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Thesis abstract

This thesis report describes new designs for transmitters and receivers of bit interleaved coded
modulations over multiple antenna channels. The objective is to achieve near Shannon capacity
performance over ergodic channels and near outage probability performance over block fad-
ing channels. Iterative joint detection and decoding are applied in the aim of achieving near
maximum likelihood performance. Design criteria are derived for each block optimization from
the error performance expressions under the ideal interleaving assumption. First, we describe
the binary mapping optimization for ergodic channels by introducing the new concept of mul-
tidimensional mapping that provides large amount of coding gain. We achieve near capacity
performance either with turbo-codes or with multi-dimensional mappings associated with a sim-
ple code. Then, we present the bit interleaved coded modulation with linear precoding as a
Space-Time code for multiple antenna block fading channels. We show that the channel inter-
leaver is the fundamental part of the bit interleaved coded modulation calling the shots about the
achieved diversity. We describe the linear precoding optimality condition and a class of quasi-
optimal linear precoders. The minimal linear precoder size providing full diversity is deduced
from a modified singleton bound applied to the global Euclidean code. We show that full diver-
sity and quasi-optimal coding gains are observed for a given error correcting code. Finally, we
achieve near outage capacity performance thanks to turbo-codes. Next, iterative joint detection
and decoding techniques are considered, we describe a near optimum soft-input soft-output list
sphere decoder which allows the computation of a posteriori probabilities for very high spectral
efficiency transmitter schemes with reduced complexity.
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Résumé de la these

Ce rapport de these présente des nouvelles méthodes d’émission et de réception basées sur les
modulations codées a bits entrelacés et optimisées pour les canaux a antennes multiples. Le
premier objectif est d’atteindre des performances proches de la capacité au sens de Shannon
pour les canaux ergodiques. Nous cherchons ensuite a obtenir des taux d’erreur proches de la
capacité de coupure du canal a antennes multiples subissant des évanouissements par blocs. Un
traitement itératif de détection et de décodage conjoints est effectué dans I’objectif d’atteindre les
performances d’un récepteur a maximum de vraisemblance. Les criteres de conception de chaque
organe de la modulation codée sont déduits des expressions des performances calculées sous la
contrainte d’optimalité de I’entrelaceur. Nous présentons dans un premier temps des optimisa-
tions de ’étiquettage binaire et introduisons la notion d’étiquettage multi-dimensionnel. Sur les
canaux a antennes multiples ergodiques, des performances proches de la capacité de Shannon
sont aussi bien atteintes en utilisant des turbo-codes que des étiquettages optimisés couplés a des
codes correcteurs élémentaires. Dans le cas des canaux a antennes multiples et évanouissements
par blocs, la modulation codée a bits entrelacés est un code spatio-temporel. Nous montrons que
I’entrelaceur de canal est la piece maitresse du systeme, dictant sa loi quant a I’ordre de diversité
observé au récepteur. Nous introduisons des pré-codeurs linéaire a 1’émission, dérivons un critere
d’optimalité pour leur conception, et présentons une classe de pré-codeurs quasi-optimaux. Le
facteur d’étalement spatio-temporel minimal garantissant une diversité maximale est déduit de
la borne du singleton appliquée au code euclidien global. Nous montrons que les diversités max-
imales et gains de codage quasi-optimaux sont atteints pour chaque configuration de canal et
pour un code correcteur donné. Des performances proches de la capacité de coupure du canal
sont obtenues grace a ['utilisation de turbo-codes. Finalement, nous présentons un détecteur a
entrée souple et a sortie souple quasi-optimal et a complexité réduite pour les modulations a
haute efficacité spectrale transmises sur des canaux a antennes multiples.
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Introduction and Thesis Outline

Digital communications in its electric form appeared in 1840 with the telegraphic transmission
code invented by Samuel Morse. Emile Baudot improved the data rate of telegraphic lines in
1874 with his Baudot code (i.e., high data rate for text over electric wires). In 1880, Alexan-
der G. Bell and Thomas Edison developped the theory of telephony (i.e., voice over electric
wires). In 1924, Harry Nyquist proposed a simple theory for reducing the distortion in tele-
graph transmission. John Baird implemented a television system with a rate of 5 frames per
second and a resolution of 30-lines per frame. Digital communications became a topic of great
interest for both the mathematical and the engineering communities since the introduction of
a mathematical model for information theory by Claude E. Shannon in 1948 at Bell Labora-
tories. He also introduced the fundamental concept of information and capacity: “what is the
best transmission data rate over a given channel?”. Once this theoretical limit is determined,
one can expect to give an answer to the question: “How to design a practical transmitter that
approaches this limit?”. This question haunts the mind of thousands of researchers since that
time. Undoubtedly, telecommunications are linked to the overall technical progress in the last
century. They acquired a more and more important place in the daily life since the mobile phone
became democratized in the mid 1990’s.

The today objectives of mobile phone technologies are: improving the reliability of data or
voice transmissions (Quality of Service), improving the data rate, i.e., the services, minimizing
the hardware cost thanks to powerful software processing, and allowing a maximal number of
users. All these objectives are related in part or entirely to the physical layer, and in particular
to digital communications technologies. Finally, all these objectives are jointly achieved when
finding a solution to transmit the data with a maximum data rate and a minimum error rate.

The first objective is to enhance the data rate on multi-path fading channels. The two
convincing solutions introduced in the last decades were OFDM and multiple antennas in trans-
mission. In order to enhance the bad performance observed on fading channels, we usually
exploit some diversity provided by a channel ergodicity, and multiple transmit or receive anten-
nas. Practically, multiple antennas are already chosen for UMTS, the third generation of mobile
phones. For the fourth generation, a combination of multiple antennas and OFDM is considered
as a good candidate.

In the (not so) far future, the most important wireless communications objective will be to
provide high data rate wireless Internet connections. As an example, HiperLAN Type 1 is a
wireless local area network standard designed to provide a 1Mb/s to 20Mb/s communication
between portable devices. HiperLAN Type 2 or IEEE 802.11 standards are intended to provide
6Mb/s to 54Mb/s data rates. Actually, the objective is not to rival wired communications which
already provide data rates around 1Gb/s for LANs, but to provide a comfortable connection
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with the great advantage of mobility. This will not be feasible without the use of multiple an-
tennas.

This thesis report describes the design of transmitters and receivers for single user multi-
ple antenna channels. We do not consider OFDM modulations or multi-user communications.
However the ideas and principles described in this thesis report are applicable to OFDM with
few changes. The direct practical issue of this thesis would be broadcasting, but the results are
also transposable to multi-user techniques.

The outline of the thesis is:

e In Chapter 1, we introduce the multiple antenna channel and its mathematical model.
We then introduce the essential material for an information theorical analysis of multiple
antenna channels. The fundamental limits of an ergodic channel is Shannon capacity, we
can also derive a discrete-input mutual information which is a more limiting quantity.
For block fading channels, we recall that Shannon capacity is null, we derive the outage
probability with Gaussian and discrete input. Next we recall the recently introduced
diversity-multiplexing tradeoff which enables to see how optimal a given system is for
multiple antenna channels and high data rates. Finally, we define the singleton bound on
the diversity when the transmitter rate is constant.

e In Chapter 2, we describe the system model and notations of a bit interleaved coded
modulation applied to multiple antenna channels. The receiver is supposed to be iter-
ative in order to achieve quasi-optimal performance at feasible complexity and focus on
the essential limitations imposed by the channel. After the presentation of the optimality
conditions, we derive performance estimations for ergodic and block fading multiple an-
tenna channels. These performance evaluations are based on the exact computation of the
pairwise error probability. Next, classical upper bounding techniques such as union bound
or tangential sphere bounds are used to estimate the optimal achievable frame error rate
and bit error rate.

e In Chapter 3, we focus on the transmitter optimization. We decompose the BICM onto dif-
ferent blocks and optimize them independently before considering the global optimization.
First, the labeling optimization is considered, we show how to achieve high potential gains,
in particular for ergodic channels. Next, we consider linear precoding and introduce the
conditions of optimality for ergodic, quasi-static and block fading channels. We describe
a new construction of linear precoders that provide quasi-optimal coding gains for a given
target diversity. We then consider the singleton bound on the diversity order to determine
the minimal precoder size that guarantees full diversity. Finally, we optimize interleavers
in order to approach the perfect interleaving conditions.

e In Chapter 4, we study the receivers for bit interleaved coded modulations and describe
in detail the maximum likelihood lattice sphere decoder algorithm. We then introduce a
new soft-input soft-output detector based on the a posteriori probability detection over
a spherical list (soft-input soft-output sphere decoder). A classical soft-input soft-output
minimum mean square equalizer is then described and some complexity reductions are
considered. We then compare the complexity of such receivers and show near-capacity
performance.

Finally, conclusions and future work perspectives are given. We report some complementary
material in the appendices.




Chapter 1

Generalities about multiple antenna
channels

Introduction

Multiple antenna channels became a widespread solution for near future wireless telecommu-
nication systems. The receive antennas naturally enhance the performance providing multiple
independent observations of the transmitted signal. Depending on the separation between the
transmit antennas, the receiver observes correlated or independent observations of the transmit-
ted signal. If the transmit antennas are not spatially de-correlated, the phased array antennas
can produce single and multiple beams that allow spatial selectivity. This technique is par-
ticularly useful in downlink, where the base station can locate the receiver and transmit in a
pinpointed direction with a lower amount of power. Moreover, the processing complexity is
mainly at the transmitter end, which enhances the mobile phones autonomy. Beamforming
techniques will not be discussed in this thesis report, which focuses on multiple antenna diver-
sity techniques. When the transmit antennas are separated by a distance greater than half the
wavelength, the observations at the receiver are supposed to be independent. In this case, the
transmit antennas are basically used to either

1. transmit the same symbol over all the transmit antennas in a way to enhance the perfor-
mance
2. or transmit different symbols over the transmit antennas in a way to enhance the data rate

These spatial diversity techniques are relevant in the uplink, when the transmitter has a limited
complexity and the receiver should recover the information of multiple interfering transmitters.
Moreover, this could be used to provide diversity for downlink reception at the handset, es-
pecially if it is stationary and does not observe temporal diversity. If the handset is moving
fast, good performance is naturally provided by the temporal diversity. If a target error rate is
fixed, the data rate can be adapted thanks to a channel feedback from the receiver. The tuning
possibilities are enhanced thanks to the multiple transmit antennas and excellent data rates can
be achieved in the case of good links.

In this first Chapter, we will present the channel mathematical model and its validity in
Section 1.1. Then, we will present the state of the art of digital communication systems for
multiple antenna channels in Section 1.2. In Section 1.3, we will expose the fundamental limits of
multiple antenna channels, i.e., the Shannon capacity limit, the mutual information with discrete
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Figure 1.1: Rich scattering environment. Multiple antennas system.

input, the outage error probability for block fading channels and the diversity-multiplexing
tradeoff. We will also consider the coded modulations and the singleton bound on the diversity
order, depending on the code rate.

1.1 Multiple antenna channel model

In this section, we will present the multiple antenna channel model and its validity. Let us con-
sider a rich scattering environment and a channel with multiple transmit and receive antennas.
Wireless communications experience multi-path propagation because the signal is reflected from
nearby surfaces on its way to a receiver. An example of some propagation paths are drawn in
Fig. 1.1. Multi-path propagation causes dispersions in delay, frequency and spatial domains,
and each antenna receives an infinity of different versions of the transmitted signals, each having
a different attenuation, phase and propagation delay.

The main channel parameters are the coherence time and bandwidth. If the signal bandwidth
is larger than the channel coherence bandwidth, a frequency selectivity is experienced. In this
case, the multipath spread of the channel is longer than the signal time period and inter-symbol
interference (ISI) is experienced after the channel digitalization. Some techniques such as Or-
thogonal Frequency Division Multiplex (OFDM) are used to spread the signal in the frequency
domain and absorb the ISI. Without ISI, all the transmitted energy is collected with a matched
filter into a single coefficient called fading. The paths summation provides a random variable,
supposed to be complex Gaussian thanks to the central limit theorem.

The antennas are supposed to be sufficiently separated to observe very different path configu-
rations, which lead to independent random variables. Finally, the system model is the following:
each equivalent path between each transmit and receive antenna experiences a complex Gaussian
attenuation of zero mean and unit variance (N¢(0, 1)), as shown on Fig. 1.2.

When the channel coherence time is small enough, the channel is said to be ergodic, i.e., the
random variables from one time period to another are independent. This situation for example
occurs when a handset is moving fast or when an interleaver is used. If the coherence time is
longer than a frame transmission length, the channel does not vary and is said to be quasi-static.
However, we assume that the channel realizations are independent from frame to frame. Finally,
we consider the case of block fading channels where n. independent channel realizations occur
during a frame. An example of block fading channel is given by the frequency hoping over a

quasi-static channel, where the different frequencies are separated by more than the coherence
bandwidth.
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Figure 1.2: Non-frequency-selective MIMO channel Model.

As a remark, the block fading channel model for a frame transmitted over L time periods
includes the quasi-static channel n. = 1 and the ergodic channel n. = L.

1.2 State of the art in digital communications for multiple an-
tenna channels

Channel coding techniques for MIMO channels, commonly known as space-time coding can be
classified into four major categories: multi-dimensional trellis coded modulations, space-time
block coding, multilevel coding and bit-interleaved coded modulations. Each technique will be
briefly presented in the following.

1.2.1 Trellis coded modulations

A multi-dimensional trellis coded modulation (TCM) [80][75] is a bandwidth efficient technique
that combines an error-correcting code and a modulation scheme. It includes Ungerboeck-
like coded modulations and the simple case of a classical convolutional code where each trellis
transition is associated with one channel use. Trellis-based space-time codes provide diversity
and some coding gain at additional encoding/decoding complexity. They usually perform better
than space-time block codes, but their optimization is much more complex. There is no way
to search for good codes that maximize the rank of certain codeword matrices, only few good
codes are known. We notice that an inner full rank code can be added to improve the BER
performance via interleaving gain.

1.2.2 Space-time block codes

The space-time block codes (STBC) consist of the transmission of R¢.n:.s symbols over s time
periods and n; transmit antennas. The code rate is equal to R¢. Usually, the transmission
scheme is represented by an n; X s matrix whose coefficients are linear combinations of the sym-
bols to be transmitted. The latency of space-time block coding is minimal compared to other
techniques. The first space-time code was proposed by Alamouti [3] in 1998. It is designed for
ny = 2 transmit antennas and an arbitrary number of receive antennas n, and it provides full
transmit diversity, i.e., the diversity order is n;.n,. Some generalization to higher number of
transmit antennas have been proposed, such as orthogonal and quasi-orthogonal designs (OD
and QOD) [76][45]. Initially, people thought that the rate had to be reduced in order to achieve
full transmit diversity but, recently, full-rate full-diversity space-time codes have been proposed
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for more transmit antennas [6][24][25][26]]27][29][62].

Many people are working on this topic that is having a fast and important progress. However,
the space-time block codes used alone do not provide sufficient coding gains. There are few
studies on the joint design of STBCs and error correcting codes, as proposed in Chapter 3.

1.2.3 Multilevel coding

Since the original work by Imai and Hirakawa [43][86], it has been demonstrated that multilevel
coding (MLC) can be applied to all types of channels, i.e., scalar and vector channels. In MIMO
channels, different levels for coding are defined on QAM symbols fed at the channel input or
directly on the binary labels of those symbols.

1.2.4 Bit interleaved coded modulation

Combining the original ideas by Zehavi [89][19], Berrou & Glavieux [8], a bit interleaved coded
modulation is built by cascading a convolutional code, a pseudo-random interleaver, a QAM
symbol mapper and the MIMO channel.

The main application of BICM to multiple antenna channels was the Bell Laboratories layered
space-time (BLAST). It was initially motivated by the capability of canceling the interference of
transmit antennas thanks to a greater number of receive antennas. Basically, independent data
streams are transmitted over different transmit antennas. At the receiver, an ordered successive
interference cancellation is processed from the strongest to the weakest data stream. The main
drawback of this initial version of BLAST was the error propagation.

Of course, the concatenated nature of such a transmission scheme allows iterative joint
detection and decoding: The receiver starts by an APP detection of the multiple antenna channel
followed by a SISO decoding of the convolutional code. The latter procedure is iterated a finite
number of times, where the convolutional code extrinsic probabilities are fed back as a priori
information to the APP detector [14][72]. We will describe in detail the BICM structure and
optimize it in the aim of achieving good performance on MIMO channels.

1.3 Information theory for multiple antenna channels

Let us now consider some information theory tools for multiple antenna channels. The fundamen-
tal limits presented below are derived from Shannon theory [69] and extended to multiple-input
multiple-output channels [77].

1.3.1 Information theory tools: a reminder

We will introduce the main information tools necessary for computing the fundamental limits
of MIMO channels [23][5]:

e Let Z and Y be two independent random variables. Their probability densities are p(z)
and p(y), respectively. The entropy H(Z) is defined by

H(Z) = E[ log, (p(2))] = / ~logs (p(2)) p(2)dz (11)

z




1.3 Information theory for multiple antenna channels 7

where E[.] denotes the mathematical expectation. The entropy H(Z) measures the neces-
sary binary information to describe the variable Z. The highest the entropy, the more the
randomness of the variable.

e The joint entropy H(Z,Y) of the two variables Z and Y is defined by

H(Z,Y) = B[~ log, (p(z.4))] = / ~log, (p(z ) plz, y)dzdy (1.2)
z,Y

where p(z,y) is the joint probability density of z and y. It measures the necessary binary
information to jointly describe the variables Z and Y.

e The conditional entropy H(Y'|Z) is defined by

HY|Z) = E[H(Y|Z = 2)] = E [~ log, (p(y[2))] = / —log, (p(y]2)) p(ylz)dzdy  (1.3)

Z?y

It measures the necessary binary information to describe the variables Y having a knowl-
edge on Z.

e The mutual information Z(Z;Y') between Z and Y is defined by
I(Z;Y)=H(Z)+HY)-HY,Z) =H(Y) —H({Y|Z) =H(Z) — H(Z|Y) (1.4)

It conversely measures the average supplementary quantity of information offered by Y on
Z.

e The capacity C of a discrete memoryless channel with input Z and output Y is the maximal
value of I(Z;Y") over all possible probability densities p(z):

C =max (I(Z;Y)) (1.5)
p(2)
This induces that the capacity is obtained by optimizing the probability density function
at the channel input.

e The capacity is linked to the system spectral efficiency by the Shannon’s channel coding
theorem. It is summed up in the following statement: for a given channel, there exists a
code that allows error-free transmission across the channel at a rate R, provided R < C,
where C is the channel capacity. Equivalently, if the system rate is fixed, the capacity gives
a limit on the signal-to-noise ratio below which error-free transmission is not possible.
Since the capacity is a fundamental non-achievable limit, it will be used as a reference
to measure the quality of a given transmission system. This is why it is important to
compute the Shannon’s capacity limit of a given system before the transmitter design
step. For example, the capacity of an additive white Gaussian noise channel for a target
rate Ris C = logy (1 + R%) bits/complex dimension and is obtained for Gaussian inputs.

The signal-to-noise ratio limit is obtained by ff—g = 2CT_1 Using an infinitely good code

with quasi-null rate, we obtain the limit limg_.qg QCT_I =In2=-1.6dB.

Let us now describe the capacity limit for multiple antenna channels.
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1.3.2 Capacity of ergodic MIMO channels

Let us first consider the case of ergodic MIMO channels with ns-dimensional input z and n,.-
dimensional output y. The input-output relation is supposed to be:

y=zH+n (1.6)

where 7 is an n,-dimensional Gaussian noise vector with covariance matrix 2Ny, . Such channel
capacity has been expressed in parallel in [77] and [32]. The capacity is achieved for Gaussian
input (more precisely for circularly symmetric complex Gaussian input, see [77]), it can be
computed by the expectation of the conditional C|y over all possible H, where

P
C=Ey|[Cy)=En [logg <det <Inr + —H*H))] bits/complex dimension (1.7)
ny
and P = EE[[Z Z] _ ni.Bs . Moreover, the capacity can be traced as a function of the bit error
m*] n-2No
rate, which is equal to CEb = 2%0. It can be demonstrated that n; x n, MIMO channels capacity

in bit/complex d1mens1on is equal to n, x ny MIMO channels capacity.

On Fig. 1.3, MIMO channels capacity are represented for n; and n, varying from 1 to 4. We
can observe that for a given total number of transmit antennas n; + n,, the optimum reparti-
tion in the sense of capacity is obtained when n; = n,. We also observe that the slope of the
asymptote is linked to min(n¢, n,) and that the vertical sliding is linked to max(ns, n,). This is
explained as min(n¢, n,) fixes the number of equivalent sub-channels and max(n;, n,) the diver-
sity order on each sub-channel. If max(ny,n,)/ min(n;,n,) grows to infinity, the capacity tends
to min(ng, ny)Cawgn, Where Cyugn is the capacity of the additive white Gaussian noise channel.

The Shannon’s capacity is given by Gaussian inputs that are impractical. For a given in-
put law p(z) associated with an input Z, the mutual information Z(Z;Y') represents another
fundamental limit on the rate or signal-to-noise ratio. This limit is more restrictive than the
Shannon’s Limit and enables to evaluate the modulation and preprocessing quality. Moreover,
we can evaluate the quality of the error correcting code and detection process measuring the
gap between the mutual information and the real performance.

Assume that Z € ), a discrete alphabet of M™ = 2™ vectors (e.g a M — QAM). We can
express the Entropies:

HY) = - / (y)loga(p / Zp (y/2)p(2) log, (ZMWZ’)]?(Z’)) dy (1.8)
y "

H(Y/2) == 3ole) / (/) loga(p(y/=))dy (1.9)

The mutual information is given by

T(Z:Y) = HY) = HY|2) = = 112 [ ol s, (%) dy  (110)

xz YY

The integral over y reduces to an integral over H and 7. This mutual information does not exist
in a closed form expression, we can use a Monte-Carlo simulation to evaluate it.
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Figure 1.3: Shannon’s capacity for MIMO channels

We can observe that the mutual information saturates to the spectral efficiency mn;. For low
signal-to-noise ratios, the mutual information has the behavior of the Gaussian input capacity.
If n, tends to infinity, the mutual information tends to min(C, mn;).

In Fig. 1.4 we notice that the mutual information of a 1 x n, MIMO channel with QPSK
input saturates to 2 bits per channel use. In Fig. 1.5 we notice that the mutual information of
a 1 x n, MIMO channel with 16QQAM input saturates to 4 bits per channel use. In Fig. 1.6 the
mutual information of a 2 x n,, MIMO channel with QPSK input saturates to 4 bits per channel
use. This shows us that from an information theory point of view, if the spectral efficiency is
fixed to mny, the best performance is obtained by minimizing m and maximizing n;.

1.3.3 Outage probability for block-fading MIMO channels

The conditional capacity Cy is a random variable with probability density pc,, (x). Over ergodic
channels, the capacity is the mean of Cg because an infinite length codeword sees an infinite
number of channel states. However, when the channel is quasi-static, one codeword only sees one
channel realization. For a given channel matrix H, we deduce an instantaneous capacity Cly.
Consider a fixed transmission rate R. If R < Cp, there exists at least one code that provides
error-free transmission. However, if R > Cp every code would lead to a packet loss. Based on
this observation, we can deduce that the capacity of quasi-static channels is null. Indeed, for
a fixed non-null R, there always exists a bad channel realization such that R > Cy. We can
consider the probability P,,; that such outage situation occurs, i.e.,

R
Pyt = P(Cyy < R) = /0 pe, ()da (1.11)
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Figure 1.6: Mutual Information for QPSK input.

This outage probability gives a limit on the frame error rate only achievable with an infinitely
good code and Gaussian input. We can obviously derive the outage probability with discrete
input from the mutual information Zg(Z;Y)

Pouo = P(Ty(Z € ;Y) < R) (1.12)
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When the channel is block fading with parameter n., we can multiplex the data without changing
the performance. We consider an equivalent quasi-static channel with block diagonal matrix

Hy = diag (Hj, ..., Hy,) (1.13)

where all blocks are n; x n, matrices corresponding to the n. different channel realizations.
Moreover, observing that H; corresponds to n. channel uses, we have

1 P
Poutn. = P (— log, det <Inrnc + —H{be) < R) (1.14)
e ny
= P iiczlo det ( I +£H*H- <R (1.15)
= ne g2 nr s i 14 :

The outage probability of a block fading MIMO channel is equal to the probability that the
averaged instantaneous capacity (over the n. realizations) is lower than the fixed rate R. Clearly,
the more the number of different realizations n., the lower the outage probability. This induces

1 & P
P ( lim — ZlogQ det (Inr + n—H;‘Hi> < R> =P(C<R)=1y (Cfl(R) — a;) (1.16)
=1 t

Ne—+00 N —

where C~1(R) is the minimal signal-to-noise for the existence of error-free rate R transmission
and Iz is the Heaviside step function. Fig. 1.7 shows the outage probability for a single antenna
block fading channel with n. blocks for a rate equal to 1 and Gaussian input. The capacity limit
for R = 1 bit per channel use is 0.96 dB.
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Figure 1.7: Outage probability, R = 1 bit per channel use, 1 x 1 MIMO channel.
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1.3.4 Diversity-multiplexing tradeoff

We will present another fundamental limit called diversity-multiplexing tradeoff, presented in
[90]. We can observe from subsection 1.3.2 that asymptotic behavior of the capacity of an ergodic
MIMO channel is

C’NN Omin(nt, ny)logy (SNR) + O(1) (1.17)
O—)

where SNR = 2%‘0. The single antenna system behaves like log, (SNR), whereas the capacity
of a MIMO channel grows linearly with log, (SNR), the linear factor min(n¢,n,) is called the
multiplexing gain.

Consider a family of codes C. Assume that for each signal-to-noise ratio value SNR =
Es/2Ny, a code C(SNR) € C with rate R¢(SNR) and error rate P.(C(SNR)) is chosen. The
multiplexing gain 7 of such a family of codes is defined by

o o Be(SNR)

1.18
SN Roboo log, SNR (1.18)

r

Notice that 7/ min(ns, n,) ~ Re(SNR)/C(SNR) indicates how far the system is operating from
the Shannon limit.

The diversity gain is obtained by the asymptotic error exponent

42 Lm 1082 (P(C(SNR)))

1.1
SNR—o0 log, SNR (1.19)

The multiplexing-diversity tradeoff (r,d) gives the information about the optimality of a family
of codes for very high data rates. However, it does not give any information on the coding gain.

For example, if we choose a code with a constant rate that achieves the full-diversity order
ngn,, the multiplexing-diversity tradeoff is (0, nyn,). If a family of codes has maximal multiplex-
ing gain, the data rates and the number of possible codewords respectively evolves linearly and
exponentially with the capacity, and the achievable diversity disminishes. This induces that the
best multiplexing-diversity point for full-multiplexing is (n,0).

There exists an optimal multiplexing-diversity tradeoff for any value of r, denoted d*(r):
d*(r) = (ng —r)(n, —r), 0 <r <min(ng,n,) (1.20)

The optimal multiplexing-diversity tradeoff shows that the diversity and multiplexing gains
evolve inversely from each other. The extrema values are the full diversity gain d*(0) = nn,
and the full multiplexing gain 7* = min(n¢, n,) for d = 0.

For block-fading channels with n. blocks,the optimal tradeoff d*(r) is
d*(r) =ne(ny —r)(ny — ), 0<r <min(ng,n,) (1.21)

Fig. 1.8 illustrates the optimal diversity multiplexing tradeoff for a 4 x n,. quasi-static MIMO
channel. Again, we see how the receive antenna increases the fundamental limit, which induces
a simplification of the transmission scheme optimization. If n, tends to infinity, we approach the
ideal case when both maximal diversity and multiplexing gain are achieved. Next, in Fig. 1.9, we




1.3 Information theory for multiple antenna channels 13

observe the gain obtained with an increasing number of channel states n.. Fig. 1.11 illustrates
the optimal multiplexing-diversity tradeoff for system configurations having a maximal diversity

order n.ngn, = 16. We observe that advantaging the spatial diversity gives a better optimal
multiplexing-diversity tradeoff.
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1.3.5 Singleton bound for block fading channels

In most digital communication systems, a binary error correcting code is used to protect the

information bits. This is the case for BICM, which is the system we will focus on in this thesis
report.

In [46][47][60], the authors consider bounds on the diversity for the transmission of a binary
code on block fading channels. Let us consider a binary code C of rate R¢ and length L¢e coded
bits. The block fading channel is supposed to have n¢ independent blocks. The diversity is
upper-bounded by n¢ and the minimal Hamming distance of the binary code which is denoted
dgmin- We will consider the Euclidean code Cg that corresponds to the transmission of all the
codewords over the block fading channel. All the symbols transmitted on the same block are
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Figure 1.12: Singleton bound on the diversity order as a function of the rate of the error
correcting code and the number of blocks of a block-fading channel.

grouped into a hyper-symbol. The code Cg has a length ne and an alphabet size 2Lcfie/ne The
minimal Hamming distance between two coderwords gives the diversity d upper bounded by the
singleton bound of the code Cg [46][47][60]:

d <1+ [n.(1—Re)| (1.22)

Fig. 1.12 draws the singleton bound values for a single antenna channel and an increasing
number of blocks n.. The full diversity is achieved if and only if R¢ > 1/n.. In the following, we
will consider the singleton bound assuming that a detector perfectly converts an n; x n, MIMO
block fading channel with n. blocks into a 1 x n, block fading channel with n;n. blocks. The
singleton bound will give the maximum achievable diversity for a given code rate Rc.

Conclusions

We have presented the multiple antenna block fading channel model. We saw that the channel
capacity (or outage probability) gives the fundamental SNR limit for high performance. Fur-
thermore, we described the optimal multiplexing diversity tradeoff which gives an information
on the quality of a transmission scheme for very high data rates. The two fundamental limits are
enhanced by increasing the number of receive antennas. Moreover, we deduced that the spatial
transmit diversity is preferable to time diversity in terms of information theory.
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Chapter 2

BICM model and performance

Introduction

The growing importance of iterative and probabilistic processing of information in communi-
cation systems during the last decade allows for exceptional performance on different types
of data transmission channels. Graph codes for binary channels have been extensively ana-
lyzed [10][44][51][52][56][67][68] and bit-interleaved coded modulations (BICM) for non-binary
channels became a widely known standard technique for coded modulations with and without
frequency selective channels [89][19][14][49]. Under realistic conditions and without any mild
theoretical constraint, the nature of such concatenated systems does not allow for the derivation
of closed-form expressions for the error rate versus the number of decoding iterations.

This chapter first describes the bit interleaved coded modulation (BICM) transmitter scheme
applied to multiple antenna channels. Then the BICM iterative receiver will be described and
the “a posteriori probability” (APP) exhaustive detector detailed. A new exact computation of
the codeword pairwise error probability will then be introduced in the perfect interleaving con-
text. A union bound can then be computed to estimate the asymptotic performance when the
channel is ergodic and the interleaving ideal. For block-fading channels, the tangential sphere
bound is modified using the new exact pairwise error probability.

Moreover, an analogy between BICM with iterative joint detection and decoding performance
and the maximum likelihood decoding performance is developed. This analogy is available when
the channel interleaving is ideal and when the signal to noise ratio is sufficiently high to achieve
a perfect convergence of the iterative processing.

