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9
Chapter 1IntrodutionOver the past few years, wireless networks appliations have gained ever-inreasing pop-ularity. They provide novel opportunities for inreased reliability that are non-existentin point to point ommuniations. However, due to the nature of the wireless hannel,e�ets suh as fading, shadowing, and interferene from other transmitters an ause thehannel quality to �utuate during transmission. One approah to ombat suh hannel�utuations is to design a ommuniation system that provides some sort of diversity,i.e. provides many replias of the signal to the reeiver. Diversity an be temporal,spatial, or frequential [2℄. Multiple-antenna systems (also alled Multiple-Input Multiple-Ouput (MIMO) systems )have been shown to provide spatial diversity that boosts theperformane in fading environments. In addition, the need to transmit at high data ratesis ful�lled with suh systems as they allow the simultaneous transmission of multiplestreams (spatial multiplexing). However, in some ases, due to spae or ost limitations,the implementation of more than one antenna on the same terminal is impossible. Forthis reason, the onept of ooperative ommuniations was proposed, whih means thatterminals an ooperate between eah others to provide spatial diversity in a distributedon�guration, thus forming a virtual antenna array.In this report, we study the design of spae-time bit-interleaved oded modulations (ST-BICM) suited for frequeny non-seletive single-user blok-fading hannels. The outlineof the manusript is as follows:
• In Chapter 2, we �rst introdue the fundamental information theoretial limits ofblok-fading hannels in general (namely the outage probability), limits that areused throughout the report for the analysis of oded modulations. We then de-sribe the ST-BICM transmitter model, before desribing the iterative reeiver thatan lead to quasi-maximum likelihood (ML) performane with reasonably low om-plexity. We end up this hapter by realling the Singleton bound on the diversityorder of oded systems for a given oding rate.
• In Chapter 3, we propose ST-BICM shemes suited for the multiple-input multiple-output (MIMO) hannel with iterative deoding. First, we design spae-time pre-



10 1. Introdutionoding matries that minimize the disrete input outage probability, and we showthe good performane of these preoders sine the �rst iteration of an iterative re-eiver. Seond, we investigate a low-omplexity oded sheme for a four-transmitantenna on�guration based on the Alamouti sheme. Finally, we propose the designof turbo odes for MIMO hannels, and we will show that this sheme dramatiallyapproahes the outage probability limit with relatively low deoding omplexityusing intelligent swithes (alled �ode multiplexers�) at the output of the turboenoder.
• In Chapter 4, the design of ST-BICM for the amplify-and-forward ooperative pro-tool with multiple relays is onsidered. We derive bounds on the diversity orderfor this protool, and we show that preoders that do not entail an inrease in thedetetion omplexity are optimal diversity-wise. We next disuss oding gain issuesfor this protool, and show simulation results for various oding rates and networkon�gurations. We �nally show the performane of ode multiplexers with turboodes over this protool.
• In Chapter 5, in a goal to ahieve optimal oding gain over blok-fading hannels, anew method for the design of irregular turbo odes is proposed. We �rst show thatirregular turbo odes outperform LDPC odes for the AWGN hannel, and thenwe show they outperform the regular turbo odes on blok-fading hannels usingdensity evolution methods.We end up this manusript by the onluding remarks and some future perspetives.
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Chapter 2Generalities
2.1 IntrodutionIn this manusript, we deal with wireless blok-fading hannels, that were introduedin [3℄ to model slowly varying fading hannels. In this model, a frame (or a odeword)sent over the wireless hannel sees a �xed number of fading oe�ients. Standards suhas Global System for Mobile Communiations (GSM) or the promising Orthogonal Fre-queny Division Multiplexing (OFDM) that involve slow time-frequeny hopping are wellrepresented by this hannel model. The blok-fading hannel model leads to a null a-paity, as the apaity depends on the instantaneous hannel instane. In this hapter,we will start by introduing the information theoretial limit of blok-fading hannels,that is outage probability. We will then present the general ommuniation system wewill use throughout this report; a transmitter onsisting of a spae-time preoded odedmodulation, and a reeiver onsisting of an iterative detetion and deoding bloks. Thelast part of this hapter presents the bound on the diversity order of oded systems onblok-fading hannels.2.2 Information theory of fading hannelsBak in 1948, Claude E. Shannon established the de�nition of hannel apaity throughthe noisy-hannel oding theorem [4℄ as the maximum theoretial rate at whih we anreliably transmit data (i.e. with a vanishing error rate) over a hannel with a spei�edbandwidth and at a partiular noise level. Channel apaity is a deterministi boundthat takes di�erent expressions depending on the hannel type. Now suppose that theinput and the output of the hannel are given by the two random variables X and Yrespetively. The hannel apaity is by de�nition given by:

C = max
p(x)

I(X; Y ) (2.1)



12 2. Generalitieswhere p(x) is the input distribution and the mutual information I(X; Y ) between X and
Y is given by:
I(X; Y ) = H(X) + H(Y )−H(Y, X) = H(Y )−H(Y/X) = H(X)−H(X/Y ) (2.2)and the entropy funtion H gives the average amount of bits one needs to represent arandom proess. For the additive white Gaussian noise (AWGN) hannel for instane,the hannel apaity for a Gaussian input is given by:

CAWGN = log2

(
1 + R

Eb

N0

) bits/s/Hz (2.3)It is thus possible to reliably transmit information on an AWGN hannel at a rate R <

CAWGN through an in�nite length odeword. Now for wireless hannels, the hannelinput-output model is given by:
y = xH + w (2.4)where x is the input vetor, y is the output vetor, H is the hannel matrix with omplexGaussian fading oe�ients, and w is the AWGN vetor. In the presene of ergodiRayleigh fading, it was shown in [5℄ [6℄ that the hannel apaity for a Gaussian inputwithout side information at the transmitter is given by:

C = EH [CH ] = EH

[
log2 det

(
I + PH†H

)] (2.5)where P is a funtion of the signal-to-noise ratio. For single-antenna quasi-stati fad-ing hannels, H = h has a single entry. For multiple-antenna and amplify-and-forwardooperative hannels, the omplex hannel matrix H takes di�erent forms that will bedisussed in the next hapters. Now as the hannel gain proess is ergodi, i.e. the timeaverage is equal to the ensemble average, the hannel hanges at eah realization. Inother words, the randomness of the hannel oe�ients an be averaged out (removed)over time as shown in (2.5). This results in the fat that the apaity of an ergodi hannelis information stable as it tends to a deterministi value and long-term onstant bit ratesan be supported.Now for non-ergodi fading hannels, the hannel gain is a random variable and does nothange with time (at least for the duration of a odeword). The hannel gain proess isstationary but not ergodi, i.e. the time average is not equal to the ensemble average. Thismeans that ertain �weak� realizations of the hannel oe�ients an ause the apaity ofthe hannel to fall below the transmission rate we want to maintain. Non-ergodi hannelsare information unstable [7℄ as hannel apaity is not deterministi. The expression forthe hannel apaity is a random variable with probability density funtion pCH
(i) thatde�nes the �outage� probability [3℄[8℄:

Po = P (CH < R) =

∫ R

0

pCH
(i)di (2.6)



2.2. Information theory of fading hannels 13For blok-fading hannels, we suppose that a odeword sees nc di�erent realizations ofthe hannel matrix, and this gives the following expression for the Gaussian input outageprobability:
Po,nc

= P

(
1

nc

nc∑

j=1

log2 det
(
I + PH

†
jHj

)
< R

) (2.7)Note that when D →∞, the averaging over the hannel realizations leads to the ergodihannel apaity as in (2.5). It is lear that area under the tail of the apaity giventhe hannel distribution pCH
(i) in (2.6) is a umulative distribution funtion FI(R). Theoutage apaity an be seen as the ǫ-apaity [7℄ [9℄ [10℄ of the hannel as:

Cǫ = sup
p(x)

sup {R : FI(R) ≤ ǫ} 0 ≤ ǫ ≤ 1 (2.8)The ǫ-apaity Cǫ is the optimum asymptoti rate at whih information an be enodedover the hannel via a sequene of hannel odes that yield a maximal probability ofdeoding error of ǫ. Note that:
Cǫ↓0 = C (2.9)whih gives the Shannon apaity. The ǫ-apaity approah for outage apaity suitsthe onvention of �x perent outage� followed by ertain papers (see [11℄ for example).However, in this report, we will use the outage measure as a probability as in (2.6) to beable to ompare it with word error rate performane of oded modulations.As proved in [5℄, maximum apaity over ergodi fading hannels (onsequently minimumoutage probability over blok-fading hannels) is ahieved with Gaussian inputs, i.e. when

p(x) follows the normal distribution. However, with pratial ommuniation systems, wealways deal with disrete input onstellations. For this reason, the expression in (2.5) forGaussian inputs does not hold anymore. From (2.2), we have:
I(X; Y ) = H(Y )−H(Y/X) (2.10)Now let X ∈ Ω, a disrete alphabet of 2n vetors. The entropies from (2.10) an beexpressed as [12℄:

H(Y ) = −
∫

y

p(y)log2(p(y))dy

= −
∫

y

∑

x

p(y/x)p(x)log2


∑

x′

p(y/x′)p(x′)


 dy (2.11)

H(Y/X) = −
∑

x

p(x)

∫

y

p(y/x)log2(p(y/x))dy (2.12)



14 2. GeneralitiesThis gives the expression of the mutual information as:
IH = n− 1

2n

∑

x

∫

y

p(y/x)log2(

∑
x′ p(y/x′)

p(y/x)
)dy (2.13)

= n− 1

nc

nc∑

j=1

Ex,y|Hj

[
log2

(∑
x
′ p(y|x′

,Hj)

p(y|x,Hj)

)] (2.14)
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Figure 2.1: Outage limits for quasi-stati hannel, BPSK, 16QAM, and Gaussian input,half-rate hannel oding.Fig. 2.1 shows the outage probabilities of a quasi-stati fading hannel for di�erentinputs and half-rate hannel oding. As mentioned earlier, Gaussian inputs outperformall other distributions at the same spetral e�ieny. We also notie that with half-rate oding, the 16-QAM onstellation outage probability is loser to the Gaussian inputoutage probability than the BPSK modulation. As the outage probability re�ets thevariations of the mutual information funtion depending on the hannel realizations, thisbehavior is explained by the fat that the mutual information urve of the 16-QAMonstellation at half-rate oding is loser to the Gaussian mutual information line thanthe BPSK onstellation at the same oding rate (see [13, Fig. 2℄). Fig. 2.2 shows theoutage probabilities for di�erent MIMO hannel antenna on�gurations, half-rate hanneloding and Gaussian input. The diversity order is given by nt × nr, but the oding gaindi�ers for the same diversity order depending on the on�guration.
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Figure 2.2: Outage limits for di�erent MIMO on�gurations, Gaussian input, half-ratehannel oding.2.3 Bit-interleaved oded modulation (BICM) with it-erative deodingIn 1992, it was shown in [14℄ that by asading an error orreting ode, a randominterleaver and a modulator, a ommuniation system ahieves very high gains. Later,the authors in [15℄ established a framework for the analysis and design of the so-alled�Bit-interleaved oded modulation� (BICM), and showed that this struture allows toapproah the information theoretial limits of the hannel, for the AWGN ase as well asfor the ergodi fading ase. Sine then, this struture has been widely studied for di�erentsenarios. In [16℄ [17℄ [18℄ among others, the authors studied BICM for non-ergodi fadinghannels, and it was proved that this sheme an also approah the outage limit of thehannel. In this report, the BICM model for blok-fading hannels (i.e. non-ergodihannels) will be onsidered.2.3.1 Struture of the BICM transmitterThe general struture of a BICM is shown in Fig. 2.3. It onsists of an error orretingode C of rate Rc, a deterministi interleaver Π, a symbol mapper, and a spae-timepreoder. We will now desribe eah blok and give historial notes and lassi�ationsthat justify our hoies.
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zFigure 2.3: ST-BICM transmitter sheme.The error orreting odeThe �eld of hannel oding started with Shannon's landmark paper in 1948 [4℄. The ideais to protet data sent through a hannel by adding some redundany to the transmittedsignal in way to ensure reliable ommuniation. The enoder is a bijetion between theinformation sequene b of length K and the oded sequene  of length N . The odingrate is Rc = K/N . There are di�erent types of error orreting odes, and they an belassi�ed into two major ategories [19℄:

• Algebrai linear blok odes: Hamming, Golay, Reed-Muller, BCH, and Reed-Solomon odes among others. Algebrai oding theory dominated the �rst deadesof hannel oding history. The main objetive of this design theory is to maximizethe minimum distane d (also alled Hamming distane (dmin)) between any twodistint odewords, that is the minimum number of bits in whih they di�er. Theyare mostly used for high data rates, but fail to approah fundamental limits. Inpartiular, Reed-Solomon odes are e�ient in appliations that su�er from burstyerrors, suh as magneti tape and disk storage for instane. They an provide higherror-orretion power with relatively small redundany at very high data rates.
• Probabilisti odes: in [19℄, it is stated that �probabilisti oding is more onernedwith �nding lasses of odes that optimize average performane as a funtion ofoding and deoding omplexity�. This lass inludes onvolutional odes, prod-ut odes, onatenated odes, and trellis deoding of blok odes. Convolutionalodes were invented in [20℄. They an be grouped into two major ategories: non-reursive non-systemati onvolutional (NRNSC) odes, where all information bitsare enoded through shift registers, and reursive systemati onvolutional (RSC)where the unoded information sequene is sent through the hannel and at thesame time is enoded through a feedbak register. As a result, the ode an berepresented by a trellis, whih allows for low omplexity deoders. Although theyhave in�nite length, onvolutional odewords an be made �nite by proper trellistermination. In this report, we will mainly use NRNSC odes with BICM due totheir �exibility. Produt odes and ompound odes were proposed in [21℄ and[22℄ respetively. They onsist of a serial onatenation of two or more odes at thetransmitter, and by individual deoding of every ode at the reeiver. Their oneptlead to the invention of �Turbo-odes� that will be disussed in hapter 5. Anotherexample of onatenated odes are �low-density parity-hek� (LDPC) odes [23℄.They are based on sparse generator matries that allow for probabilisti iterative



