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Abstract

An accurate approximation for the conditional error probability on quasi-static multiple antenna (MIMO)

channels is proposed. For a fixed channel matrix, it is possible to accurately predict the performance of quadrature-

amplitude modulations (QAM) transmitted over the MIMO channel in presence of additive white Gaussian noise.

The tight approximation is based on a simple Union bound for the point error probability in the n-dimensional real

space. Instead of making an exhaustive evaluation of all pairwise error probabilities (intractable in many cases), a

Pohst or a Schnorr-Euchner lattice enumeration is used to limit the local theta series inside a finite radius sphere.

The local theta series is derived from the original lattice theta series and the point position within the finite multi-

dimensional QAM constellation. In particular, we take into account the number of constellation facets (hyperplanes)

that are crossing the sphere center. As a direct application to the accurate approximation for the conditional error

probability, we describe a new adaptive QAM modulation for quasi-static multiple antenna channels.
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I. INTRODUCTION

Since the achievable information rate of conventional systems using a single antenna at both transmitter

and receiver is limited by the constellation size, most of recent wireless systems use multiple transmit

and multiple receive antennas (MIMO channel) to achieve higher data rates [22][9] with a high diversity

order [20]. Several techniques have been proposed to improve the performance of these multiple antenna

systems regarding the wireless channel conditions, e.g. adaptive modulation [17] and antenna selection

[12].

An adaptive modulation technique [10][11] selects the highest information rate (e.g. increase the modu-

lation alphabet size) subject to a double constraint on error rate and the average transmitted power. The

selection is conditioned on the instantaneous channel state information within the current frame. Hence,

analytical expressions and numerical evaluations for the conditional error probability can be employed to

establish an adaptive modulation scheme.

In this paper, we propose an accurate approximation of the conditional error probability in a MIMO

system. This tight approximation is then used to design a new adaptive modulation scheme. In the latter,

the information rate is adapted per transmit antenna which allows to achieve a high spectral efficiency

with an improved adaptation flexibility. Taricco and Biglieri gave the exact pairwise error probability in

[18][19] for frequency non-selective multiple antenna systems. The pairwise error probability considered

in their paper is the mathematical expectation over all channel realizations. Thus, their closed form

expression cannot be used for adaptive modulation. Tarokh et.al. proposed in [21] a lower bound of the

error probability for a Gaussian channel. This bound is a valid approximation for high rate lattice codes.

Since it is a lower bound, the approximation given in [21] cannot provide good performance for adaptive

modulation. The tight error probability approximation described in this paper is conditioned on a fixed

channel realization. The proposed method does not require an intractable evaluation of all pairwise error

probabilities due to a judicious choice via Pohst/Schnorr-Euchner enumeration of dominant neighbors

inside a sphere centered around a constellation point.
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The paper is organized as follows. Section II introduces the notations and the channel model. The accurate

approximation of the conditional error probability is given in Section III. Section IV describes the new

adaptive QAM modulation scheme for multiple antenna channels. Conclusions and perspectives are drawn

in the last section.

II. SYSTEM MODEL AND LATTICE REPRESENTATION

We consider a digital transmission system with nt transmit antennas and nr receive antennas. The

channel is assumed to be frequency non-selective and quasi-static. The nt × nr MIMO channel matrix

H = [hij] is constant during Tc channel uses, where the integer Tc is the channel coherence time. In the

latter, one time unit is equal to one transmission period. As usual, the coefficients hij are independent

zero-mean unit-variance complex Gaussian variables that take independent values each Tc periods. For

one channel use, the input-output model is

r = sH + ν, (1)

where r is the length nr receive complex vector, s is the length nt transmit vector and ν is an additive

white Gaussian noise. The transmitted symbol sk belongs to a Mk-QAM modulation [16], k = 1 . . . nt.

The nt QAM constellations are not necessary identical, their Cartesian product is denoted CQAM.

Without loss of generality and for the sake of simplicity, we assume that nt = nr. The study is similar

in the asymmetric channel case when nr ≥ nt. The performance study of the quasi-static multiple antenna

model in (1) is carried out thanks to lattices and sphere packings theory [6]. The paragraph below gives

a brief summary to point lattices and can be skipped by readers who are familiar with group/lattice

representation and the geometry of numbers.
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Let K be a field, mainly K = R the field of real numbers, or K = C the field of complex numbers.