2.1 Bit Interleaved Coded Modulation with iterative decoding

2.1.1 Structure of the Bit-Interleaved Coded Modulation transmitter

The transmitter scheme is given by the following fundamental block concatenation: A binary
error-correcting code C (e.g., a convolutional code) followed by a deterministic interleaver II, a
symbol mapper (e.g., QAM modulation), a full-rate space-time spreader S (i.e., a linear precoder)
and a serial-to-parallel converter. Fig. 2.1 illustrates the BICM transmitter structure. We will
now describe the notations and the role of each fundamental block.
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Figure 2.1: Bit-interleaved coded multiple antenna transmitter.

a) The error correcting code:

The transmission of digital data with the minimum error rate is the objective of any telecom-
munication system. In many of those systems, the data rate is forfeited to binary protection by
the way of an error correcting code. Let R¢ denote the coding rate of the error correcting code
C and b the information word at the encoder input. The encoder applies the bijection between
the input information word b and the codeword ¢ € C. The length of ¢ is 1/R¢ times higher
than the length of b. We can choose the error correcting code among a wide variety containing
the following non-exhaustive list:

e Linear block codes: cyclic or non-cyclic linear block codes (BCH, Reed-Solomon). They
have been developed in the 60-70’s and used for high rate systems.

e Trellis codes: non-recursive non-systematic convolutional (NRNSC ) codes, recursive sys-
tematic convolutional (RSC) codes.
Traditionally, convolutional codes are considered for BICM. Indeed, they have the double
advantage of having simple and low complexity encoders, maximum likelihood (ML) and
soft-input soft-output (SISO) decoders. Indeed, the code can be represented by a trellis,
and the Viterbi algorithm [82][33] with Hamming distance (defined on the Galois field
GF(2")) can be applied for maximum likelihood decoding. The trellis structure can also
be exploited for SISO decoding via the forward-backward algorithm [4]. A convolutional
code by default has an infinite length. However, finite linear block codes can easily be
extracted selecting a finite window of the trellis. A coding gain enhancement is obtained
by forcing the first and last states to 0, but this introduces a slight code rate reduction.
The code is defined by its octal polynomial (g1, ..., gn.)s. It takes K¢ bits and returns N¢
bits by trellis transition. The constraint length of the code is denoted I¢, and the codeword
length is LeNe coded bits. The code rate is Re = [K¢ — (Ilc — 1)/ Le¢]/Ne, but we consider
L¢ > l¢ which leads to Re ~ K¢/N¢. As a remark, NRNSC codes have a slight coding
advantage when compared to RSC codes with the same coding rate.

e Concatenated codes: concatenated codes have been discovered in the 60’s [35][34]. We
generally distinguish the turbo-codes from low density parity check (LDPC) codes. The
turbo-codes are based on the serial or parallel concatenation of two convolutional codes,
the revolutionary papers [8][9][7] gave birth to the iterative decoding techniques of con-
catenated codes. The LDPCs [35][58][59] are based on multiple simple parity equations
grouped into sparse matrices. A factor graph can be constructed for the iterative decoding,
based on message passing between the multiple parity check nodes [51].
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b) The channel interleaver:

The interleaver II scrambles the Lo Ne coded bits. This is the main component of the BICM.
It is crucial when performing iterative joint detection and decoding because it enhances the
independence between extrinsic and a priori probabilities both in the soft-input soft-output
detector and decoder. It is also very important for ML decoding (if such a decoding is tractable)
because it limits the interference in the same time period between two erroneous bits of an
error event. The interleaver I can be a pseudo-random (PR interleaver) or a semi-deterministic
interleaver with some deterministic constraints as described in Section 3.4.

c¢) The symbol mapper:

The interleaved coded bits are demultiplexed into blocks of m bits fed to the mapper that con-
verts them into a constellation symbol. The bijection between the bit vectors and constellation
symbols is called mapping or labeling. The number of points in the constellation is equal to
M = 2. At each channel use, the mapper reads m x n; coded bits and generates n; modulation
symbols. To make the reading easier, the n,~dimensional constellation 2 will equally make refer-
ence to the set of symbols or their binary labelings. The mapping is not unique and can be very
influent on the system’s performance. The Gray mapping is one of the most famous, as it mini-
mizes the number of different bits between two neighbors in the constellation, which minimizes
the bit error rate of an uncoded system. We will see in this thesis report that in many cases, we
can achieve better performance by using other mapping techniques, and even demonstrate that
the Gray mapping is the worst for BICM with ideal interleaving. All along this thesis report, we
will consider QAM (Quadrature Amplitude Modulations) as they achieve a good compromise
between spectral efficiency (in bits/s/Hz or bits/dim) and performance. Moreover, they give a
lattice constellation structure to the system and the access to the lattice theory toolbox, both
for the transmitter and receiver optimizations. If a M-QAM is used on each transmit antenna,
the transmitted symbol energy per transmit antenna is equal to:

M—-1

E, =2. 3

(2.1)

d) The linear precoder:

The linear precoder S spreads the QAM symbols over s time periods. It converts the ny — n,
vector channel into an N; — N, vector channel, where N; = n; x s and N,, = n, x s. The N; x N,
matrix S reads Ny QAM symbols z = (z1, 22, ..., 2n,) at the mapper output and generates IV,
symbols transmitted during s time periods. The role of S is to spread the transmitted symbols
over more channel states, for example exploiting a time or space diversity. We suppose that S
is normalized, so it does not act as an amplifier. This is satisfied if the Frobenius norm ||.|| # of

S is equal to Ny:
N, N

ISIF=>Y"> "5 =N (2.2)

i=1 j=1

e) Channel input-output relation:

Without space-time spreading (s = 1 and S is the identity matrix), the channel path connecting
antenna i to antenna j has a complex Gaussian distributed gain h;;, where H = [h;;], E[hi;] = 0,
E[lhij] =1,i=1...n; and j = 1...n,. Here, the symbol E[.] denotes mathematical expecta-
tion. The MIMO channel coefficients h;; are supposed to be statistically independent. Denote
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‘H the set of channel realizations seen during the transmission of a codeword.

When space-time spreading is applied (s > 1), we use the same notation for the extended
N; x N, channel matrix

H=diag{ Hi,...,H, ,Ho,...,Hs,...,Hn ... Hy i} 0
s/neg

In the above extended block diagonal matrix H, Hy is an ny x n, MIMO matrix corresponding to
one channel use at the time period indexed by ¢. The index n. s denotes the number of channel
realizations in the matrix H spread by S. For simplicity, we suppose that n. is divided by n.g.
In this case, the linear precoding converts the n; x n, MIMO n.-block fading channel into an
N x N, MIMO n./n. g-block fading channel. If a full time spreading is processed, n¢ g = n.. If
ne,s = 1, the precoder sees a quasi-static n; x n, MIMO channel.

Now, we can write the channel input-output relation:

y=x+n=2z5H+n (2.4)

where y € CV" and each receive antenna is perturbed by an additive white complex Gaussian
noise 75, j = 1...NV,, with zero mean and variance 2Ny.

This input-output relation is available for any time period. However, if we consider different
time periods at the same time, a temporal index k£ should be introduced. We have chosen the
convention that when matrices have multiple indices, the index k corresponds to the number of
the time period. In this case the input-output relation and block diagonal matrix becomes

Yb = Tp+np = 2xSHp +ny (2.5)
Hk = diag{Hk,lu-~-7Hk’17Hk72,--~,Hk,27---7Hk;7ncysg~--7Hk:7nc75} (26)

In the following, if a single time period is considered, the index k£ will not be omitted and
the “time period” or “channel use” will make reference to a transmission over SH, i.e., over s
time periods.

The global spectral efficiency is R¢ X m x n; bits per channel use. We consider a binary
signal-to-noise ratio (E,/Ny) at the receiver, where Ej, is the band-pass information bit energy at
the receiver, E. is the band-pass coded bit energy at the receiver and Ny/2 the noise band-pass
spectral density. In the case of M-QAM, we have

E, E.  Emn, n(2"-1)
No NoRc 2NoRem  3NoRem

(2.7)
Usually, we consider the logarithmic signal-to-noise ratio SN R = 10log (%) in decibels (dB).

f) The global Euclidean code Cp:

The concatenation of the binary error correcting code C, the interleaver 11, the mapper €2, the
linear precoder S and the channel describes a global Euclidean code. If we suppose that the
error correcting code has a length LeNe and a rate Re = K¢ /Ng, the global Euclidean code Cg
converts L¢ K¢ information bits into a complex L¢N¢/m-dimensional point.
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2.1.2 Structure of the iterative receiver

An ideal receiver for a BICM would directly perform a maximum likelihood decoding on the
set of transmitted codewords Cg, but there is no other way than doing exhaustive decoding
of the 28cle codewords, which is intractable. All the existing receivers use the concatenated
structure of the BICM to separate the reception into several steps. In this thesis report, we
do not consider the synchronization and channel estimation processing, as we assume they are
perfect. Basically, our receiver is now separated into two steps: the detection which consists of
converting the received points y into information on the coded bits ¢, and decoding the coded
bits é into estimations of the information bits b. The differences between all possible receivers
depend essentially on the hardness or softness of the exchanged information. The detector has
always a soft input y.

a) The decoder

Decoding of an error correcting code has always been a topic of interest for a wide population
of researchers. Obviously, the decoder existence depends on the code nature. For example, we
cannot always process soft-input soft-output of error correcting codes. We can describe the state
of the art of the most useful decoders for some families of error correcting codes:

e Algebraic decoders: for algebraic codes (RS, BCH), there exist many HIHO algebraic
decoders, the most efficient being proposed in [73]. STHO decoding of algebraic codes have
been addressed in [48], but SISO decoding is still an open problem.

e Decoders for trellis codes: HIHO and SIHO , e.g., Viterbi algorithm (VA) [82][33]. SISO,
e.g., Soft Output Viterbi algorithm (SOVA) [38], forward-backward (FB) [4]. The forward-
backward algorithm computes the exact a posteriori probability (APP) using the trellis
structure of the code. A trellis is a particular case of a graph, the forward-backward is a
particular case of graph decoding.

e [terative decoders: if the constituent codes of a concatenated scheme have SISO decoders
(e.g., turbo-codes [8][9]), an iterative decoding can be performed exchanging extrinsic
probabilities between the SISO decoders. However, a code can directly be constructed as
a graph structure [51], and decoded by message passing on the graph.

b) The APP detector

There exists many kinds of SIHO or SISO detectors for multiple antenna channels. Hard output
detectors find estimate Z € () for each transmit antenna and time period, the symbols are then
converted into bits thanks to a de-mapper, de-interleaved and given to the input of a hard input
decoder. We can list the most current hard output detectors:

e Sub-optimal hard output decoders: an estimation of the transmitted symbols 2 can be
obtained by linear equalizers followed by a hard decision (e.g., Zero-Forcing (ZF), Minimum
Mean Square Error (MMSE)) or non-linear equalizers (e.g., Decision Feedback Equalizer
(DFE)). They do not provide near optimum performance on MIMO channels, even at high
signal-to-noise ratios. Indeed, such equalizer decision regions are an homothecy of the
equivalent lattice fundamental parallelotope (volume defined by the basis vectors). The
Voronoi region is a homothecy of the fundamental parallelotope only if the lattice basis is
orthogonal, which is not the case for MIMO channels.
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e Maximum likelihood hard output decoders: the maximum likelihood point zs7, can be
found using exhaustive decoders or non-exhaustive algorithms such as sphere decoders
(this algorithm is fully described in Section 4.2).

However, the separated detection and decoding process is sub-optimal in terms of global max-
imum likelihood criterion. Suppose that the detector finds the maximum likelihood points from
the transmitted points, which is equivalent to finding all the maximum likelihood ns-dimensional
transmitted points for each time period. Moreover, suppose that the decoder finds the maxi-
mum likelihood codeword from the coded bits vector given by the detector. Even with these two
conditions, the receiver does not achieve the global maximum likelihood performance. Indeed,
the global code Cg contains 2%cle codewords whereas the hard output detector finds the maxi-
mum likelihood vector in a set of 2V¢le vectors, considering non-existing points which misleads
the decoder. As already said, the ideal but intractable receiver should directly decode Cg. An-
other solution is to perform iterative joint detection and decoding thanks to iterative processing.

Code
Structure
I l
l APPs of :|: Decoded
> —»
SISO SISO Decoder info. bits bits
Detector
Y &(ce) ) for the error
—» » De-interleaver |—
Likelihood correcting code Extrinsics of
Computation + -
Marginalization coded bit
iter=0 m(ce)
0.5 X .
o Iter>0 Interleaver |

Figure 2.2: Tterative APP detection and decoding receiver.

The receiver has two main elements as described in Fig. 2.2: An APP QAM-detector that
acts as a soft output equalizer for both the space-time spreader and the MIMO channel, and a
SISO decoder for C. An iterative joint detection and decoding process is based on the exchange
of soft values between the SISO QAM-detector and the SISO convolutional decoder. The SISO
detector computes the extrinsic probabilities {(c;) thanks to the conditional likelihoods p(y/z)
and the a priori probabilities 7(cy) fed back from the SISO decoder. At the first iteration,
no information is available at the detector input, so it equally considers all the constellation
points and gives probabilities on the coded bits to the SISO decoder. Through the iterations,
the a priori probability of the constellation points computed from the probabilities given by the
SISO decoder becomes more or less reliable. If an ideal convergence is achieved, near maximum
likelihood performance is achieved. This technique requires a SISO detector that converts the
received vector y of each time period into extrinsic probabilities on the coded bits £(c,) thanks
to a priori probabilities on the coded bits m(cy). We can list some SISO detectors for MIMO
channels:

e exhaustive APP detectors, list APP detectors (see Section 4.3).
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e SISO MMSE (see Section 4.4)

e Serial Interference Cancellation, Parallel Interference Cancellation detectors (from mul-
tiuser detection theory).

We will now describe the optimal APP detector based on a marginalization over an exhaustive
list. When the spectral efficiency is too high, such a detector becomes intractable. The complex-
ity reduction of such a case is treated in Section 4.3. However, we need to describe the optimal
detector for the performance computation and system performance optimizations.

The detector independently computes the soft outputs on each time period, the following
APP probability expression is available for any coded bit ¢, of any time period. The received
point during the considered time period is y. The APP probability of a coded bit ¢, is defined
by the probability to detect the bit conditioned on the observation of y:

p(y/ce)p(ce)

(2.8)

In the above expression, we see that APP(cy) can be expressed as a function of different quan-
tities.

e At each new detection step, the probabilities given by the output of the SISO decoder are
independent from the received point y. They are called a priori probabilities on the coded

bits ¢g: m(er) = p(ey).

e The probability p(y) depends on the transmitted coded bits, the a priori probability and
the AWGN, and is not computable. Fortunately, we will see that this is not a necessary
quantity for the iterative processing.

e The conditionned observation p(y/cy) can be decomposed into more explicit probabili-
ties. We use a marginalization over the set of labelings having the /-th bit equal to
ce, ¢ ={c1y ¢, .. emn, b € Qce), where ¢ corresponds to a transmitted vector z =
{z1,...,2n,} and filtered vector x = zH = {x1,...,2n,}

ply/e)) = > ply.c/e)) = > ply/e,co)plc) (2.9)

c€Q(cy) c€Q(cy)

The condition over c, ¢, is equivalent to a condition over all the modulation symbols vectors
z € Q(cp). Using the independence of the receive antennas and the AWGN distribution,
we can write that

p(y/c,ce) = ply/z) = Hp yi/i) = \/m e~ ly==SHI?/2No (2.10)

The coded bits transmitted during the same time period are supposed to be independent,
we have Ve € Q(c), p(c) = [];,, m(c;) which leads to

plyfer) = Y ply/z) [[=(e) (2.11)

x€Q(er) i#L
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Let us now consider the information exchange between the SISO decoder and SISO detector.
The two blocks compute the APP probabilities combining the information they gather indepen-
dently (received point and modulation for the detector, trellis for the decoder) and information
from the other block. The decoder gives a priori probabilities to the detector, this amount of
information should not be given back to the decoder in order to keep the random variable inde-
pendence. The detector computes APP(cy) = 7(cg)&(cy), with £(¢) and 7(ey) two independent
variables, £(c) is called extrinsic probability, given to the decoder soft input. Moreover, we have
APP(cy) x m(ce)p(y/ce), and since &(cp) should be a probability, we can use the normalization:

p(y/ce=1)
0= Syfer = 0) + plufer =D (242
Finally, the SISO APP detector computes the extrinsic information, which corresponds to the
extrinsic probability that the ¢-th coded bit equals 1, as given in the following normalized

marginalization:
_ly=='sH)?
D=1 | (€ 7 [L e m(cr)

Seco | (¢F) Moot

where € is the Cartesian product (M-QAM)t, i.e., the set of all vectors z generated by the
QAM mapper, || = 2™V, The subset Q(c, = 1) is restricted to the vectors z where the ¢-th
bit is equal to 1.

(cr) =

(2.13)

2.2 Ideally interleaved BICM exact pairwise error probabilities

This section describes a very accurate computation of bit error rates and frame error rates of
BICM maximum likelihood performance over MIMO channel with ideal interleaving. This new
technique is based on the original computation of the exact pairwise error probability between
two codewords.

The digital communication systems become more and more complex to provide better per-
formance. This technical progress increases the difficulty of theoretical analysis. The graph
iterative decoding introduced in the 1960’s by R.G.Gallager was extended to many kinds of
iterative processing using the concatenated structure. As examples, we can cite turbo-decoding
of concatenated codes, turbo-synchronization, turbo-equalization, joint turbo-detection and de-
coding of BICM.

If the signal-to-noise ratio is sufficiently high, the iterative processing converges to near
maximum likelihood performance, which is particularly interesting when no maximum likeli-
hood decoding can be processed. However, theoretical analysis for iterative processing is very
difficult or in many cases impossible.

In this thesis report, we mainly consider iterative joint detection and decoding of BICM over
multiple antenna channels. Heavy work has been made to estimate the frame error rate or bit
error rate of this system, in particular using Gaussian approximations, but the exact pairwise
error probability has not been presented yet.
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Under the ideal interleaving condition, and when the MIMO channel is ergodic, we are able
to derive a closed form expression of the Log Likelihood Ratio density probabilities at the output
of the detector and a closed form expression of the pairwise error probability at the output of the
decoder. It is then very simple to use the well known techniques to estimate the bit error rate or
frame error rate of a coded modulation when the pairwise error probability is perfectly known.
This subject has been fully discussed for coded modulations over AWGN channels, where the
pairwise error probability is straightforward. As an example, we can cite the union bound of
the transfer function of a convolutional code, or the more accurate tangential sphere bound. We
will then extend these results to the block fading MIMO channels with linear precoding.

2.2.1 Ideal interleaving

The bit error rate (BER) or frame error rate (FER) of a coded modulation is often based on the
pairwise error probability followed by an upper bound of the true performance by a balanced
pairwise error probability summation. Each pairwise error probability considers the Euclidean
distance between two codewords generated by an error event of Hamming weight w. The ideal
interleaver is defined as follows:

Proposition 1 For any pair of codewords, an ideal interleaver places the different bits between
the two codewords in symbols that will be transmitted on different time periods, and equiprobably
distribute them over all the channel states (as much as the number of different bits allows it).

The last condition comes from the following observation: Consider a chi-square distributed
fading channel, and assume that each Gaussian component has an arbitrary variance. The cod-
ing gain in the pairwise error probability is maximized if all the variances are equal. This last
condition is approached when the distribution of the number of erroneous bits over the channel
states is uniform.

In practice, such an interleaver could not exist. We will see in the following that the singleton
bound gives an existence condition of the ideal interleaver. In Section 3.4, we present optimized
interleavers that approach the ideal condition.

2.2.2 Exact pairwise error probability for ergodic channels

A tight upper bound on the pairwise error probability of error-free decoding for a MIMO-BICM
has been given in [42]. It is based on an integral expression that can be evaluated by the Gauss-
Chebyshev quadrature [19]. Here, we establish a closed form expression for the exact pairwise
error probability on ergodic MIMO channels under maximum likelihood decoding of the BICM
and ideal channel interleaving. The mapping design criterion is directly derived from this pair-
wise error probability expression as shown later in section 3.1. Furthermore, tight union bounds
on both frame and bit error rates (FER and BER) will be presented and used to validate the
asymptotic signal to noise ratio gain for optimized mappings.

Consider two codewords X = X(c¢) € Cg and X’ = X(¢/) € Cp with a Hamming distance
w = dg(c, ) between the convolutional codewords ¢ and ¢’. If we assume ideal channel interleav-
ing, then the w difference positions are spread in space and time over w distinct transmission
periods. Clearly, the conditional pairwise error probability P .,(X — X’) only depends on
those w positions. Hence, we will reduce the notation of X and X’ to X = {x1,...,2,} and
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X' ={a!,...,2},}, where the components zj and z} are points belonging to the set QHj,.

Our aim in this section is to compute P, (¢ — ') = Ey [Py (¢ — ¢’)]. The conditional
pairwise error probability Py, (¢ — ') is expressed as

Prw(c—d) =Py (X > X)=P (e_ Y=t llve—zel?/2No o= 3k, Hyk—l’kﬂz/?No) (2.14)

For a given set of channel realizations H, a correct pairwise decision is taken by the ML decoder
when the log-likelihood ratio LLR is positive:

_ ~ S ekl ®2 S e P ol
LLR = log { = ST | = e = ke LRk
Pyy(c—¢) = P(LLR<0)=P (>, _,LLR; <0)
(2.15)
Thus,
0 0
Py, (c— ) = Ex[P(LLR < 0)] = Ey [/ pLLR(x)dac} = / Prg(®)de (2.16)
—0o0 —0o0

where prir(z) is the probability density function of LLR and prrg(z) = Ex [pLir()] is the
probability density function of LLR = Ey [LLR]. We will first express the characteristic function
Yrr(jv) of LLR. Since the w random variables LLRj are independent and the channel is
ergodic, using LLR = >~;”_; LLRE, we have

Yrrr(iv) = Ex

11 %uee. (jV)] =1 ¥z, (Gv) (2.17)
K K

where Vg, (Jv) = En, [Yrir, (Jv)] and YrLig, (jv) is the characteristic function of prig, (z).

Two points are involved in the expression of the partial log-likelihood ratio LLRy: zp = 2z Hy
and ) = Eﬁk Hj., where Hj, denotes an instance of the channel matrix set H at time period k.
As ideal interleaving is assumed, the point z} = Zik is obtained by flipping the bit at position
i in the binary labeling of z (1 < ¢ < mny). The squared Euclidean distance between z; and

2
zt is denoted dz = sz — Zﬁ‘“ H . The distance spectrum {dj} depends on the modulation type,

its size and its binary labeling. For a given 2"™-QAM modulation, non-equivalent labelings lead
to non-identical bit error rate performances.

a) Characteristic function of LLRy

First, we compute the characteristic function of LLR, for a binary modulation (BSK) defined
by two points {z, Zi’“} transmitted over a MIMO channel. The expression of LLRy, is:

1

1 4, 2 2

5Ny (sz +oR ((zk - zﬁk)Hkn,’;)) (2.18)

where * is the transpose conjugate and Ry is the squared norm of the vector (zj — Ei’“)Hk

If a classical mono-dimensional mapping is used independently on each transmit antenna, the
difference vector zj — Zi’“ has only one non-null component in the position given by [fx/m].
However, in order to stay in the general case which will be useful in the following, we do not
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5%
take any assumption on vector zp — Zik. It be shown that R <(zk Nzk ) k:77;§> is a Gaussian

_ztk
noise with zero mean and variance Ry/Ny. Moreover, since %H i, includes n, independent
identically distributed complex Gaussian random variables with zero mean and unit variance,
then Ry has a Chi-square distribution of order 2n,..

anr—1)p—a

PRy ja2(@) = RCRE (2.19)

First, notice that the random variable LLR;, is Gaussian distributed.

R, Ry
LLRy ~ — 2.20
e N <2N0’ N0> (2:20)
The characteristic function of LLRy, is
. i v Ry, .

uan () = B [ = exp (575 - ) 221)

The mathematical expectation Ep, [.] over Ry, is equivalent to the expectation over Hj. Thus,

ViR, (V) = Eg, [@ZJLLRk(J'V)]_ )
= (1 —any V(i — V)) ' (2.22)

= (%(1/ — ja(dk))(V - Jb(dk))> '

where
i = (1 (1550
by = §(1-(1+50)) (2.23)

b) Characteristic function of LLR

Let D denote the set of all Euclidean distances obtained by flipping one bit in the constellation
Q2. Define the set A = {01,...,,,} C D from the sequence (dy,ds,...,dy) € AY C DV | ie.,
the Euclidean distance dj, takes its values from the set A. The value ng4 is defined as the number
of different distances occuring in the sequence (di,da,...,dy). It is clear that ng = |A| < |D|.
Let the integer A, denote the frequency of dj, in the sequence (di,ds, ..., dw), Yt Ay = w and

A={ ..., )
Using (2.17), (2.22) and (2.23), the averaged characteristic function becomes

v = 11 <2N0 (Gv +aldi)) (Gv +b(dk))>_ T (2.24)
k=1
B ( 2NO ) (H (ljv + a(6k)][jv + b(%)])"”’“) (2.25)
k=1
w g2\ " ng
- (H (%) ) [T Uyt (2.26)
k=1 0 k=—ngq,k#0

where the poles in the above product are defined by fx~o = a(dx), Br<o = b(0_f).
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¢) The LLR partial fraction exrpansion

To allow derivation of prrr(z), we now compute the partial fractions expansion of Yrrr(jv).
A mathematical reminder about partial fraction expansion is described in Appendix C. The
characteristic function 11 (jv) can be written as:

n"‘)‘\k|

. w —dz —MNy ndg ak Z
YirGv) = [ (W) > 2 (2.27)
k=1 0

k=—ng,k#0 i=1 »7”+ﬂ’f

The coefficients ay j in (2.27) can be exactly evaluated from the following identity (series expan-
sion in €):

el A=l ( 1)2' ("’")‘Ik\ Ti- 1)
. ; 4
D Qumaie +O(EN) = H > B €+ 0> (2.28)
i=0 k=—ng,k#0k#0 i=0 o

where (Z) = ﬁlk),

From the simple properties a(0x) —1/2 = 1/2 — b(03) and ¢rg(jv — 1/2) = Yr(=1/2 — jv),
we have a_j; = (—1)’ax,;. Hence, coefficients oy, ; are only evaluated for & > 0. Expression
(2.27) becomes

w 2N\ ™ ng NrAg g (_1)iakz’
Urrr(iv) = <—k> -+ — L 2.29
) kr:[ 2No :Z: (v +alon) (v +b(or)) (229)

d) Conditional pairwise error probability closed form expression
Finally, we get the probability density function of LLR = >}’ ; LLRy, by the Fourier transform
I

prr(®) = o 3 brrr(iv)e " dv (2.30)

1 = 2Np\ """ & Ak ,

= S IL(-32) 20X o [hGoaln) + (-1 b5)] 231
k=1 k=1 i=1

and the function [;(z,a(dy)) is defined by

—x i—1
Ii(z, a(6y)) = ((Z, _)1)! o sgn(a(8y,))e® %) H (—sgn(a(dy))x) (2.32)

Indeed, we have
(_aj)n— 1

In(x,a(dk)) - n_—_xl n—l(xva((sk)) = m

I (z,a(0g)) (2.33)

and

—+o00 ef'uz
n(z,a(6y) = / T = 2msgn(a(6)) OV~ sgn(a(5i))x)

—00 jV + a((sk)

where sgn(z) is the sign function, and H is the Heaviside step function.
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Using ono Ii(z,b(6k))dz = 0 and

0 0 (_p)i-1
/ Ii(z,a(dg))dx = 277/_ ((Z,_)l)!e“(‘s’“)rdx = 27Ta(;k)i (2.34)

—0o0

the conditional pairwise error probability is P, (c — ¢') = ffoo Prir(x)dx which yields the closed
form expression

w INA\ " ng NrAg s
Pu(c—¢) = Po(8,0) =[] ( d_;]) ; (2.35)
k=1 k = = aldk)
e) Ezxpectation over the set of distances
All sequences (dy, .. .,d,) corresponding to the same (A, A) yield the same pairwise error prob-

ability. We have expressed the pairwise error probability between two given codewords ¢ and
¢ such that dg(c,¢’) = w and the transmission of ¢ — ¢ is characterized by (A, A). We now
have to average this probability over all possible pairs (¢, ¢’). First, let us consider the averaged
pairwise error probability P, conditioned on dy(c, ') = w:

Py = Ec,c’|w [Pw(c - C/)] = Ec,c’\w [Pw(Av A)] (236)

Averaging over the pairs (c,c’) is equivalent to averaging over (A, A) thanks to the inter-
leaver. Each pair (A, A) is representative of w!/ [, ;! equivalent pairs (Z, Z’), where the
w-dimensional Z and Z’ vectors are the channel inputs leading to X and X', respectively. As a
pair (Z, Z') corresponds to a high number of pairs (¢, ¢'), the complexity of a numerical evaluation
is dramatically reduced in practice by performing expectation over A and A:

Py, = EA,A|w [Pw(Aa A)] (237)

f) Asymptotic expression of the pairwise error probability

We can compute the asymptotic expression when the noise level is low. Indeed, the coding gain
and diversity are measured for high signal-to-noise ratios, where the performance have a linear
asymptote on logarithmic scales.

w n wn

_ 2Np\ ™" Mmpw — 1 2Ny ’
Py ~ (0 ") Epu =)= 2.38
w No—0 nrw b H d2 nrw gergo ( )
The diversity associated with the considered pairs of Hamming weight w is the exponent equal

to wn,.. The diversity is defined by the exponent of Ny, we can define the coding gain or coding
advantage by the coefficient dividing Ny, i.e.

1
— = Epu

WNy
ergo

1 1 1
— & —=F 2.39
di”MU] Gltgo 7 [dz’“] (2.39)

As a remark, the distances associated to different values of k are independant.
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2.2.3 Exact pairwise error probability for Block Fading MIMO channels

In section 2.2.2 we computed the exact pairwise error probability of an ideally interleaved BICM
over ergodic MIMO channels. We will now express the same pairwise error probability for
block fading MIMO channels. We assume that proposition 1 is satisfied. Assume that the
number of independent channel realizations in a frame is n.. We use the previously introduced
notation X = {x1,...,2,} and X" = {2/, ..., 2),} to denote the non-equal w components of the
transmitted codewords ¢ and ¢’ (we consider dg(c,¢’) = w). The involved channel matrices are
not independent as for an ergodic channel. the conditions of independence are the following

e If two LLR random variables depend on two different channel realizations, they are inde-
pendent.

e If two LLR random variables depend on the same channel realization but on different
transmit antennas, the random variables are independent.

The maximum number of independent LLR variables is n.n;, which defines the transmit
diversity order. We will call “channel state” the 1 x n,, SIMO channel associated to one of the
ns transmit antennas of one of the n. channel realizations. We choose the error correcting code
so that w > ngne.

We now group the w random variables LLR into min(n;n., w) = nyn. independent blocks.
Let LLRy;; be the i-th log-likelihood ratio corresponding to the BSK transmission on the [-th
antenna of the k-th block, k =1...n.,l=1...n; and i = 1... Ky, where sy is the number of
bits transmitted on the I-th antenna of the k-th block. We have Y ;. >, ki, = w. Finally,
LLR is the sum of n4n. independent random variables LLR, ; = ZK’“ L LLRk 1t

ne ng Kkl
LLR = Z Z Z LLRy, (2.40)
k=1 l=1 =1

Rk,l

Let dp.;; denote the distance associated with LLRy;;, and define fy,zl =>.0 dk, Li the distance
associated to LLRy ;. We have

Res R
LLRy; ~ N (ﬂ ﬂ)

2.41
N N (2.41)

where Ry; = 77| Hi(I)||* and Hy(1) is the I-th row of Hy. For all i, LLR, are transmitted
over the equivalent 1 x n, SIMO channel defined by Hy(l), which is chi-square distributed
with degree 2n,. The LLRjy; variables are transmited on independent channel states, as for
the ergodic channel case, we directly apply (2.35) and obtain the conditional pairwise error
probability closed-form expression

/ T T 2No o e anz
Py(X - XY =P, HH( ) ZZ (2.42)

k=11=1 n=1 i=1

where 6, € A, and (A, A) is the pair of sets representing the sequence (7%1, . ,'yfh’nc). The
an,; coefficients are computed thanks to the straightforward application of (2.28).

