Advanced Digital Communications and Coding

EXERCISES

Joseph J. Boutros & Fatma Kharrat-Kammoun

June 2, 2006

Exercice I - The Sphere Decoder, an example with A_2

Consider the hexagonal point lattice $A_2 \subset \mathbb{R}^2$. The studied lattice version is generated by the following generator matrix M written in row convention

$$M = \begin{pmatrix} 1 & 0 \\ 1/2 & \sqrt{3}/2 \end{pmatrix} \tag{1}$$

A lattice point $x=(x_1\ x_2)\in A_2$ is defined by x=zM, where $z=(z_1\ z_2)\in \mathbb{Z}^2$. Hexagonal lattice points and their Voronoi cells are illustrated in Figure 1. Let d_{Emin} denote the minimum Euclidean distance of A_2 generated by the above matrix M. The packing radius $\rho=d_{Emin}/2$ and the covering radius R are depicted in Figure 2.

- 1) Determine ρ and R.
- 2) What is the volume of a Voronoi cell?
- 3) Check that the packing density Δ of A_2 is equal to 0.906, i.e. 90.6% of the bidimensional space is covered by the packing balls of A_2 .
- 4) Let $G = MM^t = [g_{ij}]$ be the Gram matrix. We define the following quadratic form Q(z) associated to the squared Euclidean norm

$$Q(z) = ||x||^2 = xx^t = zGz^t = \sum_{i} \sum_{j} g_{ij} z_i z_j$$
 (2)

Prove that Q(z) can be written as $Q(z) = q_{11}Z_1^2 + q_{22}Z_2^2$, where $Z_1 = z_1 + q_{12}z_2$ and $Z_2 = z_2$. Find the values of q_{ij} . For higher dimensions $n \geq 2$, a Cholesky or a QR decomposition is applied in order to write $Q(z) = \sum_{i=1}^{n} q_{ii}Z_i^2$.

5) The enumeration of lattice points satisfying $||x||^2 \leq C$, where $C \in \mathbb{R}^+$ is a fixed squared radius, is equivalent to solving $Q(z) \leq C$. Let $S(0, \sqrt{C})$ denote the sphere with center 0 and radius \sqrt{C} . Prove that enumerating lattice points inside $S(0, \sqrt{C})$ is equivalent to solving

the following recursive inequalities

$$-\sqrt{\frac{C}{q_{22}}} \leq z_2 \leq +\sqrt{\frac{C}{q_{22}}}$$

$$-\sqrt{\frac{C-q_{22}z_2^2}{q_{11}}} - q_{12}z_2 \leq z_1 \leq +\sqrt{\frac{C-q_{22}z_2^2}{q_{11}}} - q_{12}z_2$$
(3)

Fig. 1 – The hexagonal point lattice A_2 in the bidimensional plane.

Fig. 2 – Representation of the packing radius ρ and the covering radius R.

6) Let $y = (y_1 \ y_2) \in \mathbb{R}^2$ be a randomly chosen point, e.g. y may be the output of a Gaussian channel with $y = x + \eta$, where η is an additive white Gaussian noise and $x \in A_2$. Let ϵ be a

vanishing positive real number.

- **6.a)** Prove that $S(y, R + \epsilon)$ contains at least one lattice point.
- **6.b)** What is the maximum number of lattice points inside $S(y, R + \epsilon)$?
- 7) A sphere decoder is a decoder that finds the closest lattice point to y by enumerating all lattice points inside $S(y, R + \epsilon)$ and keeping the nearest one. Hence, the sphere decoder for A_2 takes $C = R^2 + \epsilon$ and solves $||y x||^2 \le C$ in order to get

$$x_{ML} = \arg\min_{x \in A_2} ||y - x||^2$$

- **7.a)** Prove that the sphere decoder is given by the inequalities of question 5 above, where z is replaced by $z \xi$ and $\xi = yM^{-1}$.
- **7.b)** Apply the sphere decoder in order to find the closest lattice point x_{ML} to the received noisy point given by y = (1.75, 1.75).