Let A ⊂ K be a ring, mainly A = Z the ring of integers, or A = Z[i] the ring of Gaussian integers. A

lattice Λ ⊂ Kn, also called a point lattice, is a free A-module of rank n in Kn. An element belonging

to Λ is called a point or equivalently a vector. Any point x = (x1, x2, . . . , xn) ∈ Λ can be written as an

integer linear combination of n points

x =
n
∑

i=1

zivi,

where {vi} is an A-basis of Λ, vij ∈ K, and zi ∈ A. The n × n matrix built from a basis is a generator

matrix for Λ. In line convention, let G = [vij], then a lattice point is written as x = zG, where z ∈ An.

The squared norm of x is defined as ‖x‖2 = xx† =
∑n

i=1 |xi|2, where |xi|2 is defined by the product

of xi with its conjugate in K. In the real case, a lattice Λ is associated to a definite positive quadratic

form Q(x) = xxt = zGGtzt, where t denotes the transpose operation. The product GGt is called a

Gram matrix. Since Λ has full rank, the determinant of the Gram matrix is positive. The fundamental

volume of the lattice is defined by vol(Λ) = |det(G)|, it is the volume of the fundamental parallelotope

P surrounded by the basis vectors vi

P(Λ) = {x ∈ R
n | x =

n
∑

i=1

αivi, 0 ≤ αi < 1}.

Multiple antenna channels admit a complex lattice representation as random Z[i]-modules. In this paper,

we will mainly use their real representation. As an illustrative example for deterministic highly structured

lattices, Fig. 1 shows the structure of the famous hexagonal lattice A2. A generator matrix for A2 is

G(A2) =









0 1

1/2
√

3/2









.

Some of the important lattice parameters are also depicted in Fig. 1. The minimum Euclidean distance

between distinct lattice points is denoted by dEmin(Λ) = 2ρ, where ρ is the sphere packing radius

associated to Λ as shown in the upper left part of Fig. 1. Each point has τ neighboring points located at
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minimum distance. For A2, we have τ = 6. From a sphere packing point of view, the number τ of nearest

neighbors is also called kissing number. Consider x ∈ Λ and delimit its neighborhood by mediating

hyperplanes between x and all other lattice points. The obtained region is called Voronoi cell or Dirichlet

region

V(x) = {y ∈ R
n | |y − x| < |y − x′|, ∀x′ ∈ Λ}.

For A2, V(x) has six facets obtained by the six mediating segments with the nearest points. Since a lattice

is a discrete subgroup of Kn, the distribution of Euclidean distances does not depend on x. Take x = 0, in

Fig. 1 notice that lattice points belong to shells centered on the origin. The Euclidean distance distribution

is given by the radius of lattice shells and their population (number of points in a shell). Similar to the

Hamming weight distribution of an error-correcting code defined over a finite field, the theta series ΘΛ(z)

of Λ describes its Euclidean distance distribution

ΘΛ(z) =
∑

x∈Λ

q‖x‖
2

= 1 + τq4ρ2

+ . . . , (2)

where q = eiπz, and z is a complex variable. The theta series of highly structured lattices (e.g. integral

lattices) is known for low dimensions [6]. Some simple examples are

ΘZ(z) =
+∞
∑

m=−∞

qm2

= 1 + 2q + 2q4 + 2q9 + 2q16 + . . . = θ3(z),

where θ3(z) is a Jacobi theta function. It is trivial to show that ΘZn(z) = ΘZ(z)n = θ3(z)n. Also, the

theta series of the translated lattice Z + 1/2 is

ΘZ+1/2(z) =

+∞
∑

m=−∞

q(m+1/2)2 = 2q1/4 + 2q9/4 + 2q25/4 + . . . = θ2(z),

where θ2(z) is also a Jacobi theta function. Finally, the theta function of the hexagonal lattice is given by

ΘA2
(z) =

∑

x∈Λ

qQ(x) = θ3(z)θ3(3z) + θ2(z)θ2(3z) = 1 + 6q + 6q3 + 6q4 + 12q7 + . . . ,
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where Q(x) is the quadratic form associated to A2. The reader can check that the theta series exactly

describes A2 shells population and radius as illustrated in Fig. 1. If Λ is a random lattice, then ΘΛ(z) or

at least all its terms up to qC can be determined using the Short Vectors algorithm that solves Q(x) ≤ C