2.3. Bit-interleaved oded modulation (BICM) with iterative deoding17deoding under the message-passing algorithm. Both LDPC and turbo odes havebeen proved to be apaity approahing odes for the AWGN hannel. However, inthis report, we will only deal with trellis odes (NRNSC onvolutional and turboodes).The interleaverThe role of an interleaver is to sramble the bits of a odeword. It is a very impor-tant blok in a BICM under iterative deoding, as it ensures independane betweenthe extrinsi probabilities and the a priori probabilities exhanged by the nodes ina graph. In addition, if maximum-likelihood (ML) deoding is possible, an inter-leaver spreads the onseutive bits of an error events thus it limits their interferene.There are di�erent types of interleavers: pseudo-random, S-random [24℄, where twoonseutive bits at the input of the interleaver will be plaed a distane S away fromeah other at the output. In [18℄, a lass of optimized interleavers for blok-fadinghannels was proposed, lass that respets the �ideal interleaving� onditions. Theseonditions are summarized as (see proposition 5, hapter 3 in [18℄), : �...the inter-leaver should uniformly plae onseutive bits on all the hannel time realizations,transmit antennas, and bit positions of the mapping and prohibit the interferene ofthese onseutive bits in the mapping�. This lass of interleavers will be frequentlyemployed throughout this report.The modulatorThis blok onverts m oded bits into a onstellation symbol at eah hannel use.The bijetion from bits to symbols is alled mapping (or labeling) The ardinalityof the onstellation Ω is given by |Ω| = M = 2m. Now in the ase of MIMO systemswith nt ≥ 2 transmit antennas for instane, the mapper takes m × nt bits at eahhannel use and onverts them into a vetor of nt modulation symbols. Thereexist di�erent types of mappings, eah suited for ertain appliations or spei�hannel types. Gray mapping, the most widely used, allows for only one bit tohange between any two neighbors of the onstellation, but it only exists for squareonstellations (i.e. |Ω| = 22u). The mapping presented in [13℄ known as �Ungerboekmapping� maximizes the Eulidean distane between neighbor onstellation symbolsand is suited for trellis-oded modulations. Mapping issues will not be treated inthis report, and only Quadrature Amplitude Modulations (QAM) will be onsidered.The energy per M-QAM symbol is given by:
Es =

2(M − 1)

3
(2.15)



18 2. GeneralitiesThe spae-time preoderThe preoder S spreads the QAM symbols over s time periods. In most ases, thepreoder is linear, i.e. it maps the QAM vetor onto a linear ombination of theonstellation symbols. However, in some ases, the spae-time preoder is not linear,as is the ase for orthogonal designs [25℄ [26℄ and the sheme presented in setion3.7.2.3.2 The BICM iterative reeiverThe odewords at the output of the onatenation of a spae-time preoder and a BICMan be seen as global Eulidean odes [18℄. Ideally, suh odes should be deoded witha maximum-likelihood (ML) deoding algorithm, but an exhaustive searh over all theodewords is unfeasible in pratie as the odeword size inreases. For this reason, thereeiver for suh systems is at the image of the transmitter, whereas orresponding bloksiteratively exhange soft information. Thus the reeiver of a spae-time (ST) BICM on-sists of two main nodes: a soft-input soft-output (SISO) a posteriori probability (APP)QAM detetor, that onverts the information arried by the onstellation mapper andthe spae-time preoder as soft information on the oded bits, and a SISO deoder thattakes the information from the detetor as a priori and generates more reliable soft infor-mation (extrinsi probabilities) on oded bits. The �nal deision is made on the APP oninformation bits at the output of the SISO deoder.Ideally, the optimal SISO detetor omputes the hannel realizations over all possible�spae-time odewords�. This operation might be too omplex for high data rates (largeonstellation size, large number of antennas, large number of relays...). A omplexityredution method alled �List sphere deoding� [27℄ redues the exhaustive list of andi-dates to a smaller list without degrading the overall system performane. There also existsub-optimal detetors suh as SISO Minimum Mean-Square Error (MMSE) detetors orSerial/Parallel Interferene Canellation (SIC/PIC) detetors developed in multi-user de-tetion theory (see [28℄ and referenes therein).As for the hannel deoders, there exist hard output deoders and soft output deoders.For algebrai odes, there only exist hard output deoders [29℄ [30℄. For onvolutionalodes, the most famous hard output deoder is the �Viterbi algorithm� [31℄ (also knownas Maximum-Likelihood Sequene Estimator (MLSE)), that is optimal in the ML sense.The �rst soft-output deoding algorithm was proposed bak in the 1950s [32℄. In 1963,Gallager proposed what is known as the �sum-produt algorithm� (or also �belief prop-agation�) for the iterative deoding of LDPC odes. Later, in the 1970s, the �forward-bakward algorithm� (or BCJR, following the initials of the authors) was proposed as aSISO trellis deoder that gives the APP on information bits. Due to its additional om-plexity and to its sub-optimality odeword-wise, this algorithm did not replae the Viterbialgorithm until the invention of turbo odes, where the exhange of soft information was



2.3. Bit-interleaved oded modulation (BICM) with iterative deoding19mandatory (see hapter 5). In the late 1980s, the �soft-output Viterbi algorithm� wasproposed in [33℄ as a Viterbi algorithm that gives soft information on oded bits, but thisalgorithm is sub-optimal ompared to the BCJR for iterative proessing. Throughout thisreport, the BCJR algorithm will be used for the deoding of error orreting odes, dueto its optimality in generating soft information on messages.As mentioned previously, the optimum deoding of a ST-BICM is to ompute a ML de-oding algorithm over the global ode. This means that the separation between detetionand deoding is largely sub-optimal; an exhaustive ML searh of the transmitted vetorat the detetor level an provide information that an mislead the deoder in hoosingthe probable odeword. For this reason, in a way to approah the optimality of the globalML detetion, we will use an iterative detetion and deoding reeiver throughout thismanusript.Fig. 2.4 shows the general struture of an iterative reeiver suited for fading hannels.The two major bloks represent the SISO detetor and the SISO deoder, that are sep-arated by interleaving bloks (the blok Π−1 is a de-interleaver). The iterative proessonsists of exhanging soft information between the two bloks.
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Figure 2.4: ST-BICM iterative reeiver.The SISO detetor reeives a omplex vetor y ∈ CNr given by:
y = zSH + w = xH + w (2.16)where z ∈ CNt is the vetor of QAM symbols, S is a Nt×Nt spae-time preoder, H is theomplex hannel matrix, and w is a irularly symmetri zero-mean omplex Gaussiannoise vetor with variane N0. For a MIMO system with nr reeive antennas, Nr = s.nr,while for a ooperative system with β single-antenna relays, Nr = β + 1. In addition,

Nt = s.nt for a MIMO system with nt transmit antennas, and Nt = β + 1 for a o-operative system, all employing 2m − QAM modulations. The detetor �rst omputesthe hannel likelihoods p (y/x) over CNr , then it generates the extrinsi probabilities onoded bits ξ (ci) based on the hannel likelihoods and the a priori probabilities π (ci) fedfrom the SISO deoder. At the �rst iteration, all the a priori probabilities are unbiased.Throughout the iterative proess, the exhange of probabilities on oded bits between the



20 2. Generalitiestwo bloks should give more reliable soft information on the information bits. An idealonvergene of the proess would lead to near-ML performane.In the following we will desribe the optimal APP detetor based on a marginalizationover an exhaustive list. Note that omplexity redution for suh detetors was proposedin [27℄. By de�nition, the APP of a oded bit ci is the probability to detet ci when y isreeived:
APP (ci) = p(ci/y) =

p(y/ci)p(ci)

p(y)
i = 1, ..., mNt (2.17)where Nt = s.nt for a MIMO system with nt transmit antennas, and Nt = β + 1 fora ooperative system, all employing 2m − QAM modulations. In this expression of theAPP on oded bits at the detetor, it is obvious that the probability on oded bits p(ci) isnothing but the a priori probability fed from the SISO deoder, thus p(ci) = π(ci). Nowthe onditional probability density funtion p(y/ci)p(ci) is obtained by the marginalizationof the joint probability density funtion of the hannel likelihood and the oded bits asfollows:

p(y/ci) =
∑

j 6=i, j≤mNt

p(y, cj/ci) (2.18)
=

∑

j 6=i, j≤mNt

p(y/cj)
∏

u 6=i

π(cu) (2.19)Here we suppose that the oded bits transmitted during the same time period are in-dependent. Now as the noise is AWGN and by supposing that the reeive antennas areindependent we an write:
p(y/c1, ..., cmNt

) =
1

2πN0
e−‖y−xH‖2/2N0 (2.20)Now in an iterative proess in general, a blok (i.e. a detetor or a deoder) should notgive information on a bit to the other blok that is known to this blok. The APP ona oded bit omputed by the detetor an be written as the produt of two independentprobabilities:

APP (ci) = ξ(ci)π(ci) (2.21)As π(ci) is omputed by the SISO deoder, giving bak APP (ci) to the SISO deoderis not appropriate. For this reason, the extrinsi probability ξ(ci) is given to the SISOdeoder. Now let us de�ne c1, ..., ci, ..., cmNt
∈ Ω(ci) as the set of the mNt bits in y havingthe ith bit equal to ci, we an write the following normalized expression for the extrinsiprobabilities [18℄:

ξ(ci) =
p(y/ci = 1)

p(y/ci = 0) + p(y/ci = 1)
(2.22)

=

∑
x′∈Ω(ci=1)

[(
e−‖y−x

′

H‖2/2N0

)∏
u 6=i π(cu)

]

∑
x∈Ω(ci=1)

[
(e−‖y−xH‖2/2N0)

∏
u 6=i π(cu)

] (2.23)



2.4. Bounds on diversity for oded systems on non-ergodi hannels 21Note that, lukily enough, the expression for p(y) from (2.17) is anelled through thenormalization. Indeed, the omputation of this quantity that depends on the transmittedsignal and the noise is tedious.2.4 Bounds on diversity for oded systems on non-ergodihannelsOn a single-antenna ergodi fading hannel, a frame sees di�erent hannel realizations ateah time epoh. This gives a Nakagami distribution of high order (represented by thesum of the ‖hj‖2) at the output of the detetor and thus gives a high order of diversity.The diversity order that an be ahieved by a ST-BICM on suh hannels is thus mainlylimited by the minimum Hamming distane dmin of the hannel ode. Over blok-fadinghannels with a limited number of states, the situation is di�erent. In the sequel, we willall BO-hannel the binary-oriented hannel with input ci and output ξ(ci) as observedby the hannel enoder and the hannel deoder.De�nition 1 Under the genie ondition (i.e. perfet a priori information) in the BO-hannel, the number of independent binary-input non-ergodi fading sub-hannels is de-noted by Dst and alled the state diversity.As an example, in the single-input single-output blok-fading hannel where a odewordspans nc hannel realizations, we have that Dst = nc. Now let ωH(c) denote the Hammingweight of a odeword c of length Lc generated by a linear binary ode. We write ωH(c) =∑Dst

i=1 ωi, where ωi is the partial Hamming weight transmitted on the binary-input sub-hannel i within the BO-hannel. The state diversity dst(c) ahieved by the odeword c isthe number of non-zero partial weights. For a given transmitter struture, the ahievablestate diversity is dst = minc 6=0 dst(c). Now suppose that eah Lc/Dst bits are transmittedover one hannel state. By grouping all the bits transmitted over one hannel state intoone symbol, we get a non-binary ode of length Ns = Dst built on an alphabet of size
2Lc/Dst . The Singleton bound on the Hamming distane of the non-binary ode (Ks, Ns)is thus given by:

dst ≤ Ns −Ks + 1 = Ns −Ns.Rc + 1 (2.24)Finally, state diversity is upper-bounded by [34℄[35℄
dst ≤ ⌊Dst(1− Rc) + 1⌋ ≤ Dst (2.25)Note that the maximal diversity given by the outage limit under a �nite size QAM al-phabet also ahieves the above Singleton bound [10℄. We an notie from (2.25) that fulldiversity is attained only if Rc ≤ 1/Dst. As Dst grows to in�nity (i.e. tends to an ergodifading hannel), the diversity order of a oded system is limited by ωH(c).