Then, an expectation over (A, A) leads to P,, the averaged pairwise error probability con-
ditioned on dy(c, ') = w. The asymptotic expression of P, is

[l (ﬂ) ] (043

k=11=1

P, ~ (Qnrntnc—1> Epw

No—0 NrNtNe
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The diversity associated with the considered pairs of Hamming weight w is then equal to the
exponent ngn.n,. The coding gain is given by the expectation of the ’y,% ; geometric mean and is
equal to

ne Nt Kk, N
G,/ =Epw |[]1] (Z d,i,,i) (2.44)

k=11=1 \i=1

We will see in the following how to use this coding gain as a design criterion for the ST-
BICM optimization. We now consider an equivalent computation of the coding gain for a linear
precoded ST-BICM.

2.2.4 Exact pairwise error probability with linear precoding

When a linear precoder S of size Ny x Ny is used (N; = sn;), the detector computes soft outputs
on the N, transmitted symbols and considers the equivalent channel matrix S Hy, of size N; x N,..
Under the ideal interleaving condition, we consider at most a single erroneous bit per block of
s time periods in position 1 < £ < miV, inside the binary mapping of the transmitted symbol
z, leading to symbol z¢. For simplicity reasons, we assume that the error weight w satisfies
w > Nyne/nes.

Assume that n.g is a divisor of n.. Consider the block-diagonal matrix of size N; x Nj.
Assume that Hj, contains n. g distinct channel realizations among the s blocks of size n; x n, .
The channel input-output relation is

Yk = 2pSHy + g (2.45)

where SHj, can be seen in general as a correlated fading channel [81]. All LLR random variables
associated with a transmission on the k-th block experience the same channel matrix. Hence, we
can apply a factorization of the correlated LLRs as in 2.2.3. Assume that a mono-dimensional
mapping is used, the BSKs are transmitted on a single selected input of the matrix SHy. Let
LLRy,; be the i-th LLR among k,;, transmitted on the /-th row of the k-th block channel matrix
SHj,. The definition of Ky, gives ZZ;/{%’S Z{\Ql kky = w. Let dj;,; denote the BSK distance
between the two points z;,; and Zﬁ,l,i associated to LLRy ;. Let S; denote the I-th row of §,
we have ||(zk,; — Z5,;)SH|? = d2,,||SiHg||>. The LLRy,; associated with the factorization of
[-th row inputs of H k’ satisfies h

(2.46)

Ry R
LLRMNJ\/'< ol ’“’)

2Ny’ Ny
where Ry = ||Vi Hel?, Vs = Y151 and 71%,1 = Zj:kll d%,l,i‘ The variable Ry is a generalized
chi-square random variable with 2N, correlated centered Gaussian components. The random
variable LLRy = Zf\ﬁl LLRy; satisfies

Ni N,
SNOR MR
LLRy ~ N ( =1 Tl =] TR ) (2.47)

2Ny Ny
We will first consider n. s = 1 and extend the result to any value of n. g.
a) The precoding matric sees one channel realization (n.s=1)

For n.gs = 1, the quasi-static channel matrix Hj, is defined as Hj = diag (H,[:”l], ceey H,LI][S]>-

Let the row vector Slm denote the i-th sub-part of size n; extracted from the I-th row of S. We
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[i]

construct the s x n; matrix S] whose rows are the s sub-parts S,
decompose V},; into the s x n; matrix Vkl,l = ’yk’lSl/.

. Using the same method, we

sl sl
412 412

S = (S}”, .. .,S}S]) ssi=| 7 | and V= | (2.48)
Sl[s] Sl[s]

Define h; the i-th column of H ,Ll][ll, the n, vectors h; are independent realizations of a n; x 1
MISO channel. We want to express the characteristic function of the random variable

Z Ry = nz S WV Vikhi = nz i M} Myh; = tr (nz Mkhith,j> (2.49)

i=1 [=1 i=1 i=1

where M}, is an n; X ny; Hermitian square root matrix of

Nt
X = ZV’Z,ZV'W = U*(I)EnU = M= M: = U*, /cI)EkU (2'50)
=1
where @y, = diag(Vx.1,...,P%n,), Uk is the i-th real eigenvalue of ¥ and U is a unitary matrix.

The random variable Z?;l Myh;hi M has a Wishart distribution with n, degrees of freedom
and parameter matrix Xj. The characteristic function of the trace of Y ;| Myh;h M} is given
in [61]:

B [uan, ()] = B [oxp (M MR BN | o5y
= <det(2k) det (z,;l - ”(27];0”)1»% (2.52)
- 10 (1-420,) " (253)

=1

where 1}, ; is the i-th real eigenvalue of X.

b) The precoding matrix sees n.s channel realizations (n.s > 1)

The channel matrix Hj precoded by S has s blocks. Assume that the n. g channel realizations
are repeated by an integer number s/n. g times (i.e., n. g divides s). The matrix Hy, is organized
as follows:

HY.. L HY

k,s/nes? "

H, = diag (H,E”1 ... H

[ne,s] [ne,s]
k:s/n S Hk;JS 7H S ) (254)

k,s/nc.s

where HH denotes the i-th block of the t-th channel observation, i.e., the ((t — 1)s/n.,s + 7)-th
block in the matrix Hy. We first decompose the rows of S into n. g Sub parts of size N¢/n.g.

Let Sl[t] denote the t-th sub-part of the [-th row. Then, each sub-part SlH is decomposed into
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s sub-parts of size n; and defines the rows of the s x n; matrix S’ Et]. The Ny x N; precoding
matrix S is divided with the following method

S(1 % Ny/ne.s) s sines] ]
11 1][s/ne, 2111 2][s/ne, ne,s](1 ne,s)ls/ne,
SHH Sg][/ s] S:[l”] Sg][ sl Sg sl S{ slls/ne,s]
o | simo gl gl gl glneslll . glresls/nes]
1 (1)(s/ne.s] 2 Qlls/nes] ... (ne.s](1] e, s][5/me. 5]
ngl 3 Sy /e S][\fl[ | Sl S Sy s

N¢/s = ny coeflicients

t]

The s x n; matrix S’ E given by
S[t][l}
sl
s/l = : (2.55)

Sl[t} [s/7e,s]

For all ¢, the sub-parts multiply different and independent channel realization matrices, which
allows us to multiply the characteristic functions associated with the sub-parts. Substituting
s by s/n.g in the mathematical development presented in the previous section and using the
independence of the n. g channel realizations, we directly have

Ne, S ny —MNyp
] — VUV
Vo, (v) = [T 1] ( N )195,0 (2.56)

t=1 =1
where 19%}1. is the i-th eigen value of
Ny S/nc
t t* t t t * [t][e]* alt][e
=1 =1 =1

The set of eigenvalues ol }i is a function of the precoding matrix S and the BSK distances set
reduced to the pair (A, A) The characteristic functions associated with different indices k£ can
be multiplied thanks to the channel realization independence:

Ne/Ne,s Ne,5 ny —np
Yrrr (V) H H H ( )795]1> (2.58)

k=1 t=1:1=1

Denote A = {62} the set of ns non-null eigenvalues extracted from the sequence defined

by the ﬁg]i values. Each eigenvalue §2 is repeated A, times. Observe that ns < n.n;. Finally,
using the partial fraction expansion of Wy r/(jv) as described in (2.28), the exact pairwise error
probability P, conditioned on dg(c,¢’) = w is equal to

ns 2N0 AoNy M5 NrAy oy i
Py, = EA,A|w H (_ 52 > Z : CL((;,;)Z (259)

v=1
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The asymptotic expression of P, is

2, N5 — 1 £ (2N \ M
P, ~ ( rNs — )E [T(52 2.
w No—0 nyNg e < 53 > ( 60)

where Ny is the total number of non-null eigenvalues.
The diversity associated with the considered pairs of Hamming weight w is the exponent
equal to > 1 Ayn,. The coding gain is given by the J, geometric mean and is equal to

ns
11 61,””’“] (2.61)
v=1

We have derived an exact expression of the pairwise error probabilities of a BICM with linear
precoding. The expression is exact for any SNR value, and the asymptotic expression leads to
the well known rank and determinant criterion for space-time code optimization over MIMO
block fading channels [75][30], where the considered space-time code is the whole BICM struc-
ture. As a remark, the asymptotic design criterion is usually derived by first upperbounding the

Q(z) function by exp(—22/2)/2 and then averaging over the channel realizations. The obtained
2n, N5 — 1
e Ny

but provides the same coding gain expression, which proves that the design criterion proposed
in [75] are correct.

gg" TN —

asymptotic expression has a multiplying coefficient different from < ), which is inexact

Moreover, we notice that applying the Tarokh [75] rank and determinant criterion to the
precoder alone does not lead to the whole BICM optimization. Quasi-optimal linear precoders
will be designed to achieve full diversity and optimal coding gain in Section 3.2. Moreover, we
now have the exact pairwise error probability expression which is useful for a tight BER and
FER estimation.

2.3 Estimation of the bit and frame error rates

The estimation of the frame error rate or bit error rate for coded systems is not an easy task,
even for the basic AWGN channel. Indeed, the objective is to compute the probability that a
multi-dimensional additive white Gaussian noise gets out from a non-identified multi-dimensional
polygon defining the Voronoi region. Each polygon facet belongs to the mediator hyperplane of
two neighboring codewords. We will describe two methods for estimating the BER and FER of
ideal BICM over MIMO channels.

2.3.1 Union bound on ergodic channels

The frame error rate at the decoder output FER?¢ is upper bounded by the classical union
bound

FER™ < E.| Y  Plc—¢) (2.62)
c'eC,c'#c
The input-output weight distribution of the error correcting code C is

+oo oo oo
AI,D)= > > ainI'D” and AD)=A(1L,D)= >  a,D" (2.63)
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where a; ; is the number of codewords with an output Hamming weight w and an input Hamming
weight 4. We can now express the approximation of the maximum likelihood frame error rate
and bit error rate of the ideally interleaved BICM transmitted over a multiple antenna channel:

+00 +oo
FER®¢ < Z awP(c— d|dp(c,d) =w) = Z ay Py (2.64)
w:dein w:dein

where P, is given in 2.37 for ergodic channels, or by the equivalent expressions for block fading
channels. Equivalently, we have

+0o0 .
BER™ <3 Y ﬁaj,wpw (2.65)

where K¢ Lc is the number of information bits per codeword.
We can compute the asymptotic expression when the noise level is low. Indeed, the coding

gain and diversity are measured for high signal-to-noise ratios, where the performance have a
linear asymptote on logarithmic scales. The asymptotic expression of BER%¢ when Ny — 0 is

BER%¢ ~ i ( nrditmin — ) E 20 2.66
Noss0 J:Zl KCLC a],deln NrdHmin krzll dz ( )

Indeed, the error events with Hamming weight greater than dg,.;, have higher diversity and
negligible contribution to the performance for high signal-to-noise ratios.

The union bound (UB) for convolutional codes is known to be tight on AWGN channels.
Our experimental results showed that the union bound provided by 2.37 and 2.64 is also tight on
a MIMO ergodic channel. Indeed, it is well known that the union bound performance is asymp-
totically (i.e, for a sufficiently high signal-to-noise ratio) a good approximation of convolutional
codes performance on AWGN channels with BPSK input. Indeed, there is a dominant term in
the sum and other terms are negligible for low noise levels. We can observe the tightness of the
union bound for a 4-state convolutional code over AWGN channels with BPSK input on Fig. 2.3.

In our case, the terms corresponding to the error event with a weight equal to dg observe a
diversity equal to n,dg. At high signal-to-noise ratios, the terms with dg > dgmin are negligi-
ble. We can observe the tightness of the union bound of a 4-state convolutional code over 2 x 2
MIMO ergodic channels with 16-QAM input and gray mapping on Fig. 2.4.

2.3.2 Tangential sphere bound on block fading channels

On ergodic MIMO channels, the union bound was tight because the higher diversity error events
were neglected. When the channel is block-fading and under ideal interleaving and w > n.n;
conditions, all error events have the same diversity for all w values and no one can be neglected.
The union bound is loose for block fafing channels because it takes some error events into ac-
count that does not contribute to the exact error rate. Thanks to the interleaver and the high
frame size, we can make the assumption that all the BICM codewords are transmitted on the
surface of a sphere. In this case, the Voronoi region is a cone with polygonal section. On AWGN
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Figure 2.3: 1/2-rate RSC 7,5 convolutional  Figure 2.4: 1/2-rate RSC 7,5 (N¢L¢e = 10000)
code (N¢L¢e = 1000) , BPSK over AWGN | 16QAM, Gray mapping, 2x2 MIMO channel,
channel, Union Bound performance (UB) or  Union Bound performance (UB) or simulation
simulation (simu) (simu) for BER and FER

channels, we could consider the tight tangential sphere bound that limits the union bound into
the cone surrounding the Voronoi region. The tangential sphere bound for AWGN channels and
spherical constellations is described in appendix A.

The main drawback of tangential sphere bound is the choice of a judicious sphere radius.
Moreover, for block fading channels, the voronoi region has a random shape with the channel
realizations which makes the tangential sphere bound computation very difficult. If we assume
ideal interleaving and ideal coding gain, the Voronoi decision region for a given frame transmis-
sion is an expanded version of the Voronoi decision region over the AWGN channel. Indeed,
the w distances involved in each pairwise error probability are equal. We can first compute
the optimal radius for the performance of Cr over the AWGN channel, compute the tangential
sphere bound and then apply the averaging over H which can be reduced to an averaging over
a chi-square distribution. In conclusion, the estimation of this ideal performance is simple and
provides a lower bound for a given error correcting code. This lower bound might be usefull to
evaluate the optimization of the interleaver and of the linear precoder.

2.4 Genie concept and performance

2.4.1 Principle

The genie method has been described and intensively used for mapping optimization of a BICM
transmitted on a single antenna ergodic channel [20]. The main idea is to consider that for
a sufficiently high signal-to-noise ratio, the extrinsic probabilities become very reliable. When
processing the detector output during a time period, the genie condition is satisfied if the mNNV; a
priori probabilities are perfect, i.e w(cg) = ¢¢. In this case, the extrinsic probability computation
of the £ — th coded bit at the detector output is

ly—=SH]|?

e  2Np
ler) _ly-zsHI2  _|y-ztsH|? (2:67)
e 2Ng te 2Ny
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where z and z¢ have a 0 or a 1 in the /-th position, respectively. We can observe that only the
two points z and z¢ are considered, they define a binary shift keying modulation (BSK). The
computation of a given extrinsic probability behaves like LLRj, computed on a single time period,
and introduced in the ideal BICM ML performance. The BSKs obtained by flipping one bit on
the labeling are important to define the BICM geometrical behavior under perfect feedback as-
sumption. This property can be used to design the labeling, this will be discussed in Section [ref].

However, the genie situation assumed for the whole codeword is very optimistic, as it is
equivalent to an error-free scheme, which is impossible. That is why we only consider the genie
at the detector and for a single time period decoding. This is a practical design concept, not
a physical quantity. However, we will see how this simple design tool is equivalent to the more
complex maximum likelihood criterion.

2.4.2 Genie and maximum likelihood analogy

An information bit sequence, coded into a codeword, interleaved and spread over antennas and
time periods, leads to a point of Cg in a space with a number of dimensions equal to the number
of receive antennas times L¢Ne/mNy, the indices of time periods corresponding to a codeword.
With the well-known ML criterion leading to optimum performance in terms of Frame Error rate
(FER), we choose the information bit sequence minimizing the distance between the equivalent
point and the noisy received point.

If we consider a low noise level, the error probability is quasi-null and very dependent on the
distance between the transmitted point and its neighbors. Indeed, the probability that the noise
results in a received point far from the transmitted point is very low. In this case, and assuming
convolutional encoding, the codeword neighbors of the transmitted sequence are given by simple
error paths. Ideally, the few different neighbor bits are separated thanks to the interleaver. If
two or more of these bits are grouped in the same time period, the generated interference will
degrade the performance. Therefore, the interleaver has to be carefully designed to separate the
erroneous bits onto different time periods. If this interleaver condition is satisfied, the distance
between the transmitted point and its considered neighbor is equal to the equivalent BSK dis-
tances sum. Averaging this remark on all the transmitted sequences and all the simple error
paths leads to a construction criterion which is very close to the genie criterion. Indeed, the
genie method considers the equivalent BSKs given by considering all the transmitted bits on s
time periods.

On one hand, maximizing the distance between two neighboring codewords is not sufficient
to optimize performance according to the ML criterion, since only considering two neighbors
corresponds to optimizing a ML performance lower bound. Nevertheless, experiments show
that performance is mainly lead by neighbors. On the other hand, the genie performance is
given by an ideal situation that never exists in practice, so we minimize an inferior bound too.
We have shown here that the two optimization criteria given by approximated ML and genie
considerations are quite equivalent, provided that the interleaver is well designed. However, the
genie performance is easily computable at the detector output. It allows us to consider only s
symbol periods instead of considering the whole codeword.
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2.4.3 Genie performance closed form expression at the detector output

We will apply 2.35 to compute the genie performance BER%* at the output of the detector in
the case of ergodic MIMO channels. Since only one time period is considered, the temporal
subscripts k are not necessary. The expression of the detector soft value, when the a priori is
fed back by a genie, is given in 2.67. The bit error probability BER! is directly related to the
decision making on &(¢;). By conditioning on the channel state H and the transmitted QAM
vector z, we can write

BER{;", = E¢ [P (I€(cr) — ¢| > 0.5)] (2.68)

The symbol Ey|.] denotes the mathematical expectation over the position ¢ of the coded bit.
Then, using 2.67 and 2.68, we can express BER% as a function of the LLR of a BSK with
distance d = d(z, z°), averaged over H, z and :

BER™ = By ., [PH(Z = zﬁ)] = E., {@ (d(z, zf))} (2.69)

where ® (d(z,2) = Ey [Pu(z — 2%)]. We notice that the performance under the genie condition
at the detector output, or equivalently at the decoder input, is the average probability of the
|Q|mn; equivalent BSKs with distance d(z,z*) on an ny x n,, MIMO channel. We can directly
compute the pairwise error probability from 2.35 choosing ng = w =1, dy =6 =d, Ay = 1.
Finally, we just have to identify the coefficients a1 ; from

np—1 ' n—1 (—1)i <nT +4i—1>
A1 n,—i i
—o TOW) = —— +0(1 2.70
Y T 00 = X gy OO (2.70)
using —f(16-1 = Qd@, we can write the closed form expression of ® (d):
nr+k—1
d2 —ny Ny—1 ( & ) np—1 k1 51 k 5_1 ny
- () - E () (e
2No kzzo (Br — Boy)mrtkppr—h kZ:O ( F ) fr— B B_1 — i
1— 1 Ny 1 1 + 1 k
_ V/1+8No/d? Z (nr ko 1) /118No /&2 (2.72)
- 2 k=0 ‘ 2 .

which is the result obtained in [66]-chap.14.
Finally, the error probability at the detector output is given by

BER‘! = m I <d(z, 2£)> — Ep [®(d)] (2.73)
zeQ 1=1

Conclusions

We have described the BICM transmitter applied to multiple antenna channels and its associated
iterative receiver. Then the fundamental ideal interleaving condition is described and exact
pairwise error probabilities are computed in both ergodic and block fading channels cases. These
exact pairwise error probabilities may be used to compute very tight bounds on the error rates
using either a union bound for ergodic channels or a tangential sphere bound for block fading
channels. The asymptotic performance expressions give design criteria for the binary labeling,
the linear precoder and the error correcting code choice. These optimizations will be discussed in
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next section. Finally, the genie method and an analogy with the ML performance at the detector
output assuming ideal interleaving are described. Section 3 shows that the genie method can be
invoked for the labeling and for the linear precoder optimizations.
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Chapter 3

Bit Interleaved Coded Modulation
optimizations for MIMO channels

Introduction

In Chapter 2, we have presented the BICM transmitter and iterative receiver structure, and
its performance on MIMO channels. We will now optimize each BICM component in order to
enhance the Frame Error Rate (FER) or Bit Error Rate (BER).

In Section 3.1, we will focus on the mapping optimization, providing high coding gains and
obtained by increasing Euclidean distances between the global codeword points. We introduce
the new idea of multi-dimensional mappings allowing capacity approaching performance with
elementary codes.

The case of block fading MIMO channel is much more thorny. We must first maximize the
diversity order before thinking of optimizing the coding gain. The BICM components optimiza-
tion should be done jointly. In Section 3.2, the linear precoding optimization is considered, we
present the conditions to be satisfied to achieve the optimal coding gain for a target diversity,
and optimize the linear precoder to achieve good performance with an iterative receiver. In
section 3.3, we take the linear precoding spreading factor into account in the computation of
the singleton bound on the diversity order, which enables us to find the minimal precoder size
that leads to full diversity performance. Finally, in section 3.4, we optimize the interleaver to
achieve the potential diversity and coding gains promised by the other elements optimization,
under the constraint of ideal interleaving.

The notations required for the reading of this section were presented in Section 2.

3.1 Mapping optimizations

The binary mapping optimization of a signal constellation is an old problem in communication
theory. Mappings based on Gray code [2] and Ungerboeck set partitioning [79] are among the
most famous binary labelings for coded and uncoded modulations. In this section, a figure of
merit for the binary mapping is derived from the ideal ML performance on an ergodic multiple
antenna channel. A design criterion based on this figure is applied to the signal constellation to
find good mappings suited for space-time coding. This ideal ML design criterion coincides with
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the criterion based on the genie method. Then, it is shown that the mapping figure of merit given
by the ML performance is equivalent to the one given by the closed-form expression of the genie
performance, related to ideal iterative decoding. The genie method has been previously applied
to single antenna fading channels [20][55] and to multiple antenna channels with bi-dimensional
mappings [92].

Optimized mappings can be determined by two possible ways: 1- Searching inside a ran-
domly selected list, 2- Applying the Binary Switching Algorithm (BSA) presented in [88][71].
The first method is used in high complexity systems (large labeling length) and the second one
is very efficient for a reduced labeling size.

We have presented an approximation of the BICM performance with ideal interleaving and
ML decoding. This approximation is a function of the signal-to-noise ratio, the number of trans-
mit antennas and the error-correcting code. Moreover, it mainly depends on the set of distances
D given by the binary mapping bit flipping and does not rely on the constellation shape itself.
This allows to evaluate the performance of any constellation, even the most unstructured. The
performance computation has been processed in the general case of ns-dimensional distances dy.

We will first calculate the figure of merit to be optimized for a given n;-dimensional mod-
ulation €2 thanks to its associated distance set D. Then we will apply such an optimization to
the classical QAMs and introduce the multi-dimensional mapping concept.

3.1.1 Mapping figure of merit

Let us first extract the asymptotic coding gain from the genie performance at the detector
output. The asymptotic expression of BER%* when Ny — 0 is

-1\ (2Ng)™
BER ~ (2 " 1) (2No)™ 3(101 (3.1)
Q

where the figure of merit Sdet can be computed via

1 B o1 1 m.ng 1
@ ED [d ] - mnt|Q\ 22622 ; d(Z,ZZ)QnT (32)

The asymptotic expression of BER%® when Ny — 0 is

T <2d_]3,0)] (33

k=1

dec 2nrdgmin — 1
BERN0—>O Z k L a’] dezn ( nrdein )E

Indeed, the error events with Hamming weight greater than dg,.;, have higher diversity and
negligible contribution to the performance for high signal-to-noise ratios. The distances in the
sequence (d1,...,dq,, . ) are independent random variables thanks to the ideal interleaver. The
coding gain is a function of the mapping figure of merit 3?260

dezn

H d—QnT

which leads to & = (S?{ft)de". We notice that optimizing the mapping by maximizing the
figure of merit derived from the ML decoding criterion is equivalent to maximizing the figure of

gdec = (Bp [a-]) (3.4)
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merit given by the genie method at the detector output. We can compute the asymptotic gain
of labeling €2y with respect to labeling €2y as follows:
1 3!
GaindB ~ —10 log —2Z 3.5
n, 10 3?{5115 ( )

The asymptotic gain only depends on the distance distribution of the equivalent BSKs. We can
for example compare two QAM mappings together or a QAM mapping with a PSK mapping.

3.1.2 Multi-dimensional labelings

When we consider classical mono-dimensional complex labelings, the asymptotic gain optimisa-
tion is limited by the m x n; distances of mono-dimensional complex vectors. Clearly, vectors
with more dimensions would lead to higher asymptotic gains. Let us define 7,4y as the number
of antennas linked by the labeling.

When performing APP detection, the soft output is computed taking all the set of transmit-
ted vectors into account. In this case, there is no complexity increase using a multi-dimensional
mapping. When the spectral efficiency is too high, e.g., 4 x 4 MIMO with 16-QAM input, the
exhaustive detector is intractable, and a near-optimum APP detector such as SISO sphere de-
coder can be used [93]. When using sub-optimum APP detectors such as SISO-MMSE [28], the
multiple antenna channel is considered as n; interfering 1 x n, SIMO channels, and an exhaus-
tive APP detector is processed on each sub-channel input. In this case, the multi-dimensional
mappings cannot be used. The n; x n, MIMO channel can be viewed as n,q-+ sub-channels
equivalent to n¢/npere X n, MIMO channels. We can use a multi-dimensional mapping with
Nmap < Mpart, compute an exhaustive detector on each sub-channel and a sub-optimum low
complexity detector to separate the 7n,4,; sub-channels.

The BICM performance depends on the set of BSK modulations associated with the mapping.
For example, the Gray mapping and its associated BSKs are represented on Fig. 3.1-a. The
function ®(d?) defined in (2.72) is a decreasing function of d?, this induces that maximizing
the BSK distance improves the constellation mapping. The mapping figure of merit Sglft is
asymptotically defined in (3.2). For example, the genie performance of 16-QAM with Gray
labeling and minimal Euclidean distance 2.0 is
BERZ!, = %@(4) + 3%@(36) (3.6)

The genie performance closed-form expression on MIMO n; X n, channels and the asymptotic
gain expression (3.5) are very useful when designing binary mappings because of the search pro-
cedure low complexity. We choose the mapping at random or using an optimization algorithm
such as the Binary Switching Algorithm (BSA) [88][71]. A mapping is optimized for two param-
eters: n, and nyqp. Indeed, for a given labeling, the asymptotic gain is the same for all n;. In
the case of 16-QAM constellations, we can determine numerically the asymptotic gain probabil-
ity distribution of a randomly selected binary mapping, taking the Gray mapping as reference.
On Fig. 3.2, we see the asymptotic gain distribution when n, = 1,2,4 and n,uqp = 1,2,4. We
also listed in Table 3.1 the mean, variance and maximum value of the asymptotic gain found by
our search procedure. We randomly selected a large number of 2"-QAM mappings, the search
is not exhaustive . In the case of n, = 1 and ny,,, = 1, the best mapping we found exhibits
an asymptotic gain of 7.1 dB. This mapping is represented on Fig. 3.1-b and has no evident




42 Bit Interleaved Coded Modulation optimizations for MIMO channels

Mean | Variance | Max gain Max gain
(dB) (dB)
at random | with BSA alg

Ny =1, Npap =1 | 3.15 0.35 7.10 7.23

Ny =2, Nmap = 1 | 2.40 0.29 7.27 7.42

Ny =4, Nnap =1 | 1.43 0.13 7.15 7.36

nyp =1, Nypap =2 | 6.75 0.02 7.48 10.68

Ny =2, Npap =2 | 5.65 0.04 6.80 11.12

Ny =4, Npap = 2 | 3.59 0.04 5.01 10.98

Ny =1, Npap =4 | 10.97 0.01 10.99 /

Ny =2, Npap = 4 | 10.67 0.01 10.71 /

Ny =4, Nap =4 | 8.33 0.02 8.57 /

Table 3.1: Statistics of 16-QAM optimized mappings

m=1|m=2|m=4|m==6
Ny =1, Nypap =1 | 0.00 1.25 7.23 12.62

=1, nmap =2 | 125 | 505 | 1068 | /
ny =1, npap =3 | 3.55 6.52 / /
np =1, npap =4 | 5.05 / / /

Ny =2, Npap =1 | 0.00 1.02 7.42 12.97

Ny = 2, Npap = 2 1.02 5.02 11.12 /
Ny =2, Npap =3 | 3.46 6.24 / /
Ny =2, Npap =4 | 5.02 / / /

Ny =4, Npap =1 | 0.00 | 0.69 | 7.36 | 12.81
Ny =4, Nipap =2 | 0.60 | 4.98 | 10.98
Ny =4, Npap — 3 | 3.35 | 6.16 /
Ny =4, Npap — 4 | 4.98 | 7.26 /

~

Table 3.2: Best found asymptotic gains (in dB) with respect to Gray mapping for 2™-QAM
constellations and 7,4, dimensions

symmetry properties. When increasing the mapping number of dimensions (npq, > 1), it is
possible to increase the minimum Euclidean distances of the embedded BSKs. This explains
why the statistical mean of the asymptotic gain improves for n,,qp > 1.

We applied such optimizations to other spectral efficiency values and mapping number of
dimensions, the best gains we found with BSA are presented in Table 3.2 for 2™-QAM constel-
lations. Unfortunately, the BSA algorithm complexity grows strongly with the global spectral
efficiency of the system, that is why we are limited to m.n,,qp < 10.

3.1.3 Increasing the number of dimensions with Space Time precoding

Linear precoding can be used to increase the diversity of systems with a small number of anten-
nas. The symbols of s time periods are grouped together and spread over the transmit antennas
and time periods without decreasing the system rate. The linear precoder’s matrix S has sny
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Figure 3.1: Mappings of 16-QAM constellation.

rows and columns, where s is called the spreading factor of the linear precoder. A BICM on
an ergodic multiple antenna channel exhibits a diversity equal to dgminn.-. We can increase the
observed diversity to sdgmnn, using an sn; X sn; complex linear precoder. For example we
may use cyclotomic rotations [13][92][95]. If the linear precoder satisfies the norm conditions
presented in [92] on an ergodic channel and under a genie condition, maximum precoding gain
is obtained and the channel may be seen as a 1 x sn, SIMO channel. Multi-dimensionnal map-
pings designed for sn, receive antennas may be used without any adaptation. The detection is
processed over s time periods. We can use at most an sn;-dimensional mapping. As seen in
the simulation results section, if s > 1, we succeed in enhancing the coding gain via a mapping
dimension increase at the cost of detector complexity increase.