[14][15][5]. Before terminating this tutorial section, let us introduce two more parameters related to the

density of the lattice sphere packing. The density ∆ of a lattice is defined by

∆ =
volume of a packing sphere of radius ρ

volume of a V oronoi cell
=

Vnρn

vol(Λ)
,

where Vn = πn/2/Γ(n/2 + 1), and Γ(x) is the classical Gamma function. The center density δ is defined

by normalizing ∆, i.e. δ = ∆/Vn. The density of Λ and its error rate performance in presence of additive

noise are also related to its fundamental gain (also known as Hermite constant) defined by [6][8]

γ(Λ) =
d2

Emin(Λ)
n/2

√

vol(Λ)
= 4

n/2
√

δ. (3)

Now let us resume with the lattice representation of a multiple antenna channel. The product x = sH in

(1) is interpreted as a point in the Euclidean space Rn, n = 2nt = 2nr. The point x belongs to a real

lattice Λ of rank n. The n × n generator matrix G = [gij] of Λ is the real version of H











































g2i,2j = <(hi,j)

g2i+1,2j = −=(hi,j)

g2i,2j+1 = =(hi,j)

g2i+1,2j+1 = <(hi,j)

(4)

Since s is limited to CQAM ⊂ Zn, then x ∈ CH ⊂ Λ, where CH is a finite set of Λ called a lattice

constellation or lattice code. When CQAM is square, the shape of CH is given by the parallelotope P ,

i.e. CH and P are homothetic. The reader should notice that a Mk-QAM modulation is defined as a

rectangular subset of Z
2 and that any scaling factor or any translation generates an equivalent set. The
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cardinality of the lattice constellation CH is
∏nt

k=1 Mk. The spectral efficiency of the uncoded QAM system

is
∑nt

k=1 log2(Mk) bits per channel use.

At the receiver side, it is assumed that perfect channel state information (perfect CSI) is available. CSI

is not required at the transmitter side. Finally, a maximum-likelihood detector based on a sphere decoder

is applied [23][1][3] to accomplish a low complexity detection.

III. ACCURATE APPROXIMATION OF ERROR PROBABILITY

The lattice representation of a multiple antenna channel converts the MIMO model given in (1) into

a simple additive white Gaussian noise (AWGN) channel model r = x + ν. For a given random lattice

Λ generated by a fixed channel matrix H, let Pe(Λ) denote the point error probability associated to the

infinite set Λ and let Pe(CH) denote the average point error probability associated to the finite constellation

CH. Trivial geometrical properties leads to the inequality Pe(CH) ≤ Pe(Λ).

Due to the geometrical uniformity of Λ, the error probability Pe(Λ) does not depend on the transmitted

point, e.g. Pe(Λ) = Pe|0 ≤
∑

x6=0
P (0 → x), where P (x → y) is the classical notation for the pairwise

error probability and Pe|x is the error probability conditioned on the transmission of x. On the contrary,

CH is not geometrically uniform. To find its exact error probability, we should evaluate Pe|x for all

x ∈ CH, and then average by Pe(CH) = 1
|CH|

∑

x∈CH Pe|x.

For example, when nt = 4 and Mk = 16 for all k, a classical Union bound would cost 65536 × 65535

Euclidean distance evaluations. To reduce the complexity, we propose in the following a method which

yields a very accurate approximation for the error rate of CH at a negligible complexity price.

It is well known in lattice theory [6] that integrating over any Voronoi region is an extremely difficult

task. If integration is to be done numerically and if a random lattice is considered, one can imagine to

determine a complete description of the Voronoi region via the Diamond Cutting Algorithm (Viterbo and

Biglieri 1996 in [24]) and then integrate using the Gaussian distribution. Unfortunately, the task is still
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extremely complex. The integration must be done for all points in the case of a finite constellation, or

at least a large number of points if symmetry exists. Hence, error rates Pe(Λ) and Pe(CH) cannot be

exactly computed by numerical integration that avoids Monte Carlo simulation. Under the assumption that

all facets of the Voronoi region are created by the first lattice shell, we have

Pe(CH) ≤ Pe(Λ) ≤ τ(Λ) × Q

(

dEmin(Λ)

2σ

)

. (5)

In the above inequality, τ(Λ) is the kissing number, dEmin(Λ) is the minimum Euclidean distance, and

σ2 is the one-dimensional real noise variance. The situation in which the right inequality of (5) is valid

corresponds to dense lattice packings, i.e. the fundamental gain γ(Λ) given in (3) is greater than 1 [6][8].

