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Problem: Coding for wireless fading channels

A study of simple coding techniques for fast and slow fading channels is proposed. The
student is assumed to have a minimal background in Communication Theory, e.g., Chap-
ter 3 of Tse & Viswanath 2005. Knowledge of Coding Theory is not required, all proper-
ties related to the code structure are clearly explained in this problem. We restrict this
problem to wireless channels with flat fading, i.e., the transmitted signal bandwidth is
small compared to the channel coherence bandwidth, W ≪ Bcoh. The system model is
depicted in Fig. 1. A block of k information bits u = (u1 u2 . . . uk), ui ∈ {0, 1}, is fed
to a linear binary encoder. The encoder generates a codeword c of length n bits denoted
by c = (c1 c2 . . . cn), ci ∈ {0, 1}.
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Figure 1: System model for coding over fading channels.

A codeword is computed via the following linear encoding operation

c = u · G, (1)

where G is a k × n matrix with binary entries. The set of all possible 2k codewords is
an error-correcting code denoted by C[n, k], where k is the code dimension and n is the
code length. The coding rate is

Rc =
k

n
, (2)

it expresses the number of information bits per coded bit. The matrix G defining the
linear operation in (1) is a generator matrix for the code C. Of course, all multiplications
and additions performed in (1) are modulo 2. The Hamming distance between two
codewords c and c′ is the number of ci different from c′i, e.g., c = (1 1 0 0) and c′ =
(1 0 1 0), then dH(c, c′) = 2. The Hamming weight wH(c) of c is the number of its
non-zero binary components, i.e., wH(c) = dH(0, c). As an example, if c = (1 0 1 1) then
wH(c) = 3. A trivial family of error-correcting codes is the one built by repeating the

1



same bit n times. The repetition code C[2, 1] has dimension k = 1, length n = 2, rate
Rc = 1/2, its generator matrix is G = (1 1), and the set of codewords is

C = {(0 0), (1 1)} . (3)

Another example of a less trivial error-correcting code is the shortened Hamming code
C[6, 3] (see MacWilliams & Sloane 1977), it has dimension k = 3, length n = 6 bits, and
rate Rc = 1/2. A generator matrix for C[6, 3] is

G =





1 0 0 0 1 1
0 1 0 1 0 1
0 0 1 1 1 0



 (4)

The list of 2k = 8 possible codewords c = (c1 c2 c3 c4 c5 c6) of C[6, 3] is given in Table 1.
The table also gives the information block u for each codeword c = uG. The third
column indicates the total Hamming weight of c. The last two columns indicate the
partial Hamming weights defined as

w1(c) = wH(c1 c2 c3), w2(c) = wH(c4 c5 c6). (5)

Information bits u Codeword c wH(c) w1(c) w2(c)

000 000 000 0 0 0
001 001 110 3 1 2
010 010 101 3 1 2
011 011 011 4 2 2
100 100 011 3 1 2
101 101 101 4 2 2
110 110 110 4 2 2
111 111 000 3 3 0

Table 1: The rate-1/2 shortened Hamming code C[6, 3].

The Hamming weight distribution for non-zero codewords of a linear binary code C[n, k]
can be compactly summarized in a weight enumerating polynomial

A(z) =
∑

w>0

Aw zw, (6)

where Ai is the number of codewords of weight equal to w. For example, the weight
enumerator for C[2, 1] is A(z) = z2. Also, from Table 1, we find the weigh enumerator
for C[6, 3] being equal to A(z) = 4z3 + 3z4. Similarly, the partial weight enumeration is
summarized by

A(z1, z2) =
∑

w1,w2

Aw1w2
zw1

1 zw2

2 , (7)

where Aw1w2
is the number of codewords c with partial Hamming weights equal to

w1 and w2 respectively. For C[2, 1], we have A(z1, z2) = z1z2. For C[6, 3], we have
A(z1, z2) = 3z1z

2
2 + 3z2

1z
2
2 + z3

1 . Finally, notice that the two polynomials are related by
A(z) = A(z, z).
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As illustrated in Fig. 1, a binary codeword c = (c1 c2 . . . cn) is mapped into a BPSK
codeword x = (x1 x2 . . . xn), where

xi = Ψ(ci) =







−√
Es, ci = 0,

+
√

Es, ci = 1,
(8)

where Es is the baseband energy per transmitted symbol xi. In the single antenna case,
the wireless channel multiplies the symbol by a fading hi before the addition of a gaussian
noise ηi. The channel model is

yi = hixi + ηi, yi ∈ C, (9)

where i = 1 . . . n, the fading coefficients hi are distributed as CN (0, 1), and the noise
samples are independent and distributed as CN (0, 2σ2). The wireless channel model in
(9) can be written in vector notation as y = h⊙ x + η, where ⊙ denotes component-wise
multiplication.

Based on the observation y = (y1 y2 . . . yn), the decoder is supposed to decide which is
the most likely transmitted codeword x̂ or equivalently ĉ. The vector h = (h1 h2 . . . hn)
of fading coefficients is assumed to be perfectly known by the decoder. The likelihood of
a codeword x given h is

p(y|x, h) =
1

(2πσ2)n
exp(−‖y − h ⊙ x‖2

2σ2
), (10)

where ‖y−h⊙x‖2 =
∑n

i=1 |yi−hixi|2. For a given observation y and a given state vector
h, the decoder finds the most likely codeword x̂ that minimizes the Euclidean metric,

x̂ = arg min
x∈C

‖y − h ⊙ x‖2. (ML decoding) (11)

In the sequel, we assume that the zero-codeword 0 = (0 0 . . . 0) has been transmitted
by the encoder. After BPSK mapping, the transmitted codeword is

x0 = Ψ(0) = (−
√

Es −
√

Es . . . −
√

Es). (12)

The word error probability is defined as

Pew = P (x̂ 6= x0) = P (ĉ 6= 0). (13)

Using the Union bound, Pew can be upper-bounded as follows

Pew ≤
∑

c 6=0

P (0 → c) =
∑

x 6=x0

P (x0 → x). (14)

The pairwise error probability is derived from the conditional pairwise error probability
after averaging over the fading vector h,

P (0 → c) = P (x0 → x) =

∫

h

p(h) P (x0 → x |h) dh. (15)
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Part I: Single antenna coding for fast fading

The channel state vector h = (h1 h2 . . . hn) includes n independent and identically
distributed coefficients hi ∼ CN (0, 1).