22 2. Generalities2.5 ConlusionsWe disussed the outage probability for blok-fading hannels, that represents the funda-mental lower-bound on the performane of oded modulations for long enough odewordson this type of hannels. We then presented our system model, that will be used through-out this manusript to design shemes that approah the outage probability limit. We�nally explained the bounds on the diversity order of a binary ode over blok-fadinghannels, bound that will be elaborated further to �t to spei� types of blok-fadinghannels, namely the multiple-input multiple-output (MIMO) hannel and amplify-and-forward ooperative fading hannel.
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Chapter 3Coded modulations for the multiple-antenna hannel
3.1 IntrodutionSine the late nineties, employing multiple-antennas on a ommuniating terminal hasbeen of great interest as a result of the dramati inrease in apaity these systems anprovide [5℄[6℄. Moreover, for blok-fading hannels, multiple-antennas are a mean to pro-vide spatial diversity that allows to ombat the �utuations of the quality of the hannel.Sine then, researhers in the wireless ommuniation ommunity studied and designede�ient shemes for suh systems that allow for maximal diversity orders and high per-formane. With the exeption of few works that will be mentioned in this hapter, mostdesigns only onsidered the protetion of onstellation symbols under ML deoding, with-out taking into aount the presene of an error orreting ode. In this hapter, we willpropose oded modulation shemes for the multiple-antenna hannel that perform lose tohannel limits. We will start by a state-of-the-art of oding shemes for the MIMO han-nel in setion 3.2. We will then show the frame error rate of unoded spae-time rotationsas a funtion of the frame length (that onstitutes the motivation behind our work), thegeneral system model, and the bounds on the diversity order ahieved by multiple-antennasystems. Next we will disuss our three proposed shemes; the �rst one onsists of de-signing spae-time preoders that minimize the disrete-input outage probability (setion3.6), the seond onsists of the extension of the Alamouti sheme to a system with nt = 4transmit antennas (setion 3.7), and the third onsiders ode multiplexer design for turboodes (setion 3.8).3.2 A brief historial noteAfter the pioneering works in [5℄[6℄ on multiple-antenna hannels, the author in [36℄ pro-posed the Bell-Labs Layered Spae Time odes (BLAST), that demultiplex the symbol



24 3. Coded modulations for the multiple-antenna hannelstream over nt transmit antennas, while the reeiver reovers the transmitted symbolsthrough nr reeive antennas. This sheme was apable of ahieving high data ratesthrough spatial multiplexing, but it was not apable of reovering the diversity providedby the transmit antennas as no �smart� proessing was performed at the transmitter level.For that reason, the authors in [26℄[37℄ proposed design riteria for �spae-time odes�, ina goal to make bene�t from the transmit diversity at the reeiver. These riteria onsistedof minimizing the pairwise error probability of a pair of spae-time odewords by maxi-mizing both the determinant and the rank of the odeword matrix. The odes proposedat �rst were onstruted following orthogonal designs, from the famous Alamouti odefor nt = 2 [25℄ to the generalization for any number of transmit antennas in [26℄. In thesame paper [26℄, the authors proposed the �spae-time trellis odes�; these odes followthe onept of onvolutional odes as they are enoded via a trellis. They have bettererror rate performane than orthogonal spae-time blok odes, but they require a viterbideoder thus an inrease in deoding omplexity. The problem with these odes is thatthey severely degrade the information rate by introduing redundany, and this degra-dation is proportional to the number of transmit antennas. Indeed, for an orthogonalomplex spae-time blok ode employing nt antennas, the maximal ahievable rate is:
Rp =

1 + log2 nt

2. log2 nt
(3.1)As a nresult of this limitation of orthogonal designs, the use of algebrai tools to buildspae-time rotations that attain full diversity and full spatial multiplexing was onsid-ered. Indeed, preoding signals for fading hannels, whih is well-known in single antennatransmissions, has been redisovered for multiple-antenna hannels. In fat, Battail wasthe �rst to suggest rotations to ombat hannel �utuations in [38℄. The pioneering workon multi-dimensional rotated modulations ahieved in the nineties, suh as [39℄[40℄[41℄,opened the way for the study of multi-dimensional rotations (i.e. linear unitary preoders)in MIMO hannels. Rotations in single antenna systems have been designed by lassialalgebrai riteria, exept for orthogonal transforms proposed by Rainish whih are basedon the minimization of the ut-o� rate [42℄. Also, it has been shown in [43℄ that ran-dom rotations perform as good as algebrai rotations in a high-diversity high-dimensionalenvironment. In [44℄ [45℄ [46℄ among others, the authors proposed then algebrai onstru-tions of spae-time odes for unoded multiple-antenna systems, and they outperformedorthogonal designs as they were full-rate, i.e. one symbol is sent per transmit antenna persymbol time. However, new problems have arisen with these designs, as the determinantof the odeword matrix vanishes with an inrease in the onstellation size. The rae tothe optimal spae-time ode for unoded systems was ended by the works in [47℄ [48℄[49℄ for nt = 2 and by [50℄ for nt = 3, 4, 6. Indeed, these works provide spae-time odesthat have non-vanishing determinants, thus they yield optimal performane with unodedsystems under maximum-likelihood detetion. As an example, the Golden ode [47℄ is an



3.2. A brief historial note 25algebrai preoder optimized for nt = nr = 2, its preoding matrix is:
SGC =




0.52e−j0.55 0 0 0.85e+j1.01

0.85e−j0.55 0 0 0.52e−j2.12

0 0.85e+j2.58 0.52e−j0.55 0

0 0.52e−j0.55 0.85e−j0.55 0


 (3.2)As an alternative to the design riteria proposed in [26℄[37℄, linear dispersion (LD) odes[51℄ were designed for multiple antenna hannels by a searh that maximizes the ergodiapaity of the hannel under a Gaussian hannel input. Suh a design is not neessarilysuitable for a non-ergodi hannel with a �nite number of states, as these hannels areinformation unstable [7℄. Also, the type of input alphabet is not onsidered in the searhfor linear dispersion odes.The major drawbak of the aforementioned design riteria is that they do not take intoaount the onatenation with an error orreting ode in the system. Furthermore,spae-time signal modulations must be ombined to error-orreting odes in order toahieve optimal performane in the information theoretial sense.For this reason, the authors in [17℄[18℄ onsidered bit-interleaved oded modulations forspae-time oding (ST-BICM). They showed that quasi-optimal global ML performane ofthe oded modulation is ahieved by imposing spei� onstraints (alled genie onditions)on the struture of the spae-time preoder under ideal interleaving. In fat, in orderto guarantee maximum diversity order and maximum oding gain at the output of thedetetor, the design must guarantee two onditions:

• Orthogonal sub-rows in the linear preoding matrix.
• Equal norm sub-rows in the linear preoding matrix.If these onditions are met, perfet a priori probability feedbak will be assumed in theiterative joint detetion and deoding of ST-BICM, hene quasi-ML performane will beattained in pratie after some iterations at a high signal-to-noise ratio. As an example,the ylotomi rotation given below is an algebrai preoder satisfying the genie onditionsfor ST-BICM with nt = 2:

SCyclo = [φij ] =
1

2




1 1 ej6π/15 −ej6π/15

ej2π/15 jej2π/15 −ej8π/15 jej8π/15

ej4π/15 −ej4π/15 ej10π/15 ej10π/15

ej6π/15 −jej6π/15 −ej12π/15 −jej12π/15


 (3.3)where we have the following:

• Vetor (φi,1, φi,2) is orthogonal to vetor (φi,3, φi,4) on any row i, i = 1 . . . 4.
• Vetors (φi,1, φi,2) and (φi,3, φi,4) have equal norms.



26 3. Coded modulations for the multiple-antenna hannelNote that most of the algebrai spae-time rotations designed for unoded systemsguarantee at least one of the above onditions. The preoding matrix SGC of the Goldenode from (3.2) for instane guarantees the �rst genie ondition, and the seond onditionan be ompensated by an error orreting ode with high oding gain [18℄.In this hapter, we will propose spae-time preoders suited for the ST-BICM shemewhose design is mostly based on the onditions established in [17℄[18℄ for optimal perfor-mane. Before doing so, we will show the behavior of the frame error rate performane ofunoded spae-time rotations and reall the bounds on the diversity orders that an beattained by a ST-BICM on MIMO blok-fading hannels under ideal interleaving.3.3 Upper bound on the frame error rate for unodedspae-time signalingSuppose that we onatenate Nf spae-time preoded bloks forming a frame to be trans-mitted on a blok-fading hannel with a probability of error Pf (Nf). Suppose now thateah blok has diversity order d, so the probability of error Pc of eah independent odeis a funtion of the signal-to-noise ratio γ and a hi-square random variable y given by:
y =

2d∑

i=1

y2
i yi ∼ Nf

(
0, σ2

) (3.4)
p(y) =

yd−1e−y/2σ2

(d− 1)!
(3.5)Now let Pf (Nf) denote the frame error rate as a funtion of Nf :

Pf(Nf) =

∫ +∞

0

[
1− (1− Pc(γ, y))Nf

]
p(y)dy (3.6)We an write that [34℄:

Pf(Nf ) ≤ 1− (1− Pc(γ, y))Nf ≤ Nf .Pc(γ, y) (3.7)whih gives the upper bound on Pf (Nf) as Nf goes to in�nity as [18, Appendix A℄:
Pf(Nf ) ≤

∫ +∞

0

min [1, Nf .Pc(γ, y)] p(y)dy (3.8)
=

∫ α

0

p(y)dy +

∫ +∞

α

Nf .Pc(γ, y)p(y)dy (3.9)where α is given by:
Pc(γ, α) =

1

Nf
(3.10)



3.3. Upper bound on the frame error rate for unoded spae-timesignaling 27Now let us suppose that when γ goes to in�nity we get:
Pc(γ, y) ∼= e−yγ/2 (3.11)whih gives the value for α as:
α =

2

γ
log(

Nf

2
) (3.12)Now we an write the �rst term of (3.9) as:

Pf1(Nf) =

∫ α

0

p(y)dy = 1− e−α

d−1∑

k=0

αk

k!
= e−α

+∞∑

k=d

αk

k!
(3.13)Then we an write:

lim
γ→+∞,Nf→+∞,

Pf1(Nf) =

[
2
γ

log(
Nf

2
)
]d

d!
(3.14)Finally we an write the seond term of (3.9) as:

Pf2(Nf) =

∫ +∞

α

Nf .Pc(γ, y)p(y)dy (3.15)and:
lim

γ→+∞
Pf2(Nf ) = lim

γ→+∞

∫ +∞

α

N
ym−1e−(1+ γ

2
)y

(m− 1)!
dy (3.16)

= lim
γ→+∞

N
e−γ(1+ γ

2
)

(1 + γ
2
)d

d−1∑

k=0

[
γ(1 + γ

2
)
]k

k!
(3.17)

= lim
γ→+∞

1

(1 + γ
2
)d

(3.18)We an notie from equation (3.14) that the frame error rate of an unoded systemdegrades as log(Nf)
d where d is the diversity order. Hene, it is impossible to approahoutage probability with unoded systems, as a oding sheme that approahes outageprobability has to be insensitive (or slightly sensitive) to blok length. For the Alamoutisheme for instane, the frame error rate is upper-bounded by:

Pf (Nf) ≤
2 log2(

Nf

2
) + 4 log(

Nf

2
) + 4

γ2
(3.19)In a similar way, it was found in [52℄ that the frame error rate obtained by onate-nating Nf (8, 4, 4) blok odes is upper-bounded by:

Pf(Nf ) ≤
2 log2(2Nf) + 3/7 log(7Nf ) + 2 log(2Nf) + 24/7

(2Rcγ)2
(3.20)In addition, it was observed in [53℄ that the frame error rate of onvolutional odesvaries logarithmially with Nf on blok-fading hannels.



28 3. Coded modulations for the multiple-antenna hannel3.4 System model and notationsIn this hapter, we onsider the BICM sheme as presented in setion 2.3 onatenatedwith a spae-time preoder as shown in Fig. 2.3.The hannel model for a preoded ST-BICM is given by:
y = zSH + w = xH + w (3.21)where z ∈ Ω = (M-QAM)Nt and Nt = Rp ·s ·nt, the parameter s being the time spreadingof a preoding matrix S of dimensions Nt×Nt/Rp, where Rp is the rate of the preoder. Ingeneral, S is a full-rate unitary matrix (i.e. Rp = 1) whose struture is mathed to iterativedetetion as the lass of ylotomi rotations proposed in [17℄[18℄. The MIMO hannelmatrix has dimensions Nt/Rp × Nr/Rp, and assuming that the number of independenthannel realizations observed during one odeword transmission is nc, we get:

H = diag




1/Rp︷ ︸︸ ︷
H1, . . . ,H1︸ ︷︷ ︸

s.Rp/nc

, . . . ,Hnc
, . . . ,Hnc

, . . . ,H1, . . . ,H1︸ ︷︷ ︸
s.Rp/nc

, . . . ,Hnc
, . . . ,Hnc


 (3.22)the additive white Gaussian noise vetor w of dimension Nr/Rp is assumed to be irularlysymmetri with zero mean and mean N0. The Rayleigh fading hannel is quasi-stati fre-queny non-seletive, i.e. the whole transmitted frame undergoes one hannel realization.The hannel oe�ients are supposed to be perfetly known (perfet CSI) to the reeiver,but not to the transmitter. We make the assumption of perfet hannel estimation andperfet synhronization. Digital transmission is made as follows: uniformly distributedinformation bits are fed to a binary onvolutional enoder C. Coded bits {ci} are theninterleaved through Π, Gray mapped into QAM symbols, preoded through S and trans-mitted on the MIMO hannel given by (3.22). The oherent MIMO detetor omputesan extrinsi information ξ(ci) based on the knowledge of H, the reeived vetor y, andindependent a priori information π(cj) for all oded bits. The oding rate is Rc ∈ [0, 1].The transmitted information rate is equal to R = RpRcnt log2 M bits per hannel use,where M is the ardinality of the bi-dimensional QAM onstellation. An interleaver Πenables iterative probabilisti MIMO detetion [54℄[55℄ of the binary-oriented hannel.3.5 Diversity bounds for oded multiple-antenna sys-temsIn ST-BICM, there exists a strong interation between the error orreting ode withinterleaving and the linear preoder, both in terms of diversity and oding gain maxi-mization [18℄. Complexity an be ontrolled by the hoie of a spae-time rotation S withminimal time spreading fator s that guarantees full diversity [56℄. In other terms, thelowest omplexity solution would be to �rst let the hannel deoder reover the highest



3.5. Diversity bounds for oded multiple-antenna systems 29amount of diversity possible, then the detetor reovers the remaining diversity throughtime spreading. For a MIMO hannel, the hannel diversity is de�ned as Dch = ntncnr,whih is equal to the intrinsi diversity order of the physial hannel. For a given transmit-ter struture, the ahievable hannel diversity is dch = limSNR→+∞− log(Pe)/ log(SNR),where SNR is the signal-to-noise ratio and Pe is the error probability.When S is the identity matrix, the ST-BICM diversity order is upper-bounded by [35℄:
dch ≤ min (nr ⌊ntnc(1−Rc) + 1⌋ , Dch) (3.23)With a vanishing oding rate, i.e. Rc → 0, it is possible to attain the overall systemdiversity order nrncnt produed by the reeive antennas, the transmit antennas and thedistint hannel states. Unfortunately, this is unaeptable due to the vanishing trans-mitted information rate. Preoding is one means to ahieve maximum diversity with anon-vanishing oding rate. Under linear preoding that spreads QAM symbols over stime periods, the Singleton bound beomes [56℄:

dch ≤ min
(
snr

⌊
⌊ntnc

s
⌋(1− Rc) + 1

⌋
, Dch

) (3.24)Now if s = nt.nc, from the above inequality, we observe that preoding may ahievemaximal diversity ntnc without the use of error-orreting odes. Unfortunately, near-outage performane is impossible in this ase due to the weak oding gain of all kinds ofspae-time preoders, as was disussed in setion 3.3. The near-outage performane ofST-BICM is a judiious trade-o� between error-ontrol oding and linear QAM preoding.The genie onditions are optimal, in terms of ML performane, when all diversity givenby the transmit antennas is olleted at the detetor (i.e. s = nt). A supplementaryondition (that will be disussed later) alled �Dispersive Nuleo Algebrai� (DNA) hasbeen proposed in [18℄ to keep optimality when s < nt while having the genie onditionson sub-groups of transmit antennas.With a judiious hoie of an error-orreting ode and a linear preoder, maximumdiversity is easily attained (dch = Dch). In general, a Nakagami distribution of order
Dch/Dst is assoiated to eah binary-input sub-hannel embedded within the BO-hannel.Reall that Dst is the state diversity seen by the binary ode. To illustrate the abovede�nitions, we list the following examples:
• For nt = 2, nr = 1, Dch = 2, and without rotation (s = 1). We get Dst = 2.
• For nt = 2, nr = 2, Dch = 4. Without rotation (s = 1), we have Dst = 2. With aylotomi rotation (s = 2), we get Dst = 1.
• For nt = 4, nr = 2, Dch = 8. Without rotation (s = 1), we have Dst = 4. With aylotomi DNA rotation (s = 2), we get Dst = 2.



