, obtained at EM convergence, is the necessary condition satisfied by the
ML estimate of 8. This tells us that EM stops in a local optimum which may not be a global
optimum. Definitely, the initial value 6° is very critical in many cases.

The above analysis is made for the steady-state of convergence. So, does the likelihood of the
observed data increase at every EM iteration ? The answer is yes:

Since p(x,y[0) = p(y|0) p(xly,0), (32) becomes Q(0/6") = Eflog p(x|y,0)ly, "] +log p(y6).
Then, we write the difference of log-likelihoods 7 + 1 and 1,

logp(y|0"t") —logp(yl6") = Q(6°T'|6") — Q(6]6") (42)
+  Ellogp(x|y,0)ly,0"] — E[logp(x|y,0""")[y,0']  (43)
= Q('6") — Q(6°16") + D(p(x)ly, 0" |Ip(x|y,0""")) (44)
> 0 (45)
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In (44), we used the inequality Q(6°+1[6%) > Q(6°|6") and the fact that Kullback-Leibler dis-
tance D(pl||q) is non-negative.

Before giving two applications of EM on BSC and gaussian channel respectively, we would
like to compare EM approach with other known algorithms in communication and coding the-
ory. As a first comparison, consider non-coherent detection of signals on a gaussian channel.
The continuous-time complex channel model is y(t) = s(t) e/ + n(t), where ¢ is a random
phase, s(t) is the transmitted signal with unitary energy, 7(t) is the additive complex white
gaussian noise with power spectral density 202, and y(t) is the observed signal. The prob-
abilistic observation obs(s(t)) o p(y(t)|s(t)) cannot be computed directly since y(t) depends
on ¢. The classical solution is found by assuming that ¢ is uniformly distributed in [0... 27]
(no phase a priori) and then p(y(t)|s(t)) is obtained by a mathematical expectation on ¢,

2w

obs(s(0) O] = [ plul@ls(0.6) pi@as o 1 (FLEZOZL) g
where the scalar product is < y(t),s(t) >= [y(t)s*(t)dt. The philosophy of non-coherent
detection is similar to EM, just do expectation on mlssmg data.
In the second example, we compare EM to Blahut-Arimoto algorithm for calculation of chan-
nel capacity and rate-distortion function. The algorithm of Blahut and Arimoto is a special
case of Csiszar-Tusnady alternating optimization. For calculation of channel capacity, Blahut-
Arimoto algorithm is a Csiszar-Tusnady alternating maximization where channel capacity is

written as o(zly)
Ty

C = max max z)lo 47

q(z|y) r(z) ZZ y| 8 ("E) ( )

Given a current input distribution r(z), the best conditional distribution is

q(zly) oc r(z) p(y|e) (48)
Then, by solving a constrained maximization, the input distribution is updated with
o H q(z|y))P@) (49)

The capacity expression in (47) plays the role of an auxiliary function and the recursive update
given by (48) and (49) is equivalent to an EM parameter update.

4.2 An example of EM estimation on BSC channel

The channel is binary symmetric with transition probability A € [0..1/2]. The source output
at time j is added (sum in GF(2)) to an error ej, y; = zj + e, j = 1...N. The source
distribution is p = P(z; = 1) € [0..1].

By observing the incomplete data y, we wish to estimate § = (u,A). The EM auxiliary
function is Q(0|6°) = Ex[log P(x|0)|y,#"]. Let us write the joint distribution as a function of
parameters A and p,

P(x]6) = P(x,y10) = P(ylx,0)P(x[0) = p*#C)(1 — p)NwonCIxwn(©) (1 — y)N-wule) (50)

where wgy(x) = Z;-V:lxj and wy(e) = Z;VZI e; are the Hamming weights (sum in Z) of
the source output and the channel error vector respectively. Keeping the same notation Ex]]
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for mathematical expectation over x with the joint distribution P(x|y,#%), i.e., the APP at
iteration ¢ for the codeword z, then

N N
Eylwg(x Zi Exlwg(e)] = Zéj (51)

where Z; = Fx[z;] is a soft symbol and é; = Exe;] is a soft error component.

Source 0= (u,A) y; = xj + €¢; (modulo 2)
n=P(1)
X BSC y

Transition probability A

Figure 23: EM estimation with a binary source on a BSC channel. The parameter to be
estimated includes the source distribution and the channel transition probability.

The evaluation of Z; = >, z;P(x|y, #") is intractable in most cases, e.g., |C(N, K)o| = 2%
is not a small number. Hence, we use the following approximation which has a negligible
degradation on EM performance and a very low evaluation complexity

Za:jP(x|y, 6', code constraints) = ijP(ccﬂy,Gi,code constraints) (52)
x Zj

i =) w;APP(x) = Y z;APPi(x;) (53)

Zj

Important Notice: Soft symbols are computed by their mathematical expecta-
tion with marginal a posteriori APP(z;) instead of joint a posteriori APP(x). This
linear time evaluation is used to compute soft symbols (also called expected sym-
bols) in all kind of channels. In special circumstances, second or higher order
moments are required for EM estimation, e.g., taking j # £, the expected product
of symbols is

Ty = Z zjrAPP;(x ZxJAPP (x}) Z:QAPP (xe) = Ty (54)

Tj,Ty T; Ty

Second or higher order moments are evaluated by approximating joint a poste-
riori probability by the product of its marginals. In practice, for finite length
constraints, soft output decoders generate an acceptable approximation for the
marginal distribution APP;(z;).