3.1.4 Convergence behavior

We have designed multi-dimensional mappings having large potential gains. Unfortunately, we
cannot use such good mappings with a powerful error-correcting code because of convergence
problems. Many studies have been made on BICM convergence using exit charts [78] or transfer
functions. Most of them conclude that the best the gain is at the last iteration, the worst it
would be at the first iteration. When considering a joint detection and decoding, the convergence
is perfect if the bit error rate at the SISO decoder input at the first iteration is under a given
threshold, which corresponds to an SNR value, commonly called waterfall point. The threshold
depends on the error-correcting code, and in general, the best the code, the lower the threshold. If
the signal-to-noise ratio is higher than the waterfall point, the system converges to an asymptote
after a number of iterations decreasing with the noise level. At very high signal-to-noise ratios,
the mapping gain with respect to gray mapping is always observed at the output of the error-
correcting code. For different mappings, the asymptotes are parallel, their slope is equal to the
collected diversity lead by the minimum Hamming distance of the code, the number of receive
antennas and the linear precoding factor. If we are interested in a target bit error rate equal
to 1075, we have to find a good compromise between the waterfall and the error floor, as in
all iterative processes. In the best case, performance converges to the asymptote exactly at
the target error rate. This explains why when using mappings with high gains, we have to
use "bad” error-correcting codes to ensure a good convergence. We can illustrate this point on
Fig. 3.3 which represents transfer functions (SNRZ SNRI) of the detector using a Gaussian

mn ) out
approximation and different mappings. The transfer functions (SNRE SNRI) of different
convolutional codes are also drawn. The transfer functions of RSC codes show us that the best
the code, the higher the slopes. The transfer function of the detector of a 2 x 2 MIMO channel
with SNR = 4.0 dB with QPSK input is also represented with different mappings. The higher

the asymptotic gain, the higher the right asymptote, but the lower the left asymptote. We
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Figure 3.2: Asymptotic gain distribution of random 16-QAM mapping with respect to Gray
mapping.

deduce the convergence point searching for the fixed point beginning from the left bottom of
the graph. For a given signal-to-noise ratio, when using multi-dimensional mappings with high
asymptotic gain, we have to use "bad” error-correcting codes in order to achieve a fixed point
close to the right asymptotic value of the detector transfer function. This is equivalent to a
perfect convergence to the limit obtained by the genie method.

3.1.5 Simulation Results

We present some simulation results illustrating the signal-to-noise ratio gains produced by a
multi-dimensional labeling under iterative joint detection and decoding. When considering con-
volutional codes, an exhaustive APP detector computes the soft values delivered to a single
SISO decoder: One iteration includes one detection and one forward-backward pass on the con-
volutional code trellis [4] . When a turbo-code is used, one iteration at the receiver side includes
one detection, one forward-backward pass on the first convolutional constituent followed by one
forward-backward pass on the second constituent.

First, Fig. 3.4 illustrates the error rate of a two-state (3,2)s recursive systematic convolu-
tional code (RSC) on a 2 x 2 MIMO channel with 16-QAM modulation. All situations presented
on Fig. 3.4 correspond to N4 = 1. Gray mapping is compared to optimized mapping. The
latter shows more than 7.4 dB with respect to Gray mapping. The three graphs on Fig. 3.4
show the fact that the simulated error rate quickly converges to the ideal ML bound. The left
graph depicts the bit error rate at the decoder output, the midle graph depicts the frame error
rate at the decoder output, and finally the right graph on Fig. 3.4 depicts the bit error rate at
the MIMO detector output.
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Figure 3.3: Transfer function of RSC codes and QPSK multi-dimensional mappings, n; = 2,
n. =2, SNR=4.0dB

We now consider a target bit error rate equal to 1072, usually taken as a reference for wire-
less data transmission. The bounds are not drawn anymore. Convolutional codes cascaded with
multi-dimensional mapping are compared to turbo-codes on Fig. 3.5. The channel is 2 x 2
MIMO ergodic with QPSK input. Non Recursive Non Systematic 2-states (3,2)s convolutional
codes are combined to mono-dimensional, bi-dimensional and four-dimensional mappings. The
parallel turbo-code based on an RSC (7,5)s is cascaded with Gray mapping. Optimized map-
pings degrade the performance of the turbo-code at the first iteration which entails a dramatic
signal-to-noise ratio loss in the waterfall region. Fig. 3.5 shows that a (3,2)g convolutional code
with four-dimensional mapping (nmqp = 4 = sny = 2 x 2) thanks to the linear precoder [92] per-
forms within 0.5 dB from a rate 1/2 Gray mapped turbo-code. The price to pay is the increased
detection complexity of the time-spread four-dimensional constellation. The optimized mapping
with n,,4p = 2 and without linear precoding exhibit excellent error rates above 1073,

On Fig. 3.6, we present some simulation results on a 4 x 4 ergodic MIMO channel with
QPSK input and NRNSC 3,2. We used mono-, bi- and four-dimensional optimized mappings.
We observe that the 0.69 dB (respectively 4.98 dB) gain between Gray and mono-dimensional
(respectively bi-dimensional) optimized mappings is achieved. When the four-dimensional map-
ping simulation converges, the asymptote performs lower than 107°, this is why we measure
slightly less than 7.26 dB gain at this BER value. In the latter consideration, the optimal
case when the simulation converges to the asymptote exactly at the target BER 107 is almost
achieved. Finally, the system performs as well as the much more complex system including
turbo-code, without increasing the complexity of the detection process. Indeed, in both cases,
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Figure 3.4: Ergodic 2 x 2 MIMO channel, interleaver size is 10000 bits, 2-state (3,2)s convolu-
tional code, 16-QAM modulation, 10 decoding iterations. ML upperbound is denoted by "ML

UB” and Monte Carlo simulation is denoted by ”sim” in the captions.

Figure 3.5: Ergodic 2 x 2 MIMO channel, interleaver size is 9000 bits, rate 1/2 NRNSC and
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Figure 3.7: Ergodic 2 x 2 MIMO channel, in-
terleaver size is 8192 bits, rate 1/2 NRNSC and
Turbo-codes, 16-QAM modulation, 20 decod-
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20 iterations between the detector and decoder are necessary to achieve the convergence limit.

On Fig. 3.7, we present some simulation results on a 2 x 2 ergodic MIMO channel with
16-QAM input. When the BER is 1075, the gain with a mono-dimensional mapping is 7 dB.
With a bi-dimensional mapping we achieve 9.1 dB, which is less than the asymptotic 11.11 dB
gain because convergence is not reached at 10~°. With high spectral efficiency modulation and
a simple NRNSC 3,2, we achieve performance within 0.5 dB from the turbo-code performance
with RSC 7,5 constituent codes even on the 2 x 2 ergodic MIMO channel.

The mapping optimization topic has been extensively discussed for BICM on single-antenna
channels. In this paper, we have presented an extension of this optimization to multi-dimensional
mappings. We have presented first an exact expression of the pairwise error probability for
a BICM over a MIMO channel with the ideal interleaving assumption. The pairwise error
probability is useful to evaluate the BER and FER via a union bound and draw an approximation
of the ideal ML performance for moderate and high SNRs. A tangential sphere bound could also
be derived to tighten the bound for low SNRs. The union bound has been applied in this paper in
the context of mapping optimization. Other straightforward applications of the presented closed
form performance could be rotated QAMSs or space-time coding. For mapping design, we derived
from the union bound a figure of merit and showed that it was equivalent to the one obtained
with the more intuitive genie method. In the case of high spectral efficiency modulations or a
large number of transmit antennas, we achieve very high mapping gains and we perform close to
turbo-codes with a single convolutional code, without increasing the optimum or near-optimum
APP detector’s complexity.

3.2 Linear precoder optimizations

We call space-time spreading matrix or linear precoder the particular case of full rate linear
space-time block codes. The space-time matrix enhances the diversity by mixing the symbols of
different time periods and antennas. Many authors have described various works on space-time
spreading matrices including an error correcting code. For some of those space-time block codes,




48 Bit Interleaved Coded Modulation optimizations for MIMO channels

there exists a simple maximum likelihood (ML) decoder. However, most of the codes that achieve
good performance sacrifice the transmission data rate, for example transmitting 1 information
bit using 4 transmit antennas and 4 time periods. Moreover, the design of such codes is often
based on some Alamouti’s code extensions, which is only optimal for a 2 x 1 MIMO channel.
Other works on full rate space-time codes have recently been proposed ([6][24][25][26][27][29][62])
but do not consider a concatenation with an error correcting code. We describe an optimal solu-
tion for linear precoding for BICMs under iterative decoding process. Our strategy is to separate
the coding step and the geometry properties in order to express some criteria allowing the sys-
tem construction of a space-time spreading matrix for given channel parameters n¢, n,, n.. The
inclusion of rotations to enhance the performance of BICM over single antenna channels have
been proposed in [53], we extend this idea to block fading MIMO channels.

When the channel is ergodic, the diversity at the decoder input and output are respectively
n, and n,dgmin. We have shown in Section 3.1 that some elementary codes (e.g., NRNSC
(3,2)g) could be used to allow a good convergence when using high gain mappings. In this case,
the error-floor exhibits low diversity. One solution to enhance the diversity of elementary codes
is the use of linear precoding that allows to recover a diversity order up to n,s and n,sdgmin at
the decoder input and output, respectively. The parameter s is called spreading factor.

When the channel is quasi-static or block fading with parameter n., the diversity is upper
bounded by n.nyn, which can be more limiting than n,dgm, (e.g., ny =2, n, =1, n.=1). We
describe a new design criterion of space-time spreading matrices that give a diversity propor-
tional to the spreading factor and a maximal coding gain at the last iteration of an iterative
joint detection and decoding.

First, the linear precoder matrix must have a non-null determinant to exhibit full-diversity.
Indeed, a non-full rank transformation is equivalent to a reduction of the number of transmit
antennas. We suppose that the rows unity norm condition is satisfied but this is not a necessary
condition, an unequal power transmission on each dimension could be exploited by a successive
interference cancellation receiver. This is not the issue in our case.

In Section 2.2.4, the coding gain of an ideally interleaved BICM with linear precoding is

defined by
—nr 35,00 A E

$,Ne¢, S

ﬁ 5;2Wv] (3.7)

v=1
Remember that the §2 values are given by the sequence of the non-null eigenvalues ﬁ,[:]i. The

value 19/[1:} denotes the i-th eigenvalue of M ,Et] M ,Lt]* where M ,Et] is defined by

Nt S . .
V1 <k < nefnes, V1<t <nes, P =MTMI=3"~2 3 sillgill (38
=1 =1

3.2.1 The BICM ideal coding gain

First, remember that the linear precoding converts the n; x n,, MIMO n.-block fading channel
into an Ny x N, correlated MIMO n./n. g-block fading channel.
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If we consider the general case of a linear precoded BICM, we can wonder what is the best
achievable coding gain for the fixed parameters n¢, n,, n., R. and how to choose the error cor-
recting code, the binary mapping, the linear precoder and its parameters s and n. g to achieve
the ideal coding gain.

First, we want to achieve full diversity under ML decoding or iterative joint detection and

£

decoding, this induces that there are n.n; non-null eigenvalues ﬁgf 5

nc/nc,S Ne, S nyg

g =g | I TITIveS ™ (3.9)

k=1 t=11i=1

We want to maximize the gs,nc’s expression. A sufficient condition is to maximize the
instantaneous gain. Assume that the norm of each row .5; is equal to 1, we get

nc/ncsncs nt nC/ncS Nt
t
IPHREDISR DI 310
k=1 t=1 i=1 k=1 I=1
We use the Lagrange multiplier
nc/nc S Ne,S ny [ ] n nc/”c,S Ne, S ng [ ] nc/nc,S Ny
1] " t
S I IRICEAEEYE 315 9 SR 9 35 IRNNNCED
k=1 t=1i=1 k=1 t=1 i=1 k=1 I=1
The nulling of the derivation of f with respect to ﬁ[t,/}i, leads to
A Zc/nc,s nc,ls Hnt ) ][:]nr [ nc/nc S N 2 w
Vi, L= ksl SAEL ARl TR gl Ths 3.12
, 0,0, n, 19;://}/ ki ; Z NeNe ]z; Ny ( )
52 =

which induces
—NeNt N

— e T fykvl
Giaead ™ =B || D D (3.13)

The ideal coding gain is a fundamental limit which cannot be outperformed. It is useful to
evaluate how optimal the practical design of a BICM is. Our aim is to find the best design,
corresponding to eigenvalues which are as much as possible all close together. The more different
the eigenvalues are, the lower the product in (3.9) and the coding gain are.

Without linear precoding, the ideal coding gain is only achieved if all v;; are equal. Remem-
ber that each v;; is a sum of sy distances dj,; ;. Under ideal interleaving, the ry; are close to
w/(nin.). We conclude that the variance of the 7 values decreases when w increases. Thus, if
the error correcting code is powerful enough with respect to nyn. and |D|, it allows for a good
averaging of the dj;; into the v;; and quasi-ideal coding gain is observed.

If the error correcting code is not powerful enough to achieve the ideal coding gain, i.e., the
Yk, values are very different, we will see that the linear precoder provides a additional coding gain
by averaging the 7;; values before transmission. First, we derive the optimal coding gain which
can be achieved using an ideal linear precoder for a given binary labeling and error correcting
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code. The expectation in (3.9) is made over the set of eigenvalues 19%}1. which is only dependent on

the set of factorized distances ; ;. Variables «y;; for different £ values correspond to independent
channel realizations Hj which are not linked by the linear precoder. Thus, random variables
za
Y2

e, S TN (1]
t=1 Hizl 2916,'

are independent for distinct values of k. We get

Ne/Ne,s Ne,S g -
—NyrNc _ t| —
gs;llcg "= E{"Ek} H E{ﬁg]i}lﬁk [H H 19]6,7; ] (314)
k=1 ’ t=1 i=1
We apply a Lagrange multiplier on the product H:’:cf I, ﬂ,[:]inr under the constraint
Ne,S nyg [ } " Ny
t] "r 2N,
DD Ve =D v (3.15)
t=1 i=1 =1

We obtain

nc/nc,s N ’}/2 —Ne,sNtNr
_ k,l
NeNtNy s
e [ 11 (525 16

k=1 =1

Equation (3.16) means that an ideal linear precoder is capable of making eigenvalues equal for

]

a same k. However, for different values of k, the 29% , eigenvalues are different, which induces a

coding gain loss. A condition to satisfy the equality between the eigenvalues ﬁg]i is:

il 71%1 il ’Yi%/z
Yk, K = : 3.17
), 3o =S .17)

which depends on the binary labeling and the number of different bits in the considered pairwise
error probability.

For a given set of distances dy, ;, the expectation of ZZC:/{LC'S Zfﬁl 7;%71/(7%7%,5) is constant

for any choice of n. s. and the variance of Z{\ﬁl 'yg’ 1/ (nine,s) decreases when n, g increases. The
best coding gain is obtained when the variance of the eigenvalues is minimized. Thus, G $,1e,5,0pt
is an increasing function of n. g. For a given s, we should choose n. s = min(s,n.). The optimal
coding gain Gy nin(sn.),0pt 18 an increasing function of s. If s = nin,, the ideal coding gain is
achieved. Finally, we can surround the coding gain as follows:

VS, Ne,S gideal > gs,min(s,nc),opt > gs,l,opt > gl,l,opt = gbf (3-18)

If, for any pairwise error probability, the error correcting code and the mapping are designed
to allow Gyt >~ Gjgeai, the linear precoder optimization is useless from a coding gain point-of-view.
However, such an optimisation for any pairwise error probability is tricky, indeed intractable.
Furthermore, the first objective of linear precoding is the diversity control, which has a high
influence on the performance even at low FER (1072 ~ 10~3), especially for low diversity orders.
Thus, precoding is often useful in the BICM structure.

Example of ideal coding gain with a 2 x 1 quasi-static MIMO channel
In order to illustrate the role of the linear precoding in the coding gain optimization, we con-
sider a 2 x 1 quasi-static MIMO channel, a pairwise error probability between two codewords
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Figure 3.8: Coding gain for unprecoded 2 x 1 quasi-static MIMO channel
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Two time periods linked by the precoder Two time periods linked by the precoder

Figure 3.9: Coding gain for precoded 2 x 1 quasi-static MIMO channel, s = 2

separated by a Hamming distance w bits.

Fig. 3.8 represents the distribution of the two +? and 73 values over the two transmit an-
tennas and on two different time periods. This illustrates the factorization of the distances into
the v values. The instantaneous coding gain is equal to v1y2. Suppose that a linear precoder
spreads the value v; over two time periods as presented in Fig. 3.9 and two transmit antennas
dividing the power in two equal parts 42/2. The average value (v3 + 73)/2 is transmitted on
each antenna, the coding gain is optimal and equal to (72 + ~32)/2.

For example, consider a BPSK modulation and a pairwise error probability with Hamming
weight 3. With optimal linear precoding, the ideal interleaving provides for example 77 = 2 x 22
and 73 = 1 x 22. With optimal linear precoding, we have v = 75 = (2 x 22 + 1 x 22)/2. The
ratio between the two instantaneous coding gains is equal to \/% which predicts a gain of 0.26
dB using linear precoding. If w = 5, the coding gain becomes 10logy(1/25/24) ~ 0.09 dB.
If w = 11, the coding gain becomes 10log;y(1/121/120) ~ 0.02 dB. The higher the Hamming
weight of the pairwise is, the less the difference between the factorized distances is and the less
coding gain is; because the xj values are higher.

If we show the coding loss between an ideally precoded scheme and an unprecoded scheme,

we have
Y242
VAN (3.19)
Y172 vV1—a2 '

where 77 = <V%2ﬁ) (14 a) and 73 = (@) (1 —«). The variable a denotes the degree

of difference between 73 and 73. Assuming an odd Hamming weight w, the ideal interleaving
condition supposes that the number of difference bits transmitted on each of the two antennas
is (w—1)/2 and (w + 1)/2. and o = 1/w. Fig. 3.10 illustrates this coding loss for n, = 2
and n, = 4. We observe the coding loss for w = 3, w = 5, w = 7, w = 9 which respectively
corresponds to a = 1/3, « = 1/5, « = 1/7 and a = 1/9. We can observe that the higher w is,
the less is the difference between the ideal coding gain and the coding gain obtained without
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Figure 3.10: Coding loss between unprecoded and ideally precoded systems. n; = 2, n, = 1,
ne = 1 and BPSK input. o measures the degree of difference between 7?2 and ~3.

linear precoding is. If w is even, the ideal interleaver leads to the equalization of 43 and ~3,
there is no supplementary gain to be provided by the linear precoder.

Moreover, we can notice that all these coding gains depends on the geometrical norm para-
mater n.gsnin,. We can expect larger coding gains provided by linear precoding when the
diversity order collected at the detector is high.

We can conclude with the two following points:

e The coding gain given by a linear precoder increases with the diversity order.

e The coding gain given by a linear precoder decreases with the Hamming weight of the
pairwise error probability.

Now, we should focus on the creation of linear precoders that maximize the coding gain for
a given s.

3.2.2 A class of linear precoders

The index ¢ denotes the t-th channel realization in the spreading matrix. Property 3.12 implies
that two matrices M El] and M,Etﬂ have the same eigenvalues. A sufficient condition to satisfy

[

the equal eigenvalues is V(t1,t2), M,Em = Rtl7’52*M,:2]}3tl7'52 where R'"2 is a unitary matrix, for
example a rotation. This directly induces that V(t1,t2), 5’ l[tﬂ =9 l[tQ}Rtl’tQ. The sub-part Sl[tl]
sees a quasi-static channel, spread by a factor s’ = s/n.g. Assume that s’ is an integer, divisor
of ns. We conclude that it is sufficient to design the first sub-parts of the precoder matrix rows
for a quasi-static channel and rotate it to compute the other sub-parts. Furthermore, any choice
of R'"*2 Jeads to the same performance because the eigenvalues remain unchanged, the condition
simplifies to [|5'[1]| = |51
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Let us now set the index ¢ and optimize the equivalent precoder over the quasi-static channel
diag (H [t}[l]’ o Hy (Al ]>. If all the eigenvalues of M. ,Et] M lgﬂ* are equal, M ,Lﬂ is a weighted unitary

matrix, so is M [£}+ and

Nt Nt
MU = pl gl = SViVie=Y" AR RCs (3.20)
=1 =1

The s’ x n; matrix S’ l[t] given by

Gl
i
S
s =1 (3.21)
Sl[t][S’}
We get
Ni Ny s’
1%t #][i]* o[t
Z%%,zsll[] S/l[] _ Z%il ZSZ[ 1[i] Sz[ 1[4] (3.22)
=1 I=1 i=1

The matrix Slm[i]*Sl[t][i] has a rank equal to 1 and the matrix Zflzl Sl[t”i]*Sl[t”i] has a maximal
rank s’. It is impossible that each eigenvalue equals Zfﬁl ’Y}% 1/Mine,s as required to achieve the

optimal coding gain. However, in order to insure that M [ﬂ [t]* has a rank n; and that the
eigenvalues are the most equal as possible, we group ss’ Values ’ykJ together and associate them

to one of the ny/s’ group of s’ eigenvalues: Denote Slm E1U the j — th sub-part of size s’ of Sl[t} .
Denote {l2,l1} the index of the (Il — 1)ss’ + l3-th row of S, where Il € [1,n:/s'],l; € [1,s5].
Assume that 55} [l} } has only one non-null sub-part in position [, i.e.,

it S =10,....0 (3.23)
we have
nt/s ss’
[t]* rlt] _ glllx gl
Z'Vkls/ S Z Z%{lall}z (o} (Il } (3.24)
=1 lo=111=1
L i][l2] [ [i][l2]
* tz
- Z nyk {l2, 11}912 (Z S{lg,ll}? {l2, 11}2»> (325)
lo=1l1=1

where ©;,(A) is a block diagonal matrix with only one non-null block A in position /3. Now,
assume that © is an s’ x s’ scaled unitary matrix, we get O0* = ©*0 = Zflzl ©;0; = Iy where
0; is the i-th row of ©;. We choose Sg] [Z%U}Q} as the i-th row of an s’ x s’ unitary matrix. Using

12][12]
IS [t 1[I2] HQ

(o} I- = 1/s, we get:

N¢ ne/s’ ss’
ZW}?,IS/z[t]*S’y} = ZZ%{M} < ) (3.26)

=1 lo=1 ;=1

1 SS )
— ; Z dlag (’Yz’{l’ll}_[s/, e 77}3,{nt/8',l1}‘[5l) (327)
l1=1
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which leads to

SS
/. / [t] i 1 2
b S/ i <8 D, yerrs = 5 2 Vi) (3.28)
=1
The random variables 'y]% {Ioa} AT€ independent identically distributed for different values of I3
and lo, the coding gain is

!
—s'ne sn
/ c,STr
Ne/Ne,s Nt /s ss’ ’

2
g =e | I [ {3 (3.29)

k=1 1l=1 \[1=1

For a given realization {dy, ..., d,}, the sum ch:/lnc,s Z?;ﬁ leflzl V2 (1>, 18 constant. This

2
. . . ro . .
induces that for a given s, the variance of 22915:1 % remains unchanged with n.g. Such

precoders provide the same coding gain for any choice of n. g but does not achieve the optimal
coding gain for any values of s’. The averaging is made over ss’ different values whereas the
optimal coding gain necessitates an averaging over sn; values. However, if ss’ is sufficiently high,
the obtained coding gain approaches the optimal coding gain. If s’ = n;, the complete spatial
transmit diversity is collected by the detector and the optimal coding gain is achieved.

Proposition 2 Dispersive Nucleo Algebraic (DNA) Precoder Let S be the Ny x Ny pre-
coding matrix of a BICM over an ng xn, MIMO n.-block fading channel. Assume that S precodes
a channel block diagonal matriz with s blocks and n.gs channel realizations. We denote s the
spreading factor, Ny = sny and s' = s/n.g. Let Sl[t] be the t-th sub-part of size Ny/n.s of the
[-th row of S. Let Sl[t][l] be the i-th sub-part of size ny of Sl[t]. Let Sl[ﬂ[z]m be the j-th sub-part
of size s’ of Sl[t][l]. The sub-part Sl[t]m]] is called nucleotide. The linear precoder guarantees full
diversity and quasi-optimal coding gain at the decoder output under maximum likelihood decoding
of the BICM if it satisfies the two conditions of null nucleotides and orthogonal nucleotides: (for
allt € L,nesl,i € [1,8],l1 € [1,s5],l2 € [1,n4/8] and {l2,11} = (la — 1)ss" +11).

Vi # a5 € [1,n/8], SE]Q[Z%EJ}! = 015y Null Nucleotide condition
Vil £4,1 € [1,5] Sl gl _ 155 _ 3y Orthogonal Nucleotide condition
? ? ’ {l2,ll} {lg,ll} S g

(3.30)
where 0(0) = 1 and ?(z # 0) = 0.

Let us take for example n; = 4, n. s = 1 and s = 2. A DNA matrix would have the following
form :

1))

[ (W2 :
gl 0 gl 0
fﬁﬁﬂu ‘fﬁ’éﬂu
SF’?’% 0 SW% 0
5{111 [i}m 0 5{11} [42}[1] 0
0 S@’gﬂz] 0 SEQ}’[; 2
o sl 0 sl
1[1][2] 1][2][2]
. O 5{2,4} 0 5{2,4} i
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Now, let us consider a linear precoder matrix S that satisfies proposition 2. Define H ,?} an
ss’ x N, matrix defined by the extraction of the rows of H}, corresponding to the i-th block of
s’ transmit antennas. More precisely, we extract every n;/s’-th block of s’ rows of Hj begining
with the i-th block

Vi e [1,n¢/s'],Vj € [1,5],Yu € [1,s],v € [1, N,], H,Ei}(j—l—us',v) = Hy(j +ung +is’,v) (3.32)

Denote St} the ss’ x ss’ matrix defined by the extraction of every n;-th block of s columns of
S begining with the i-th block and the i-th block of ss’ rows. It can be shown that

st

S g

SH; = (3.33)

Gine/s'} HéNt/Sl}

which means that the matrix S independently precodes the n;/s’ blocks of transmit antennas.
Thus, the optimization may be split into n;/s’ independent optimizations of linear precoders
for s x n, MIMO n, g-block fading channels with linear spreading factor s. As s = s'n. g, full
space-time spreading of the s’ x n, block fading channel is performed.

We can notice that, at the decoder input and under the ideal interleaving condition, the
linear precoder at the transmitter end and the detector at the receiver end allow the conversion
of the n; x n, MIMO channel with n. independent blocks into a 1 x sn,, SIMO channel with
nene/s independent blocks. The independence of the blocks is provided in two steps:

1. The null nucleotides structure of the linear precoding matrix multiplexes the transmitted
symbols on the n;/s" different blocks of s’ antennas.

2. The orthogonal nucleotides structure of the linear precoding matrix provides full diversity
and a coding gain increasing with the spreading factor.

All results from the field of error correction coding over block fading channels can be directly
applied without any modification to the new 1 x sn, SIMO channel with n;n./s independent
blocks. Moreover, we will see that an optimized interleaver achieves ideal interleaving condition
only if the singleton bound on the diversity order is equal to the full diversity order. Clearly, the
space-time spreading factor s is a parameter that decides which percentage of the space-time
diversity will be exploited individually by the detector and the decoder. This last remark will
be useful to determine the minimal s that allows to achieve ideal interleaving when the singleton
bound on the diversity order without linear precoding is a limiting factor.

3.2.3 The genie method design criterion for full spreading linear precoders
(8 =ny)

A linear precoding design criterion based on the genie performance optimization at the detector
output was proposed in [92]. When a genie gives a perfect feedback of the mn; coded bits in
the APP detector computation, we already saw that the performance is obtained by averaging
all the pairwise error probabilities obtained when changing only one bit out of mn;. Denote
d; the distance of the BSK. Assume that the BSK is transmitted on antenna [, the asymptotic

expression is
n - r>\v
genie No—0 1. N 2N0 .

v=1
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where {d,} is the set of eigenvalues of d25’ l[t]*S’ l[t] for all t and Nj is the number of non-null

eigenvalues. In the best case, there are s non-null eigenvalues and the coding gain is maximized
if they are equal. First, a sufficient condition to have an equality between the eigenvalues of

S’yl]*S’lm nd S’[tQ]*S’[tQ] ||S’[tl]|]2 157} 21112 Then, all cigenvalues of S’[t] S’[t] are equal if

S’Eﬂ is a unitary matrix, which leads to the following proposition:

Proposition 3 A linear precoder achieving a diversity order sn, with mazimum coding gain at
the detector output must satisfy the following conditions under perfect iterative APP decoding of
the space-time BICM:

1. The n.s subparts of the rows in the sny X sn; precoding matrix have the same Euclidean
norm

2. In each of the n. s subparts, the s subparts (nucleotides) are orthogonal and have the same
Fuclidean norm

If s' would not be equal to n, this proposition would not be optimal in terms of maximum
likelihood performance. However, this is a first step to satisfy proposition 2. As s’ = ny,
propositions 2 and 3 are equal, so we can use the separation of the optimization of an N; x N;
linear precoder with spreading factor s into n;/s’ optimizations of full spreading s’'s x s’s linear
precoders. The optimization of S is now decomposed into two steps

1. Apply the genie method to design a full spreading s’s x s’s linear precoder for s x n,
MIMO channel with n. s blocks, satisfying proposition 3

2. Place the non-null sub-parts in S as described in proposition 2.

3.2.4 Modified cyclotomic DNA rotations: Full spreading optimal linear pre-
coder

It was shown that if a full spreading is processed by the linear precoder, i.e., if s = nin.g,
proposition 3 is sufficient to achieve optimality and has the great advantage to be more intuitive.

We can see the block fading MIMO channel is an ergodic MIMO channel in which the differ-
ent realizations are those of a quasi-static MIMO channel. Let us define A as a block diagonal
matrix, the block of which have size n? x n? . Any linear combination of the lines of the N; x N;
matrix A satisfies proposition 3, this implies that for all N; x N; matrices M, the matrix S = M A
satisfies proposition 3 too. The other condition to satisfy proposition 3 is the norm equality be-

tween the considered parts of a same row.

We have shown that any full spreading matrix that satisfies proposition 3 achieves the same
genie performance at the detector output. In practice, the genie limit and the ML performance
when using iterative joint detection and decoding are never reached. However, the performance
can be close to both limits if the convergence quality is good. The system convergence is very
dependent on the first iteration performance at the detector output which has the same behavior
as the lattice decoding ML performance. Thus, our goal is to construct S both satisfying propo-
sition 3 and achieving good uncoded ML performance. In general, rotations give good lattices
performance.

Denote A[ Il the v-th coefficient of A[ iy , the I-th row of A. Let us focus on the particular
case in Wthh all non null N;/n. s- lengthed parts of the rows of A are equal, i.e.,
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V(L T) € [L, N V() € [Linesli € [Lng, AP = Af I (3.35)

A can be decomposed into two matrices A and U (A = UA), where A is a diagonal matrix
and U is a block diagonal matrix where each block is an n; X n; matrix filled with ones. In this

particular case, the diagonal elements are Aq[)i] g satisfying

Vi,v, Al = Al (3.36)

i.e., the coefficients of the n?-lengthed parts of the first row of A are put on the diagonal of
the matrix and repeated n.g times. Matrix A has of course non-full rank. We now apply the
matrix M to obtain a space-time spreading matrix S = MUA, being a rotation. Thus, S has
to satisfy SS* = MUAA*(MU)* = I. For example, if A and MU are rotations, the equality is
satisfied. Based on this method, we will now explicitly describe the space-time spreading matrix
construction using cyclotomic rotations.

Choosing A as a rotation implies that the norms of its diagonal elements are equal to 1. The
diagonal of A is built from the n. s-fold repetition of one block with size n? satisfying proposition
3. This block may be constructed as the concatenation of the lines of an n; x n; rotation matrix.
Furthermore, this rotation must have all elements with unit norm, in order that A has diagonal
element norms equal to 1. Cyclotomic rotations satisfy this property.