Unfortunately, random lattices generated by H are not necessarily dense, especially for nt ≤ 4 as

illustrated in Fig. 2. Thus, in the general case, the theta series of Λ is needed to derive an upper bound

for Pe(Λ). In practice, during numerical evaluations, the theta series defined in (2) will be truncated

to a limited number of shells around the transmitted point. This truncation yields precise numerical

results because the lattice is transmitted on a Gaussian channel where pairwise error probability decreases

exponentially with respect to Euclidean distance.

When square QAM modulations are applied on the transmit antennas, (5) becomes [4]

Pe(CH) ≤ Pe(Λ) ≤ τ(Λ) × Q

(
√

3 ×
∑nt

i=1 log2 Mi

nr ×
∑nt

i=1(Mi − 1)
× Eb

N0
× d2

Emin(Λ)

)

, (6)

where Eb/N0 denotes the average received SNR per bit.

Now, let us describe how shall we handle the non geometrically uniform set CH in order to reduce

the computational complexity with respect to the Union bound. With this method, we aim at finding a

precise approximation for the point error rate, not an exact evaluation, neither a closed-form expression.

Consider a 16-QAM constellation transmitted on a Gaussian channel. It can be partitioned into 3 subsets:

4 points in the middle (I0), 8 non-corner points on the facets (I1), and 4 points on its corners (I2). There
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are 3 different error rates, one for each subset. The total point error rate is obtained by 4/16Pe(I0) +

8/16Pe(I1)+4/16Pe(I2), no need to compute 16 error rates corresponding to 16×15 distance evaluations.

Now, generalize the previous idea to a dimension n ≥ 2, where the constellation is not cubic shaped (H

is random).

For a given constellation point x = sH = zG, the local theta series, i.e. the distance distribution of points

surrounding x and belonging to CH, depends on x. This observation is noticed in Fig. 3 that represents

points of a lattice constellation carved from a lattice Λ ⊂ R2. The local theta series of indicated points,

which are black filled up to a square radius R, are not identical.

More precisely, the distribution of Euclidean distances around x depends on the position of x in CH.

If x does not belong to the boundary of CH (the point belongs to the interior of the constellation) then

boundary effects can be neglected and the local theta series is well approximated by the theta series of

Λ. Otherwise, if the point x is located on the boundary of CH, then the local theta series is derived by

translating the original one around x and deleting all lattice points that do not belong to CH. To do so,

we partition the constellation into n + 1 subsets

CH =
n
⋃

`=0

I`, (7)

where I` contains lattice points located on the intersection of ` facets in CH. The subset I0 is the interior

of the constellation. Notice that x = zG ∈ I` is equivalent to z belonging to the intersection of ` facets

in CQAM ⊂ Zn. Following (7), the error probability of the constellation becomes

Pe(CH) =

n
∑

`=0

p`Pe(I`). (8)

The weighting factor p` is the probability that a point of CH belongs to the subset I`, and Pe(I`) is the

error probability associated to I`. The probability Pe(I`) is obtained by averaging over all points x ∈ I`,

since the conditional probability Pe|x depends on the local position of x. In the sequel, we describe
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how an accurate approximation of (8) can be obtained. The accuracy of the analytical approximation is

validated by comparing it to computer simulations as illustrated in Figs. 4 and 5.

A. Evaluation of the probability p`

For simplicity reasons, only square QAM constellations are considered. Thus, any M -QAM is written

as the Cartesian product of Pulse Amplitude Modulation M -QAM = (
√

M -PAM)2. The generalization

to rectangular and cross bi-dimensional constellations is straightforward. Also, it is assumed that QAM

symbols transmitted on the MIMO channel have the same a priori probability.

• All antennas transmit the same QAM set

The probability for a point component to be located on the edge of the one-dimensional PAM is 2/
√

M .