30 3. Coded modulations for the multiple-antenna hannel3.6 Spae-time preoders based on information outageminimization3.6.1 IntrodutionAt that stage, in the existing works, the authors ahieved optimal (quasi-ML) performanewith a spae-time preoded BICM under iterative detetion and deoding. The genieonditions ensure that a priori information fed bak from the deoder beomes perfetafter a ertain number of iterations. However, in some pratial reeivers, an iterativealgorithm might not be possible due to resoure limitations. The high data rates and thehigh proessing speed required in a ommuniation system an put strit onstraints on thenumber of iterations. For this reason, we will present full-rate spae-time preoders thatlead the ST-BICM to perform well sine the �rst iteration. Hene, we propose a simpleinformation theoretial design of multi-dimensional rotations that take into aount theinteration between hannel oding and symbol spae-time spreading.3.6.2 Linear preoding designsFor a �xed rotation S and nc �xed MIMO hannel matries Hi, i = 1 . . . nc, de�ned bythe nc fading bloks, let ISH = I(z;y) denote the average mutual information of theequivalent hannel with QAM input z and omplex output y as in (3.21). The expressionof ISH is a slight modi�ation of (2.14) that gives:
ISH = s.m.nt −

1

nc

nc∑

i=1

Ez,y|SHi

[
log2

(∑
z
′ p(y|z′

,SHi)

p(y|z,SHi)

)] (3.25)where Ez,y|SHi
is the onditional mathematial expetation over z and y. The hannellikelihood is written in its lassial form

p(y|z,SH) ∝ exp

(
−‖y − zSH‖2

2σ2

) (3.26)Expression (3.25) assumes that the preoder S does spae-time spreading within thesame fading blok Hi. Its main role is to ollet transmit diversity. Time diversity nc isolleted by the onvolutional ode whereas reeive diversity is naturally olleted by thedetetor. The information rate transmitted by the spae-time BICM is R = s.m.nt.Rcbits per s time periods (with Rp = 1 for full-rate preoders). An outage ours if theinstantaneous apaity, i.e. ISH in our ase, is less than R (see setion 2.2). The outageprobability assoiated to the rotation S at a given signal-to-noise ratio is
Pout(S) = P (ISH < s.m.nt.Rc) (3.27)
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SIOM within the ensemble ℵ of random unitary matries suh that
SIOM = arg min

S∈ℵ
Pout(S) (3.28)As an example, hoosing the best rotation within an ensemble ℵ limited to 2000 matriesyields the matrix written below, for QPSK alphabet with nt = s = 2 and oding rate

Rc = 1/2

SIOM =




0.57e+j1.71 0.64e+j1.55 0.14e−j1.89 0.49e+j1.22

0.34e−j0.94 0.51e+j2.82 0.57e+j1.26 0.54e+j0.27

0.59e−j1.38 0.04e−j0.04 0.61e−j1.46 0.52e+j1.25

0.46e−j0.84 0.57e+j1.74 0.53e+j3.05 0.43e−j2.66


By minimizing the disrete-input outage probability, the random rotation makes the dis-tribution of the input vetor x = zS to the hannel look like a Gaussian distribution. Fig.3.2 shows the distribution of the vetor zSIOM for a BPSK modulation, the bell shapeof the urve is �agrant. The problem with the matrix SIOM is that it does not satisfythe genie onditions. Although it boosts the performane after a �one-shot� detetion anddeoding proess, it does not guarantee optimal onvergene of the iterative proess. Tomake our design suited for both �one-shot� detetion and iterative deoding, a smallerset ℵG of random unitary matries is obtained by adding to ℵ the �rst genie onstraint,i.e. orthogonal sub-rows in S. This ondition is muh more important than the seondgenie onstraint (i.e. equal-norm sub-rows) as it gives independent extrinsi probabilitiesat the output of the SISO detetor. This seond design, alled G-IOM, selets a matrix
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SG−IOM satisfying

SG−IOM = arg min
S∈ℵG

Pout(S) (3.29)As an example, hoosing the best rotation within an ensemble ℵG limited to 2000 matriesyields the matrix written below, for QPSK alphabet with nt = s = 2 and oding rate
Rc = 1/2

SG−IOM =




0.88e−j0.30 0 0 0.48e−j0.55

0.48e−j0.33 0 0 0.88e+j2.57

0 0.47e−j2.12 0.88e+j2.85 0

0 0.88e+j2.96 0.47e−j1.49 0
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3.6. Spae-time preoders based on information outage minimization 33DNA preoder with s = 2 as it ensures maximal diversity through (3.24). We thus designa DNA-IOM preoder that minimizes and satis�es DNA onstraints [18℄; the �rst step isto pik a 4× 4 rotation from the ensemble ℵDNA of random rotation, and the seond stepis to plae the orthogonal nuleotides inside an 8× 8 matrix and separate them with nullnuleotides. We obtain the following rotation for nt = 4 and s = 2 (see proposition (2),page 54, in [18℄):
SDNA =




φ11 φ12 0 0 φ13 φ14 0 0

0 0 φ11 φ12 0 0 φ13 φ14

φ21 φ22 0 0 φ23 φ24 0 0

0 0 φ21 φ22 0 0 φ23 φ24

φ31 φ32 0 0 φ33 φ34 0 0

0 0 φ31 φ32 0 0 φ33 φ34

φ41 φ42 0 0 φ43 φ44 0 0

0 0 φ41 φ42 0 0 φ43 φ44




(3.30)
with:

ΦDNA−IOM =




0.73e−j0.81 0.22e+j4.62 0.15e+j0.60 0.61e+j2.59

0.21e+j3.99 0.56e+j4.44 0.62e+j0.25 0.50e−j1.29

0.57e+j0.79 0.13e−j1.28 0.57e−j0.63 0.57e+j0.90

0.29e+j1.01 0.78e+j3.49 0.51e+j2.27 0.20e+j0.91


The DNA-IOM preoder is thus obtained by ombining SDNA with ΦDNA−IOM. Also,the DNA-ylotomi preoder is onstruted by ombining SDNA to ΦDNA−Cyclo = SCyclogiven previously in (3.3).Fig. 3.1 and 3.3 show the outage limit for di�erent type of preoders in terms of WordError Rate versus signal-to-noise ratio. The outage probability has been also evaluatedfor other system parameters. In �g. 3.1, the preoding matrix enhanes the oding gain ofthe disrete-input outage urve. In �g. 3.3, following the expression in (3.24), a preodingmatrix with s = 2 is mandatory to reover the diversity at the reeiver, as illustrated bythe disrete-input outage urves of the unrotated ase (that does not ahieve diversity),and the rotated ase. All outage evaluations have been made by (3.25) and (4.13), withoutGaussian and analytial approximations when the hannel input is a Gaussian alphabetas in [57℄[11℄.3.6.3 Simulation resultsIn order to emphasize the diversity order reated by oding at the transmitter side, allomputer simulations have been onduted with the number of reeive antennas nr = 1.Fig. 3.4 and 3.5 illustrate the word error rate performane of a spae-time BICM for nt = 2transmit antennas, nc = 2 hannel states, s = 2 time period spreading and a oding rate

Rc = 1/2. Fig. 3.6 illustrates the ase with nt = 4 transmit antennas and a preoding



34 3. Coded modulations for the multiple-antenna hannelspread fator s = 2. At the �rst iteration, for nt = 2, IOM preoding slightly outperformsother rotations. After 10 detetion/deoding iterations, IOM is outperformed by G-IOMand other algebrai rotations. The slight di�erene in performane is still apparent for
nt = 4.
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Figure 3.6: BPSK modulation, nt = 4, s = nc = 2, nr = 1, rate 1/2 16-state (23, 35)onvolutional ode, interleaver size N = 2048 bits.3.7 Spae-time preoders based on the Alamouti sheme3.7.1 IntrodutionOne orthogonal design that highly aught the attention of the wireless ommuniationsommunity is the Alamouti ode [25℄ with Rp = 1/2 for nt = 2. This pragmati orthogonalsheme allows to onvert a 2×1 (nt×nr) antenna on�guration onto a 1×2 on�guration,by reating two independent parallel hannels. Many attempts have tried to generalizethe Alamouti sheme to systems with larger antenna on�gurations, among them theABBA ode [58℄, but in all ases the optimization was done by trading one parameter(diversity order, rate of the preoder Rp < 1/2...). In this setion, we present a ST-BICMdesign suited for a MIMO system with nt = 4, design that uses the Alamouti struture toseparate bloks of spae-time rotated symbols. In our ase, the rate of the preoder is still
Rp = 1/2 even though we have more than two transmit antennas. However, the di�erenewith the nt = 2 ase is that interferene among bloks is introdued. For this reason, welook at the problem as if we had a Code-Division Multiple Aess (CDMA) system withtwo users (represented by the two bloks), and inter-blok interferene beomes similar tointer-user interferene in CDMA. There exists several methods to remove the inter-userinterferene in a CDMA system, and the most e�ient algorithms are those that usesoft information from a hannel deoder [28℄[59℄. In our ase, we hose to remove theinter-blok interferene using the parallel interferene anellation (PIC) algorithm, thatproves to be optimal in omputer simulations in our ontext. The performane of thissystem under quasi-stati fading and iterative detetion and deoding proved to be lose



36 3. Coded modulations for the multiple-antenna hannelto system limits. All these points will be lari�ed in the sequel.3.7.2 Matrix-Alamouti shemeIn a ST-BICM, the ardinality of the generated set of vetors is given by |Ω| = 2mNt , mbeing the number of bits per bi-dimensional QAM onstellation symbol. The ardinalityinreases exponentially with nt thus leading to a high deoding omplexity at the reeiver.If nt = 4, m = 2, and Rp · s = 2 for instane, |Ω| = 216 = 65536, whih is intratablefor pratial appliations. In the sequel, we investigate a non-linear spae-time preodingsheme that ombines the symbols in a matrix-Alamouti form [25℄. Let us �rst de�ne theoperators mat(.) and vec(.) : mat(.) transforms a vetor into a matrix by putting its lastsub-part beneath its �rst sub-part, while vec(.) performs exatly the inverse task. Let usalso de�ne the operator ‡ where:
u‡ = vec(U†) (3.31)where u is a omplex vetor and U is any omplex matrix. In the new model, x isrewritten as a 1× 16 row vetor:

x =
[

x1 x2 −x
‡
2 x

‡
1

] (3.32)where x1 = z1S and x2 = z2S are spae-time vetors in C4, obtained by multiplying aQAM symbol vetor zi ∈ (M-QAM)4 with a 4 × 4 spae-time rotation S. Many designriteria for nt = 2 antennas lead to di�erent lasses of rotations S as found in [17℄[44℄[47℄,or IOM and G-IOM rotations presented in setion 3.6. Although the rate of the preoderin (3.32) is Rp = 1
2
, it is apable of onverting the set of ardinality |Ω| = 2mNt onto asmaller set Ωc of ardinality |Ωc| = 2

mNt
2 , and this is due to the orthogonality inherent tothe Alamouti struture. In addition, the bound on the diversity of this sheme is exatlythat of a system with nt = 2, as it reates two �parallel� streams via x1 and x2 that havea diversity order of 2 × nr eah, independently from the oding rate Rc in (3.24). Witha onventional 4 × nr system, when Rc → 1, full spreading with s = 4 is mandatory toreover full hannel diversity, yielding an exponential inrease in detetion omplexity.With the sheme proposed in this setion, full spreading means s = 2. The purpose isthen to drastially redue the omplexity at the detetor while reovering maximum di-versity with high oding rates.By replaing x in (3.21) by its form in (3.32), we get a slightly di�erent hannel modelthan the one of (3.21) and (3.22) as follows:

[
y1 y2

]
=
[

x1 x2 −x
‡
2 x

‡
1

]



Hb1 0

Hb2 0

0 Hb1

0 Hb2




+
[

w1 w2

]

(3.33)



3.7. Spae-time preoders based on the Alamouti sheme 37where all vetors y1, y2, w1 and w2 are in C2nr , and:
Hb1 =

[
H1 0

0 H1

]
; Hb2 =

[
H2 0

0 H2

]

where H1 and H2 are 2 × nr hannel oe�ients matries. We an write the reeivedsignal vetors from (3.33) as follows:
y1 = x1Hb1 + x2Hb2 + w1 (3.34)
y2 = −x

‡
2Hb1 + x

‡
1Hb2 + w2 (3.35)The new expressions for y1 and y2 from (3.34) and (3.35) beome:

Y1 = mat(y1) = mat(x1)H1 + mat(x2)H2 + mat(w1)

= G1H1 + G2H2 + W1 (3.36)
Y2 = mat(y2) = mat

(
−x

‡
2

)
H1 + mat

(
x
‡
1

)
H2 + mat(w2)

= −G
†
2H1 + G

†
1H1 + W2 (3.37)where G1 and G1 are 2× 2 matries, and W1 and W2 are 2× nr matries.In order to reover the transmit diversity, the ombining sheme in [25℄ has to be per-formed on (3.36) and (3.37). However, as matrix multipliation is not ommutative, twoombining shemes an be implemented.First ombining sheme - FCSWe an write the ombined versions of G1 and G2 as follows:

Γ1 = H
†
1Y1 + Y

†
2H2

= H
†
1G1H1 + H

†
2G1H2 + H

†
1W1 + W

†
2H2 (3.38)

Γ2 = H
†
2Y1 −Y

†
2H1

= H
†
1G2H1 + H

†
2G2H2 + H

†
2W1 −W

†
2H1 (3.39)Although this ombining sheme introdues olored noise, it is apable of totally re-moving the inter-blok interferene. However, it gives an estimate of the signal as H

†
iGjHithat is not of the form of the mathed �lter (i.e. H

†
iHi), thus it does not reover all the



38 3. Coded modulations for the multiple-antenna hanneltransmit diversity. Indeed, for nr = 2 for instane, the equivalent hannel matrix afterombining is given by:
vec(H†

1G1H1 + H
†
2G1H2) ,

z1S




|h11|2 + |h31|2 h∗
12h11 + h∗

32h31 h∗
11h12 + h∗

31h32 |h12|2 + |h32|2
h∗

21h11 + h∗
41h31 h∗

22h11 + h∗
42h31 h∗

21h12 + h∗
41h32 h∗

22h12 + h∗
42h32

h∗
11h21 + h∗

31h41 h∗
12h21 + h∗

32h41 h∗
11h22 + h∗

31h42 h∗
12h22 + h∗

32h42

|h21|2 + |h41|2 h∗
22h21 + h∗

42h41 h∗
21h22 + h∗

41h42 |h22|2 + |h42|2




(3.40)
We observe from (3.40) that only 2 of the 4 symbols of z1S are multiplied by Nakagamidistributed random variables of order 4, thus the overall system diversity is limited to 4.The same reasoning applies to Γ2.Seond ombining sheme - SCSBy permuting the matrix produt of the �rst ombining sheme, we get other versions of
Γ1 and Γ2 denoted by Gc1 and Gc2 in the sequel:

Gc1 = Y1H
†
1 + H2Y

†
2

= G1H1H
†
1 + H

†
2H2G1 + G2H2H

†
1 −H2H

†
1G2 + W1H

†
1 + H2W

†
2 (3.41)

Gc2 = Y1H
†
2 −H1Y

†
2

= H1H
†
1G2 + G2H2H

†
2 + G1H1H

†
2 −H1H

†
2G1 + W1H

†
2 −H1W

†
2 (3.42)The �rst two terms of (3.41) and (3.42) are the desired signal estimates. The seondtwo terms are the interferene introdued by the ombining sheme, and the last two termsare the olored noise omponents. In this sheme we are able to reover the transmitdiversity via the �rst two terms of (3.41) and (3.42), as shown in the following equationfor nr = 2:

vec(G1H1H
†
1 + H2H

†
2G1) , z1SHS1

(3.43)where
HS1

=




A1 + A3 h∗
31h41 + h∗

32h42 h11h
∗
21 + h12h

∗
22 0

h31h
∗
41 + h32h

∗
42 A1 + A4 0 h11h

∗
21 + h12h

∗
22

h∗
11h21 + h∗

12h22 0 A2 + A3 h∗
31h41 + h∗

32h42

0 h∗
11h21 + h∗

12h22 h31h
∗
41 + h32h

∗
42 A2 + A4


 (3.44)and

A1 = |h11|2 + |h12|2, A2 = |h21|2 + |h22|2, A3 = |h31|2 + |h32|2, A4 = |h41|2 + |h42|2
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HS2

= H
†
S1

=




A1 + A3 h31h
∗
41 + h32h

∗
42 h∗

11h21 + h∗
12h22 0

h∗
31h41 + h∗

32h42 A1 + A4 0 h∗
11h21 + h∗

12h22

h11h
∗
21 + h12h

∗
22 0 A2 + A3 h31h

∗
41 + h32h

∗
42

0 h11h
∗
21 + h12h

∗
22 h∗

31h41 + h∗
32h42 A2 + A4


(3.45)As shown in (3.43), every symbol in z1S and z2S undergoes Nakagami distributed randomvariables of order 4, whih leads to an overall system diversity of 8.However, this ombining sheme introdues onsiderable interferene along with ol-ored noise. In an unoded system, this ombining sheme does not onverge as thereeived signal onstellation is not learly delimited within distint Voronoï regions, evenfor signi�antly high signal-to-noise ratios. This senario is similar to that of multi-userdetetion (MUD) in heavily loaded CDMA systems, where users introdue interferene toeah others. Hene, we an use detetion tehniques known for oded MUD-CDMA as in[28℄[59℄ and their referenes to get reliable estimates of the signals. Therefore, we hooseto map one interleaved odeword through z1, and another interleaved odeword using z2,as if we had two �virtual� users. This results in sending a frame that has the length oftwo odewords. The transmitter for the proposed system is shown in Fig. 3.7.
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Convolutional Code Interleaver

Interleaver

QAM Mapper

QAM Mapper

Precoder

Precoder

Space−Time

Matrix

Alamouti

MIMO

Channel

H

Space−Time

Noise

Information

Bits
Encoder

C1

C2

Π1

Π2

z1

z2

z1S

z2SFigure 3.7: Transmitter model for matrix-Alamouti enoded ST-BICM.In our ase, as onvolutional odes are employed, one an send a unique odewordinstead of two. However, we have to make sure that the oded bits that are mapped onto
z1 are far from the oded bits that are mapped onto z2 in the trellis of the ode, and thetwo parts of the ode should be interleaved separately. In this way we avoid introduinginter-blok interferene at the transmitter.3.7.3 Iterative joint detetion and deodingLet us write (3.41) and (3.42) as:

gc1 = vec(Gc1) = z1SHS1
+ z2SHI1 + vec(W1H

†
1 + H2W

†
2) (3.46)

gc2 = vec(Gc2) = z2SHS2
+ z1SHI2 + vec(W1H

†
2 −H1W

†
2) (3.47)
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and HS2

are taken from (3.44) and (3.45). In addition, we have:
HI1 =




0 −h41h
∗
11 − h42h

∗
22 h31h

∗
21 + h32h

∗
22 0

−h31h
∗
21 − h32h

∗
22 B 0 h31h

∗
21 + h32h

∗
22

h41h
∗
11 + h42h

∗
22 0 −B −h41h

∗
11 − h42h

∗
22

0 h41h
∗
11 + h42h

∗
22 −h31h

∗
21 − h32h

∗
22 0


where

B = h31h
∗
11 + h32h

∗
12 − h41h

∗
21 − h42h

∗
22and HI2 = H

†
I1
by symmetry.Now let N denote the number of M-QAM symbols in one onvolutional odeword (i.e.there are 2N M-QAM symbols in a frame for both onvolutional odes). In order to getreliable estimates of the ombined signals, one has to e�iently remove interferene from(3.46) and (3.47). This gives us:
g̃c1 = gc1 − z̃2SHI1

= z1SHS1
+ (z2 − z̃2)SHI1 + vec(W1H

†
1 + H2W

†
2) (3.48)

g̃c2 = gc2 − z̃1SHI2

= z2SHS2
+ (z1 − z̃1)SHI2 + vec(W2H

†
2 −H1W

†
1) (3.49)The �rst term in (3.48) and (3.49) is the desired signal part, and the other two arethe residual interferene and olored noise terms. In this ase, the likelihoods of g̃c1 and

g̃c2 follow the multivariate Gaussian distribution as:
p (g̃c1 | z1,SHS1

) ∼ N (z1SHS1
,Σ1) ; p (g̃c2 | z2,SHS2

) ∼ N (z2SHS2
,Σ2)where

Σ1 = E

[
(g̃c1 − z1SHS1

)
†
(g̃c1 − z1SHS1

)
] (3.50)

Σ2 = E

[
(g̃c2 − z2SHS2

)
†
(g̃c2 − z2SHS2

)
] (3.51)Let us de�ne:

V1 (z1) = g̃c1 − z1SHS1
(3.52)

V2 (z2) = g̃c2 − z2SHS2
(3.53)After the interferene and olored noise ovariane matries Σi are omputed, the soft-input soft-output (SISO) detetor omputes the extrinsi probabilities ξi (cj) that the jthbit of odeword i is equal to 1, as given by the slight modi�ation of (2.23) as:
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ξ1 (cℓ) =

∑
z
′

1
∈Ωc(cℓ=1) exp

[
−V1

(
z

′

1

)
Σ−1

1 V1

(
z

′

1

)†]∏
r 6=ℓ π1 (cr)

∑
z1∈Ωc

exp
[
−V1 (z1)Σ

−1
1 V1 (z1)

†
]∏

r 6=ℓ π1 (cr)
(3.54)and

ξ2 (cℓ) =

∑
z
′

2
∈Ωc(cℓ=1) exp

[
−V2

(
z

′

2

)
Σ−1

2 V2

(
z

′

2

)†]∏
r 6=ℓ π2 (cr)

∑
z2∈Ωc

exp
[
−V2 (z2)Σ

−1
2 V2 (z2)

†
]∏

r 6=ℓ π2 (cr)
(3.55)Where π1 (cr) and π2 (cr) are a priori probabilities generated by soft-input soft-output(SISO) deoders for the 1st and the 2nd onvolutional odes respetively. As shown inFig. 3.8 below, the extrinsi probabilities are then fed bak from the SISO detetorsto their respetive SISO deoders that use the forward-bakward (BCJR) algorithm togive a posteriori probabilities of the oded bits. In addition, the deoders give bak apriori π1 (cr) and π2 (cr) probabilities to their respetive SISO detetors as in the lassialreeiver, and also to the detetors of di�erent indies in order to ompute the ovarianematries Σi and better remove the interferene at eah iteration. Unlike the onventionalreeiver where the extrinsi probabilities generated by the detetor are omputed one atthe �rst iteration using (2.23), the extrinsi probabilities (3.54) and (3.55) in this ase areomputed at eah iteration as the Σi matries hange. However, in most ases, this linearinrease in omplexity is negligible ompared to the exponential inrease in omplexityintrodued by a signal set of higher ardinality. Let us take the following example: supposewe have a onventional ST-BICM with Rc = 3/4 and nt = 4 transmit antennas. In orderto reover maximal diversity, we need to use a spae-time preoder with s = 4. Thisgives a ardinality of the spae-time signal vetor as |Ω| = 2mNt = 216m, over whih theexhaustive searh to ompute the extrinsi information in (2.23) is performed. However,with the matrix-Alamouti sheme, s = 2 is su�ient to reover the diversity. This gives

|Ωc| = 28m, using a higher order M-QAM onstellation to ompensate Rp = 1/2. Soeven if we need t iterations for the reeiver to onverge, we still have a drasti omplexityredution, as 2× t× 28m ≪ 216m.In omputer simulations presented in the next setion, vetors z1 and z2 in (3.50) −
(3.53) were replaed by their soft estimates. Thus, we have:

Σ1 ⋍
1

N

N
4∑

i=1

[
(g̃c1i − z1iSHS1

)
†
(g̃c1i − z1iSHS1

)
] (3.56)

Σ2 ⋍
1

N

N
4∑

i=1

[
(g̃c2i − z2iSHS2

)
†
(g̃c2i − z2iSHS2

)
] (3.57)
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Figure 3.9: Performane for a frame size of 4096 oded bits ( 2 × 2048 for matrix-Alamouti ), Rc = 1/2, nt = 4 and nr = 2 antennas.3.7.4 Simulation resultsIn this setion, frame error probabilities are illustrated versus signal-to-noise ratios andframe size for nt = 4 and nr = 2. Comparisons are done with respet to disrete inputand Gaussian input outage probabilities. The onvolutional ode is the half-rate 16-state (23, 35)8 non-reursive non-systemati ode (NRNSC) and the interleavers are theoptimized interleavers from [18℄. Fig. 3.9 shows the frame error rate performane fordi�erent a frame sizes of 4096 oded bits. The matrix-Alamouti sheme is ompared to
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nr = 2 antennas.the DNA-ylotomi rotations and the D-STTD sheme �rst proposed in [60℄ and inluded



44 3. Coded modulations for the multiple-antenna hannelin the IEEE802.11n standard, all at a oding rate Rc = 1/2. As DNA-ylotomi rotationsare full-rate (i.e. Rp = 1), it was simulated with BPSK modulation in order to preservethe same spetral e�ieny with the other two shemes that are simulated with QPSKmodulations. In fat, with half-rate oding, the matrix S of matrix-Alamouti sheme doesnot need to spread the symbol vetors, as diversity an be ensured with s = 1. In thisase, our sheme performs equally with the two others. However, by setting S = SCyclofrom (3.3), we observe a gain with respet to the other shemes. This for sure is at the ostof a slight additional omplexity, as s = 2 in this ase. Fig. 3.10 shows the performaneAlamouti sheme with Rc = 2/3, that is the half-rate 16-state (23, 35)8 NRNSC ode withpunturing, with BPSK modulation. When S = SCyclo, the oded modulation ahievesfull diversity with s = 2 as explained in setion 3.7.2. With this oding rate, the D-STTD sheme does not ensure maximum diversity, and the standard ST-BICM requiresa spreading fator of s = 4 as de�ned in 3.24 to ahieve maximum diversity. Finally, Fig.3.11 ompares the performane of the matrix-Alamouti sheme with the DNA-ylotomisheme for di�erent frame sizes at a signal-to-noise ratio of 9dB. We an see that oursheme is more robust to an inrease in the frame size than the onventional sheme.3.8 Outage-approahing turbo odes for the multiple-antenna hannels3.8.1 IntrodutionAs shown in setion 3.3, the frame error rate of unoded spae-time signaling is upper-bounded by a quantity that varies as logd(n), where d is the diversity order. In order toapproah the outage probability limit, the frame error rate of any given oding shemeshould be independent of the blok length [10, 16℄. Therefore, suh spae-time oding teh-niques will fail in approahing the outage apaity limit of the quasi-stati MIMO hannel.Algebrai spae-time odes desribed in setion 3.2 and any onvolutionally/algebraiallyoded STBC also fail in approahing the outage limit. Hene, our objetives are
• Design a spae-time ode based on state multiplexing [53℄ and turbo enoding[61℄[62℄ in order to ahieve near outage limit performane.
• Control the detetion/deoding omplexity and propose relatively low omplexityshemes.
• Make the word error probability insensitive to the blok length. This is the inter-leaving gain of turbo odes translated to the �eld of non-ergodi fading hannels asdisovered in [16℄[10℄.