An n x n cyclotomic rotation © is defined by [12][13]

Qi = exp <2j7r(i -1) ((I)ll(%) + E; 1)) (3.37)

where ®(.) is the Euler’s function. The non-null diagonal coefficients A are defined by:

Al = exp <2j7r(é — [@—1227%) + U; 1D (3.38)

The matrix S = MUA satisfies the conditions of orthogonality for any choice of matrix
M. Since S has to be a rotation, the choice of M is restricted to matrices satisfying BB* =
MUU*M* = I. Taking B as a rotation matrix, BA must satisfy proposition 3, i.e.,

N Il Bl 1 v—1
WL, 1),i 47,3 BB exp (zmu—z’) [q)l(m)+ - D=0 (3.39)

v=1

which is satisfied if

v(iei Ao, BB = BB (3.40)

U

The property (3.40) is satisfied by cyclotomic rotations. Indeed, if B is an N; x N; cyclotomic
rotation, the coeflicients of which are

(t =D+ (i = Dni +v - 1}) (3.41)

[0 _ (] — 1
By," =exp (2]77(l 1) [@1(2]\@ + N,

we have

[{)0i] pltllE]* _ e 1 (i — i)
B, B, = =exp (2;7?([ 1) [@_1(2]\7,5) + N (3.42)
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which is independent of v.

Finally, we obtain a modified cyclotomic rotation given by S = BA, the coefficients of S
being equal to

St (i—)nt(t—1)n2 =
%i,e;; (12)]‘:([2111 i) <‘1>*1(12Nt) + (tfl)nf+(]i\[:1)nt+v71) (-1 (m n v_l)D (3.43)

\/% is a normalisation term. Let S(n¢,n,,n.g) be the modified cyclotomic rotation designed

for ng xn, MIMO block fading channel, assuming that the precoder sees n. g channel realizations.

In order to confirm the choice of the modified cyclotomic space-time matrix, we will describe
another construction. We have already said that cyclotomic rotations are good candidates for
spreading matrices because of their norm properties, their easy construction and their perfor-

mance as lattices in the ML sense. Let © be an N; x N; cyclotomic rotation, it does not satisfy
[t][]
the property 3. We apply multiplicative correction terms e*™ v to © coefficients so that ©

satisfies proposition 3.

e 1 . _ 1 v—1+ G —1)n + (t — l)n% t[4]
O, = N exp (2j7r [(l 1) <<I>—1(2Nt) + N +ap, (3.44)

First, © has to be a rotation

vi, U thv t]HG[t”Z]* = ( 7l/)

o Ztm L exp <2J7T [(l By (@_1(12%) " v—1+(i—13\7;:+(t—1)n?) + a[t][] az[f],q[j]D — (L, 1)
(3.45)

which is satisfied if V(Z,1"), al[ LH = a}f]g].
Since each coefficient is a complex exponential, the norm properties are satisfied, the last property
to be satisfied is the orthogonality between the subparts which leads to

. nt

), — ]- 7 z’ ..
exp <2j7r(l — 1)1 ! > Z - exp (2j7r(al[t1)[] al[ti[ ])> =0(i,7") (3.46)
v=1

i

[][])

The equality is satisfied if exp(2jra is chosen like the phase coefficient (i,v) of an ny x ny

cyclotomic rotation, i.e.,
Clogs 1 v—1
-1 A4
o, =(G—-1) <<I>_1(2nt) + o ) (3.47)

We directly obtain the same modified cyclotomic matrix S(n¢,n,,neg), which gives full
diversity and optimal coding gain at the detector and decoder output under ideal interleaving
assumption.

3.2.5 Non-full spreading quasi-optimal linear precoder: DNA cyclotomics

Proposition 2 gives the design criterion for optimal full and non-full spreading quasi-optimal
linear precoders. We first choose an quasi-optimal linear precoder designed for a full interleaving
of an s’ x n, MIMO block-fading channel with n. ¢ channel states in each precoded matrix. For
example, let us choose S(s',n,,n.g) defined in 3.43. Then place n;/s’ times each subpart of
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S(s',nr,nc,g) in the precoding matrix in order to satisfy 3.43. This leads to the quasi-optimal
linear precoder for any parameters ns, n.s and s. Let P(n¢, ne g, s) denote such an quasi-optimal
linear precoder (s’ = s/n. g and N} = s's), its coefficients are equal to

Vip € [1,n/5'],Vl € [1,s5'],Vt € [1,n.s],Vi € [1,5],Yv € [1, 5],
S(1—1)s"s+11 v+ (2 —1)ne /5" +(i—Dng+(t—1)s'ng =

1 . 1 v=14(i—1)s'+(t—1)s"? . 1 v—1 (348)
o (20 [0 =) (5w + w; )+ (= 1) (= + ) |)

and 0 elsewhere.

~
V)

3.2.6 Observations of the quasi-optimal precoder under non ML performance

We have presented quasi-optimal linear precoders providing good coding gain and full diversity
ML performance under ideal interleaving. However, the ML decoder of the global Euclidean code
does not exist and we process iterative joint detection and decoding. Proposition 2 is satisfied
by an infinity of matrices, all providing the same ML performance. We can wonder what is the
performance behaviour after only one iteration, i.e., when no feedback is given to the detector.
In this situation, even with the ideal interleaving condition, the erroneous bits are not necessar-
ily transmitted on different time periods. Let us consider one time period and assume that we
observe two erroneous bits. First, if the bits are transmitted on the same symbol, the Euclidean
distance d changes but this does not affect the linear precoder optimization. Then assume that
the two bits are placed onto rows of S corresponding to two independent blocks of s’ transmit
antennas, the average performance is not modified thanks to the independence of the transmit
antenna blocks and to the unit norm properties satisfied by the sub-parts of the considered two
rows. Finally, if two or more rows corresponding to the same blocks of transmit antennas are
interfering, an optimization of the precoder following the Tarokh criterion should be done, under
the conditions presented in proposition 2. Simulation results show that the modified cyclotomic
rotation gives good uncoded ML performance, close to algebraic full rate space-time block codes,
thus we expect good performance at the first iteration of a joint detection and decoding process,
which has the two advantages of reducing the number of iterations necessary to achieve the near
ML performance and to provide good performance on non-iterative systems.

The optimization of the “first iteration” is one of the points to be treated in the near future.

3.3 A modified singleton bound for the linear precoding factor
choice

The full diversity nin.n, is collected by the detector when s = nsn., but unfortunately, the APP
signal detection has an exponential complexity in s. On the other hand, the BICM channel
decoder is also capable of collecting a large amount of diversity, but the latter is still limited by
the singleton bound [46][47][60]. Hence, the lowest complexity solution that reaches full diversity
is to draw advantage of the whole channel code diversity and recover the remaining diversity by
linear precoding. The best way to choose the spreading factor s of a cyclotomic rotation is given
by the DNA modified singleton bound described hereafter.

Let us examine the Nakagami distributions at the decoder input. The C decoder recombines
via an APP decoding algorithm the extrinsic probabilities produced by the MIMO detector, or
equivalently, their Nakagami distributed Euclidean distances when the genie is activated. The
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Nakagami distribution has order sn,. Recall that s = 1 when symbols are not precoded. In the
latter situation, it is trivial to show that the number of independent Nakagami laws at the de-
coder input is n.n;. In the most interesting situation, i.e., s-spread linear precoding with s > 1,
it is easy to show that the number of independent Nakagami laws given to the decoder is | "< |.
One property of the DNA linear precoders is to perfectly separate the precoding into ny/s’ sub-
channels of s’ transmit antennas. In this case, the number of indepedent blocks at the detector
output is exactly nin./s. Assume that DNA linear precoders are used until the end of the section.

The integer N, = nceny/s is the best diversity multiplication factor to be collected by Cg.
The length of a Cg codeword is L¢N¢ binary elements. Let us group LeNe/Ny bits into one
non-binary symbol. Now, Cg is a length N, code built on an alphabet of size 2Le¢Ne/No. The
singleton bound on the minimum Hamming distance of the non-binary Cp becomes Dy <
Ny — [NpyRc| + 1. Multiplying the previous inequality with the Nakagami law order sn, yields
the maximum achievable diversity order d,,,, after decoding,

dmaz < SNy L%(l — Re) + 1J (3.49)

where d,,q, is an integer. Finally, since d,,; is upper-bounded by the channel intrinsic diversity
and the minimum Hamming distance dj; of the binary code, we can write

NNy

dmazr < min (snr { (1-Re)+ IJ SNy snrdH) (3.50)

s
If dj is not a limiting factor (choose C accordingly), we can select the value of s that leads to
a modified singleton bound greater than or equal to n;n.n,. To do so, two necessary conditions
must be satisfied:

1. n¢ny is a multiple of s

2. s > Reneng

Proposition 4 Considering a BICM with a rate Re binary error-correcting code on an ng X n,
MIMO channel with n. distinct channel states per codeword, the spreading factor s of a DNA
linear precoder must be a divisor nin. and must satisfy s > Reneny in order to achieve the full
diversity ninen, and quasi-optimal coding gain. In this case, the ideal interleaving condition can
be achieved with an optimized interleaver.

The smallest integer s, satisfying the above proposition minimizes the detector’s complexity.
If Re > 1/2, then s,y = neny which involves the highest complexity. If Re < 1/(n.n;), no linear
precoder is necessary.
Table 3.3 and 3.4 show the diversity order derived from the singleton bound versus s and ng,
for n. = 1 and n,. = 2 respectively. The values in bold indicate full diversity configurations. For
example, in Table 3.3, for n; = 4, s = 2 is a better choice than s = 4 since it leads to an identical
diversity order with a lower complexity.

3.4 Interleaver optimizations

We present a new Bit Interleaved Coded Modulation (BICM) interleaver design which guarantees
a maximum diversity at the decoder output, when the channel has multiple antennas or more
generally multiple inputs, multiple outputs. The maximum diversity to be gathered is limited by
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nN\s|1 2 3 4 5 6 7 8
1 1
2 2 2
3 2 3
4 3 4 4
5 3 5
6 4 4 6 6
7 4 7
8 5 6 8 8

Table 3.3: Diversity order from modified singleton bound versus number of transmit antennas
n; and spreading factor s, for Rc =1/2, n, =1 and n, = 1.

mN\s| 1 2 3 4 5 6 7 8
1 2 2
2 3 4 4
3 4 6 6
4 5 6 8 8
5 6 10
6 7 8 9 12
7 8 14
8 9 10 12 16

Table 3.4: Diversity order from modified singleton bound versus number of transmit antennas
ny and spreading factor s, for Re = 1/2, n, =1, n. = 2.

the channel properties, the linear precoding spreading factor, the minimum Hamming distance
of the binary code and the singleton bound of the global code. The presented interleaver leads
to the concept of full diversity BICM since the system exhibits a predetermined diversity for all
the parameters of the considered block fading channel.

3.4.1 The BICM diversity with convolutional codes

On fading channels, the diversity of a coded modulation can be defined by the number of in-
dependent channel states affecting a codeword. More precisely, the diversity is the exponent
associated with the signal-to-noise ratio in the bit error rate expression.

We usually consider convolutional codes when designing BICM, because of their flexibility.
A transition in the trellis of a convolutional code is defined by a state, K¢ information bits at
the code input and N¢ coded bits at the code output. The code rate is R¢ = K¢/N¢. A path in
the trellis is equivalent to a codeword. The length of the path in the trellis is L¢ branches, i.e.,
a codeword has length L¢Ne coded bits. The protection of the information bits comes from the
code trellis structure since only predetermined transitions are allowed. However, some errors
occur when the noise makes at least one other path more reliable (in the Euclidean distance
sense) than the transmitted path. On binary symmetric channels, the most probable error path,
called minimum error path, has the smallest number of different coded bits from the transmitted
path. The number of bit errors in this case is equal to dgmin, the so-called minimum distance
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of the code (in the Hamming sense). We will call “neighbor path” a path in the trellis that
differs from the transmitted codeword exactly by dpmin bits. On fading channels, a neighbor is
a codeword minimizing the Euclidean distance. This is not always equivalent to minimize the
Hamming distance, but equivalence can be assumed to be an average behavior.

The maximum achievable diversity dq. is upper-bounded by the number of independent
laws generated by the channel nyn,n., the minimal Hamming distance of the binary code, and
the singleton bound of the global code:

el

Amar < min (snr H J (1—-Re)+ 1J S NNy Snrdein> (3.51)

3.4.2 Interleaver design criteria

A simple way to theoretically estimate the bit error rate is to use the union bound. This upper
bound is the sum of the pairwise error probabilities, it is dominated by the minimum error
paths. In order to be able to efficiently design the system, we make the optimistic assumption
that improving the dominant term of the sum will improve the global sum and that the gain
obtained on the union bound will also be obtained for the exact bit error rate.

Let us consider a neighbor in the trellis. It is defined by a block of ¢ N¢ coded bits, dmin
of which are erroneous (l¢ is the code constraint length). We can say that a good protection is
given by the channel if these coded bits see a maximum number of independent channel states.
This is the fundamental concept of diversity exploitation. The minimum Hamming distance
of the code is chosen to be non-limiting. The singleton bound is a limiting factor: it can be
increased by judiciously choosing the linear precoding. Without this space-time spreading, the
interleaver should be designed to achieve the singleton bound diversity order.

Considering a general n; x n, MIMO block fading channel with n. blocks, we collect a min-
imum diversity equal to n, at the detector output, and, since the decoder cannot degrade per-
formance, the reception diversity n, is always obtained at the decoder output. The challenge is
to collect the transmission diversity given by the n; transmit antennas and the n,. channel states.

In order to achieve the full diversity, the erroneous bits of an error event should be equally
distributed over all the transmit antennas and channel time realizations. Moreover, the interfer-
ence of these bits in the time periods should be limited to first enhance the diversity and then
the coding gain.This will be explained in the following.

Let us consider an error event with w erroneous bits. Assume that the maximum diversity
order is dpae. If W > dipaz, we can expect to achieve full diversity if at least dj,q. bits over
w see the d,,q, independent fading random variables. In a time period k where more than one
erroneous bits are transmitted, the transmitted and interfering points are called xp = zpHp
and zj, = 2 Hi. When computing ML decoding or APP detection, we are interested by the
equivalent BSK defined by the two points xj and zj. It was shown that the vector d?'i%,z;’j)ffk
has n, independent circular symmetric Gaussian variables components. We can conclude that
even if the erroneous bits are transmitted on different antennas, the generated diversity is n,.
However, if the erroneous bits are transmitted on different time periods and see different fading

random variables, a higher diversity is achieved.




3.4 Interleaver optimizations 63

For a given diversity, the coding gain is given by the distance between the transmitted code-
word X and the considered erroneous codeword X'. If all the w erroneous bits are transmitted
over j different time periods, the number of non-null components of X — X’ is n,.j. On average,
the distance is maximized if j = w. An optimal coding gain is obtained if the Gaussian variables
components of a multi-dimensional vector have same variance. We can approach such a property
by uniformly placing the erroneous bits over all the random variables.

Moreover, if no interference is observed between the erroneous bits in the time periods, the
situation is very similar to the genie condition. In the case of a sufficient number of independent
laws, we can use optimized mappings that exhibit a large amount of coding gain under perfect
convergence of the iterative processing. In such mappings, the bits are not equally protected,
the interleaver must then distribute the bit positions over all the available fadings. Such remarks
lead to the fundamental design criterion of the interleaver:

Proposition 5 In order to take the advantage of the available diversity and coding gain given by
the concatenation of a BICM and a block fading MIMO channel, the interleaver should uniformly
place consecutive bits on all the channel time realizations, transmit antennas, bit positions of the
mapping and prohibit the interference of these consecutive bits in the time periods.

We will now build, step by step, an interleaver that satisfies such conditions. First, we will
build an interleaver that enables to achieve maximum diversity on an n; X n, quasi-static MIMO
channel with BPSK input. Then, we will extend it to the case of higher spectral efficiency
modulations and to block fading channels with n. channel states.

3.4.3 Interleaver design for quasi-static MIMO channels with BPSK input

On quasi-static channels, only one channel realization is experienced by a codeword. Let us
consider an error event in the code trellis where dg coded bits differ from the transmitted code-
word. All error events are supposed to have a non-null probability, the interleaver should be
designed for any of them. Let us ensure that L;N¢ successive coded bits, L;N¢ being the length
of an error path with L; branches, are transmitted by all the n; transmit antennas in the same
proportion. The maximum transmit diversity is upper bounded by ny, dgmin and the singleton
bound.

The singleton bound cannot be improved with a designed interleaver. However, we will de-
sign it in the aim of achieving the n;n, diversity, keeping in mind that the maximal achievable
diversity is upper-bounded by the singleton bound.

Another condition to optimize the performance is the non-interference of the erroneous bits
in the time periods. In the maximum-likelihood sense, two interfering erroneous bits can either
degrade the diversity or coding gain. When considering the iterative processing, a time period
corresponds to a channel node in the graph. Ideally, the considered bit probabilities should be
independent, practically, coming from branches far away from each other in the trellis. These
conditions lead to a design criterion for quasi-static channels, well known in the space-time cod-
ing theory as the "rank criterion” and applied here to the BICM interleaver.

We want to design an interleaver ensuring that consecutive bits are mapped on different
symbol times over all the transmit antennas. To achieve this property, we demultiplex the L¢ Ne
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Figure 3.11: NRNSC 7,5 trellis

coded bits into ny vectors of length Lo Ne/ng. Each of the ny sub-frames will be transmitted on
a predetermined transmit antenna. However, the demultiplexing step is not simply processed
selecting every n; bits. Indeed, we can observe on Fig.3.11 the trellis of the half-rate, four
states NRNSC 7,5 code. In bold lines, we drew the error event leading to minimum weight
(dggmin = 5) and error events maximizing the number of branches with a constant weight (e.g.,
6 and 7). Such error events are good candidates to frequently occur at high signal-to-noise ratios,
and we remark that the error positions (represented by a ”1”) are not equally distributed on the
5 errors over 7 would be transmitted on the first antenna with a classical demultiplexing scheme.
In order to equally distribute the erroneous bits on the n; antennas, for all convolutional code
parameters, we apply the demultiplexing:

0<i<ng,0<j<LcNc/n, Vi(j) =V ((i + j)mod ns + jns) (3.52)

where V' is the codeword to be demultiplexed, V; is the i-th demultiplexed frame, and .mod .
the modulo operator. This ensures the uniform distribution of the erroneous bits over the n;,
transmit antennas all along the transmitted frame. Once the n; frames are extracted, each frame
is interleaved separately and transmitted over an antenna.

We now have to limit the erroneous bits interference in the time periods. First, we can
assume that only simple error events occur. If each of the n; frames is interleaved by a different
interleaver, we cannot control the interferences because of the randomness of each interleaver.
On the contrary, if the same interleaver is used, the n; consecutive bits are in the same positions
of the interleaved frames, we can limit the interference by sliding each frame by one bit position
and transmit all the frames serially on their associated antenna. This ensures that bits in the
same position in the interleaved frames will not be transmitted in the same time period, but
does not guarantee that the considered L;N¢ successive bits are transmitted over different time
periods.

To satisfy this strong condition, we use a particular S-Random interleaver which guarantees
that any L successive bits in the interleaved frames are not transmitted during the same block
of n; time periods. If we consider that bit position i is placed at position I1s(7) by the interleaver
II;, we should have

0<j<LeNe/m—Lp,0<i< Ly, {HH—(J)J £ LMJ (3.53)
t

nt

We find such an interleaver by choosing it at random until the conditions are satisfied.

Each of the n; frames V; are interleaved to V;:

0<i<ng,0<j<LeNe/ng, V/((5))=V;(j) (3.54)
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Figure 3.12: Basic interleaver design for N; inputs, a frame size Sy and a separation Lj

Then, the bits of the interleaved frame V; will be placed in another sub-frame V;”, before the
serial transmission on i-th antenna, with the following method: Blocks of n; bits of V; are
transmitted in the corresponding block of n; time periods, with a time slide equal to 7 and a
modulo n; to stay in the block of n; time periods (cyclic shift of ¢ positions in a block of size

’Tlt).

0<i<mn,0<j <LeNe/ni,0<js<ny, V((i+ jo)mod ny+ jing) =V (jo + jimu)
(3.55)

3.4.4 Basic interleaver construction

In the following, we consider a basic interleaver Zy, g, 1., designed for Ny channel inputs, a frame
size St and a separation L;. It should satisfy the conditions presented above for diversity and
coding gain optimizations. It will be used again in the following, this explains the introduction
of the general notation Zy, s, 1,- However, in the previous subnewsection, we considered the
ZIn, LeNe,L; interleaver.
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In Fig. 3.12, we present the basic interleaver with N; = 4 channel inputs, the bits of the
codeword are colored in 4 different colors, each one corresponding to a specific channel input.
This illustrates the way the codeword is demultiplexed into N; vectors V;, ¢ = 1,..., Ny, of
length S7/Nj, as presented before. Step 1 corresponds to this demultiplexing. Each vector V; of
size S;/Np is then interleaved by the S-random interleaver in step 2 into a vector V. In step 3,
we build the N; x S;/N; matrix as the concatenation of Sy matrices of size Ny x Ny. The first
row of an N; x N matrix contains the Ny first values of the vector V{ for channel input 1. The
second row contains the first N; values of the vector V{ for channel input 2, shifted by 1 position
modulo N;. Rows 3 and 4 are built from vectors V4 and VJ similarly. All S;/N7 matrices of
size N1 x N are constructed the same way using the following bits of the Ny vectors V.

In this last step, we see the space-time distribution for the N; = 4 first bits of each interleaved
frame, each channel input is represented by a row. We can notice that the cyclic diagonal thread
on the space-time domain in each block is very similar to the threaded algebraic space-time codes.

Finally, the Ny x S7/N; matrix is transmitted on the channel with a space-time repartition
on transmit antennas and time periods given by the rows and columns, respectively.

In a block of Nj bits transmitted on one of the Nj channel inputs, the bits are separated
by more than Lj bits in the demultiplexed frame, which correspond to a bit separation equal to
Ni(L;—1)+ Lymod Ny in the codeword. The cyclic diagonal repartition of the bits in one block
of N; time periods guarantees that the bits contained in one symbol period, i.e., in 1 column of
the final matrix, were originally separated by Nj(L; —2) 4+ Lymod N; + 1 bit positions before
interleaving. Moreover it guarantees that Nj(L; — 2) + Lymod Ny + 1 consecutive bits before
interleaving are equally distributed on all transmit antennas and mapped on different symbol
periods. Practically, the parameter L; of the S-random-like interleaver should be maximized in
order to take the long error events into account.

3.4.5 Interleaver design for quasi-static MIMO channels with M-ary input

We have presented an interleaver for MIMO quasi static channels and BPSK modulation. This
interleaver tries to exploit the maximum diversity and to limit the interference of erroneous
bits in the time period. The extension of such interleavers is straightforward for higher spec-
tral efficiency modulations if we only consider the diversity criterion. However, it has been
shown that labeling optimisation allows high coding gain under iterative decoding on ergodic
channels. In some cases, there is a sufficient transmit diversity order in the channel to exploit
the mapping gain, but the less the diversity order is the more the interleaver has to be optimized.

When the genie condition is satisfied, only one bit is changed in a time period, so the labeling
can be optimized to maximize the average distance of the equivalent BSKs. In order to take
advantage of the coding gain given by the optimized labeling, we have to design the interleaver
such that a genie-like situation occurs.

Erroneous bits in an error path should be dispatched on different time periods and equally
transmitted over all the transmit antennas and bit positions. Moreover, the transmitted bits
should not interfere in the time periods. These conditions are satisfied by the Z,.,, r.n~c,L;
interleaver.

It is clear that the diversity is more important than the coding gain. If an error event has a
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Hamming weight w < mny, all the sub-frames mn; cannot carry an erroneous bit. The n; first
rows of the last interleaver matrix should be transmitted on the n; transmit antennas and on
the first mapping bit, for example. Then the second block of n; rows will be transmitted on the
second mapping bit, and so on.

3.4.6 Application to linear precoding

When a linear precoder is used to recover a part of the transmit diversity, the new channel
matrix SH has sn; X sn; rows and columns. If at most one erroneous bit is observed on each
time period, optimal linear precoders have been optimized in 3.2. We have shown that the
precoded channel output is divided into independent blocks, we modify the order of the rows as
follows (s = s/n..s and N} = §'s)

Vig € [1,n:/s'],Vl; € [1,s8],Vt € [1,n.s],Vi € [1,5], Vv € [1, 5],
Sy —1)ne/s'+lo,v+(l—D)ne /o' +(i—1)ne+(t—1)s'ne = . (3.56)
1 . 1 v=14(i—1)s'+(t—1)s’ . 1 v—1 .

e (20 [ = 1) (i + N )+ = (st + %))

and O elsewhere.

Now, the n;/s’ consecutive rows of S lead to independent row vectors S;Hy, that look like a true
multiple antenna channel. In this case, the interleaver Zgyy, r.N, 1, is designed for diversity
and gain exploitation. As presented in the previous subsection, the sn; first rows of the last
interleaver matrix will be transmitted on the first mapping bit, and so on.

3.4.7 Interleaver design for block fading MIMO channels

For block fading channels, n. different channel realizations occur during the codeword. Note that
ne = 1 corresponds to the quasi-static context and n., = LeNg/ny to the ergodic context. We
directly apply the two design criteria described above to generalize the conditions that should
be satisfied by the BICM interleaver: In order to take advantage of the transmission and time
diversity given by the transmit antennas and the n. different realizations of a block fading MIMO
channel, the interleaver of a BICM should place consecutive bits on different time periods and
equally distribute them among all transmit antennas and all n. channel realizations.

The n. channel states are grouped together into blocks of length LeNe¢/(nen:) time periods. We
will extract n. sub-frames from the codeword , each sub-frame will be transmitted on one of the
n. blocks, and only see one channel state. We can interleave each sub frame with the interleaver
optimized for MIMO quasi-static channel to exploit the n; transmit antenna diversity.

The demultiplexing of the n, frames is done in the same manner as for the transmit antenna
separation for the same reasons.

0 <ip, <ne,0< 4 < LeNe/(nene), V" (j) =V ((in, + j)mod n. + jne) (3.57)

This demultiplexing/interleaving is sufficient to exploit the time diversity. Indeed, there is no
interference between the symbols applied to the different channel states in opposition to symbols
transmitted on different antennas, bits positions and time periods.

3.4.8 Interleaver design: algorithm

We will present the algorithm for an easy implementation of the interleaver designed for a
2™ — QAM, precoded by an sn; X sn; matrix, and transmitted on an n; x n,, MIMO block fading
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channel with n. blocks. A codeword contains LeN¢ coded bits, each sub-frame is Lo Ne /(smneny)
bits long. Let us first consider the pseudo S-Random interleaver for each of the smnn. sub-
frames. It should guarantee that any L; successive bits in the interleaved sub-frame are not
transmitted during the same block of smn; time periods. If we consider that bit position i is
placed at position Il4(7) by the interleaver Ils, we should have

smny smny

0<j < LeNe/(smny) — L, 0<i < Ly, {Hs(j)J ” {Hs(j + Z')J (3.58)

We can find such an interleaver by choosing it at random until the conditions are satisfied. Let
Vin, a vector of L¢Ne coded bits, be the input of the interleaver, and V,,; the output vector to
be given to the mapper.

Algorithm 1: Optimized interleaver for precoded Ny x N, MIMO channel with n. blocks,
2Mm-QAM
input : A codeword Vj, of size LeNe coded bits.
output: A frame V,; of size Le N¢ bits, ready for serial to parallel and mapping
conversion for transmission on the n; transmit antenna.

init : L1 — Lch/nc, L2 — Ll/(mNt)

1 fork=0ton.—1do

2 for : =0 to mN; — 1 do

3 for j=0to Ly — 1 do V5 (j) < Vin (7 + (ine + k))mod mNyn. + jmN¢n.)
4 for j =0to Ly — 1 do V3 (ILs(j)) < V2 (4)

5 for j =0to Ly/(mN;) — 1 do

6 for v =0 to mN; —1 do

7 L L Vi (v +i)mod mNy + jmNy) «— V3 (v + jmNy)

8 for j =0to Ly —1do V5 (i + jmNy) < V4 (j)

9 for i =0to L;/(mN;) —1 do

10 for j=0to N;—1do

11 foru=0tom—1do

12 L L Vout (u+ jm + imNy + kL1) «— V5 (j + ulNy + imNy)

3.4.9 Application to turbo-codes

The BICM precoder and interleaver have been designed to provide full-diversity and optimal
coding gain for any pairwise error probability. However, the final error rate is given by the
probability to get out from the Voronoi region. The facets of this decision region belong to the
median hyperplanes of the BSKs considered in the pairwise error probabilities. When using con-
volutional codes, the number of neighbors increases with the frame length whereas the minimal
Hamming distance dg.,i, remains constant. The minimal Euclidean distance in Cg depends on
drmin, we can deduce that the frame error rate will increase with the frame length. The idea
is to find a code whose Euclidean distance increases with the frame length. If the performance
gain provided by the Euclidean distance increase is greater than the performance attenuation
provided by the number of neighbors increase, the frame error rate will decrease with the frame
length. It has been shown in [37][15] that turbo-like codes can achieve such a proposition over
block fading channels. We use the coding scheme presented in Fig. 3.13. Information bits are
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encoded by an RSC1 encoder. The information bits are interleaved by the turbo-code inter-
leaver II;, encoded by an RSC2 encoder. The coded bits of RSC2 are then de-interaleaved by
Iy 1 This last step is not processed in classical parallel turbo-code schemes, but it allows us
to perfectly control the position of the information bits and associated coded bits. Indeed, the
presented optimized channel interleaver is designed using the simple observation that the error
events are localized. Then a 1/2 puncturing is computed on each coded bit stream, followed by
a multiplexing. Let b(i) denote the i-th information bit, ¢1(i) denote the i-th coded bit at the
output of RSC1 and c2(7) the i-th coded bit at the output of RSC2. The final coded stream
has the following form

b(0) c1(0) b(L) c2(1) b(2) e1(2) b(3) e2(3) b(4) e1(4) b(5) ea(5) --- (3.59)

Information bits

RSC 1 Coded bits *
c1
m, RSC 2 n C"dces bits_+ 4

Puncturing  Multiplexing
Figure 3.13: Parallel turbo-code encoder

The error events occur locally at different positions in the frame. This induces that the
optimized interleaver is directly applicable.

3.5 Simulation results

In this section, we consider iterative joint detection and decoding of the BICM, the APP detec-
tor is exhaustive. Let us consider a 2 x 1 quasi-static (n. = 1) MIMO channel. We use NRNSC
7,5 or NRNSC 3,2 codes with rate 1/2 and length 1024. From the singleton bound, the full
diversity can be achieved without linear precoding. We show on Fig. 3.14 the performance
obtained with a classical PR interleaver and the performance provided with the optimized in-
terleaver. We notice that the full diversity order is only achieved with the optimized interleaver,
the performance slope is equal to the outage probability slope. In general, the PR interleaver
provides a diversity n,., i.e., it does not allow to collect any transmit diversity order. In this
figure, we see that the 7,5 NRNSC code provides a high coding gain with respect to the 3,2
NRNSC code. In general, we cannot say that taking a better code always provides better frame
error rate. Indeed, we saw that when w > nsn. the full diversity of the considered pairwise
error probability can be achieved with an ideal interleaver, and the remaining w — nyn. BSK
distances are uniformly distributed among all the channel states. A better error correcting code
provides greater Hamming weights w’ that do not enhance the diversity but the coding gain.
However, the coding gain could be inferior to the degadation induced by the increased number
of neighbors. A future research will focus on this point.