I.1) As stated above, the channel state vector h is known by the decoder. Is it a coherent
or a non-coherent receiver?

I.2) Let αi = |hi|. What is the probability density function of αi?

I.3) Briefly explain why the conditional pairwise error probability P (0 → c |h) = P (x0 →
x |h) is equal to

P (0 → c |h) = P (‖y − h ⊙ x‖2 < ‖y − h ⊙ x0‖2), (16)

where x = Ψ(c) and y = h ⊙ x0 + η.

I.4) For a fixed fading vector h, briefly explain why the conditional pairwise error prob-
ability can be expressed using the gaussian tail function as

P (0 → c |h) = Q

(‖h ⊙ x − h ⊙ x0‖
2σ

)

. (17)

I.5) Take σ2 = N0/2. Prove that

P (0 → c |h) = Q





√

∑n
i=1 |hi|2(xi +

√
Es)2

2N0



 , (18)

where xi = Ψ(ci).

I.6) A closed-form expression for P (0 → c) is known after integrating (18) over h.
Nevertheless, a better physical interpretation can be obtained by using Q(x) ≤ 1

2
e−x2/2

and then integrating over the i.i.d. Rayleigh distributed variables. It can be shown that

P (0 → c) ≤ 1

2

n
∏

i=1

1

1 + (xi+
√

Es)2

4N0

(19)

Prove that

P (0 → c) ≤ 1

2

n
∏

i=1

1

1 + ciγ
≈ 0.5

γwH(c)
, (20)

where γ = Es/N0 is the signal-to-noise ratio. The right-hand approximation in (20) is
valid for large γ.

I.7) At high SNR (γ ≫ 1), using (14) and (20), prove that

Pew .
1

2
A(

1

γ
), (21)

where A(z) is the weight enumerating polynomial of the code C[n, k].

I.8) On a fast fading channel, after examination of the minimum exponent of the SNR γ
in the word error rate Pew, what is the diversity order achieved by the rate-1/2 repetition
code C[2, 1]? What is the diversity order of the rate-1/2 shortened Hamming code C[6, 3]?
The word error rates for C[2, 1] and C[6, 3] are plotted in Fig. 2 in the Appendix.
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Part II: Single antenna coding for slow fading

In this section, the coefficients hi are not independent, they may stay invariant within a
codeword. The channel state vector h is now divided into two parts,

h = (h1 . . . hn/2 | hn/2+1 . . . hn). (22)

We have h1 = h2 = . . . = hn/2 = g1 and hn/2+1 = . . . = hn = g2, where g1 and g2 are
independent and identically distributed coefficients, gi ∼ CN (0, 1). In the case of C[6, 3]
(n = 6), we have h = (g1, g1, g1, g2, g2, g2).

II.1) The fading vector of length n is built from two independent complex gaussian fad-
ings g1 and g2 as described above. What is the maximal diversity order achievable on
this slow fading channel? A channel also known as a non-ergodic fading channel.

II.2) In a way similar to I.5, prove that

P (0 → c |h) = Q





√

|g1|2
∑n/2

i=1(xi +
√

Es)2 + |g2|2
∑n

i=n/2+1(xi +
√

Es)2

2N0



 , (23)

II.3) In a way similar to I.6, prove that

P (0 → c) ≤ 0.5

(1 + w1(c)γ) (1 + w2(c)γ)
. (24)

Hence, show that a code C[n, k] attains maximal diversity if and only if A(z1, z2) is di-
visible by z1z2.

II.4) When C[n, k] is full diversity, show that

Pew .
1

2

∑

w1,w2

Aw1,w2

w1 · w2 · γ2
. (25)

II.5) The code C[6, 3] given in Table 1 has diversity 1 (no diversity) due to the last
codeword in the table where w1 = 3 but w2 = 0. We suggest to build a new version
denoted by πC[6, 3]. If c = (c1 c2 c3 c4 c5 c6) ∈ C then πc = (c6 c2 c3 c4 c5 c1) ∈ πC, i.e.,
πC[6, 3] is obtained by exchanging bit c1 and bit c6 in the second column of Table 1.
Find the weight enumerator polynomial A(z1, z2) of the new code version πC[6, 3].

II.6) Show that πC[6, 3] attains the full diversity guaranteed by the slow fading channel
defined above.

II.7) At high SNR (γ ≫ 1), prove that the word error rate of πC[6, 3] can be upper
bounded as follows

Pew .
35/24

γ2
, (26)

The word error rates for C[6, 3] and πC[6, 3] on a slow fading channel are plotted in Fig.
3 in the Appendix.

Extension: The reader can study the coding of a 2× 1 MIMO channel using the error-
correcting codes proposed above. The rank criterion can be easily applied to C[6, 3] or
its permuted version to check if full transmit diversity is achieved.
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Appendix: Performance of error-correcting codes
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Figure 2: Performance over a fast fading channel, Pew is approximated by 1
2
A(γ−1).
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Figure 3: Performance over a slow fading channel, Pew is derived from the weight enu-
merator A(z1, z2).

. .Good Luck.

. .Joseph Boutros.

. .
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