Exercice II - The Gosset lattice E_8 , complex construction

The point lattice E_8 yields the densest lattice packing in \mathbb{R}^8 . It is the unique lattice in dimension 8 with an Hermite constant (fundamental gain) equal to 2, and a kissing number equal to 240. Recall that the fundamental gain of a real lattice $\Lambda \in \mathbb{R}^n$ of rank n is defined as

$$\gamma(\Lambda) = \frac{d_{Emin}^2(\Lambda)}{\sqrt[n/2]{vol(\Lambda)}} \tag{4}$$

where $vol(\Lambda) = |det(M)|$, M being a square $n \times n$ generator matrix of Λ . The kissing number τ is given by the number of lattice points on the first lattice shell, also equal to the number of neighbouring packing balls tangent to the one centered on the origin.

Let $\mathcal{G} = \mathbb{Z}[i] \sim \mathbb{Z}^2$ denote the ring of Gaussian integers. Let $\phi = 1 + i \in \mathcal{G}$, where $i = \sqrt{-1}$. The ring \mathcal{G} can be partitioned via two subgroups, i.e. the partition chain $\mathcal{G}/\phi\mathcal{G}/\phi^2\mathcal{G}$ is used. At depth 1, we have $\mathcal{G} = \phi\mathcal{G} + [\mathcal{G}/\phi\mathcal{G}]$. At depth 2, we have $\mathcal{G} = \phi^2\mathcal{G} + [\phi\mathcal{G}/\phi^2\mathcal{G}] + [\mathcal{G}/\phi\mathcal{G}]$.

- 1) Find the order of the quotient groups $[\mathcal{G}/\phi\mathcal{G}]$ and $[\phi\mathcal{G}/\phi^2\mathcal{G}]$. Tip: Determine the fundamental volumes of both lattices \mathcal{G} and $\phi\mathcal{G}$. Find also $|\mathcal{G}^N/g\mathcal{G}^N|$, where $g \in \mathcal{G}$ and $N \in \mathbb{N}$.
- 2) Give the typical coset leaders of the partition $\mathcal{G}/\phi\mathcal{G}$, i.e. the typical elements of the quotient group $[\mathcal{G}/\phi\mathcal{G}]$. Use Figure 3 for illustration.
- 3) Give the typical coset leaders of the partition $\phi \mathcal{G}/\phi^2 \mathcal{G}$, i.e. the typical elements of the quotient group $[\phi \mathcal{G}/\phi^2 \mathcal{G}]$. Use Figure 4 for illustration.

- 4) Consider the complex lattice $\Lambda = (4, 1, 4) + \phi(4, 3, 2) + \phi^2 \mathcal{G}^4$, where (4, 1, 4) is the binary repetition code of length 4, and (4, 3, 2) is the binary single parity-check code of length 4. In the formula of Λ , binary elements 0 and 1 should be embedded into the complex ring \mathcal{G} .
- **4.a)** Consider the chain $\mathcal{G}^4/\Lambda/\phi^2\mathcal{G}^4$. Deduce the fundamental volume of Λ .
- **4.b)** Determine the minimum Euclidean distance of Λ and hence its Hermite constant. At this point, you must find that $\Lambda = E_8$.
- **4.c)** From the complex formula of E_8 , check that $\tau = 240$ by enumerating all lattice points of shortest length.
- 5) An encoder for a finite size constellation carved from E_8 is shown in Figure 5. This encoder is based on the formula $E_8 = (4, 1, 4) + \phi(4, 3, 2) + \phi^2 \mathcal{G}^4$ (B construction).
- **5.a)** What is the number of bits per complex symbol in the coded 64-QAM? What should be the uncoded QAM reference constellation?
- **5.b)** Compare the coded 64-QAM and the uncoded reference, and find again the 3dB gain over a Gaussian channel given in the Hermite constant.

Fig. 3 – Depth-1 partitioning of a 64-QAM corresponding to $\mathcal{G} = \phi \mathcal{G} + [\mathcal{G}/\phi \mathcal{G}]$.

Fig. 4 – Depth-2 partitioning of a 64-QAM corresponding to $\mathcal{G} = \phi^2 \mathcal{G} + [\phi \mathcal{G}/\phi^2 \mathcal{G}] + [\mathcal{G}/\phi \mathcal{G}]$.

Fig. 5 – Encoder for an E_8 constellation. Information rate is 5 bits per complex dimension.