3.8. Outage-approahing turbo odes for the multiple-antennahannels 453.8.2 Code multiplexing over hannel statesThe physial hannel we onsider is a quasi-stati frequeny non-seletive MIMO hannelwith nt transmit antennas and nr reeive antennas. On a Gaussian hannel, the pairwiseerror probability supposing the zero odeword is emitted by a linear enoder is given by:
P (0→ c) = Q

(√
2RcEb

N0
ωH(c)

) (3.58)where ωH(c) is the Hamming weight of the odeword and Eb/N0 is the signal-to-noiseratio. Now, on a Rayleigh fading hannel with Dst states, the onditional pairwise errorprobability beomes:
P (0→ c) = Q




√√√√2RcEb

N0

Dst∑

i=0

ωi(c)|hi|2

 (3.59)where ωi(c) represents the partial weight of the odeword c undergoing fading hi, and∑

i ωi(c) = ωH(c). After performing a mathematial expetation over the hannel states,we an upper-bound the pairwise error probability as:
P (0→ c) ≤ 1

2

Dst∏

i=1

1

1 + ωi(c)
REb

N0

(3.60)Hene the diversity order d(c) that an be ahieved by the ode is given by the numberof non-zero partial weights ωi(c). In addition, for high signal-to-noise ratios, the pairwiseerror probability behaves like:
P (0→ c) ∝ 1

∏Dst

i=1 ωi(c)
× 1

(Eb/N0)d(c)
(3.61)So our objetives are to �rst guarantee that ∀i, ωi(c) 6= 0, to attain maximum diversity,seond to maximize the produt ∏Dst

i=1 ωi(c) and hene the oding gain. For this purpose,the authors in [53℄ proposed the �ode multiplexer� de�ned as follows:De�nition 2 The multiplexer is an intelligent swith that distributes turbo oded bits siover the Dst parallel sub-hannels of the BO-hannel.Atually, the multiplexer should be alled �de-multiplexer� or equivalently �hannel inter-leaver�. We have hosen the word �multiplexer� in order to avoid any onfusion with theinterleaver denoted by Π used inside a turbo ode. Fig. 3.12 shows two important multi-plexing examples from [53℄ suite for a non-ergodi fading hannel with Dst = 2 states. Thetwo digits 1 and 2 represent the two states of the BO-hannel. The symbol X representsa puntured parity bit. Note that in this hapter we will only onsider half-rate odesmultiplexed over two-state non-ergodi hannels, but generalization to any rate odes onnon-ergodi hannels is straight-forward as long as Rc ≤ 1/Dst.
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s1 1 1 1 1 1 1
s2 2 X 2 X 2 X
s3 X 2 X 2 X 2H-π-diagonal Multiplexer
s1 1 2 1 2 1 2
s2 2 X 2 X 2 X

π−1(s3) X 1 X 1 X 1Figure 3.12: Horizontal (top) and h-π-diagonal (bottom) multiplexers for a rate 1/2parallel turbo ode.Proposition 1 Let C be a rate 1/2 parallel turbo ode transmitted on a 2-state hanneland built from RSC(g1(x), g2(x)). Under horizontal state multiplexing and for any inputweight ω, the number η of odewords in C with inomplete state diversity is
η(ω, dst < 2) = 0 ∀ ω ≥ 2Proof 1 For any non-zero turbo odeword, it is well-known that the Hamming weight of

s1 is ω ≥ ωmin = 2 [62℄. Also, the Hamming weight of both s2 and s3 must be positivedespite punturing. Hene, it is trivial that dst = 2 sine s1 is always transmitted on the�rst hannel state and (s2, s3) are transmitted on the seond hannel state.
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Figure 3.13: Trellis error events for input weight ω = 2. The two interleaving on�gura-tions are indiated. Diversity is guaranteed by full-span transitions.The reursive systemati onvolutional onstituent has onstraint length ν + 1. Itsfeedbak generator polynomial is g1(x) and its forward generator polynomial is g2(x).



3.8. Outage-approahing turbo odes for the multiple-antennahannels 47De�nition 3 A reursive systemati onvolutional ode is said to be a full-span onvolu-tional ode if the generators satisfy deg(gi(x)) = ν and gi(0) = 1, for i = 1, 2.Trellis transitions outgoing from the 0-state and those inoming to the 0-state will bealled full-span transitions, i.e. both bits are set to 1 on the transition label.Proposition 2 Let C be a rate 1/2 parallel turbo ode transmitted on a 2-state hanneland built from a full-span RSC(g1(x), g2(x)). Under h-π-diagonal state multiplexing andfor any input weight ω, the number η of odewords in C with inomplete state diversity is
η(ω, dst < 2) = 0 ∀ ω ≥ 2Proof 2 For ω = 2 and ω = 3: if a full-span transition is interleaved (via π) into a full-span transition, then state diversity is guaranteed. As shown in Fig. (3.13) and (3.15),one of the full-span transitions in RSC1 is onverted into a full-span transition in RSC2.For ω ≥ 4: Consider the ase where ω = 4. Exept for the unique interleaving on-�guration depited in Fig. (3.16), all turbo odewords exhibit dst = 2 due to full-spantransitions. Now, let χi(sj) ∈ {1, 2} denote the BO-hannel state over whih the binaryelement sj belonging to RSCi is transmitted. We distinguish two ases when a ritialon�guration is transmitted on the hannel.Case 1: error event in RSC1 starts at state 1, χ1(s1) = 1. Diversity is guaranteed byRSC1 beause χ1(s2) = 2.Case 2: error event in RSC1 starts at state 2, χ1(s1) = 2. Then, we distinguish twosub-ases:Case 2.1: Information bit s1 is set to 1 within the error event and hits state 1 yielding

χ1(s1) = 1. Hene, diversity is guaranteed by RSC1 without the help of RSC2.Case 2.2: Information bit s1 = 1 never hits state 1 in the trellis event of RSC1, χ1(s1) 6= 1.This situation ours beause equality is not satis�ed in (2.25) when Rc = 1/2 and Dst = 3,i.e. it is possible to reate RSC1 odewords that never hit state 1. Thanks to the strutureof the h-pi-diagonal multiplexer, at least one full-span transition in RSC2 has χ2(s3) = 1for χ1(s1) = 2.The same proof applies for ω > 4.Example with RSC(7, 5)8A ritial on�guration is a on�guration (or an event) in whih the diversity is notguaranteed by the �rst RSC alone, thus the reeiver relies on the parity bit of RSC 2to reover the diversity. Let us now give an example of ritial on�gurations for ω = 4as de�ned in the proof of prop. 2. When χ1(s1) = 1 and χ1(s2) = 2, the RSC trellis isrepresented by the transition matrix
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Figure 3.14: E�et of h-π-diagonal multiplexing on trellis events. Illustration for inputweight ω = 6 with and without de-interleaving of the seond parity bit.
A1 =




0 0 D1D2LW 0

D1D2LW 0 L 0

0 D1LW 0 D2L

0 D2L 0 D1LW


When χ1(s1) = 2 and χ1(s2) = X, the transition matrix is

A2 =




0 0 D2D3LW 0

D2D3LW 0 L 0

0 D2LW 0 D3L

0 D3L 0 D2LW


The omplete weight enumerator T (W, D, L) of simple error events is given by the topleft entry of the produt A1A2A1A2 . . . or A2A1A2A1 . . . depending on the position of theoutgoing transition. A ritial on�guration is given by a produt of type A2(A1A2)

ℓ foran event of length 2ℓ + 1. For ℓ = 1 . . . 3 no ritial on�gurations are found. For ℓ = 4,we have
T (W, D, L) = . . . + (2D1D

5
2D

4
3 + D8

2D
2
3)L

9W 4 + . . .Therefore, the shortest ritial event for ω = 4 has length L = 9. It inludes 4 informationbits with χ1(s1 = 1) = 2, 4 parity bits with χ1(s2 = 1) = 2, and 2 puntured bits with
χ1(s2 = 1) = X. In this ase, without a de-interleaver at the output of RSC 2, one annottrak the position of the parity bit s3 at the output, as shown in Fig. 3.14. Therefore, we
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Figure 3.15: Trellis error events for input weight ω = 3. The six interleaving on�gurationsare equivalent to two distint on�gurations.
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Figure 3.16: A ritial on�guration for full-span outgoing and inoming transitions.Input weight ω = 4.annot make sure that full diversity is attained. However, a de-interleaver at the outputof RSC 2 makes the oded bits of the turbo ode synhronized within the trellis of theRSC onstituents.At this point, based on the study of η, the reader sees no di�erene between h-π-diagonaland horizontal multiplexers. Indeed, propositions (1) and (2) state that both multiplexersahieve full state diversity. The error rate performane depends on the ahieved diversityand on the so-alled oding gain or produt distane de�ned by the produt ω1ω2 of partialHamming weights. Now, it should be lear that horizontal multiplexing shows a greatunbalane between ω1 and ω2. As an example, for input weight ω = 2, onsider RSC(7,5)error events of length L = 4+3i and total Hamming weight wH = 6+2i, i = 0 . . . (N−4)/3.For horizontal multiplexing, ω1 = 2 and ω2 = 4 + 2i. Therefore, its oding gain behavesas O(N). For h-π-diagonal multiplexing, ω1 = ω2 = 3 + i. Hene, the oding gainof h-π-diagonal multiplexing inreases as O(N2). The loss is even more dramati for
ω = 3. The latter is negleted on the Gaussian hannel sine its ontribution to the



50 3. Coded modulations for the multiple-antenna hannelerror rate performane is O(1/N). On non-ergodi fading hannels, when ω = 3, turboodewords satisfying wH(s2) >> 1 and wH(s3) >> 1 will su�er from the unbalane ofhorizontal multiplexing. A omparison between h-π-diagonal and horizontal multiplexersis illustrated in Fig. 3.18 with 2 transmit antennas and a QPSK modulation.3.8.3 Word error rate performane with nt = 2
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Rc = 1/2, (17, 15)8, N = 400.In this setion, omputer simulations are made for nt = 2 and without linear preod-ing (s = 1) on the quasi-stati MIMO hannel. The rate 1/2 turbo ode is built fromRSC(17, 15)8 and a pseudo-random interleaver π of size N . All urves inlude word errorrate versus signal-to-noise ratio per bit. Fig. 3.17 shows the performane of a BPSKmodulation with 2 transmit and 1 reeive antenna, and N = 400. Fig. 3.18 shows a sim-ilar situation with a QPSK modulation. The performane with 2 transmit and 2 reeiveantennas is given in Fig. 3.19. Notie that the word error rate is roughly the same for
N = 400 and N = 6400. Finally, the performane of 8-PSK is illustrated in Fig. 3.20 andompared to both outage limits (disrete and Gaussian inputs).3.8.4 Linear preoding via DNA rotations with nt = 4In the ase of nt = 4 transmit antennas, we have Dst = 4. Maximum state diversity in(2.25) annot be attained with Rc = 1/2 if Dst = 4. Therefore, we add a linear preoder
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Rc = 1/2, (17, 15)8, N = 400.
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Rc = 1/2, (17, 15)8, N = 400/6400.in order to downgrade Dst from 4 to 2. This does not a�et the physial hannel diversity
Dch. If the rotation has s = 4, i.e. a full spreading unitary preoder as usually studied
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Rc = 1/2, (17, 15)8, N = 1600.
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Rc = 1/2, (17, 15)8, N = 1600. Linear preoding via a ylotomi DNA rotationin the literature, then Dst will redue to 1. Also, MIMO detetion omplexity inreasesexponentially with s. The solution to maintain Dst = 2 is given by Dispersive Nuleo