Since ` components out of n must be on the PAM boundaries, then it is trivial to show that

p` =









n

`









(

2√
M

)`(

1 − 2√
M

)n−`

. (9)

• Antennas transmit general QAM sets (not necessarily identical)

The number ` of constellation facets to which a point x = zG belongs in Rn is decomposed as

` =
n
∑

i=1

`i, (10)

` ∈ [0...n] and `i ∈ {0, 1}. The integer `i is set to 1 if zi location is on the PAM boundary . Notice that

zi, i = 1 . . . n, belongs to a PAM real constellation of size
√

M[(i+1)/2], where Mk is the size of the kth

bi-dimensional QAM set, 1 ≤ k ≤ nt = n/2. For a given value of `, let L`,j = (`j
1 . . . `j

i . . . `j
n) denote a

length n binary vector whose components satisfy the sum condition (10), 1 ≤ j ≤









n

`









. Then, it is

easy to show that

p` =
∑

L`,j

n
∏

i=1

(

2
√

M[(i+1)/2]

)`j
i
(

1 − 2
√

M[(i+1)/2]

)1−`j
i

. (11)
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The above expression reduces to (9) when identical QAM sets are used on the MIMO channel.

B. Evaluation of the subset error probability Pe(I`)

We establish an upper bound for Pe(I`) using the local theta series. Computer simulations given below

show the tightness of this bound which is due to the simple AWGN model defined by r = x + ν.

The error probability Pe(I`) used in (8) can be written as:

Pe(I`) =
1

|I`|
∑

x∈I`

Pe|x, (12)

Let Sx,i = {y ∈ CH|dE(x,y) = di} denote the set of points belonging to CH and surrounding x at a

Euclidean distance di. The shape of Sx,i is not necessarily spherical due to the cutting boundaries of the

constellation. The local theta series is defined by the coefficients τx,`,i = |Sx,i|, where x ∈ I`. The shells

in the local theta series are indexed by i in the subscript of τ . The upper bound for Pe(I`) becomes:

Pe(I`) ≤
1

|I`|
∑

x∈I`

∑

i

τx,`,i × Q

(

di

2σ

)

. (13)

Finally, for a fixed channel matrix H, an accurate approximation of the point error probability for a

multi-dimensional QAM modulation transmitted on a MIMO channel is obtained by combining (13) and

(8)

Pe(CH) ≤
n
∑

`=0

p`
1

|I`|
∑

x∈I`

∑

i

τx,`,i × Q

(

di

2σ

)

. (14)

C. Numerical implementation of (14)

The coefficients τx,`,i of the local theta series are easily determined from the original theta series of

the random lattice Λ as follows:

• Step 1: Generate lattice points y ∈ Λ located at a distance di from the origin. These points are found

using the Short Vectors algorithm based on a Pohst enumeration inside a sphere [14][15][5].

• Step 2: For each y found in the previous step, check if the translate y + x belongs to the constellation

CH and increment τx,`,i accordingly.
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For the derivation of numerical results, we limited the total number of selected points in (14) to

Nx = min(1000,
∏nt

k=1 Mk). The number of points selected from the subset I` (points lying on the

intersection of ` facets) is weighted by p`, i.e. we consider p`Nx such points. This method accurately

approximates the distribution of constellation points according to their position. The number of shells in the

local theta series has been limited to imax, where the most distant shell is at 2d2
Emin(Λ). The conventional

factor 2 is fully justified by its corresponding 3dB signal-to-noise ratio margin on a Gaussian channel. If

the local theta series (around x) is empty, then the new search radius can be increased up to 4d2
Emin(Λ)

(6dB SNR margin).

Another heuristic for controlling imax is to select the initial squared radius greater than mini Dii, where

[Dii] = GGt is the lattice Gram matrix. It can be shown that the minimum Euclidean distance in CH

satisfies

dEmin(Λ) ≤ dEmin(CH) ≤ min
i=1...n

Dii. (15)

Fig. 4 illustrates the accuracy of (14) in the case of a fixed 4 × 4 MIMO channel. The point error

rate is plotted versus the average signal-to-noise ratio (average SNR assumes that E[|hij|2] = 1). The

matrix H has been selected at random and kept unchanged for all results shown in Fig. 4. Four different

QAM combinations have been tested. The notation 4*M-QAM means that 4 transmit antennas are using

M-QAM. When transmitted constellations are not identical, a notation as 16-16-64-64-QAM would mean

that M1 = M2 = 16 and M3 = M4 = 64. In all cases, computer simulation results below 10−1 are

very close to the proposed analytical approximation. Fig. 5 illustrates the average error probability of a

quasi-static 4 × 4 MIMO channel with a finite coherence time (Tc = 10 instead of +∞). Expectation is

made over the distribution of H in Fig. 5. The proposed approximation is very tight below 10−1.

