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Part I. Receivers for Code Division Multiple Access

We consider a synchronous DSSS-CDMA system with 2 users. The BPSK symbol of
user 1 (resp. user 2) is denoted by I1 = ±ω1 (resp. I2 = ±ω2). Each symbol is spread
by a factor of N after multiplication with N chips of a pseudo-noise (PN) sequence. The
two users are using two different PN sequences with a cross-correlation equal to ρ, where
0 ≤ ρ < 1. The real wireless channel model is

yi = x1

i + x2

i + ηi, (1)

where the time index i varies from 0 to N − 1, yi is the sample received at the CDMA
detector input, xj

i is the chip transmitted by user j at time i, j = 1, 2. It is given by

xj
i = sj

i · Ij , (2)

where sj = (sj
0

sj
1

. . . sj
N−1

) is the spreading sequence (signature) of user j, sj
i = ±1. As

stated above, the two signatures satisfy

1

N

N−1
∑

i=0

s1

i · s2

i = ρ. (3)

The real additive white noise ηi in (1) is N (0, σ2), by convention we assign σ2 = N0/2.
The signal-to-noise ratios are defined as (per user per information bit)

γj = N
(ωj)

2

N0

, j = 1, 2. (4)

The CDMA joint receiver starts by despreading both users. The despreader output is

r1 =
< s1, y >

N
=

1

N

N−1
∑

i=0

s1

i · yi, (5)

when despreading the first user. Similarly, we have

r2 =
< s2, y >

N
=

1

N

N−1
∑

i=0

s2

i · yi, (6)

when despreading the second user. The symbol “<, >” denotes the scalar product of two
vectors, and the detector observation vector before despreading is y = (y0 y1 . . . yN−1).
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In column notations, the symbol vector, the observation vector after despreading, and
the noise vector after despreading are

I =

[

I1

I2

]

, r =

[

r1

r2

]

, b =

[

b1

b2

]

.

Finally, we define the correlation matrix of the two signatures as

R =

[

1 ρ
ρ 1

]

.

I.1) Briefly sketch the proof of the following expression

r = RI + b. (7)

Relate b to η.

I.2) Express the variance σ2

b = E[|b1|2] = E[|b2|2] function of the original channel noise
variance σ2 and the spreading factor N .

I.3) Compute the correlation coefficient E[b1b2]. Under what condition the two noise
samples b1 and b2 are uncorraleted?

Let ∆ be the energy ratio of the two users,

∆ =
γ2

γ1

=

(

ω2

ω1

)

2

It is supposed that ρ2 ≤ ∆ ≤ 1/ρ2. Let us also define the following function

F (γ, ∆) =
1

2
Q

(
√

2γ(1 + ρ
√

∆)2

)

+
1

2
Q

(
√

2γ(1 − ρ
√

∆)2

)

, (8)

where Q(x) is the gaussian tail function.

Conventional detection
A conventional receiver does not take into account the multiple access interference. In
order to estimate I1, a conventional detector simply checks the sign of r1,

Î1(conv) = Ψ(r1) =

{

+ω1, r1 > 0,
−ω1, r1 < 0.

Similarly, I2 is estimated from r2. The correlation ρ between s1 and s2 is not considered
by such a conventional detection (in opposition to multiuser detection, as the two other
techniques described below).

I.4) Under conventional detection, prove that the error probability of the first user is

Pe1(conv) = F (γ1, ∆) (9)

where F (, ) is defined by (8). In an identical manner, prove that the second user has

Pe2(conv) = F (γ2,
1

∆
) (10)
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Figure 1: Conventional CDMA detection of two users. Error probability of User 1 versus
the SNR of User 2. Parameters are γ1 = 8dB and ρ = 1/8.

I.5) Assume that γ1 and ρ are fixed. Let the second user increase γ2, how does Pe1(conv)
behave? Interpret the result illustrated in Figure 1 for γ1 = 8dB and ρ = 1/8.

Zero-forcing detection
The multiuser ZF receiver multiplies the observation given in (7) by the inverse of the
correlation matrix,

r̃ = R−1r = I + R−1b

Then, threshold detection is applied on r̃,

Î1(ZF ) = Ψ(r̃1) =

{

+ω1, r̃1 > 0,
−ω1, r̃1 < 0.

I.6) Find the variance per component σ̃2 of b̃ = R−1b as a function of ρ and σ2

b .

I.7) Show that σ̃2 ≥ σ2

b . Thus, the ZF receiver eliminates the multiple access interference
but it amplifies the additive noise. Interpret the result illustrated in Figures 2 and 3. Is
there any shadowing effect after ZF detection?

I.8) Under ZF detection, prove that User 1 error probability is

Pe1(ZF ) = Q

(

√

2γ1(1 − ρ2)
)

(11)

The value of the above expression has been plotted in Figure 2 and Figure 3 for ρ = 1/8
and ρ = 1/2 respectively.
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Figure 2: ZF versus conventional CDMA detection. Error probability of User 1 versus
the SNR of User 2. Parameters are γ1 = 8dB and ρ = 1/8. Noise amplification due to
ZF is negligible at this value of the cross-correlation ρ.