3.9. Conlusions 53Algebrai (DNA) preoders disussed in setion 3.6 for s ≤ nt. Now, let us observe theMIMO hannel with SDNA as in (3.30). The QAM vetor z = (z1, z2, . . . , z8) goes throughthe preoder before H. Consider the lattie point zSH without adding Gaussian noise.One would notie that zi is transmitted via the 1st and 2nd transmit antennas if i is odd,and via the 3rd and 4th transmit antennas if i is even. Consequently, the DNA preoderonverts the 4 × nr MIMO hannel onto two 2 × nr MIMO hannels. Binary elementsmapped to zi when i is odd (resp. i is even) will be sent through the �rst BO-sub-hannel(resp. the seond BO-sub-hannel). As a �nal illustration, Fig. 3.21 shows the error rateof BPSK modulation with 4 transmit and 2 reeive antennas.3.9 ConlusionsIn this hapter, we proposed spae-time bit-interleaved oded modulations for the multiple-antenna hannel that perform lose to outage limit. In [18℄, it was shown that ylotomirotations satisfying genie/DNA onditions are the best hoie for preoding in spae-timebit-interleaved oded modulations, due to their enhaned performane and their �exibility.These rotations are optimal in both algebrai and information theoretial senses. Theyexist for any set of MIMO hannel parameters, mainly the number of transmit antennasand the preoder time-spreading fator. However, the families of IOM linear preoderswe presented in this hapter orret the failure of ylotomi rotations to lead the systemto reasonable performane sine the �rst iteration in an iterative reeiver when the sys-tem has delay onstraints. They also exist whatever the MIMO system on�guration is,with the di�erene in that their design requires Monte Carlo simulations. They an bedesigned by relaxing the genie onstraints or by maintaining one onstraint depending onthe deoding tehnique we want to employ.In addition, we proposed a low-omplexity spae-time oding sheme for nt = 4 based onthe Alamouti sheme. This low-omplexity sheme ensures state diversity Dst = 1, whihmeans it an be used with all oding rates Rc ∈ [0, 1] while maintaining maximal hanneldiversity dch = 4 × nr. In addition to exponentially reduing the detetion omplexity,this sheme showed a slight degradation of the frame error rate over a quasi-stati fadinghannel, that is more robust than lassial ST-BICM. As on�gurations with nt = 4 arepartiularly of interest in reent wireless ommuniation systems (suh as IEEE.802a/b/gstandards), the low-omplexity solution together with the high performane provided bythis sheme are valuable.Finally, we studied turbo-oded modulations for the MIMO hannel based on the works in[53℄ on �ode multiplexers�. When the oding rate of the turbo-ode satis�es Rc ≤ 1/Dst,the use of multiplexers at the output of the enoder ensures low detetion omplexity andnear-outage limit performane. Surprisingly enough, the frame error rate performaneof turbo-oded modulations is insensitive to blok length. This is probably due to theinterleaving gain of the turbo-ode on AWGN hannels translated to non-ergodi fading



54 3. Coded modulations for the multiple-antenna hannelhannels, whereas the number of neighbors of a turbo-odeword inreases linearly withthe interleaver size [63℄. Note that it was reently shown in [64℄ that LDPC odes havealmost the same behavior over blok-fading hannels. However, the oding gain withregular turbo odes on blok-fading hannels is slightly better than that of regular LDPCodes.To summarize, we an follow these strategies for low-omplexity deoding of oded mod-ulations over the MIMO hannel:
• If Rc ≤ 1/Dst and an iterative reeiver an be used, use turbo-odes with multiplex-ers for nt = 2 antennas and turbo-odes with multiplexers along with DNA rotationfor nt = 4 as proposed in setion 3.8.
• If nt = 4 and an iterative reeiver an be employed, use the Matrix-Alamouti shemepresented in setion 3.7 whatever the hannel oding rate is.
• Else, if Rc > 1/Dst, use ylotomi rotations [18℄ with an iterative reeiver.
• If no iterations are allowed at the reeiver, use IOM rotations presented in setion3.6 with all hannel on�gurations.
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Chapter 4Coded modulations for the amplify-and-forward ooperative hannel
4.1 IntrodutionAs disussed in the previous hapter, multiple-antenna systems an provide reliable om-muniation (through large diversity orders) and high data rates in blok-fading environ-ments. The advantages of suh systems is widely reognized and they are proposed inmany standards. However, due to size (and sometimes ost) limitations, the implemen-tation of many antennas on a single terminal is unfeasible. This is the ase of the uplinktransmission in a ellular link for instane.Sine the early 1970s, the idea of the relay hannel in information theory was proposed[65℄. In [66℄, the authors proved the gain in apaity the relay hannel has and skethedthe rate regions for this hannel under di�erent hypothesis. Inspired by these works, theauthors in [67, 68℄ proposed the onept of �user ooperation diversity�, whereas user'sterminals help eah other to onvey their signals to a destination. This allows for the sig-nals to attain high spatial diversity orders by using the antennas of other terminals andthus by forming a virtual antenna array. Note that this is not a simple relaying problem,as users are responsible for the �partner's� signals as well as their own signals.One main appliation is the ooperation of in-ell users in a ellular system. Reliableommuniation an be ahieved through diversity and by relaying signals from terminalsthat are far from the base station. The drawbak is the fat that the inter-user hannelis noisy, thus imposing various ooperation protools we will disuss later in this report.Another potential appliation is in wireless ad ho networks, suh as mesh networks forinstane. A wireless ad ho network does not depend on a entral ontrol unit, and it doesnot have a �xed infrastruture. The nodes ommuniate by forming a network based onhannel onditions and mobile loations.The main problems in non-ooperative networks is their rigid infrastruture, whose blok-ing probability inreases with the number of terminals that are sharing the network. Many



56 4. Coded modulations for the amplify-and-forward ooperative hannelservie providers have experiene dealing with temporary elevations in network tra�.COSMOTE, the Greek teleommuniations ompany responsible for providing servie tothe 2004 Olympi games, had to deploy additional resoures in the area surrounding theOlympi omplex. This extra equipment allowed this system to suessfully deliver over100 million text messages during the 17 day duration of the games. Similarly, sportingevents and large publi gatherings in the United States regularly take advantage of theso-alled Cell-on-Wheels (COW) servies in order to aount for loation-dependent traf-� spikes. With ooperative ommuniations, networks will not experiene suh problemsanymore, as the more users there are in a network, the more reliably one an ommuniate.In addition, the hardware implementation of multiple antennas on the same terminal thatis di�ult to realize is traded for protool algorithms shared among terminals throughthe network, whih is easily updatable and gains in �exibility.In this hapter, we will start by realling the ommuniation protools for the ooperativefading hannel. We will then establish the system model for oded modulations over theamplify-and-forward protool. Then we will disuss bounds on diversity for this type ofprotool, that are followed by oding strategies and simulation results. The last part ofthis hapter disusses hannel multiplexing issues for turbo-oded modulations over suhprotools.4.2 Cooperative ommuniations protoolsAfter the authors in [67, 68℄ introdued the onept of ooperative diversity, many papersproposed ooperation protools that de�ne the way the ooperation between users is per-formed. These protools an be lassi�ed into two major ategories, that are amplify-and-forward (AF) and deode-and-forward (DF). Note that the large majority of the existingdesigns we will reall in the sequel are based on the so-alled �Diversity-MultiplexingTradeo�� (DMT) of the hannel [69℄. The DMT is a piee-wise linear funtion that rep-resents, at very high signal-to-noise ratios, the tradeo� between the maximum ahievablerate (as a funtion of the signal-to-noise ratio) and the maximal ahievable diversity orderover the wireless hannel. Although the DMT bound gives an insight on the superiorityof a given protool (or a given antenna on�guration for MIMO systems) and allows forthe design of optimal spae-time preoders for unoded systems, its relevane as a designtool for oded modulations with iterative deoding is arguable.4.2.1 Amplify-and-forward protoolsIn these protools, the relays sale the signals reeived from the soure (or by other relays)and forward them to the destination (or to other relays) without other treatment. Theseprotools are easy to implement in pratial ommuniation systems, as the omputationalomplexity they introdue at the relay is limited to the saling operation. The orthogonalamplify-and-forward (OAF) protool was �rst introdued in [70℄ for the single-relay ase.
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hsdFigure 4.1: Cooperative fading hannel.By orthogonal we mean that the soure and the relay do not send data simultaneously.The seond major work onerning this family of protools is the framework established in[71℄ for the single-relay ase. The authors proposed three amplify-and-forward protoolsthat are:
• Protool I: the soure broadasts a signal to both the relay and the destination inthe �rst phase. In the seond phase, the relay sales the signal and forwards it tothe destination, while the soure transmits another message to the destination. Thisprotool is also known as the non-orthogonal amplify-and-forward (NAF) protool[72℄.
• Protool II: the soure broadasts a signal to both the relay and the destination inthe �rst phase like in Protool I. In the seond phase, only the relay sales the signalit reeived in the previous phase and forwards it to the destination. This protoolis the OAF protool introdued in [70℄.
• Protool III: the soure sends a signal only to the relay in the �rst phase. Theseond phase is similar to the seond phase in Protool I.In addition to introduing these protools, the authors disussed and analyzed some infor-mation theoretial aspets of ooperative protools that brought insight to the behaviorof suh systems. From these three protool, Protool I aught the attention of the re-searhers in the ommunity as it allows for high data rates (the soure always transmits).Indeed, in [72℄, it is shown that the NAF protool outperforms the AF protool for highdata rates. However, for the ase of more than one relay, the NAF protool su�ers from a



58 4. Coded modulations for the amplify-and-forward ooperative hannellimitation , as half of the symbols in the ooperation frame are proteted. For this reason,the authors in [73℄ proposed the slotted amplify-and-forward (SAF) sheme; by allowinginter-relay ommuniation (see Fig. 4.1), on an protet β out of β + 1 symbols. Forthis reason, the SAF sheme largely outperforms the β-relay NAF sheme for high datarates. Many spae-time ode design for unoded fading hannels for the AF protoolswere proposed, among them [74℄ [75℄ [76, 77℄, but optimal spae-time odes for unodedsystems an be found in [73℄ [78℄.4.2.2 Deode-and-forward protoolsThis lass groups the protools in whih the relays operate on the signal they reeive fromthe soure (or from other relays) before forwarding it. The �rst protool, the seletiondeode-and-forward, was introdued in [70℄ for the single-relay ooperative hannel. Inthis protool, the relay estimates the hannel oe�ient between the soure and the relay,say hsr, and it omputes |hsr|2. If this value falls below a threshold, the relay remains idle.If not, the relay deodes the message and forwards it to the destination. This sheme wasgeneralized to multiple relays in [79℄. In [72℄, the authors introdued the dynami deode-and-forward protool wherein the time for whih the relays listen to the soure dependson the soure-relay hannel gain. In [80℄, the authors treated the ompress-and-forwardprotool and proved it to be optimal for the single-relay hannel. Note that unlike thedeode-and-forward protool where the relays have to know the soure-relay hannel, therelays in the ompress-and-forward protool have to know all the hannel oe�ients ofthe inoming paths. In [81℄, the authors proposed an intuitive distributed turbo ode thatahieves high performane; it onsists of broadasting a onvolutional odeword to boththe relay and the destination, the relay deodes the odeword, interleaves it, and enodesit prior to forwarding to the destination that performs iterative deoding between the twoodes. Similar onstrutions an be found in [82℄ for distributed turbo odes and in [83℄for LDPC odes.4.3 Spae-time bit-interleaved oded modulations forthe amplify-and-forward ooperative hannelAs disussed in setion 4.2.1, many distributed spae-time odes for unoded systems havebeen proposed in the literature. However, the optimal odes in [73℄ [78℄ that ahieve theDMT frontier of the hannel introdue delay in the ooperation frame of the NAF/SAFprotool, whih means that the soure broadasts for several time slots before the o-operation at the relay starts. Indeed, as these odes were initially designed for MIMOsystems, the spreading fator s = nt for suh systems is translated into a delay d = s− 1for the NAF/SAF protools. This delay atually results in an exponential growth of thedetetion omplexity at the reeiver.



4.4. System model and parameters 59Nevertheless, in the presene of an error orreting ode, it was shown in hapter 3 thatone an trade diversity from the hannel detetor to the hannel deoder over blok-fadinghannels by using spae-time rotations. In addition, for the SAF hannel, unlike for theMIMO hannel, the maximal diversity order β + 1 of the hannel an be ahieved usinga rotation that does not lead additional omplexity. This is a key point for our designframework in the rest of this hapter.To our knowledge, no work has yet treated hannel oding issues for AF ooperative pro-tools in general. In this hapter, we onsider the problem of oding for the half-duplexnon-orthogonal slotted amplify-and-forward (NAF/SAF) ooperative hannel. We onlyonsider a network with single-antenna nodes. We derive bounds on the diversity order ofthis protool that are ahieved by a distributed spae-time bit-interleaved oded modu-lation (D-ST-BICM) sheme under iterative APP detetion and deoding. These boundslead to the design of spae-time preoders that ensure maximum diversity and high odinggains.4.4 System model and parametersWe onsider the amplify-and-forward fading relay hannel. We impose the half-duplexonstraint, whereas terminals annot transmit and reeive signals simultaneously. Weonsider the TDMA-based Protool I from [71℄ that is also known as the non-orthogonalamplify-and-forward (NAF) protool. For the ase of more than one relay, we use the�naive� slotted amplify-and-forward (SAF) ooperative protool proposed in [84℄, whereinter-relay ommuniation is allowed; the soure transmits in all time slots, and startingfrom the seond slot, only one relay sales and transmits the message reeived in theprevious time slot. By proteting β symbols out of β + 1, this protool an ahieve adiversity order of β with a length-β + 1 vetor, whereas the lassial β-relay NAF shemeahieves the same diversity order with a length-2β vetor. The main reason we use thisprotool is beause it indues low detetion omplexity. The �naive� SAF protool givesthe following signal model:
ydi

=
√
Eihsdxi +

√
1− Eihridγi−1yri−1
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(4.1)

yri
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√
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√
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(4.2)with i = 1, ..., β + 1. Subsripts s , d , and ri orrespond to source, destination, and
i th relay . The unit variane omplex symbol xi is transmitted in the ith slot, the reeivedsignal at the destination in the ith time slot is ydi

, while yri
is the signal reeived by the

ith relay. The oe�ients Ei represent the energy transmitted by the soure in the ithslot. The geometri gain gjℓ is de�ned as E|hjℓ|2/E|hsℓ|2 [73℄. The hkl are the omplexGaussian fading oe�ients that are onstant for the duration of a odeword and wdi
and

wri
are AWGN noise omponents. The γi are the energy normalization oe�ients at the

ith relay, subjet to E|γiyri−1
|2 ≤ 1, and γ0 = 0. In matrix form, we an write for a system



60 4. Coded modulations for the amplify-and-forward ooperative hannelwith β relays:
yd = xH + wc = zSH + wc (4.3)where yd is the length-(β + 1) vetor of reeived signals and z is the length-(β + 1)vetor of M-QAM symbols. S is a (β + 1)× (β + 1) preoding matrix, and H is given by:
H =




h11 h12 h13 · · ·
0 h22 h23 · · ·
0 0 h33 · · ·... ... ... . . .  (4.4)where
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√
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hr2dFinally, the vetor wc is a length-(β + 1) olored Gaussian noise vetor whose entries aregiven by:
w1 = wd,1
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√