In Fig. 3.15, we show the performance of a rate-1/2 7,5 NRNSC code over a 2 x 1 MIMO
block fading channel with n. = 1 and BPSK input. The full diversity and optimal coding gain
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are obtained at the last iteration with the optimized interleaver. We observe that the DNA cy-
clotomic precoder associated with the optimized interleaver provides a similar coding gain and
diversity as the optimized interleaver, which confirms that the optimal coding gain is near from
the ideal coding gain when an ideal interleaving is available (the existence condition is given by
the singleton bound). However, we can observe that the first iteration performances are much
more better with the linear precoder than with the optimized interleaver alone. Clearly, there is
no advantage to use a linear precoder when processing iterative decoding because the linear pre-
coding increases the detection complexity. We show the performance obtained with the golden
code [6] which is known to be the best full rate code for two transmit antennas. However, this
is not a DNA code because the equal norm property between the non-null nucleotides is not
satisfied. This produces a slight loss in coding gain.

Fig. 3.16 illustrates the performance of a 7,5 RSC turbo-code over a 2 x 2 quasi-static chan-
nel with QPSK input and PR or optimized interleavers. Two different frame length 256 and
2048 coded bits are tested. With the PR interleaver, the full diversity order 4 is not achieved,
and the performance degrades with an increasing frame length (as with classical convolutional
codes). If the optimized interleaver is used, the full diversity order is achieved and the error rate
is reduced with the increasing frame length. The turbo code finally performs at less than 1 dB
from the outage capacity with Gaussian input.

Fig. 3.17 represents the performance of a 7,5 RSC turbo-code over a 4 x 1 quasi-static
channel with BPSK input and PR or optimized interleavers. Two different frame length 256
and 2048 coded bits are tested. First, we can observe that without linear precoder and using a
PR interleaver the full diversity gain is not achieved. Asymptotically, the observed diversity is
n, = 1, but for low SNRs the performance is close to the performance given by the optimized
interleaver. This can be explained because the turbo-code produces a large amount of errors
for low SNRs and the probability of satisfying the ideal interleaving condition is high. However,
when the number of errors is low at high SNRs; it is crucial to place the few erroneous bits over
all the channel states. This behaviour is put in evidence when increasing the frame length. The
maximum diversity provided by the singleton bound needs at least s = 2. This is confirmed
by the simulation and again we can observe that the error rate is decreased when increasing
the frame length. The 4 x 1 MIMO channel experiences a large amount of interference between
the transmit antennas, however we achieve 2.5 dB from the Gaussian input outage probability.
Hence, increasing the number of receive antennas or observing a greater number of channel re-
alizations would allow to achieve performance closer to the outage probability.

Fig. 3.18 illustrates the the performance of NRNSC codes (left figure) and parallel turbo-
codes with RSC constituent codes (right figure) for a given signal-to-noise ratio equal to 15dB
over a 2 X 1 quasi-static MIMO channel. We can observe that the frame error rate increases
with the frame size when using NRNSC codes while it remains constant when using turbo codes.
This strong property can in part be explained because of the interleaving gain of the turbo-code
but it needs further research to be clearly expressed.

Conclusions

We have presented bit interleaved coded modulation optimizations for multiple antenna channels.
We achieve near capacity on ergodic channels thanks to turbo-codes or optimized interleavers.
It is shown that the design for ergodic channels is much easier than for block fading channels. In
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Figure 3.14: Rate-1/2 NRNSC codes, QPSK modulation, 2 x 1 MIMO channel, n, = 1, 10
iterations. L.N,. = 1024.

this last case, the full diversity is the first objective to be achieved by the receiver. The singleton
bound gives the maximum diversity the decoder can recover and the minimum spreading factor
that guarantees full diversity. Next the coding gain has to be optimized using a well chosen binary
code, an optimized interleaver and an optimized linear precoder. Finally we have presented a
modification of the turbo-codes in order to achieve near outage performance. The error rate
decreases with an increasing frame length.
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Figure 3.15: Rate-1/2 NRNSC 7,5, BPSK, 2 x 1 MIMO channel, n. = 1, 5 iterations. No
linear precoder, DNA cylcotomic precoder (s = 2,n.g = 1), Golden code (s = 2,n.,g5 = 1).
L.N_. = 256.
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Figure 3.16: Rate-1/2 RSC 7,5 turbo-code, QPSK, 2 x 2 MIMO channel, n, = 1, 15 iterations.
Parity check bits of the second constituent are multiplexed via the inverse turbo interleaver.
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Figure 3.17: Rate-1/2 RSC 7,5 turbo-code, BPSK, 4 x 1 MIMO channel, n. = 1, 15 iterations.
Parity check bits of the second constituent are multiplexed via the inverse turbo interleaver.
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Chapter 4

BICM receivers for MIMO channels

Introduction

In order to improve the data transmission rate over fading channels, most of new transmission
systems use a set of multiple antennas at the transmitter and receiver side. However, the re-
ceiver has to be sophisticated enough to recover the large amount of data received with a large
amount of interference. Iterative techniques, such as iterative joint detection and decoding, seem
to be a judicious choice for high performance receivers with tractable complexity. This requires
soft-input soft-output detectors and decoders. However, when using high spectral efficiency
QAM modulations with multiple transmit antennas, the classical exhaustive soft list detector
becomes intractable. Recently, a sub-optimum soft list detector has been proposed in [41], but
some weaknesses are still existing to achieve near optimum soft detection performance. We will
present some modifications to the list construction and complexity reduction in the case of block
fading channels.

In Section 4.1, some basics on lattices are presented, the multiple antenna (MIMO) channel
lattice model is expressed. Some simple lattice theory tools are also introduced, they will be
helpful to describe and optimize the maximum likelihood Sphere Decoder presented in Section
4.2. In Section 4.3, we present the soft-input soft-output (SISO) spherical list detector and its
application to MIMO channels joint detection and decoding. In Section 4.4, the SISO-MMSE
described in [28] is modified for MIMO channels with some complexity reductions. Complexity
and performance comparison between the presented SISO detectors is discussed in section 4.5
to conclude this chapter.

4.1 Basics on lattices

4.1.1 MIMO channel equivalent lattice

Lattice theory and coding theory are applied to efficiently encode and decode information in a
digital transmission system with multiple antennas. For some information theoretical reasons
(see [77]) it is assumed that n; = n, throughout this section.

Lattice theory [22] is a powerful mathematical tool to geometrically represent the modulation
and channel concatenation. It helps us to better understand its behavior, in order to design a
good modulator and its corresponding demodulator. Since multi-dimensional QAM constella-
tions are subsets of Z", we can write z € Z?™. Let n, denote the dimension of the real Euclidean




76 BICM receivers for MIMO channels

space,
Ne=2Xn; =2Xn, (4.1)

The equality x = zH is now extended to the real space R™s to get
x=zMp,z e R" 2z € Z" (4.2)

Therefore, the MIMO channel output y = x + v is obtained by perturbing a lattice point z with
additive white noise v. A lattice A is a discrete subgroup of R™s i.e. it is a Z-module of rank
ns. In (4.2), the lattice A is generated by the ng X ng real matrix My, which is derived from the
channel matrix H by the following simple expression

Rhiy  Shuy ... ... Rhin, Sha,
—%hn §Rh11 e . _%hlnr %hlnr
Rhij  Shi;
Ma = - . —%h]ij %h; - (43)
Rhngt  Shagt oo oo Rhpgn, Shon,
~Shpt Rhog o oo =S, Rhun,

When z is restricted to a finite QAM integer constellation, x belongs to a finite lattice con-
stellation denoted by Q. For example, if n; = n, = 8 antennas and m = 4 (16-QAM), the
constellation € at the MIMO channel output has 2™" = 232(~ 4) billion points. Each point
in Q has a binary label of 32 bits. Before combining an error-correcting code with a digital
modulation for use on a MIMO channel, we first analyze the main parameters of the lattice A
associated with multiple antenna channels. Such a geometrical analysis is complementary to the
one made by information theory concerning Shannon capacity of MIMO channels.

4.1.2 Important lattice parameters

The matrix My is called a lattice generator matriz of the lattice A(My). Let Py be the set of
points that satisfy
Py={zeR"/z=aMy, ac|0...1]"} (4.4)

Py is called the fundamental parallelotope of A (see Fig. 4.1).
The first lattice parameter to be considered is the fundamental volume vol(A), which repre-
sents the volume of the fundamental parallelotope defined by

vol(A) = |det(My)| = /det(G) (4.5)

where the Gram matrix G defining the quadratic form @Q(z) associated with the lattice is related
to My by

G = MAMJ, ||z])* = 2G2" = Q(2) = > _ gijzizj (4.6)
ij
The second lattice parameter is the minimum Euclidean distance dgpmin(A) defined by
dEmin(A) = ﬁnp% lpr — p2l|  p1,p2 € A, pl # p2 (4.7)

The problem of computing dgmin(A) is hard (it is NP-complete). Thus, we suggest three different
methods to get an estimation of the minimum Euclidean distance in A:
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Figure 4.1: Lattice parameters.

1. The rows of My are a Z-basis for A. Read the ng Euclidean norms in the lattice basis and
keep the minimum. This yields an upper bound on dgn(A). In practice, we equivalently
search for the minimum element of the Gram matrix diagonal.

2. Reduce the basis My by finding another lattice basis with shorter vectors. We suggest here
to use the efficient LLL reduction algorithm [54], or the more complex Korkine-Zolotarev
algorithm ([50]). This yields a tight upper bound on d g, (A). If a Minkovsky reduction
can be processed, we find the exact value of dgpin(A).

3. Find the exact minimum distance by enumerating lattice points inside a sphere centered
on the origin, then take the minimal norm of a non-zero point. We suggest the application
of Short vectors algorithm [64] to determine the exact value of dgpin(A).

Of course, the three methods above are listed in increasing order of complexity. As shown later
in this study, the estimation of dgmin(A) helps to accelerate the Sphere Decoder algorithm [85]
used to find the maximum likelihood (ML) lattice point.

Given the lattice minimum distance and its fundamental volume, it is possible to derive the
normalized squared minimum distance, called fundamental gain, given by
_ D)

vol(A)2/ns (4.8)

Usually, the fundamental gain is expressed in decibels, v45 = 10log19(y). A lattice sphere pack-
ing is non-dense if 745 < 0, i.e. the lattice is less dense than the cubic integer lattice Z7. When
Y4B > 0, the dense lattice is associated with a good MIMO channel that may perform better
than an AWGN single antenna channel. Such a performance comparison should also take into
account the kissing number of A [22] which is completely random and difficult to estimate in a
multiple antenna channel context.

Nevertheless, the three above-mentioned main parameters are sufficient to understand the
geometrical behavior of A. Tables 4.1 and 4.2 show the main parameters of a MIMO lattice and
some statistics related to these parameters.

As expected, the lattice minimum distance increases with the number of antennas. Indeed,
the channel diversity order is proportional to the number of antennas. The percentage of dense
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Number | d%, . (exact) | d%, . (LLL) | d%, . (Gram) ~v(dB) v(dB) <0
of antennas mean/variance mean/variance mean/variance mean/variance Percentage
2 0.979/0.542 0.979/0.543 1.250/0.687 -1.10/2.04 78.1
4 1.607/0.576 1.608/0.579 2.182/0.803 -0.65/1.42 66.9
8 3.867/1.004 3.875/1.019 4.488/1.272 +0.76/0.75 17.1
16 9.719/2.231 9.734/2.274 9.770/2.309 +1.98/0.59 1.15
Table 4.1: Main lattice parameters of the MIMO channel (first table).
Number | d%,.;.(exact < LLL) | d%,... (LLL < Gram) | d%,... (exact < Gram)
of antennas Percentage Percentage Percentage
2 0.19 40.02 40.07
4 0.92 61.60 61.86
8 3.18 53.82 54.67
16 2.36 4.79 5.64

Table 4.2: Main lattice parameters of the MIMO channel (second table).

lattices is surprisingly high, especially for 8 and 16 antennas. This predicts a performance
extremely close to the Gaussian channel when n; = n, is large. If the channel matrix H is
known at the transmitter, it is possible to take a waterfilling approach where the information
instantaneous rate is proportional to y(A).

Two important results may be deduced from Table 4.2:

1. The LLL reduction algorithm is extremely efficient in finding the minimum distance of a
MIMO lattice. The failure percentage varies from 0.19% to 3.18% only

2. The simplest method (method 1 based on the diagonal of the Gram matrix) seems also to
be quite efficient for a large number of antennas, (only 5.64% failure with 16 antennas)

Finally, Fig. 4.2, 4.3 and 4.4 give more details on the distribution of d g, (A) and y(A) versus
the number of antennas. Note that in Fig. 4.4, in the case of 16 antennas, « is limited to -1dB
for non-dense lattices and upper bounded by 4dB for dense lattices. For comparison, we recall
that n; = n, = 16 antennas correspond to a lattice in R3? for which some known structured
dense lattices have a fundamental gain equal to 6dB.

4.1.3 Lattice generator matrix QR decompositions

A matrix decomposition is a transformation of a given matrix into a canonical form. For exam-
ple, we cite LU, Singular Value, eigenvalue, and Schur decompositions. In this chapter, we are
interested in QR decompositions of Mjy:

Let My be a square matriz, there exists a lower triangular matrix A and a rotation matriz @
(QQ = I) such that My = AQ.

Let us rotate the first basis vector of A(My) to fit the first Euclidean basis vector. The
applied rotation is called @, and we define the rotated matrix Ay = My@Q,,. The first row of
Aj has only one non-null coefficient on the first position. We extract a ng — 1 X ny — 1 matrix
from the last ns — 1 rows and columns of A; and apply a rotation @,,_1 that aligns the first
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basis vector to the first ny — 1 dimensional space. This operation repeated ns — 1 times leads to
a lower triangular matrix, via ngy — 1 rotations. The global transformation is a rotation Q:

A= MAQ = MAQnSdiag(Im, Qns—l) e diag([;mk, Qns—k) e diag([ns,ns) (49)

where diag (/g k, @n.,—k) is a block diagonal matrix with two blocks: a k x k identity matrix and
a ng — k-dimensional rotation.

In order to efficiently process the QR decomposition, we use the simple observation that

a rotation is a Householder reflexion R = I — 2mim 1, where m is the normal vector of

the reflexion hyperplane. We see a geometrical representation of a 2-dimensional Householder

reflexion in Fig. 4.5. The vector m  that transforms a given vector x into [||z|[,0,...,0] by
reflexion is

1
m, = [x1 + sgn(x1)||z]], x2, . . ., Tp] (4.10)
VIl lzll + Jz1])

We apply the Householder reflexions to compute the transformation of the M and I matrices,
respectively leading to A and . The complexity in flops (floating point operations, i.e., any
addition, multiplication, division, square root of a floating point variable) is 5n3 /3+2n2+16n/3

Another method to compute A is to apply a Cholesky decomposition of the Gram matrix

G = MaM} = AQQ'A" = AA': the main idea of the Cholesky decomposition is to observe
that

V0 < i < ng, A2, =Gy — Y21 A2 (4.11)
(4.12)

which is sufficient to compute A. This method exactly leads to the same matrix as QR decom-
position. The algorithm complexity is 5n2/6 — 3n2/2 + 2n,/3 flops. However, the Gram matrix
computation (ns(ns+1)(2ns —1)/2 flops) has to be added if Cholesky is used for My triangular

Vi<k<mng, Apili;= Gz’k Z Ak,y
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x(l — 2m’im¥)

Figure 4.5: Householder reflexion of x Figure 4.6: Basis reduction example.
with respect to an hyperplane defined
by the normal vector m .

decomposition. The algorithm does not allow an easy computation of the rotation matrix Q.
Some algorithms do not require () but a matrix © such that:

V1<i<n, O = A, (4.13)
A,
Vi<i<j<n, ©;;= A—J (4.14)

which is easily provided by the Cholesky decomposition.

4.1.4 Lattice reductions

The MIMO channel leads to a random lattice structure. The basis of the lattice, given by M} is
not always the best in terms of orthogonality and vectors’ shortness. The procedure of finding
a better lattice basis is called reduction. This work was initiated by Gauss who proposed some
algorithms for dimensions two and three, but the main three algorithms were proposed by

1. H. Minkovsky
2. Ch. Hermite, enhanced by A. Korkine and G. Zolotareff (KZ reduction, [50])
3. A. K. Lenstra, H. W. Lenstra, Jr. and L. Lovasz (LLL reduction, [54])

No efficient algorithms are known to find the shortest non-zero basis of an arbitrary lattice.
However, the LLL algorithm, proposed in 1982, computes an approximation of the smallest ba-
sis in polynomial time.

Since the basis reduction is a basis change, the lattice remains the same after reduction and
the reduction matrix is unitary V:

M, =VM,, A(My)=A(M,) (4.15)

Fig. 4.6 presents an example of basis reduction, the basis (M, 1, M, 2) is the reduced version of
(M, M3). We will briefly present some basic knowledge on lattice reduction that will help us to
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accelerate the decoding of MIMO channels.

First, let us recall the Gram-Schmidt Orthogonalization computation. Let (vy,...,v,) be a
basis of R™, an orthogonal basis (u1,...,u,) is obtained by the recurrence:
i—1 uwt- i—1
Vizl...n, Ui:ui—z ||’U"|]2UjZUi_ZMi’jvj (4.16)
j=1 " Jj=1

i.e., recursively substracting the non-orthogonal components of the basis vectors. The Gram-
Schmidt Ortoghonalization is not a basis reduction since the resultant basis does not generate
the same lattice, the p; ; coefficients are not integers. Now, we present the definition of basis
reduceness:

A lattice A basis (uy, ..., uy) is reduced if V1 <i < j <n, |lpisll <3

The Gram-Schmidt orthogonalization is directly applied into basis reduction:

1. Compute the Gram-Schmidt orthogonalization basis (u1, ..., uy) of (vi,...,v,)
2. Compute the algorithm:

for i = 1.n{for j =4 — 1.1{ w; < w; — |pij|uy; for k = 1..5{ pix — i — Lptij 11501} }

The algorithm complexity is %n?’ +n? — %n flops, but the provided basis is not particularly
orthogonal, no vector exchanges have been processed. However, we will see that this reduction
will be very useful for lattice constellation decoding because of the triangular property of the
reduction basis change matrix.

An efficient algorithm to compute reduced basis is the LLL reduction [54] which statisfies a
sub-optimal reduction criterion:
A lattice A with basis (uq,...,u,) and Gram-Schmidt orthogonal basis (v1,...,vy), is said to be
LLL-reduced if and only if:

V1i<j<i<n, il < 3
i 2
- 4 —1
Vi<i<n-—1,  |oif* <3 |uien — X000 iy

This is a looser property than the one used by the more efficient but more complex algorithm
KZ [50].

4.2 Sphere decoding

The sphere decoder is an algorithm providing ML performance on lattice channels. For exam-
ple, we can cite rotated rayleigh channels [13], CDMA or MC-CDMA [16] [17][18][21][31][87].
As described, the MIMO channel can also be seen as a lattice, the sphere decoder is well suited
for ML decoding of the received point.

A lattice point x € A(H) represents the signal received after a transmission over a MIMO
channel (or any lattice channel). Here, A(H) = A(M}y) refers to the real lattice of rank ng
generated by My, or equivalently by H. A maximum likelihood lattice decoder applied to the
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received point y = x + v determines the nearest lattice point to y, i.e., it minimizes ||y — z||?.
The point that minimizes the distance is called the closest point. In our case, x is perturbed
by an n-dimensional centered additive white Gaussian noise of variance Ny, the likelihood is
p(y/x) = e~ lv==l*/2No / /5 Ny maximizing the likelihood is equivalent to minimizing the Eu-
clidean distance, the maximum likelihood point is the closest lattice constellation point.

The so-called closest point problem is not straightforward, except for orthogonal lattices.
Indeed, in this trivial case, the lattice Voronoi region is parallelepipedic and the ML point is
found by simple independent quantization on each dimension. When the lattice matrix is non-
diagonal, the Voronoi region is a complex polygon we cannot use for decoding. The only way
to perform ML decoding is then to compare the distance ||y — x||?> between the received vector
and a set of points including the ML point. If the transmitted set of points cardinality is small
enough, we apply an exhaustive computation of all the distances ||y — z||?>. However, for high
spectral efficiency systems, or for lattices (infinite number of points), the exhaustive decoding
is intractable. If we use a 2"-QAM transmitted on n; transmit antennas, the constellation
cardinality is 22™™, which leads to a comparison of 2!6 = 65536 distances for 16-QAM over 4
transmit antennas.

The Sphere Decoder is a very efficient algorithm to find the closest point in a lattice [84][85].
The main idea of this algorithm is to enumerate all the lattice points x belonging to a sphere
S(y, Rs) of radius Rs centered on y, and to compute the distances ||y —||?. If no point is found,
the radius of the sphere has to be enlarged. Each time a point is found, the radius of the sphere
is reduced to the distance of this new point, which limits the number of enumerated points but
still ensures the closest point criterion.

4.2.1 The Sphere Decoder based on Pohst point enumeration strategy

The Sphere Decoder based on Pohst strategy [64] was applied by Viterbo and Boutros (VB)
[85] to digital communications. The key idea is to enumerate lattice points inside an ellipsoid
in the integer space corresponding to a spherical search region in the real space. This technique
is derived from the short vectors algorithm, initially thought up for the first lattice shells’ point
enumeration. The point enumeration in Z™s is straightforward, processed by coordinate incre-
ment. The enumeration of the lattice points belonging to the sphere S(y, Rs) is equivalent to the
enumeration of the Z™ points belonging to an ellipsoid £(w, Rs, Mgl) centered on w = yMXl.
This is illustrated in Fig. 4.7. The Z™ points belonging to the ellipsoid satisfy the equation

2 € E(w,Rs, My ) NZ™ & ||(w— 2)M|* = ||6Mp|)* < R% (4.17)

where 9 is the difference vector between the tested point z and the Zero-Forcing point w. Unfor-
tunately, in the general case, M has non-zero off-diagonal coefficients and all the § components
are linked together, so this does not allow a simple enumeration without solving an ns X ng
equation system.

Let us rotate the first basis vector of A(My) to fit the first Euclidean basis vector, which
is equivalent to make one ellipsoid axis collinear to the first basis vector of Z™s as presented in
Fig.4.8. The applied rotation is called @1, and we define Ay = My (@1 the new generator matrix
of A(Ay). In this case, z; only occurs in the first coordinate x; of z € A(A;), with a scaling
factor Ay 1. The ellipsoid bounds are directly linked to the sphere bound along this dimension.
If we fix the value of z;, the projection of the ellipsoid on the corresponding Z"~! space is
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Figure 4.8: Effect of the lattice generator matrix decomposition into a lower triangular form on
the ellipsoid bounds computation.

always an ellipsoid, we turn one basis vector to one of the ellipsoid’s axis thanks to the rotation
Q)2 leading to As = A1(Q)2, and so on until the last dimension, which does not need to be rotated.
Finally, the lattice has been rotated ns — 1 times, the global transformation is a rotation @ and
transforms My into a lower diagonal matrix A via ng — 1 successive rotations:

A= MrQ = MyQ1Q2...Qn,—1 (4.18)

We saw that if we rotate My to A, a lower triangular matrix, the ellipsoid bounds are computed
recursively. We apply a QR decomposition of My to compute A.

Let us now describe the maximum likelihood Sphere Decoder based on Pohst strategy. As-
sume a set of transmitted points z belonging to a lattice constellation [zmin, Zmaz]™ . Such
constellation is an homothetie of a 2™-QAM constellation of an ny/2 x ns/2 MIMO channel,
and enables easier manipulation (the symbol energy is divided by 4 with respect to the classical
QAM constellation). Using QQ! = I, the considered square Euclidean distance for ML decoding
is

I6M||2 = |6A|2 = SAALS: = 5G6 < RY (4.19)

Using the lower triangular property of A, and defining ©;; = Afl and ©;; = Aj;/A;;, we have

that
2

Ns

2
a2 =3" (Y 6a | =Y 6|+ Y 56 (4:20)
=1

i=1 \ j=i j=i+1
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We want to enumerate all the points belonging to the translated integer lattice § € (Z™ + w),
this is done by first computing the bounds of ¢,

(4.21)
Ngs,Ns Ns,Ns
and recursively deducing the other bounds, assuming {dx1, ..., s, } known,
) 2

RS - Zz k+1 Zl (5 + Z] i+1 691,])

(4.22)
Ok
R -y i+ X 2
) S T Zui=k+1 ”( + ]H—l )
<Ok + Dyt Or,idi < 5 (4.23)
k,k
Substituting 0 = wr — zx and using zx € [0, 2paz], We obtain
RE -5 i+ S0 :
3= 0 Ou (0 + 7201 0501,
Max | 0, |wg — o s (4.24)
Ok
Ns
<z — Z Op,i0; < (4.25)
i=k+1
RY -y (6 02001 5:045)
S i=k+1 ’L )% +1

Min | zZmaz, |wi + ! = (4.26)

Ok i

Originally, the Sphere Decoder performs on a lattice without constellation bound restrictions.
However, introducing equations 4.24, 4.25, and 4.26 is a straightforward but necessary trick that
strongly reduces the complexity, or, in other words, not activating it would strongly increase the
complexity.

If different PAM sizes are used on each antenna, for example for spectral efficiency tuning or
adaptive modulations, the constellation is rectangular parallelepipedic, the constellation bounds

[Zmin,i, 2maz,i] vary for each dimension i.

Notice that the algorithm only requires M, ! A and the © matrix. This shows us that a
Cholesky decomposition is more pertinent than QR decomposition (see subsection 4.1.3).

The computed bounds are updated recursively thanks to the equations [85]

Sk = Sk(Okr1,- 1 0n)  =wrt Y Okid; (4.27)
i=k+1
2
Tho1  =Te1(0k,...,0n,) =R%:— Z@” 5; + Z ©;.;0; (4.28)

=T — Ok (Sk — 2x)? (4.29)
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and finally, each time a vector z is found, the distance between y and © = zM} is
> =R% —T, (4.30)

Since we are interested in the point minimizing a?, the radius R?S is reduced to d each time a
point is found. This strongly reduces the complexity and keeps the optimality. When no points
are found, the last found point is the ML point.

4.2.2 The Sphere Decoder based on Schnorr-Euchner point enumeration strat-
egy

The Sphere Decoder based on Schnorr-Euchner strategy [70] was first introduced in digital
communications by Agrell, Eriksson,Vardy and Zeger (AEVZ) in [1]. The key idea is to view the
lattice as laminated hyperplanes and then start the search for the closest point in the nearest
hyperplane. A radius is specified in order to limit the explored region to a sphere. If no
radius reduction is applied during the search, all the points belonging to the sphere would be
enumerated, as for the Pohst strategy, which justifies the name of Sphere Decoder too.

a) Laminated hyperplanes structure of the lattice
Using the QR decomposition A = MpQ, we get

7 =9yQ = zMpQ +nQ = zA+17 (4.31)

where 3 and 17} are the rotated version of y and 7, respectively. The matrix A can be decomposed
into

0 0
Ng— . ns—1 .
J : (4.32)
0 0
A, AT A

where Als=1] is an ns — 1 X ng — 1 matrix obtained by extracting the first ny — 1 rows and
columns of A = A"l and Aglj_l} contains the first ng — 1 components of the row A, .

Any lattice point can be written as the sum of a A(Al*~1) point and a translation vector
Zn An,:

Ay = AAl—1) L7, (4.33)

The lattice is decomposed into an infinite set of parallel sub-lattices, obtained by translating

an initial lattice by an integer multiple of the vector A,,. The lattice Aglru = A(Al—1) g

taken as the reference, we can use the notation Agnrl] = Aglrl] +iA,,, to describe the parallel

hyperplanes set. The translation vector A, can be decomposed into A,, | = [ALZ“H,O] and

A, 1 =10,...,0,Ap, n,], the collinear and orthogonal components to the hyperplane Agns_l],

respectively. The distance between the parallel hyperplanes d (Agns—l} , Aﬁf”) is |Ay, n,|- Each

lattice Agns_l] has a triangular generator matrix and can be decomposed into a set of parallel

J

lattices with a translation vector AZ: 5:11 , and so on.
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b) Closest point computation

The received point ¢ is located between two hyperplanes Agffs U and Ag:fs;ll} Let us consider

that Aq[fffs 1 is the closest hyperplane. The indice v, is found by the normalized projection of
ﬂ on Ans, 1

JAm, 1
1An, L2

Un

S

Un
= s 4.34
\;Ansans—‘ ( 3 )

where |.] is the nearest integer rounding function. Let o = sgn (vns - Ayi) be the direction

Nns,Ns

of the nearest hyperplane, we can sort the set of hyperplanes by increasing order of distances to
y:

{A["s U, Al et plne T e ;gg,...} (4.35)
The projection of ¥ on any hyperplane associated with A[ZZ‘:_” where z,, = v, +k, k€ Z ,is
ym==1. However, the lattice is translated from the origin with a vector Un Ay, |, in order to
consider a noisy point in a centered lattice, we apply the translation to §™ 1 and obtain the
new noisy point:

Jymey = G — 2, Alne—ll (4.36)

The Euclidean distance between the received point ¢ and the hyperplane associated with A[ZZSS_I]
is

d (A[ni 1}7?7) = [Un, — ZnsAns,ns]2 (4.37)

Zn

Fig. 4.9 illustrates the laminated hyperplanes structure and notations.

The hyperplanes are sorted in decreasing order of likelihood, it seems natural to begin a

[ns—1]

closest point search in the first sub-lattice Aj,° . It is important to insist on the fact that there

is no guarantee that the ML point belongs to the nearest sub-lattice Aq[ﬁfs_l}, we indeed have
no knowledge of the ng — 1 other dimensions at this step of the algorithm. After projecting ¥
on the nearest hyperplane ALTZ —1l (with translation), we repeat the same processing recursively

2]

by sorting the sub-lattices AEZS} , projecting the new received point, and so on, until the last

dimension, where the closest point search over Agsww% ;18 made by a simple quantization.

The first point found by the algorithm is called the Babai point, which is a sub-optimal
detection point, yet more reliable than Zero-Forcing. This can be seen as a decision feedback
equalization on the laminated hyperplane structure: once a decision is taken on one symbol, a
part of its interference contribution is subtracted by orthogonal projection. Fig. 4.10 shows a
simple example where the ZF point, Babai point and ML point are all different. It can easily be
shown that the Babai point always leads to smaller distances than ZF which is obtained after
non-orthogonal projections parallel to the lattice basis. For any received point, the ZF point
always equals the Babai point if and only if the lattice is orthogonal, and in this case ZF is
ML. This remark is illustrated in Fig. 4.10 via the ZF, Babai and ML decision regions limits.
Moreover, the Babai point depends on the order in which the dimensions are treated. There
exists an optimal order that minimizes the Euclidean distance, but this depends on the region
¢ belongs to, and this will be treated later. As an example, in Fig. 4.10-(c), we see the Babai
point obtained by first considering dimension 1, but we can notice in Fig. 4.10-(d) that the
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Figure 4.9: Laminated hyperplanes structure of the lattice.

Babai point obtained by first considering dimension 2 is the ML point.

Once the Babai point is found, we can reduce the radius search to the distance d(¥,  Bapai),
and continue the enumeration considering the next most likely hyperplane of previous dimen-
sion, and so on recursively until no more point belongs to the sphere.

We now have to express the recursive processing of the sphere bounds and point enumeration.