10-4

10-3

10-2

10-1

 0  5  10  15  20

E
rr

or
 P

ro
ba

bi
lit

y 
of

 U
se

r 
1

SNR of User 2 (dB)

The Shadowing Effect for ZF and SIC Detection

Pe1(conv)

Single User at 8dB

Pe1(ZF)

Pe1(SIC)

Figure 3: SIC and ZF versus conventional CDMA detection. Error probability of User 1
versus the SNR of User 2. Parameters are γ1 = 8dB and ρ = 1/2. Noise amplification
due to ZF is not negligible for ρ = 1/2.
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Subtractive interference cancellation
The SIC detector proceeds as follows, in an iterative manner,
Iteration 1:

- Consider r̃1 = r1 = I1 + ρI2 + b1.

- Find Î1 = Ψ(r̃1).

- Compute r̃2 = r2 − ρÎ1 = ρ(I1 − Î1) + b2.

- Find Î2 = Ψ(r̃2).
Iteration 2:

- Compute r̃1 = r1 − ρÎ2.

- Find Î1 = Ψ(r̃1).

- Compute r̃2 = r2 − ρÎ1.

- Find Î2 = Ψ(r̃2).
Iterations m ≥ 3 are identical to iteration 2.
I.9) Let P m

e1 (SIC) and P m
e2 (SIC) denote the error probability of User 1 and User 2

respectively, after m iterations. For m ≥ 2, show that

P m
e1 = (1 − P m−1

e2 )Q1 + P m−1

e2 F1 (12)

where Q1 = Q(
√

2γ1) is the single user performance of User 1 (absence of interference)
and F1 = F (γ1, 4∆) is the conventional CDMA performance of User 1 when the SNR of
the interferer is 4γ2. Show also that

P m
e2 = (1 − P m

e1 )Q2 + P m
e1F2 (13)

where Q2 = Q(
√

2γ2) and F2 = F (γ2, 4/∆).
I.10) In the steady state, when m → +∞, prove that the SIC detector yields

Pe1(SIC) =
Q1 + (F1 − Q1)Q2

1 − (F1 − Q1)(F2 − Q2)
(14)

Under what condition we have Pe1(SIC) ≈ Q1. In this case, the SIC is capable of elimi-
nating the multiple access interference without noise amplification and without shadowing
effect when γ2 > γ1. An illustration of SIC behavior is given in Figure 3.

Part II. Multipath Diversity in Spread Spectrum

The notations of Part I are adopted. Only one user is transmitting on a wireless channel
using a BPSK modulation and direct sequence spreading via a signature s1. Time index
(at the chip level) is always indicated by the integer i. In this section, the index j refers to
time shifts due to multipath. For simplicity of notations, superscripts indicating the user
number are eliminated. Hence, the transmitted chips x1

i are replaced by xi, the signature
chips s1

i are replaced by si, and the spreading sequence s1 is simply s = {si}, si = ±1,
and i ∈ Z. It is assumed that s is periodic with period N ≫ 1. The auto-correlation of
s is supposed to be perfect, i.e.,

ρs(j) =
1

N

N−1
∑

i=0

si · si−j ≈ 0, ∀j 6= 0. (15)

Before spreading, the user symbol at time t (at the information bit level) is I1[t] = ±ω.
The signal-to-noise ratio γ = γ1 is still defined by (4) in Part 1. In this section, we are
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only interested by the transmission and the detection of symbol I1 = I1[0]. The influence
of I1[−1] (past symbol) and I1[1] (future symbol) are neglected.

The channel is assumed to have multipath fading. Its complex model is

yi =
L−1
∑

j=0

hj · xi−j + ηi, i = 0 . . . N − 1, (16)

where hj ∼ CN (0, 1), and ηi ∼ CN (0, 2σ2). The L fading coefficients are supposed to be
uncorrelated. The transmitted chip is obtained as in (2) via xi = siI1. The number L of
channel paths satisfies 1 ≤ L ≪ N .

II.1) Assume that the channel coherence bandwidth is Bcoh = 500KHz. Without a
spreaded spectrum (N = 1), what would be the value of L if the transmitted signal
bandwidth is W0 = 100KHz?

II.2) After spreading, e.g., N = 100 and W = NW0 = 10MHz, what is the number L
of paths observed by the receiver? From a diversity point of view, is it better to have
L = 1 or L > 1?

We would like to build a receiver capable of exploiting the L degrees of freedom in the
channel. In order to obtain a diversity of order L, the receiver should create the χ2

distributed quantity
∑L−1

ℓ=0
|hℓ|2. This is possible with the structure proposed below, a

structure known as the Rake receiver. We propose to build a Rake with L fingers, the
output of finger ℓ is denoted by fℓ.
II.3) The finger output number ℓ of a Rake receiver is determined by the projection of
the received signal on an ℓ-shifted version of the spreading sequence, ℓ = 0, . . . , L − 1.
The finger output is

fℓ =
< {si−ℓ}, y >

N
=

1

N

N−1
∑

i=0

si−ℓyi, (17)

where yi is given by the channel model in (16). Show that

fℓ ≈ hℓI1 + bℓ, (18)

where bℓ is an additive gaussian noise.
II.4) After computing the output of its L fingers, the Rake performs a maximum ratio
combining

U =

L−1
∑

ℓ=0

h∗

ℓfℓ (19)

The information symbol is estimated with Î1 = Ψ(ℜ{U}). At high SNR, show that the
error probability is written as Pe ≈ τ/γL. Find the expression of τ .
II.5) The Rake receiver described above knows perfectly the values of the channel coef-
ficients {hj}, i.e., this is a coherent Rake receiver. Is it possible to build a non-coherent
Rake receiver?

. .Good Luck.

. .Joseph Boutros.

. .
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