As shown in Fig. 6, the simple upper bound (6) is less accurate than (14) based on the local theta series.

For low SNR, (6) is not necessarily an upper bound because some Voronoi facets are due to more distant
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points than those located on the first lattice shell (see the 4*16-QAM case). At high SNR, the influence

of those facets is negligible. Also, the gap between the simple bound and the exact error rate decreases

with the constellation size at high SNR.

IV. APPLICATION TO ADAPTIVE MODULATION

In adaptive modulation schemes, the transmitter adjusts its parameters (modulation size, transmit power,

coding rate, etc) to the current channel state in order to guarantee a target error rate and to achieve the

highest possible spectral efficiency. We restrict our scheme to the adaptation of QAM modulation size on

each transmit antenna. Power adaptation and coding rate variation are not considered in this paper. CSI

is only available at the receiver side. The transmitter is informed via the feedback link about the current

QAM adaptation to be applied. The objective of our adaptive modulation scheme is the following: Given

an average signal-to-noise ratio per bit, find M1, M2, . . . , Mnt in order to maximize
∑nt

k=1 log2(Mk) under

the constraint Pe(CH) ≤ PERtarget, where PERtarget is the target point error rate. Notice that when

Pe(CH) ≥ PERtarget, no data is transmitted and the conditional error probability Pe(CH) is set to 0.

In the latter case, an outage is declared each time Pe(CH) ≥ PERtarget. In practice, if the quality of

service depends on the frame error rate (FER) and if a frame has length NF transmit periods, NF ≤ Tc,

then FER = 1 − (1 − PER)NF ≈ NF × PER. Hence, PERtarget can be easily linked to FERtarget.

A. A New Adaptive Modulation Scheme

Assume that the nt-antenna transmitter has Nq distinct QAM modulations. For example, Nq = 4 if

square constellations 4-QAM, 16-QAM, 64-QAM and 256-QAM are used. If all Tx antennas use the same

QAM constellation, then the adaptation scheme should select an optimal solution (M1, M1, . . . , M1)opt

among Nq possibilities. If Tx antennas use different QAM constellations, then the adaptation scheme

should select an optimal solution (M1, M2, . . . , Mnt)opt among Nnt
q possibilities. The adaptive modulation
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scheme is depicted on Fig. 7.

At the receiver side, the channel estimation block provides H and σ2 to the adaptation block. The PER

computation function employs (14) to compute PER = Pe(CH), where CH = CH(M1, M2, . . . , Mnt).

The final block selects the optimal solution (M1, M2, . . . , Mnt)opt that maximizes
∑nt

k=1 log2(Mk) under

the guarantee PER ≤ PERtarget. Finally, the feedback link conveys nt × log2(Nq) bits to the transmitter,

e.g. 8 feedback bits if nt = 4 and Nq = 4.

The complexity of the adaptive scheme depends on the number of modulations to be tested in order to

select the optimal one. The poor adaptive modulation when all QAMs are identical, M1 = M2 = . . . =

Mnt , has a low adaptation complexity proportional to Nq. On the contrary, the efficient adaptive modulation

when QAM constellations may be distinct per Tx antenna has an adaptation complexity proportional to

the number of possibilities, that is equal to Nnt
q , e.g. 44 = 256 possibilities if 4 types of QAM are

authorized (M = 4, 16, 64, 256) with nt = 4 transmit antennas. Hence, a brute force adaptation will cost

us Nnt
q numerical evaluation of (14). The spectral efficiency varies from nt × 2 up to nt × 8 bits per

channel use, e.g. 13 possible values in the interval [8 . . . 32] bits per channel use when nt = 4 antennas

and Nq = 4. In order to avoid considering the Nnt
q = 256 possibilities, a key idea is to select a reduced

number of combinations where spectral efficiency is well quantized. We selected a limited number (e.g.

13) of possibilities where all values of spectral efficiencies are represented between nt×2 and nt×8. The

choice of the 13 representative possibilities as in Table I is the first step of adaptation. In the second step

of adaptation, each transmit antenna must be assigned to a column in Table I, i.e. we must adequately

permute the nt integers Mk given by the row of Table I selected in the first step. We proposed to assign

the Mk’s according to the order of ‖hi‖, where hi is the ith row of H. This is inspired by coded systems.