Let us define v a noisy point in the hyperplane of AL’Z] -0 The point py, is the ZF point

a""zk:+1:0.
of v, obtained by the relation v, V¥ = p;, where V[ = (AV‘C])_1 is lower triangular. The
1) [k—1]

pAa

0,0 25 p1=0,2,> leading to v

vector ‘AdT’“k'Aé-, projects the point v on the hyperplane A[Z’:

We can compute
Pk — 2k
di = Vg — 2k Q) = vV (4.38)
k.k

The distance ||dg||? is the component for the k-th step of the distance between the lattice point

[k—1] [k—1]

found and the received point y. Then v is translated by 2 A, to consider the equivalent

k—1]

problem in A[zns=0,..‘,zk=0' The new noisy point is

[ =l zkAL,k*l] (4.39)
We can compute pp_1:

pro1 = v VI = 1y ol Al gl (4.40)
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Figure 4.10: Schnorr-Euchner point enumeration, 2-dimensional example.

and noticing that ALk_l]V[kfu + A;@kvl[,f_l] = I,[f_l} =[0,...,0], we have that
k— k—
pr1 = pi = @il (4.41)
It is important to see that the variables py, vi, di, depend on the choice of coordinates z,, ..., 2.

The authors in [1] use equations (4.41) and (4.38) to process the recursive enumeration while
computing the distance, but we will see in the sequel why (4.39) is useful to make a parallel with
the Pohst strategy. An implementation version is avalaible on Alg .2 and a commented version
is available on next paragraph.
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Algorithm 2: Schnorr-Euchner strategy 4+ boundaries of the constellation processing.

-
HFO OO W AW N

e
W N

=
(S

NN R
NH=O®©®= o

23

input : A received point y, the generator matrix My (ns X ns) of the lattice, the radius R of the sphere, and the

bounds zmin and zmae of the constellation.

output : The ML point 2 belonging to the constellation and the squared Euclidean distance bestdist between y

and ZMx
Pre-processing

QR decomposition My = AQ where A is lower-triangular and QQ? = I
VAl

Initialization

bestdist «+— R2, k < ns

<
Il
<

O

=

2 [erk], 2k — maz(zk, Zmin), 2k — MIN(Zk, Zmaz)
p— (exk — 2k)/(Vik)
stepy, — sgn(p)

newdist «— disty, + p?

if newdist < bestdist and k # 1 then Goto Label 2
else Goto Label 3

Label 2

fori=1tok—1doeg_1; “er;— PV
k—k—1

disty, «— newdist

2+ lexk]s 26— maz(zk; 2min), 2k < min(2k, Zmax)
p = (exk — 2x)/(Vir)

stepy, — sgn(p)

Goto Label 1

if newdist < bestdist then
Z—z
bestdist «— newdist

else if £k = ns then return Z and terminate
else k—k+1
2k < 2k 1+ stepg
if 21 < Zmin O zg > Zmaz then
stepy, < —stepy — sgn(stepy)
2L < 2 + stepr
if 2k < Zmin Or 2g > Zmaz then Goto Label 3

p < (exr — 2&)/Vik

stepy, < —stepy, — sgn(stepy)
Goto Label 1

The SE algorithm for multiple antenna channels with extended explanations:

Input.

bounds z;,in and zmaez of the constellation. You can set the radius R to +o0o or to an optimized value.

Output. The ML point Z belonging to the constellation and its squared Euclidean distance bestdist to y.

A received point y, the generator matrix Ma(ns X ns) of the lattice, the radius R of the sphere, and the

Step 1.

Step 2.

Pre-processing: Compute the QR decomposition My = AQ, where A is lower-triangular and QQ? = I.
Compute the inverse V = A~! and § = yQt.

Initialization - Dimension ns: Set bestdist «— R?, k «— ng, distj, — 0 (The algorithm starts with dimension
ns, the cumulative distance dist,, between the received point and the hyperplane with dimension ns+1 (not
existing) is 0). Set e, <« §V (Vector ey contains the ns real coordinates of the received point ¥ in the vector
space with dimension ns). Set zr <« [err] (The closest hyperplane with fixed coordinate zn, is chosen by
taking the closest integer value of en n,). Set zx «— max(zk, Zmin), 2k — Min(zk, 2maz) (If the hyperplane
does not belong to the constellation, the closest hyperplane belonging to the constellation is chosen). Compute
p = (exk — zk)/(Vgk) (This is the coordinate distance between the received point and the chosen hyperplane
of dimension ns — 1, —1 < p < 1). Set stepr < sgn(p) (This is the increment for the next z,_ value, to test
the second closest hyperplane, which is located “on the other side” of the received point).
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Step 3. Distance computation: Compute newdist « disty + p?> (The distance between the current hyperplane
and the received point is computed by the Pythagore algorithm, since projections are orthogonal. The
squared new distance newdist is obtained by summing the squared distance dist) between the hyperplane
of dimension k£ + 1 and the received point and the distance p between the projection on the hyperplane of
dimension k + 1 and its projection on the hyperplane of dimension k.

If newdist < bestdist and k # 1
go to Step 4 (the hyperplane is valid, it may contain points with an associated distance smaller than
bestdist and no point has been reached yet (k # 1)).

else
go to Step 5 (either a valid point has been found (k = 1) or the hyperplane with dimension k is too

far from the received point, i.e., the distance between all the points it contains and the received point is
higher than bestdist).

endif.
Step 4. Processing of a lower dimension: Compute for ¢ = 1,....,k — 1 ex_1; < ex; — pVi; (The coordinates

of the projected point on the hyperplane of dimension £ — 1 in the lattice contained in this hyperplane are
computed). Decrement k (We now consider the projection on an hyperplane with one dimension less). Set
disty, <+ newdist (The cumulative distance disty between the received point and the hyperplane with dimension
k+ 1 is newdist). Set z < [exr] (The closest hyperplane with fixed coordinates zn,, 2zn,—1,. .., 2 is chosen
by taking zx equal to the closest integer value of exy). Set zp «— max(zk, 2min), 2k — mMin(zg, Zmaz) (If
the hyperplane does not belong to the constellation, the closest hyperplane belonging to the constellation is
chosen ). Compute p = (exr — 2zk)/(Vr) (This is the coordinate distance between the projected point on the
hyperplane with dimension & and the chosen hyperplane of dimension k — 1, —1 < p < 1). Set stepy < sgn(p)
(This is the increment for the next zj value, to test the second closest hyperplane, which is located “on the
other side” of the point projected on the hyperplane with dimension k). Go to Step 3.
Step 5. Termination of a branch:

If newdist < bestdist
set £ « z, bestdist < newdist (A valid point has been found (k = 1) with an associated distance smaller

than bestdist. Thus, the point is stored and bestdist is updated. Since the next closest hyperplane with
dimension k —1 = 0 (point) is obviously located at a higher distance than bestdist, it is not necessary to
change z1).

else if k = ng
return 2 and terminate (The closest hyperplane with dimension ns — 1 is located at a higher distance
than bestdist, the algorithm is finished).

endif.
Increment k (The closest hyperplane with dimension k — 1 for fixed values zp,. ..,z is located at a higher
distance than bestdist or we have found the best value z1 (k = 1) for fixed values zn,,..., 22, ie., it is

not necessary to change zx. The fixed value for dimension k 4+ 1, zpy1 has to be changed). Compute
2k < 2 + stepr (The fixed coordinate in dimension k is changed to test the next closest hyperplane).
If z;, < Zmin OF 2k > Zmax
set stepy «— —stepr — sgn(stepx) (The next closest hyperplane is outside the constellation, the next
closest hyperplane at the “opposite side” will be test ). Set zp < zx + stepr (The 2z value is updated in
order to test the next closest hyperplane at the “opposite side” ).
If 2 < Zmin OF Zk > Zmax
go to Step 5 (The next closest hyperplane at the opposite side is also outside the constellation. It
is not necessary to further change zj. The fixed value for dimension k+ 1, 2,41 has to be changed ).

endif.
endif.

Compute p < (egr — 2k)/Vir (This is the coordinate distance between the projected point on the hyperplane
with dimension k and the chosen hyperplane of dimension k—1, —1 < p < 1). Set stepy <« —stepy —sgn(stepy,)
(Step is prepared to test the next closest hyperplane at the “opposite side” later on).

Go to Step 3.

4.2.3 Strategies differences and similarities

The two strategies presented in 4.2.1 and 4.2.2 are often presented as different and the compar-
ison often tips the scales in favor of Schnorr-Euchner enumeration strategy. In this subsection,
we will make a comparison between these two algorithms based on the tree exploration.

The two Sphere Decoders can be seen as a tree search using the intrinsic tree structure of
the lattice. If the search is performed over all the points belonging to the intersection of a
(2™ — QAM)™ constellation and the lattice, the tree has a depth n, and 2™M/2 gtates by stage.
The chosen metric is the Euclidean distance between the projected received point and the cho-
sen hyperplane. We can see the tree of a 4-PAM over a 3 x 3 random lattice in Fig 4.11, the
abscissa represents the cumulative distances of the enumerated points, the ordinate represents
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Figure 4.11: Lattice tree representation, cumulative distances through exploration of dimensions.

the explored dimension. The square distances of all the constellation points can be read at the
branches end, on the abscissa. The ML point corresponds to the path achieving the smallest
value on the abscissa.

When the noise places the received point close to the median limit between two hyperplanes,
the two corresponding branches are merged. This effect is emphasized by strong fading and
interference, and results in the crossing of branches, which slows down the research process.

The sphere radius corresponds to an abscissa limit for the branches, which is shifted left for
each new computed point. It cuts some branches adaptatively with the found points. We will
later use such a representation to justify some complexity reductions.

The two presented Sphere Decoders (Pohst and Schnorr-Euchner) iniatially do not seem to
have the same point enumeration strategy, neither the same tree. Indeed, Pohst strategy enu-
merates the points in Z™ while Schnorr-Euchner strategy uses the lattice laminated hyperplane
structure for the direct enumeration in A. The branches end of both trees are the same since
the same lattice points are enumerated. Let us compare the two tree constructions in order to
see the differences between the two strategies.

Pohst | Schnorr-Euchner
Tree depth Mg
States at stage k The set of coordinates {zn,,..., 2k}
Number of outgoing branches by states 2m/?
)
Branch Metric Ok (Sk — 21)? (%)

The branch metric of Pohst strategy is equal to

Ns 2 Ns
Wi+ Y Opilwi— 2z) — Zk] = [yk > Az
ik

1=k+1

2

Ok (Sk — 21)* = Opx (4.42)

Furthermore, the branch metric of Schnorr-Euchner strategy can be modified using (4.38),
(4.39) and vy, =y, we have that

2 Ns 2
— Z
(7%@1@ . k) = (g — 26Dk 1)* = [yk - § Aikzi] (4.43)
) l:k
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We can conclude that both algorithms compute the ML point by browsing the same tree.
The difference between the two algorithms sums up in the order the 2”/2 branches are selected
from a given state, and the equations used for computing the metrics.

Once the tree structure is defined, we can use a global tree decoding method such as branch-
and-bound algorithm. This has been proposed for example in [57] with the memorization of the
whole tree structure, which is not necessary. This tree browsing technique is strictly equivalent
to the Schnorr-Euchner decoding, and is optimal when considering the total number of selected
branches. Indeed, the sub trees are scanned by decreasing order of likelihood. We can see the
Schnorr-Euchner algorithm as a branch-and-bound algorithm on the intrinsic tree structure of
the lattice.

Initially, the Pohst method was designed to enumerate the lattice points belonging to a
sphere. Any enumeration strategy would lead to the same list. When the algorithm was applied
n [85], the radius reduction has been added but the enumeration strategy kept unchanged.
Clearly, an ordering of branches in each dimension would accelerate the decoding, the optimal
choice is the sorting by decreasing order of likelihood. In the dimension &, the integer components
to enumerate belong to the interval

R — >k “(5 + 2252410 )2 R — > “<5 + 225210 )2
@k,k ’ @k,k

(4.44)
The Sphere Decoder in [85] enumerates the points of this dimension from the lower to the
upper bound, but an optimal enumeration would begin from the center (most likely value) and
alternate around this value as for the hyperplanes selection in Schnorr-Euchner. With this new
enumeration, the two Sphere Decoders perform exactly the same search in the tree and they
only differ on the recursive equations complexity.
We will now compare the complexity associated with each branch and to the pre-processing
computations.

Pohst enumeration complexity analysis
The pre-processing for Pohst enumeration strategy has complexity equal to n2(5ns — 1)/2, in-
cluding:

1. the channel matrix M inversion: 2n2/3 + n2/2 — n,/6 flops

2. the Gram G matrix calculation (using the symmetry): ng(ns+1)(2ns—1)/2 = n2+n2/2—
ns/2 flops

3. the A and © matrices computation via Cholesky decomposition: 5n2/6 — 3n2/2 + 2n,/3

The initialization for Pohst enumeration strategy includes the ZF point computation which re-
quires 2n? flops.
The computation of a tree branch metric in the dimension k requires 2(ns — k) + 10 flops.

Schnorr- Euchner complexity analysis
The pre-processing for Schnorr-Euchner enumeration strategy requires 7n2/3 + 3n2/2 + 31n,/6
flops:
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Figure 4.12: Point error rate of a QPSK on a  Figure 4.13: Point error rate of a 16-QAM on
MIMO channel. a MIMO channel.

1. the A and © matrices computation via QR decomposition: 5n/3 + 2n2 + 16n,/3
2. the channel matrix A inversion (triangular): 2n3/3 — n2/2 — ns/6 flops

The initialization for Schnorr-Euchner enumeration strategy requires 2n2 — 2ns + 3 flops.
The computation of a tree branch metric in the dimension k requires 3k — 1 flops.

Complexity comparison
First, we can notice that the complexity of the initialization phase of the Pohst and Schnorr-
Euchner strategies are quite equivalent.

The branch complexity varies with ns — k for the modified Pohst strategy, and with k for

Schnorr-Euchner. However, the algorithm computes more branches in the dimension with lower
indices, which justifies why Schnorr-Euchner is often less complex than Pohst strategies, applied
to sphere decoding.
The optimal choice would be to compute the Pohst recursive equations for the higher dimension
indices k > ny/2 and the Schnorr-Euchner recursive equations for the lower dimension indices
k < ng/2. However, the Schnorr-Euchner initializations, necessary at each new shift between
the two strategies, are as complex as the complexity reduction given by the use of the Pohst
recursive equations for the higher dimension indices k& > ng/2.

In the end, the Schnorr-Euchner strategy seems to be a judicious choice for decoding a lattice
constellation. Based on this conclusion, we will now always consider this strategy for ML sphere
decoding until the end of the thesis report. The algorithm will be called for simplicity SD-SE
(Sphere Decoder with Schnorr-Euchner strategy).

In Fig. 4.12, we can observe the Point Error Rate, i.e., the probability that the n,-
dimensionnal decoded point is not the transmitted point for QPSK and 16-QAM transmissions
over MIMO channels. Even with 16 antennas, i.e. 32 real dimensions, the accelerated Sphere
Decoder finds the ML point with a reasonable complexity.

4.2.4 Complexity reductions

The complexity of the Sphere Decoder depends on many parameters. As a non-exhaustive list,
we cite:
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the sphere point enumeration strategy (Pohst or Schnorr-Euchner)

the choice of the sphere radius, and possibly its reduction through iterations

the constellation bounds processing

the lattice basis modification via reduction

the dimensions exploration order, where the objective is to separate as much as possible
tree branches

a) Initial Sphere radius choice

The optimal radius choice would be R% = |ly — xps1||? since only the ML point would belong
to the sphere. However, such a choice is impossible without any pre-computation. We can first
notice that y — 1, = * — xprr, + 1 which leads to some conclusions:

If x = xps1,, which is about achieved only when the signal-to-noise ratio is high (low error
rate), we have that |y — xp/1]|? = [|]|? only depends on the ng-dimensional real Gaussian
noise norm, which is a random variable with chi-square distribution:

1
_ ns/2—1_—r/2Np
pp(r > 0) o) (% 1)!7“ e (4.45)

The probability that the noise norm is greater than R?S is equal to

R} p o 1 SR\
F(R‘%) _ /O pn(.%'>d.%' — 1 _ ¢ R%/2No Z o (2_]\‘?_0> (4.46)
k=0

which gives the probability p R2 (x ¢ S) that the transmitted point = does not belong to the
search sphere. We can inverse this function to find the sphere radius that leads to a given
PR, (x ¢ S). As an example, we could choose a set of radii Rs1 < Rs2 < Rs 3 < Rs 4 such
that pR%Vl(:c ¢S)=0.1, pR‘gm(:n ¢ S) = 0.01, pR‘gS’B(:r ¢S)=10"% pR‘2S,4(:B ¢S)=10"".
If no point is found with the first radius, the processing is repeated with the second radius,
and so on until one point is found. It is very difficult to find the optimal choice of prob-
ability set that minimizes the average complexity because the complexity of fixed radius
decoding is not known.

If the received point belongs to the constellation volume, i.e., if the Zero-Forcing point
belongs to [0, zimaz|™, the maximal distance to a constellation point is dgmin/2. The
search radius may e limited to this value. This is particularly useful at reasonable signal-
to-noise ratio, when the point belongs to the constellation and the radius given by the noise
statistics is too large. Indeed, the lower the signal-to-noise ratio, the lower the probability
to be within the constellation limits. We can compute the lattice minimal distance dgin
using a Sphere Decoder on the lattice, with the received point at the origin. Unfortunately,
this is as complex as the sphere decoding itself. If the channel is quasi-static or block fading
with few blocks, it could be economical to process such a computation for each new channel
block. If the channel is ergodic, we can use some upper bounds on the lattice minimum
Euclidean distance, for example the minimum Gram matrix diagonal element as suggested
in section 4.1.2.

Noticing that Vo € Q,|ly — zpmL|> < |ly — #]|?, we can choose a radius performing a
simple detection 2 such as ZF, MMSE or DFE, and compute the radius R?g@ = |ly — 2|
This last technique has the great advantage to take into account the instantaneous noise
amplitude and received point position, whereas the other techniques do not make benefit
from any knowledge of y.
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Finally, we can take advantage of each technique to find the best radius that limits the com-

plexity.

In Fig. 4.14, we can observe the complexity of SD-SE with an infinite initial radius over a
4 x 4 MIMO channel and different modulation sizes. The complexity decreases exponentially
with the noise level. For high signal-to-noise ratios, the complexity converges to a constant
value given by the complexity to decode one point. The complexity increases with the spectral
efficiency increases.
In Fig. 4.15, Fig. 4.16 and Fig. 4.17, we can observe the complexity ratio between an SD-SE
with a radius pre-computation and an SD-SE with an infinite initial radius. We can notice that
for the practical signal-to-noise range, a complexity reduction is achieved using the well-designed
initial radius taking into account the noise variance and the minimum distance evaluation when
the point is inside the constellation. This reduction factor increases with the number of dimen-
sions and spectral efficiency.
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Figure 4.18: Babai wrong decision region without (left) and with (right) lattice reduction.

As a conclusion, we can notice that the complexity attenuation is never huge. Taking into
account the constellation boundaries in the search algorithm provides a substantial complexity
reductions.

b) Lattice basis modifications

We will present two lattice basis modifications that can lead to complexity reduction: lattice
reduction and basis vector re-ordering. As presented in section 4.1.4, lattice reductions can be
used to change the random channel basis into a more orthogonal and shorter one. We already
have seen that if the lattice basis is orthogonal, the ZF |, Babai and ML points are the same. We
can deduce that the more orthogonal the basis is, the simpler the decoding is. In this case, each
decision in the tree is more reliable and this involves that lattice basis reduction reduces sphere
decoding complexity. Studies supported by computer simulations showed that Schnorr-Euchner
Decoder is two to four times faster than Pohst Sphere Decoder in finding the nearest point in a
completely random lattice perturbed by uniformly distributed noise [1]. The factor 4 in speed
ratio is measured after applying basis reduction like LLL (Lenstra-Lenstra-Lovasz [54]) or KZ
(Korkine-Zolotareff [50]).

In Fig. 4.18, we observe the Voronoi regions and the Babai decision regions with and without
reduction. When the received point belongs to one of the two cross hatched regions, the Babai
point is not ML. The two regions @ and @ are given by the dimension decoding order. Notice
that without any reduction, the order leading to region will provide faster decoding since
the Babai point is more reliable. With a reduction, we first notice that the regions @and

are disjoint, which indicates that for each received point, the lattice reduction associated
with a point-specific dimension ordering enables the Babai point to always be ML. However,
this optimal ordering consideration is at least as complex as the ML decoding itself. Neverthe-
less, it shows that the reduction always enhances the Babai decoding and accelerates the Sphere
Decoder.
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In Fig. 4.19, we observe the complexity gain obtained by an LLL reduction when decoding an
ng xny MIMO channel equivalent lattice with a Schnorr-Euchner Sphere Decoder. At high signal-
to-noise ratio, the Babai point is often the ML point and the reduction is less useful. However,
at low signal-to-noise ratio, we can observe the gain factors obtained thanks to reduction and
increasing with the number of dimensions.

However, such a complexity reduction is difficult to obtain for QAM modulations on MIMO
channels, and that for different reasons:

e If the channel is ergodic, the reduction has to be computed at each new channel realization,
in this case the complexity gain might be inferior to the complexity of the reduction. The
first conclusion is that lattice reductions have to be used for block fading MIMO channels,
and computed only at each new channel realization.

e The bounds of the constellation cannot be computed anymore, indeed, the channel re-
duction transforms the cubic constellation into a parallelepipedic constellation where each
bound depends on all the dimensions at the same time. The complexity reduction given
by the restriction to the cubic constellation bound is higher than the one given by the
reduction, this can be seen in Fig. 4.20.

The constellation boundaries can be computed after a reduction if and only if the basis change
matrix V' is triangular, where M,. = V M, is the reduced basis from My. Indeed, the transmitted
point x € A is associated with z € Z™ and 2’ € Z" considering the generator matrices My
or M’', equivalently. Using the relation z = 2’V between z and 2/, we can see that if V is
lower triangular, the decisions on z can be computed, dimension by dimension and recursively.
Unfortunately, some simulation results have shown that the complexity reduction obtained with
the bad reduction is inferior to the recursive bounds processing complexity addition.
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4.3 Soft-output list decoding of a lattice constellation

Usually, to compute the soft-output of the mn; coded bits transmitted on each time period , an
exhaustive marginalization which takes into account all the 2™"t possible transmitted symbols
has to be processed. However, for complexity issues in the case of high spectral efficiency, this
marginalization is limited to some well chosen points in a spherical list. However, the list has to
be well chosen to keep near-optimal performance while strongly reducing the complexity of the
APP detector.

4.3.1 Limitation of the likelihood in exhausive APP detector

For systems whose equivalent lattice dimension is too important, the exhaustive marginaliza-
tion becomes too complex. For the example of 16-QAM modulations, a 2 x 2 MIMO channel
requires a marginalization of 2'6 points by channel use, and an 8 x 8 MIMO channel requires
a marginalization of 264 points by channel use. We propose to limit the marginalization to the
points belonging to a list £. The approximated soft value becomes

N
Zz’eﬂ(cj'zl)ﬂﬂ € 202 Hr;ﬁj 71'(67")

>zeone [(6_%9”3 IL4 W(Cr)}

We observe that the soft outputs depend on both the geometrical configuration when considering
the likelihoods and the a priori probability configuration given by a decoder. In the case of an
exhaustive list (£ contains the 2" points), some of the likelihoods in the expression (4.47) are
negligible. Let us suppose that all the points whose likelihood is not negligible belong to a list
£

&(ej) = (4.47)

2
1 _llv=="mp 1 llv—=Mal?

Vi ¢ L, VzedgL, e 20 e 202 (4.48)

2mo? 2mo?

The geometrical limit that separates these likelihoods is a sphere centered on the received point
that justifies the construction of a non-exhaustive list with the points of a sphere. The choice of
the sphere radius determines the performance and the complexity of the corresponding soft-input
soft-output detector and is the main difficulty of the solution presented by the authors. Indeed,
the random nature of the channels implies a non-stability in the list size. Another difficulty
appears in the case of bursted channels, the list directly depends on the received point y, which
requires the reconstruction of the list for each new received point, i.e., at each symbol time.
Indeed, even if the channel is constant, the noise varies continuously and so does y.

4.3.2 A shifted spherical list

In the case of an ergodic channel, once the ML point is found, we choose to center the list on
the ML point instead of centering it on the received point. Clearly, the marginalization (4.47)
does not give the same results since the points in the list are different. We make the approxi-
mation that the output of the marginalization is quasi-equal to the output when the sphere is
centered on the received point. Indeed, to compute efficient soft values, the radius of the sphere
must be relatively high, and the points that will differ in the list are close to the surface of the
sphere, so they have the smallest likelihoods. In Fig. 4.21, we clearly see the advantages of
the ML center when compared to the received point center. Indeed, when the received point is
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Figure 4.21: Comparison between the sphere centered on the ML point and the sphere centered
on the received point y.

outside the constellation, which has a high probability when considering a large number of di-
mensions, the sphere centered on the received point enumerates a large number of lattice points
to find a small number of constellation points. When the sphere is centered on the ML point,
the number of listed points is reduced and the high likelihood points are taken into consideration.

Since a classical SD finds the closest point to a noisy received point in a lattice, some changes
have to be made to the SD algorithm to extend it to a soft-output sphere detector: the radius
of the sphere is not reduced during the search like presented before, every point found in the in-
tersection of the sphere and the constellation is stored, together with its distance to the received
point. A double Pohst recursion is used to enumerate the points. Indeed, the first classical
recursion is needed to check all lattice points at a squared distance less than the radius of the
sphere centered on the ML point. We added a parallel second recursion to compute the dis-
tances between the enumerated points and the received point y (see step 1 and variables with
an upperscript d in the description of the algorithm 2) with a reduced complexity.

Instead of centering the sphere on the ML point, we evaluate it with classical sub-optimal
methods to reduce the complexity of the system. As a non-exhaustive list, we cite some known
methods that can be implemented as an alternative to the Sphere Decoder:

e zero Forcing (ZF) with or without a hard decision

e minimum Mean Square Equalizer (MMSE) with or without a hard decision
e interference Cancelation with or without ordering (MMSE or ZF)

e babai point in the constellation

Until the end of this document, we will only discuss the case when the sphere is centered on the
ML point, the above simplifications can be applied in most cases.

4.3.3 Choice of the radius

The choice of the sphere radius R for this list Sphere Decoder is as important as the choice of
the radius for the conventional SD. Having too many points in the sphere heavily slows down
the detection while not having enough points degrades significantly the performance. In this
section, some properties of lattices are exploited to determine a sphere radius that guarantees a
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Algorithm 3: Spherical list enumeration.

input : A received point y, a point of the lattice x, the generator matrix M (ns X ns) of the lattice, the radius
r of the sphere, and the bounds z;,;» and zmaz of the constellation.

output : A list £ of points of the lattices that belong to the sphere, a list of the distance between y and each
point of the list.

Pre-processing

My — MJ!

G — MaAMT

Cholesky’s reduction {R, ®} = Cholesky(G). R is upper-triangular.

© OO AW N R
S
1
8
=
S
1
<
S

11 Ling < maz Q\/Ti/@u + SiJ ,me>
12 zi < mun ([*m+ SJ ,zmaz> -1
o

14 z; «— z; + 1
15 if z; > L; then

16 if ¢ > 1 then

17 §i —ui— 2z

18 & —pi — z

19 Tio1 — T; — 0:(S; — 2;)?

20 T | — T8 —0;(S¢ — 2;)?

21 Si—1 = wim1 + 2071 ©5-1,5€;
22 St i1+ 20 O 56
23 1—1—1

24 | Goto Step 2

25 else

26 d? —r? — T8 + ©11(S{ — 21)?
27 store z and d in £

28 u—u+1

29 | Goto Step 2

30 else if i = n then Teminate

31 else

32 T—1+1

33 Goto Step 2

stability in the number of points in the list. Let us assume we want to find IV, points to create a
list centered on the origin. We make the approximation that the volume of a sphere containing
N, points is equal to the volume of NNV, fundamental parallelotopes. Hence, the radius R of a
sphere that contains NN, points is well approximated by

R= (M%?W) : (4.49)

where vol (A) is the fundamental volume of the lattice and V}, is the volume of a unitary sphere
in dimension n:

n/2 /2 n pair
__ T (n/2)! P 4
Va I(n/2+1) 2n P =D/ impair (450

This method of choosing the radius is quite stable in a lattice when N, is high. We can see the
average number of points obtained in a lattice with this method in Fig. 4.22-(a). The average
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Figure 4.22: Mean and Deviation of the number of points in the list for a MIMO lattice decoding.
The list sphere radius is derived from the fundamental volume.
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Figure 4.23: Mean and Deviation of the number of points in the list for a MIMO constellation.
The list sphere radius is derived from the fundamental volume.

number of listed points is equal to the expected number of points NN, for any value of n;. In Fig.
4.22-(b), we can see the deviation over the mean of the number of listed points, and we notice
that for high values of N, the list becomes more and more stable, as expected.

When considering a constellation, the intersection between the sphere and the constellation
significantly disminishes the number of selected points. Depending on the position of the ML
point in the constellation, the number of enumerated points varies. Fig. 4.24 shows a situation
where 13 points are enumerated in the lattice and only 7 points in the constellation. In Fig.
4.23-(a)(b), we can see the mean and deviation of the number of listed points in the intersection
of the spherical list and a 16-QAM modulation. First, we can notice that the average number
of points is significantly lower than the expected number of points, and this depends on the
number of transmit antennas. Indeed, the number of listed points saturates to 2",

In order to have more stability in the number of listed points and to avoid small and large
lists, we can adjust the sphere radius taking into account the number of hyperplanes ny,, the
ML point belongs to. The number of expected points N, is multiplied by a[ns,,], an expansion
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Figure 4.24: The loss of points in the list in the case of constellations.
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Figure 4.25: Average number of listed points with or without the expansion factor afi].

factor of the list size which depends on nj,,. Indeed, the more the number of hyperplanes the ML
point belongs to, the less we have points in the list. For example, the choice afi] =1+ nis gives
good results. We can see respectively in Fig. 4.25-(a) and Fig. 4.25-(b) the average number of
points in the list, with and without the expansion factor a[i]. We can observe that the expansion
factor succeeds in correcting the average number of points for any parameter np,,. The aver-
age number of points is lower than N, this has to be taken into consideration when n,, is chosen.

We will now try to reduce the number of points deviation, using the observation that the
number of listed points is also influenced by the lattice geometry. The more dense the lattice
is, the more stable the list becomes, and we have less side effects. To take into account this
property, we can use the fundamental volume (A) and add a pre-correction of the expected
number of points to the list radius. The problem of finding d%, ., is NP complex, that is why
we approximate it by the minimum of the diagonal of the Gram matrix. We will call gfmn (A)
this quantity and ~¢ the approximation of the fundamental gain of A:

2
gmin(A)
Y6(A) = —— e — (4.51)
|det(My)|*/™
We then use a simple criterion for an additional expansion g of the number of points:

{ Y6(A)dB > v1 = py = (4.52)
Ya(AN)dB > 2 = iy = p2




4.3 Soft-output list decoding of a lattice constellation 103

Figure 4.26: Translation invariance of the lattice.

E.g., we take v1 = 3dB,v2 = 6dB, 11 = 4, us = 16. Finally, the new radius is given by

1
R = (a[nhyp] X /J"Y; Np X det (G)) " (453)

If the number of points in the list is too small, we can reenumerate the points in a larger sphere,
for example by multiplying the radius by 1.5.

4.3.4 Complexity reduction for block fading channels

Let us define Ny, the number of symbols in a code word. In the case of an ergodic channel,
we have to store Npjoer lists to compute the observations on all coded bits before giving them to
the observation input of the SISO decoder. In the case of a block fading channel, the channel
remains unchanged during the block. Thanks to the lattice structure, we can find the points
in the sphere centered on the origin of the lattice and translate them to find the points in the
sphere centered on xsr. This invokes the translation invariance of the lattice (cf Fig. 4.26).