Using the above notice, soft symbols are obtained by

#j= APP(z;=1) & = APPi(e; = 1) = [APPi(z; = 1)]%[1 — APP;(z; = )%  (55)

Finally, the auxiliary function on BSC channel with parameter = (u, ) is
Q(616% Zw] log ( ) + Nlog(l —p) + Zej log ( ) + Nlog(l—X) (56)

22



By writing 0Q /9y = 0 and 8Q /90X = 0, the EM parameter updates for the source distribution
and the channel transition probability are

N - N -
i1 _ =17y At — 2 =18 (57)
N N

Fig. 24 illustrates the performance for a computer simulation of EM on BSC with binary
BCH codes. In two iterations, the error rate for EM estimation is superimposed with the
error rate when parameters are perfectly known!

10t b

Bit Error Rate (EM + BCH decoding)

EM lteration 1 —F— -
EM lteration 2 —-f-3--
froeee EM lteration 4 ---K-- -
. Perfect Knowledge (- "~

L
10

10°
BSC transition probability

Figure 24: Source and channel parameters estimation via the EM algorithm. The plot above
shows the bit error rate for a posteriori probability decoding of a binary BCH code on BSC.
The source distribution is g = P(1) = 0.1. The initial values for EM recursion were py = 0.5
and \o(BSC) = 0.1. The BCH code is a shortened (n = 30,k = 20,t = 2)2. Estimation is
based on frames of length 3000 bits (100 BCH codewords).

4.3 An example of EM estimation on Gaussian channel

The channel input-output relation is given by y; = Aej‘/’xj + 7n;, where 3 = /-1, the ampli-
tude A is real positive, ¢ is uniformly distributed between 0 and 27, and 7; is a zero mean
complex gaussian noise with variance 02 per component. The symbol z; belongs to a QAM
constellation and time index is denoted by j, j = 1...N. The source in this example is
uniform (SSI not available).
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Figure 25: EM estimation on a gaussian channel. The source is assumed to be uniform. The
parameter to be estimated includes real amplitude, signal phase, and noise variance.

By observing the incomplete data y, we wish to estimate 8 = (4, $,0?). The EM auxiliary
function is Q(0|6*) = Ex[logp(y|x,0)|y, "], where the joint distribution is

1 Sy — Aeréx;)|?
p(ylx,0) = W%P - 202

(58)

The next step is straightforward. Use the important notice displayed in the BSC section above
for computing soft symbols, i.e. expectation with marginals instead of joint distribution, and
write 0Q /060 = 0 to get the following EM parameter recursions,

Phase update:

N
$t = —Arg) Ty (59)
j=1
Amplitude update:

N . N ~ *
A+l — Zj:l §R{$jyj} _ Zj:l §R{$jyj} (60)

N —

Noise variance update:

N N
. 1 18 1 A
o2 (i+1) o ;_1 > " APP;(z;) |y — A z? | = SN 9221 ly; — Ate??'z;|? (61)

Computer simulation results for EM with a parallel turbo code are shown in Fig. 26 (Bit
error rate versus signal-to-noise ratio) and Fig. 27 (Word error rate versus signal-to-noise
ratio).

4.4 Different methods for combining pilots and data in EM

To be written later in version 3 of this tutorial.

4.5 On the mean squared error of estimators: The Cramér-Rao bound

To be written in version 3 of this tutorial.
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Figure 26: EM estimation on a gaussian channel. Bit error for a rate 1/3 parallel turbo code,
interleaver size is 1600, RSC octal generators are (37,21), optimal bi-dimensional 40 x 40
quasi-cyclic interleaver. Measure of 500 bit errors and 100 block errors. Number of decoding
iterations is up to 40. Channel amplitude uniformly distributed between 0.1 and 10. Channel
phase uniformly distributed between 0 and 27. Number of pilots is 50 bits (1% pilots).

5 Conclusions

To be written in version 3 of this tutorial.
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Figure 27: EM estimation on a gaussian channel. Frame error for a rate 1/3 parallel turbo
code, interleaver size is 1600, RSC octal generators are (37,21), optimal bi-dimensional 40 x 40
quasi-cyclic interleaver. Measure of 500 bit errors and 100 block errors. Number of decoding
iterations is up to 40. Channel amplitude uniformly distributed between 0.1 and 10. Channel
phase uniformly distributed between 0 and 27w. Number of pilots is 50 bits (1% pilots).
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