Indeed, if an error-correcting code is used in combination with a soft output decoder, then under the genie

condition (perfect feedback of a priori information), the capacities of the nt independent channels are
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sorted according to ‖hi‖2. In our case, QAM modulations are uncoded. Nevertheless, simulation results

show that the loss in spectral efficiency with our strategy compared to the brute-force is negligible. The

adaptation based on 13 possibilities performs almost exactly as well as 256 possibilities. This strategy

reduces the number of QAM combinations from Nnt
q down to (Nq − 1)nt + 1.

For nt = Nq = 4, we sort the transmit antennas such that ‖h1‖2 ≤ ‖h2‖2 ≤ ‖h3‖2 ≤ ‖h4‖2. Then,

we start from the most robust combination (4*4-QAM) upward to the most efficient combination (4*256-

QAM) as shown in Table V. Only one integer is changed from one row to another according to a decreasing

order of Tx antennas power. Consequently, thanks to the dichotomy method applied on the reduced list,

a maximum of 4 evaluations of Pe(CH) are required instead of Nnt
q = 256.

B. Computer Simulation of the Adaptive Modulation

The considered target point error rate is PERtarget = 10−3. The QAM selection is made as in the

reduced list given in Table V. Fig. 8 presents the performance of a 4 × 4 antenna system satisfying the

constraint on the error probability for each channel H and each noise variance, i.e. Pe(CH) ≤ PERtarget.

Clearly, the curves corresponding to both non adaptive and adaptive schemes are below the target. The

upper curve corresponding to adaptive modulation is close but less than the 10−3 target. It also shows a

good stability within a 10dB signal-to-noise ratio range. For high noise variance, the selected combination

corresponds to the lowest one (i.e. 4*4-QAM) for the majority of channels. On the other hand, PER of

the adaptive scheme tends to that of 4*256-QAM at high SNR. Fig. 9 represents the probability of no

transmission (known as outage probability), i.e. Pe(CH) > PERtarget. The outage probability of the

adaptive modulation is superimposed with the outage of a fixed 4*4-QAM modulation. Therefore, the

proposed adaptive modulation is as robust as the 4-QAM but it guarantees a higher spectral efficiency. It

leads to a maximization of the spectral efficiency while keeping the error probability close to the target.

In Fig. 10, the total spectral efficiency achieved by a 4 × 4 antenna system is presented versus the

average received SNR while satisfying the PER constraint. This figure also emphasizes the advantage of
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adaptive modulation. The stair including 4 soft steps corresponds to the non adaptive scheme when all Tx

antennas are using the same QAM constellation. Albeit the looseness of (6) shown in Fig. 6, the adaptive

modulation based on minimum Euclidean distance exhibits a small spectral efficiency loss at low SNR

with respect to adaptation based on local theta series.

V. CONCLUSIONS

An accurate approximation for the conditional error probability on quasi-static multiple antenna channels

has been described. For a fixed channel matrix H, it is possible to accurately predict the performance of

QAM modulations transmitted over the MIMO channel in presence of additive white Gaussian noise. The

approximation is based on a tight Union bound for the point error probability in the n-dimensional real

space. Instead of making an exhaustive evaluation of all pairwise error probabilities (intractable even for

moderate values of nt and M ), a Pohst lattice enumeration is used to limit the local theta series inside

a finite radius sphere. The local theta series is derived from the original lattice theta series and the point

position within the finite multi-dimensional QAM constellation. As a direct application, we also described

an adaptive QAM modulation scheme for quasi-static MIMO channels.
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TABLE I

REDUCED LIST FOR ADAPTIVE MODULATION, Nq = 4 DISTINCT QAM SETS AND nt = 4 TX ANTENNAS.

Tx 1 Tx 2 Tx 3 Tx 4

256 256 256 256 highest spectral efficiency
worst error rate performance

64 256 256 256
64 64 256 256
64 64 64 256
64 64 64 64
16 64 64 64
16 16 64 64
16 16 16 64
16 16 16 16
4 16 16 16
4 4 16 16
4 4 4 16

lowest spectral efficiency
4 4 4 4 best error rate performance
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