In the list, we store ng points belonging to the constellation with their labeling. For each
channel use, the noise changes, so the distances to the received point have to be reprocessed. A
less performant version only takes into account the distance to the ML point, so the distances
are processed once at the beginning of each block. We can also enumerate a larger list and sort
it with the distance to the origin. This can be seen as a list of concentric spheres. If the first
sphere leads to a list which is too small, we consider the second sphere and so on (see Fig. 4.27).

4.3.5 Applications to iterative detection and decoding of BICM

In this section, we illustrate the application of the new soft detector to BICM on MIMO. The
symbols z; belong to an M-QAM constellation. The binary information elements are encoded
using a rate R, convolutional code. The coded bits {c,} are randomly interleaved and fed to a
QAM mapper (M = 2™) that generates z. The spectral efficiency of the system is R. x m X ny
bits per channel use, or equivalently R. x m x n; bits/sec/Hz.

When there is only one symbol representing one bit in the list, the observation is either 1 or
0. In that case, there is no point in the constellation with the other symbol, which can cause
computation inconsistency when marginalizing. For example, in Fig. 4.28, if we consider that
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Figure 4.28: Situation leading to inconsistency.

the a priori of the first bit is equal to 0.0, the SISO decoder fails because there is no point
corresponding to a first bit equal to 0 in the list. Without loss of generality, we will consider
this case until the end of this section.

A first solution to solve the inconsistency problem is to replace the APP of the considered
bit by the minimum among the contributions in the list, (4.47) becomes

’ 2 -1
) _lly=="014 ]
M eQ(e;=1)NL € 202 Hr;ﬁj ﬂ-(CT’)
3 (4.54)

y= |1
£e) + EENE
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Another solution is to consider the worst case when the nearest point that does not belong to
the list lies on the surface of the sphere. We consider the sphere radius to compute its likelihood.
The corresponding a priori probability m, of this virtual point can be chosen using different ways:

e By an average case when all a priori probabilities are equal to 0.5:
Ty = 0.5mm L (4.55)

e By the worst case when the point is of higher a priori probability:
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Ty = H max{m(c,),1 —m(cr)} (4.56)
T#j

With this method, (4.47) becomes
-1
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(4.57)

Another efficient way to reduce insconsistency computation problems is to apply a ceiling on
the soft values exchanged between the blocks. A first ceil with parameter €. is applied to soft
values given by the soft decoder to the detector, i.e., a priori probabilities for the detector:

vj, mlej) < e = mlej) e (4.58)
m(cj) >1—€e = 7m(cj) —1—e

The same method can be applied at the output of the detector with parameter €;, but it is
preferable to apply the ceiling during the computation of the a priori probabilities product.

Initialization o «+ 1 — ¢
for 7 =0 to m x ny and r # j, o «— o X w(cp),a5 — max {aj, €}

Indeed, we can see that the perfect case when a;; = 1 is solved by initializing o to 1 —¢;. During
the computation, if the current product becomes inferior to ¢;, a ceiling is done, which limits
the calculation distortion.

At the end of the computation, «; gives an estimate of the product of the a priori probabili-
ties in the computation (4.57). The parameters ¢; and €. can be chosen equal to 10~ for example.

4.4 Soft-input soft-output MMSE

In the previous section, we have presented an a posteriori probability detector for multiple
antenna channels. It has the high advantage of providing good performance but has an NP
complexity. We will now present a sub-optimal soft-input soft-ouput detector based on the min-
imum mean square error (MMSE) criterion. Such a SISO-MMSE equalizer has been presented
in [28] in the case of single antenna dispersive channel. We describe the direct application to
MIMO channels and present supplementary complexity reductions.

4.4.1 SISO-MMSE processing

Let us assume that a mono-dimensional complex mapping 2! is used to independently convert
m bits into a constellation symbol on each transmit antenna. This independence allows to see
the n; x n, channel as n; interfering 1 x n, channels. If the feedback from the SISO decoder is
sufficiently reliable, we can assume that the interference is perfectly removed and the extrinsic
probability of a coded bit computed by an exhaustive marginalization over Q'. We clearly see
the complexity reduction at a cost of performance degradation for low signal-to-noise ratios. The
basic SISO-MMSE is fully presented in Appendix B. However, we will recall the main equations
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for the soft output processing.

Assume that the constellation has zero mean, i.e, E, co1(2;) = 0. The constellation variance
is equal to the symbol energy Es = E, cqi(22). Note ¢; = [0,...,0,1,0,...,0] the null vector
with a 1 in position ¢. The SISO-MMSE is computed from the following steps

1. Y0 < i < ny, compute the vectors z = (2, ..., Zn,—1] and 02 = [02,...,02, ]

m.i+m—1

mz) = ][] 7o) (4.59)
Zi = Zziﬂ'(zi) (460)
o; = D lalr(z) — |z (4.61)

2. V0 <1 < ny, compute

Fi = dlag [03707"'70-3,7:71’E370-§,7:+17' ..,Ug’ntil} (462)
Zi = Bsly— (2—e;zi)H|[H'T;H + NoI] ' (e;H)* (4.63)
i = Eg(e;H)[HTH + NoI| ™" (e;H)* (4.64)
~ |2 — pizil? }
p(Zilzi)) = exp|——————— wi(l — i) Esm 4.65
(2l Bl - ) (1.65
3. V0 <1 < ng, VO < j < m compute

£(jim) = > eqPEilzi) [z m(a)

4.4.2 Complexity reductions of matrix inversions

Without any complexity reduction, the SISO MMSE requires the computation of n; matrix
inversions (size n, x n,) for each iteration and time period. We will first show how to compute
only one matrix inversion per iteration and time period and present some ideas to limit the
number of matrix inversions in the whole iterative process.

a) Application of the Sherman-Morrison Formula

To compute z;,V0 < i < ng, the SISO-MMSE requires the computation of the n, x n, matrix
inversion:

A7 = [H*T;H 4 NoI]™* (4.67)

where
. 2 2 2 2
Fi == dlag |:O-Z,07 - 70—2,2‘—17 E57 0'277:_’_1, o e 70'2’7”_1] (468)

varies at each iteration (the Ug,@' variables are computed from the a priori probabilities given by
the error correcting code SISO decoder) and for each antenna.

Notice that
1

A7V = [H* (T + (Bs — 02,)¢) H+ Nol|~ (4.69)
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where I' = diag {JEJ} and €; is a matrix having only one non-zero coefficient equal to 1 and
coordinates (i,1).
With the property €;¢; = &;, we deduce that

H*¢,H = (&;H)*"¢,H = h}h; (4.70)
where h; is the i-th row of H. If we define B = [H*T'H + NylI|, we get
AV = [B+ (Bs — o2 )hih] " (4.71)
by applying the Sherman-Morrison formula, and using the Hermitian symmetry v* = B ’1h;‘ =
(hi B~1)*, we obtain
B (Bs — ‘73,1‘) v
1+ (Fs — Uzﬂ-)hiv*

At =pB™! *v (4.72)

As a conclusion, and at each iteration, we only have to compute the n, X n, matrix inversion

B~! and for each antenna, we have to compute one “matriz by vector” multiplication and two

“vector by vector” multiplications. Finally, we have

_ BEyly— (2—«zi)H][H'TH + NoI| " b}
L+ (B, —o2)) (B + No (HH?);")

(4.73)

b) Matrixz series expansion applied to the matriz inversion

The n, X n, matrix inversion B~! has to be done at each new iteration. We will use in some
adapted situations a series expansion of this matrix to evaluate the inversion. At the n-th
iteration, we have to compute

B~! = [H*TH + NoI] ™ (4.74)

Direct method, series expansion on I
After some iterations, I' is supposed to be quasi null in the case of converging high SN R systems.
We will use this property of I' to evaluate the inversion B~!. We have

1

B l=
No

e+t (4.75)

with © = NLOH *I'H. We can compute B~! thanks to the power series expansion under some
convergence conditions. Let us define the spectral radius r7(0©) = max; |\;| the maximum of
the modulus of the eigenvalues A\; of ©. The convergence condition of the series expansion is
r(©) < 1. The computation of the eigenvalues is too complex, so we will use a straightforward
application of the Gershgorin Theorem that gives a loose upper bound on r (0):

r(6) < max Z A (4.76)

If the convergence criteria is verified, the series expansion is given by

1 .
max Z 04| <1=B"1'=— Z (—0) (4.77)
J
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In conclusion, we can limit the order of the series expansion to L, which leads to

L i
1 * -1 1 —1 *
max | = % Iy )(H Hyy|| <1= B'~§ ;_0 <FOH FH) (4.78)

The series expansion can be expressed by the less complexity consuming recurrent relation

1 1 1
B '~ _—_—g*(I—-—THH"(I-—THH"(I —... HH 4.
N ( N ( THIT >)) (4.79)

Hence, HH* can be pre-computed each time the channel changes, and I' is diagonal, which sim-
plifies the processing of 'H H*. The number of matrix multiplications, which are predominant
in terms of complexity, is L + 2, this method is useful if L + 2 < 2n,.

Series expansion on the difference I'y 1 — Ty
Even at low SNR, the system converges to a state when the difference Y, 1 = I'yp1 — 'y is
quasi null. We can apply the power series expansion in this case, indeed at the n-th iteration,
we have an estimation of B, !. We want to evaluate B;il from the new feedback correction
Y,+1. We can write

M1 = HB,} H* = My [T+ o1 M) (4.80)

We can directly apply the results seen above:
max > Yni1ys [ Majl | < 1= Myyy ~ My (I = Yoyi My (I = Y1 My (I—..0))) (4.81)
J

This recurrent evaluation of B~! can be computed by these different points

e Iteration 0: compute or evaluate Bal and My = HBalH*
e [teration n + 1: if the convergence condition is satisfied, compute Y,4+1M, and M,
thanks to Eq. (4.81), and compute B,y = H M, H

4.4.3 Application to Space-Time precoders

In order to improve the diversity order of the system, we introduce a new class of precoders
based on a modification of cyclotomic rotations. The precoder spreads the symbols in space and
time with a factor s thanks to a s.n; x s.n, matrix S. The new extended s.n; x s.n, channel
matrix H is block diagonal, each block on the diagonal is a n; x n, matrix H; corresponding to
the MIMO channel matrix during symbol period t.

Our precoder is a rotation, so SS* = I and S*S = I. At the first iteration, all the variances o?

2,0
are equal, this induces that I' = O'E’OI Without any considerations on S, we should compute the

inversion of B! = [H*S*T'SH + Nol]f1 which is s.n, X s.n,. Since S*S = I, we have

B~' =[H*TH + NoI,,,] " (45
. ~1 -1 .
= diag { [o2oHi Hy + No, ) ' [02 g HIH, + NoI, ] '}
We compute s inversions of (n; X n,) matrices for s symbol periods (as if there was no precoder)
instead of 1 inversion of (n¢.s X n,.s) matrix. Then at high signal-to-noise ratio we can compute
the matrices series expansions methods.
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4.5 Performance and complexity comparison

In this section, we will compare the performance and complexity of the three iterative receivers
presented in the previous sections. We consider a 4 x 4 ergodic MIMO channel with 16-QAM
input. The objective of the near APP detector design is to achieve performance not far from
the capacity limit.

Let us consider a rate 1/2 parallel turbo-code [8] whose constituent codes are two (1,5/7)
recursive systematic convolutional codes. The rate 1/2 constituents are punctured in order to in-
crease the concatenation rate from 1/3 to 1/2. Figure 4.29 shows the achievable information rate
for 4 x 4 multiple antenna channel with 16-QAM input alphabet. The mutual information value
of 8.0 bits per channel use yields a minimum achievable signal-to-noise ratio equal to 4.0dB. The
capacity limit with a Gaussian input at 8.0 bits per channel use is 3.7 dB. Figure 4.29 illustrates
an application of the soft output Sphere Decoder to the evaluation of MIMO channel information
rate under the constraint of a finite QAM constellation input. Two scenarios are presented: 1-
A target list size N, = 1000. The effective list size was distributed between N.(min) = 256 and
Ne(maz) = 2300 with an average equal to 1000. 2- A target list size N, = 60000. The effective
list size was distributed between N¢(min) = 4000 and N(maz) = 26000 with an average equal
to 10000. It is clear that mutual information evaluation is useful at high coding rates (R, > 1/2)
where its value diverges from the Gaussian input capacity. A reduced size list is sufficient in
this region.

In Fig. 4.30, we observe the turbo-code performance over the 4 x 4 MIMO channel. We
compare a shifted list sphere decoder and a list sphere decoder centered on y both performing
at 1.3 dB from the mutual information limit. The complexity ratio is 3.7 in favor of the shifted
list sphere decoder. In this case, the effective number of listed points histograms are presented
in Fig. 4.31. We can see that the shifted list sphere decoder succeeds in limiting the small
and large lists whereas the list sphere decoder centered on y often generates very small list and
with a non-null probability large lists. When the list sphere decoder centered on y has the same
complexity as the shifted list sphere decoder, a loss of 0.5 dB gain is experienced.

In Fig. 4.32, we can observe the behavior of the shifted list sphere decoder with the number
of expected points NNV, and the interleaver size. First, we observe that the higher the interleaver
size, the steeper the waterfall region. Then we observe that arround 1 dB gain is observe between
N, = 400 and N, = 2500 and only 0.1 dB gain more is obtained choosing NV, = 30000 which
induces that the APP detector is near-optimum. The system performs at 1.2 dB from the
mutual information limit,which is the best performance known for 16-QAM over a 4 x 4 MIMO
channel. Moreover, we show that the SISO-MMSE performs at 1.25 dB from the best List APP
detection. However, the complexity is not comparable between the two detectors. In Fig. 4.33,
we can see the performance of the SISO-MMSE detector over a quasi-static MIMO channel and
observe that it is far from being optimal. The more the number of channel states, the more the
SISO-MMSE will be optimal.

Conclusions

In this section, we have fully described the lattice model of the MIMO channel and the maximum
likelihood sphere decoder. We have shown that the Schnorr-Euchner strategy is optimal for
a given lattice constellation. Then we introduced a new soft-input soft-output detector for
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Figure 4.29: Achievable rate on a 4 x 4 ergodic MIMO with 16-QAM input, N, = 1000/60000,
Ne(min) = 256/4000.

MIMO channels. A spherical list is constructed arround the ML point processed with the sphere
decoder, and a marginalization is computed over the list points. The sphere radius is computed
to enumerate a target number of points N,. Such a list construction limits the number of small
and large list, which stabilizes the effective number of listed points and reduces the complexity
or enhances the performance.
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Figure 4.30: Performance of a (1,5/7)s parallel turbo-code over an ergodic 4 x 4 MIMO channel
with 16-QAM input. Comparison between the shifted list sphere decoder and the list sphere
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Figure 4.31: Histograms of the number of points in the list of the shifted list sphere decoder

and the list sphere decoder centered on the received point.(1,5/7)g parallel turbo-code over an

ergodic 4 x 4 MIMO channel with 16-QAM input. SNR=5.3dB, BER=107°.




112 BICM receivers for MIMO channels

0

10" = T N_=400 Inierledver Sze=20000 —— J
: i N, =400 Interleaver Sze=100000 —x— ]
i N,=2500 Interleaver Sze=100000 —x— |
: e l%zSOOOO Interleaver Sze=100000 —a— |

10t X ==4§\x\ S I\/IMSE.!nterleaver Sze=100000 +,

o ‘\\ "\\ - R L
\ \

) E N
A\ A

B
B\
\

BER
B
e
//
L
A

\

104 \
[\
1\
N B
N
10—5 H I H H H H I L\ i\
5 55 6 65 7

Eg/No

Figure 4.32: Performance of a (1,5/7)s parallel turbo-code over an ergodic 4 x 4 MIMO channel
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QPSK input. The frame size is 1024 coded bits. Performance of the SISO-MMSE detector and
exhaustive detector.
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Conclusions and perspectives

We presented near capacity and near outage performance over multiple antenna channels thanks
to optimized bit interleaved coded modulations. The design conclusions sum up in the following
points, original material found in this thesis report is underlined and indicated by a star.

e If the channel is ergodic, the amount of available time diversity is much more greater than
the minimum Hamming distance of the code. In this case the objective is not to achieve
full diversity but to maximize the coding gain. We presented two methods to achieve near
capacity performance for a target bit error rate:

— Use a turbo-code to protect the binary data and process iterative joint detection and
decoding with a near optimum or exhaustive APP detector. A gray mapping provides
the best performance with such a good code.

— Use an optimized multi-dimensional mapping® with large potential gain. A simple
error correcting code is necessary to allow a good convergence and achieve near turbo-
codes performance.

e It the channel is block fading and the amount of available diversity low, the system should
be designed to guarantee the full diversity order. This is achieved with the three following
steps :

— The detector converts the MIMO block fading channel into a simple block fading
channel. The error correcting code is capable of collecting an amount of diversity
limited by the singleton bound applied to the equivalent block fading channel. When a
linear precoder is used, compute the minimum time spreading® factor that guarantees
full diversity distributing the diversity exploitation between the detector and the
decoder.

— Design a linear precoder® that provides a diversity proportional to the spreading fac-
tor times the number of receive antennas.

— Choose an error correcting code whose Hamming distance is greater than the maxi-
mum transmit diversity order. Design a channel interleaver® taking the error correct-
ing code structure into account in the aim of satisfying the ideal interleaver condition.
Note that the ideal interleaver existence is given by the choice of the spreading factor
with the singleton bound.

Once the full diversity order is guaranteed, the coding gain is maximized if the linear
precoder satisfies the DNA condition under ideal interleaving. Optimize the channel in-
terleaver to approach the ideal channel interleaving condition. In general, the frame error
rate increases with the frame size. However, concatenated error correcting codes such as
turbo-codes allow to observe a frame error rate decreasing with the frame size, and achieve
near outage capacity performance.
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We have expressed exact pairwise error probabilities* for ergodic, block fading, and precoded
MIMO channels. The asymptotic expressions of the performance give the design criteria for the
binary labeling, the linear precoder and the choice of the error correcting code. Moreover, the
pairwise error probabilities can be used to tightly evaluate the error rates of the ideally inter-
leaved BICM using either a union bound or a tangential sphere bound.

The bit interleaved coded modulation is designed in the case of a maximum likelihood decod-
ing on the global Euclidean code. However, such a decoder is intractable and an iterative joint
detection and decoding is processed to achieve near-ML performance. The detector complexity
evolves exponentially with the spectral efficiency. We proposed a new list sphere decoder* that
achieves near optimal APP detection and allows a strong complexity reduction on both ergodic
and block-fading channels.

The future work should include:

e Optimize the binary mappings for block fading channels. The derived pairwise error prob-
ability over a MIMO block fading channel provides the design criterion.

e Minimize the error rate at the first iteration in the goal of accelerating the iterative pro-
cessing and giving good performance if no computational resources are available at the
receiver for iterative processing. Indeed, the linear precoders satisfying the DNA condi-
tion guarantee optimal coding gain and full diversity under ideal interleaving condition
and ML decoding or converging iterative joint detection and decoding. However, if the
optimized interleaver cannot achieve the ideal condition, more than one erroneous bit can
be transmitted in a time period. Since the DNA condition does not fix all the system
freedom degrees, the precoder can be designed to minimize the error rate when different
rows of the linear precoder matrix are interfering at the same time. Furthermore, at the
first iteration of the decoding process, the detector has no feedback from the decoder and
all the rows of the linear precoder matrix are interfering.

e Find the condition to be satisfied by an error correcting code to allow an error rate decreas-
ing with the frame length, and the expression of this decreasing function. The behavior of
the error rate with the frame length can be deduced from the error rate expressions.

e Other concatenated codes than turbo-codes can be used to achieve the outage probability.
One objective is to design LDPC-like codes for MIMO block fading channels.

Such a bit interleaved coded modulation achieves near capacity performance at the price of
a large complexity. A sub-optimal soft-input soft-output minimum mean square error can be
used instead of the list APP detector. If the channel is ergodic, we observe right shifting of
the waterfall region and if the channel is block fading, we observe a coding gain loss. Since the
bit interleaved coded modulation optimized in this thesis report are designed for ML decoding,
any sub-optimal system being asymptotically near-ML should have full diversity and optimal
coding gain too. Some supplementary research will be made to consider low-complexity scheme
for practical system applications. Finally, the space-time bit interleaved coded modulation can
be applied to OFDM and multi-user techniques such as MC-CDMA for the next generations of
mobile phones and Internet wireless technologies.
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Appendix A

Tangential sphere bound

In this appendix, we describe the tangential sphere bound, first presented in [39][40][65]. The
most classical way of evaluating the performance of digital communication systems is given by
the two steps: compute the pairwise error probability and apply the union bound. The exact
error rate is given by the averaging of the probability that the noise gets out from all possible
Voronoi regions. The union bound provides a loose upper bound of this last probability for high
noise levels because it adds non-independent probabilities, or more precisely it integrates the
noise over non-disjoint space regions. The idea of the tangential sphere bound is to limitate the
intersections between the integration regions.

We consider the system y = x + 7.

The Voronoi region V, centered on the transmitted point x is included in a sphere. From
the lattice and coding theory, the radius of the sphere is commonly named covering radius r..
Let us consider a radius R > r., the error probability is equal to

P(y ¢ V) = P(IInll* <Ry ¢ Vo) + P(Inl* > R?) (A1)

First, let us consider the computation of P(y ¢ V;). The norm of 7 has a chi-square distribution
with parameters 2n and o2 = 1/2:

(2n—1) —a
« e
pyla) = en—1) (A.2)
We notice that )
9 9 T ane—oc
X (r7) = —da (A.3)
0 n:

is the cumulative pdf of a chi-square random variable with parameters n and o = 1/2. There
exists a closed-form expression for X3, (1?):

n/2—1

7“2 k
B =1 3 (g) (4-4)

k=0

but there is no closed form expression for y2, +1(r2). The probability to get out from the sphere
is

+o00
(]2 > R?) = /R pyle)da =1 — x3,(R?) (A.5)
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Figure A.1: Tangential Sphere bound Figure A.2: Approximated tangential Sphere
bound

Now we have to compute P(|[n]|? < R%,y ¢ V.). The idea is to apply a union bound in the
sphere as shown in Fig. A.1. In this case, the intersection of the pairwise integration region is
limited, and the performance estimation will be tighter than with the classical Union Bound.
We have

P[> <R%y¢Ve) < > prlz—a) (A.6)
z'|d(z,x")/2<R

where pg (z — ') is the pairwise error probability between x and 2’ and assuming that ||n]|*> < R.
The n-dimensional circularly symetric complex gaussian noise can be decomposed into

e 7|, a mono-dimensional real additive white gaussian noise in the dimension colinear to the
direction (z, ).

e 7., a 2n — 1-dimensional real additive white gaussian noise in the dimensions orthogonal

to the direction (z, /).

The probability density p, s of the noise restricted to the sphere S, projected on the dimension
colinear to the direction (x,z’) is
(r) =
)=
Pn.s 27I'N0

The probabibility pg(z — 2’) is equal to

pr(z —2') = /

d(z,x’)/2

e NG (R = 1) (A7)

R R 1

Pn,s(r)dr :/ —_—
ns(r) d(z,z")/2 V2T N

The function x3, ;(r?) has to be computed numerically. however, we can use x3, ;(R?—1r?) <
X3n_1 (RQ — (d(z, x’)/2)2) which leads to

e_TQ/QNOXgn_l(R2 — 7’2)dr (A.8)

R 1

/ —r2/2Ng 2 2 / 2
pr(x — = S/ —e dr X X5,-1 (R™ — (d(x,x")/2 A9
Ra—a)s | B (R = (de)/2)")  (A9)
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For large dimensions and considered points z’, this upper bound is close to the true value of

the probability. In Fig. A.2, we can observe the geometrical interpretation of the approximation.
We get

d(z, ') R 2 2 / 2 2 (P2
Py ¢ V) ~ [Q( >—Q<—>].X L (R? = (d(,2)/2)") #1038, (R
x/d(w§/2<R 2\/% \/FO 2n—1 ( ( )/ ) 2n( )
(A.10)
We propose another simplification considering that the union bound is computed on two real
dimensions and the sphere bound on the remaining n — 2 dimensions. This would lead to

rutva= Y |o() e )| s (R - eay?) 1o ®)

z'|d(z,z")/2<R

(A.11)
where
n—2

e\ T
Bual@) =1-e 3 T (A.12)
k=0
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Appendix B

Soft-input soft-output MMSE
Detector

In this Annex, we remind the SISO-MMSE construction presented for single antenna frequency
selective channels in [28] and adapted to MIMO channels. Such a soft-input soft-ouput detector
is sub-optimal when compared to the APP exhaustive detector, specially for low signal-to-
noise ratios. However, it has the great advantage to provide near-optimum performance for a
sufficiently high signal-to-noise ratio and with a strong complexity reduction for ergodic channels.
The principle of such a detector is to view the n; x n,. channel as n; interfering 1 x n,, MIMO sub-
channels. It uses the information given at each iteration by the decoder to cancel the interference
of the sub-channels.

First we compute the a priori probability associated with the modulation symbols from the
a priori on the coded bits given back by the SISO decoder. Then, we are able to estimate the
constellation symbols thanks to the a priori probabilities on the symbols. Finally, we convert
the estimated symbols into extrinsic probabilities to be given to the SISO decoder input as a
priori probabilities.

The classical SISO detector computes extrinsic probabilities {{(c;)} taking into account the
a priori probabilities {7(c;)} with j # ¢. In an iterative processing between two blocks, the
probability at the output of a block in iteration n should not be given back in the input of
iteration n + 1, since this would introduce dependence between the random variables.

A priori probabilities of the constellation symbols

First of all, we have to compute the a priori probabilities 7(z;) of the modulation symbols
Q2 from the a priori probabilities m(c;) of the coded bits. Assuming independence between the
interleaved coded bits:
m.i+m—1
w2 = [ wle) (B.1)

j=m.

Where m is the modulation spectral efficiency. We define the a priori-based mean Zz; of the
symbol z; by

Z2E{z} =) zm(z) (B.2)
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The a priori-based variance O'il- of the symbol z; is defined by

o, 2 E{|a*} — &l =) lal’w(z) — |zl (B.3)

Zi

Symbol estimation
A MMSE detector for the symbol z; on the i-th antenna is a linear filter w; that provides

Zi=E{at +ly — E{y}]w; (B4)
by minimizing the mean square error E [|zl — 2i|2], we find
w; = cov {y, z; } cov {y,y} ! (B.5)
The covariance function cov{z,y} is defined by
cov {z,y} £ E{lz — E{a}]" [y — E{y}]} (B.6)

The a priori information of the considered symbol z; should not be used for the estimate z;. We
define

32 20,5 21,0, 21, - o vy Zny 1] (B.7)
We have
cov{y,y} = H*T;H + NoI (B.8)
where
Iy = cov{z,z} = [aio, . ,Jii_l,Es,aiiH, ce szm_l] (B.9)

Indeed, the independence between the coded bits leads to the independence between the symbols
and cov{z;,z;} = 0 for i # j. The two quantities Ny and E, are the variances of the additive
noise and transmitted signal, respectively. We have

cov{y, zi} = cov{z,3;}H = E{z]|z — z|} H = Es¢;H (B.10)
where ¢; is a vector with a unique non-null term equal to 1 in position 1.

Using (B.4), (B.5), (B.8), (B.10) and noticing that E{z;} = 0 and E{y} = 3;H, we can
write the expression of the symbol estimate Z; as

%= Ely — 5 H] [H'TH + NoI| ™" (e;H)" (B.11)

It is important to notice that the matrix inversion has to be computed for each symbol detection
(n; times), each iteration and time period, even for block fading channels. If no a priori is
available (first iteration), the soft detector is equivalent to a classical MMSE detector.

Soft-output on the bits

We make the assumption that the estimated symbol Z; is transmitted on an equivalent AWGN
channel, i.e, there is no interference anymore from the n; — 1 other transmit antennas. This
situation occurs when the feed back from the decoder is sufficiently reliable to effectively cancel
the interference.
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The two parameters of the equivalent AWGN channel 2; ~ Ng(pi2i, 02{) have to be estimated
for each new symbol detection.

E{z},zi} = miEs = E{z|z — 3|} Hwj = Ese; Hw; (B.13)
which leads to

i = e;Hw} = E, (e;H) [H*T;H + NoI] ™" (e;H)* (B.14)

2

The variance oL is given by
7

oy = E{Ini*} = wi [H*T:H + NoI] ™' w} — if By = pu(1 — i) B (B.15)
Thanks to the AWGN channel assumption and the Bayes rule, we can write

_ _ PGilzi)m(2)
P(zily) = P(z]%) = ————————= B.16
(zily) = P(zi] %) A (B.16)
The extrinsic probability can be deduced:

&(z;) x Pﬂ((ziy);) x p(Zi|zi) (B.17)

Using the complex AWGN equivalent channel hypothesis, we can write

/ g /

N 1 % — pizil?
p(Zilzi) = —5—exp [—7‘ i d ] (B.18)
777; ni

Assume a mono-dimensional complex mapping Q! is used independently on each transmit an-
tenna. The extrinsic probabilities on the coded bits £(¢j4im) can be expressed by the expression

l=i.m+m—1

Eerm)= > pElz) ] w(a@) (B.19)

z; €Q(cy) I=i.m, l#£]

where Q(c;) represents the set of mono-dimensional complex constellation symbols with their
J-th bit equal to ¢; (0 < j <m —1).
In order to solve the proportionality issue, we compute the normalization of the soft-output:

§(Cjtim) = 2z (¢;=1) PGilz) TTig ()
j-Him ZzzEQl p(Zilz:) Hl;ﬁj m(cr)

(B.20)
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Appendix C

Partial fraction expansion

We want to decompose a function having the following form:

1

T = I @t agm

(C.1)

into partial fractions. We assume that V(i # j),a; # aj. Applying the Bezout’s theorem, we
can say that there exists polynomials A (z) with deg(Ax(x)) < ng such that

_ 1 o Ag(w)
flx) = szl(x T ag)* = k;zl ( + ag)™ (C.2)

A () =3 Qi

W = 221 a0 this case, we can decom-

Moreover, the Taylor’s theorem shows that
pose f(z) into

a AL
J(w) = [y (x4 ap)” ZZ (x+ ag)? (C-3)

k=1 1i=1

We can compute the a;; coefficients via a series expansion with x = ¢ — a;.

1 ) n
1 n o=l 1)i (nk +Zz—1) i .
T e [Tie1 gz j(ak — aj)m k:g# — (ar, — a;) O(e"((¢.5)
n;—1 i nj—1 —
=2 o +0(1) = ; s o) (C.6)

In this case, ajn,—i = 7, where the v, coefficients are obtained by identifying the degree
k < n; coefficients of the series expansion

nj—1 n nj—1 _1)1 (”k+2—1)
> ajn X +oxm) = ] Z T X'+ O(X™) (C.7)
i=0 k=1k+j i=0 (ar — a;)"™
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Filed Patents

e List Sphere Decoding of Symbols Transmitted in a Telecommunication System.

e Method for transmitting data in a MIMO telecommunication system offering a high
diversity as perceived by a receiver end.

e Method for transmitting optimally interleaved data in a MIMO telecommunication
system.

e Method allowing an enhanced iterative interpretation of received symbols.

e Method for interpreting transmitted symbols allowing an iterative adaptation of a
basic list of symbols.

e Method for interpreting transmitted symbols involving a list sphere radius tuning step.

e Method for transmitting uniformly distributed data in MIMO telecommunication sys-
tem.