(1− E2)γ1hr1dwr,1 + wd,2
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√

(1− E2)(1− E3)γ1γ2hr1r2hr2dwr,1 +
√

(1− E3)γ2hr2dwr,2 + wd,3an so on. We set:
Γ = E

[
w†

cwc

]
= 2N0Θ (4.5)Where the † operator denotes transpose onjugate. By performing a Cholesky deompo-sition on Θ, we get:

Θ = Ψ†Ψ (4.6)Thus the equivalent hannel model would beome:
ydΨ

−1 = zSHΨ−1 + w (4.7)where w is a white Gaussian noise vetor.4.5 The diversity of oded modulations over preodedSAF hannelsThe maximum diversity inherent to the SAF hannel is dmax = β + 1, and it an beolleted by an APP detetor (at the destination) if linear preoding is used at the trans-mitter. In general, it is su�ient to use a linear preoder that mixes the β+1 onstellation



4.5. The diversity of oded modulations over preoded SAF hannels 61symbols being transmitted on the hannel to ahieve the full diversity with unoded sys-tems and without inreasing the deoder omplexity. However, using larger preoders anfurther improve the performane. From an algebrai point of view, a linear preoder ofsize (β+1)2×(β+1)2 is the minimal on�guration to ahieve the best oding gains (with-out hannel oding) at the prie of an inrease in detetion omplexity (The omplexityof an APP detetor grows exponentially with the number of dimensions) [85℄.On the other hand, for oded systems transmitted on blok-fading hannels, the hanneldeoder is apable of olleting a ertain amount of diversity that is however limited bythe Singleton bound [35℄. As shown in [86℄, the lowest omplexity solution is to �rstreover the hannel ode diversity and then ollet the remaining diversity through linearpreoding. For this purpose we derive hereafter an upper bound on the diversity order of aoded transmission through a preoded SAF hannel, and dedue the preoding strategyto ahieve the full diversity.First, we will introdue a new model of blok-fading hannel that will be used in thefollowing to ompute the bounds on the diversity order of oded SAF hannels.4.5.1 Matryoshka blok-fading hannelsIn this setion we onsider a blok-fading hannel model where the set of random variablesof a higher diversity blok always inlude the set of random variables of a lower diversityone, like Matryoshka dolls:De�nition 4 Let us onsider λ independent Rayleigh fading distributions. LetM(D,L)be a hannel built from the onatenation of |D| bloks, where D and L are the sets ofdiversity order and lengths of eah blok, respetively. The integer |D| is the ardinality of
D. The i-th diversity blok is de�ned by a linear ombination of a subset S(i) of D(i) ≤ λRayleigh distributions, suh that S(i + 1) ⊂ S(i), i.e., the bloks are sorted suh that
∀i < j,D(i) ≥ D(j) and we assume that D(1) = λ has the highest diversity order.Fig. 4.2 shows the representation of the Matryoshka blok-fading hannel. Notie that
nD = λ for the non-preoded hannel.

D(1) D(2) D(nD)

S(1) = {α1, · · · , αλ} S(2) ⊂ S(1) · · · S(nD) ⊂ S(nD − 1)

← L(1) bits → ←L(2) bits → ← L(nD) bits →Figure 4.2: Matryoshka blok-fading hannel model.Let us now transmit a BPSK-modulated and interleaved odeword of a rate-Rc odeon the hannel M(D,L). First, let us fous on the pairwise error probability (PEP) of



62 4. Coded modulations for the amplify-and-forward ooperative hanneltwo given binary odewords c and c′. Due to the hannel model, the diversity order ofthis PEP is equal to the diversity order of the lowest index blok seeing a non null bit of
c− c′. The performane of the oded modulation has a diversity order upper bounded by
δmax de�ned as follows:Proposition 3 The diversity observed after deoding a rate-Rc ode transmitted over a
M(D,L) hannel is maximized by δmax :

δmax = D(i) where i−1∑

k=1

L(k) < Rc

|D|∑

k=1

L(k) ≤
i∑

k=1

L(k) (4.8)and is ahievable for any linear ode.Proof: This proof is inspired from the Singleton bound's one. The ode has parameters
(N, K), where N =

∑|D|
k=1 L(k) and K = RcN .If K >

∑i−1
k=1L(k), whatever the ode, a punturing of the last ∑|D|

k=iL(k) bits leadsto a null minimal Hamming distane ode. This means that there exists two odewords cand c′ suh that the �rst∑|D|
k=iL(k) bits of c− c′ are null, and involves that δmax ≤ D(i).If the ode is linear, there exists an interleaver that makes the ode systemati. Ifthe information bits are transmitted on the bloks of higher diversity order and K ≤∑i

k=1 L(k), the Hamming distane after punturing the last ∑|D|
k=i+1 L(k) bits remainsstritly positive and indues that δmax ≥ D(i).�As a remark, whatever the QAM modulation is, the log-likelihood ratio expressionof the hannel model at the output of the APP detetor always takes equivalent BPSKmodulations at its input. The bound on the diversity order applies then to any disretemodulation.4.5.2 Preoded SAF hannel models and assoiated boundsNon-preoded SAF hannelsThe time periods of the SAF hannel an be sorted into β + 1 bloks, the j-th blokorresponding to the transmission through 0 ≤ j− 1 ≤ β relays. We will assume that theinterleaver of the BICM is ideal, i.e., that for any pair of odewords (c, c′), the w non-nullbits of c− c′ are transmitted in di�erent bloks of β + 1 time periods. The interleaving,modulation and transmission through the hannel transform the oded words c and c′into the points C and C′ in an Eulidean spae. For a �xed hannel, the performane isdiretly linked to the Eulidean square distane |C−C′|2, whih an be rewritten as a sumof w square Eulidean distanes assoiated to the non-null bits of c− c′.



4.5. The diversity of oded modulations over preoded SAF hannels 63The performane of a BPSK modulation transmitted through j − 1 relays during jtime periods of a quasi-stati SAF hannel has a diversity order j. The square distane
|C −C′|2 is a funtion of the fading oe�ients of the equivalent hannel. It an be fator-ized as follows: ∑β+1

k=1 d2
k where dk is the total Eulidean distane seen by the k-th blok.Finally, the diversity order of a given pairwise error probability is equal to the maximalindex k suh that dk is non-null. At very high SNR, the performane is lead by the worsepairwise error probability, the diversity order of the BICM is then the lower bound of allpairwise error probabilities diversity orders.At the output of the APP detetor, an equivalent blok-fading hannel is observedand the onstituent bloks do not have the same intrinsi diversity order: A soft outputbelonging to the β + 2 − j-th blok arries the attenuation oe�ients {hsd; hsr1

hr1d;

. . . ; hsr1
hr1r2

· · ·hrj−2rj−1
hrj−1d}. As a remark, bloks are sorted suh that the j-th blokarries a diversity order β +2− j. Under perfet interleaving, the equivalent SAF hannelat the output of the APP detetor is a matryoshka M([β + 1, β, . . . , 1], [N/(β + 1), . . . ,

N/(β + 1)]) hannel, where N is the number of oded bits per odeword. With thisobservation, we an onlude that the upper bound on the diversity order of a non-preoded SAF hannel is
δmax,1(β, Rc) = 1 + ⌊(1−Rc) (β + 1)⌋ (4.9)whih is equal to the lassial Singleton bound on the diversity order of blok-fadinghannels [16℄.Preoded SAF hannelsLet us now introdue a linear preoder that rotates symbols of s di�erent diversity orderbloks together. First of all, let us fous on two di�erent senarios:

• The linear preoder size is lower than (or equal to) β+1. In this ase, the dimensionof the reeived vetor yd remains unhanged, thus there is no inrease in detetionomplexity, and no delay is introdued to the protool.
• The linear preoder size is lower than (or equal to) (d+1)(β+1)×(d+1)(β+1), where

d is the delay (i.e. the soure broadasts for d + 1 time slots before the relays startto ooperate). In this ase, the omplexity of the detetor inreases exponentiallywith d. As mentioned previously, these preoders are mandatory to ahieve optimalperformane for unoded systems. However, in the presene of hannel oding, theyan be avoided.We will now present two preoding strategies and ompute the bound (4.8) for these twopartiular ases.



64 4. Coded modulations for the amplify-and-forward ooperative hannelFirst strategy: a single preoder First, let us assume that s diversity bloks of size
N/(β +1) are linearly preoded together, then the diversity order of the new sN/(β +1)-length blok is the maximum diversity order of the preoded bloks. As the other blokskeep their own diversity, it seems natural to maximize their diversity orders in a way toinrease the oding gain at the output of the deoder (The best performane is ahievedfor a blok-fading hannel with diversity orders as equal as possible.). The length of thepreoder input vetor is β + 1. We propose to preode the �rst blok with the s− 1 lastbloks, i.e., the highest diversity order with the s − 1 lowest ones. At the output of theAPP detetor, the hannel model is a matryoshkaM (D,L) where D = [β + 1, β, . . . , s]and L = [sN/(β +1), N/(β +1), . . . , N/(β +1)], whih leads to the following upper boundon the diversity order:

δmax,2(β, Rc, s) = min(s + ⌊(1−Rc) (β + 1)⌋, β + 1) (4.10)Indeed, by replaing D = [β +1, β, . . . , s] and L = [sN/(β +1), N/(β +1), . . . , N/(β +1)]in (4.8), we observe that if Rc ≤ s/(β +1) then Rc(β +1) ≤ s+ i−1 < Rc(β +1)+1, elsewe have that i = 1 and δmax,2(β, Rc, s) = D(1). It is then easy to show that the upperbound on the diversity is given by (4.10). Note that, in the representation of Fig. 4.2, wehave that nD = λ− s + 1 with preoding.If s = 1, then δmax,2(s) is equal to the Singleton bound on the diversity order ofan unorrelated blok fading hannel with equal per-blok diversity. If s ≥ 1, δmax,2(s)is greater than the upper bound on the diversity order for blok fading hannels. Forexample, the full diversity order annot be ahieved for the transmission of a s = 2-preoded BICM with rate 2/3 on a blok fading with diversity order 3 (the diversity isupper bounded by 2). For the SAF hannel, the full diversity order an be ahieved inthat ase, as shown in Fig. 4.3.As a remark, in order to ahieve the upper bound on the diversity of a blok fadinghannel, at least one non null bit of any word c−c′ should be plaed in as many independentbloks as given by the singleton bound. For preoded SAF hannels, the bound is ahievedas soon as one non null bit of any word c− c′ is plaed in a blok of diversity higher than
δmax,1(s). The last problem has less onstraint than the �rst one. Tables 4.1 and 4.2 showthe values of δmax,2(β, Rc, s) for di�erent oding rates with respet to the number of relaysand the value of s. We an notie that full diversity is obtained with s ≥ (β + 1)Rc in allon�gurations.Seond strategy: (β + 1)/s preoders Let us assume that s divides β + 1, we anthen use (β + 1)/s preoders: The �rst preodes the highest diversity order blok withthe s − 1 lowest ones. The seond, if any, preodes the seond highest diversity orderblok with the s − 1 lowest non-preoded ones, and so on. By using this preodingstrategy that inludes several independent preoders, we further inrease the diversityof the extrinsi probabilities at the input of the deoder, and onsequently the diversity
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β \ s 1 2 3 4 5

1 2 2
2 2 3 3
3 3 4 4 4
4 3 4 5 5 5
5 4 5 6 6 6
6 4 5 6 7 7
7 5 6 7 8 8
8 5 6 7 8 9at the output of the deoder. Indeed, the equivalent M (D,L) hannel has parameters

D = [β + 1, β, . . . , β + 2− (β + 1)/s] and L = [sN/(β + 1), . . . , sN/(β + 1)], whih leadsto the following upper bound on the diversity order:
δmax,3(β, Rc, s) = min

(
(β+1)(s−1)

s
+ 1 +

⌊
(1−Rc)(β+1)

s

⌋
, β + 1

) (4.11)



66 4. Coded modulations for the amplify-and-forward ooperative hannelTable 4.2: δmax,2(β, Rc, s) for Rc = 3/4

β \ s 1 2 3 4 5 6

1 1 2
2 1 2 3
3 2 3 4
4 2 3 4 5
5 2 3 4 5 6
6 2 3 4 5 6 7
7 3 4 5 6 7 8It an be easily shown that

δmax,2(β, Rc, s) ≤ δmax,3(β, Rc, s) (4.12)However, the maximum diversity order δmax,2(β, Rc, s) = δmax,3(β, Rc, s) = β + 1 isahieved for the same s ≥ (β+1)Rc. The advantage of δmax,3(β, Rc, s) over δmax,2(β, Rc, s)is for non-full diversity shemes. In addition, it is important to note that the bounds in(4.10) and (4.11) have straight-forward appliations to systems employing delay preoders.4.6 Coding strategiesBased on the bounds on the diversity order derived in the previous setion, one anhoose a good oding strategy given the system parameters (i.e. number of relays, odingrate...). As for the oding gain, it is tedious to analytially ompute the pairwise errorprobability for the NAF and SAF protools, as it involves integrations over the produtof two or more omplex Gaussian variables representing the di�erent hannel gains hjℓ.Now onsider ∆2 =‖
(
x− x

′
)
SH ‖2 with x − x

′

=
∑β+1

k=1 d2
k. Next, we look at thedistribution of ∆2 as an empirial tool that helps us in hoosing the best oding strategy.Fig. 4.4 shows the distribution of ∆2 for the single-relay NAF protool. From the boundson diversity of (4.10) and (4.11), we notie that if Rc ≤ 1/(β + 1), we do not need topreode for diversity purpose, as the hannel deoder reovers the entire diversity of order

β + 1. However, we an see that for unrotated QPSK input, there is a high number ofsmall squared distanes, thus we an eliminate the small values of ∆2 by rotating theQPSK vetor. When the vetor z has relatively small ardinality, it is useful to rotate thetransmitted signal onstellation with s = smax = β+1 in a way to ombine all the symbolstogether. A rotation plays the role of "smoothing" the distribution of the input vetor
x, making it tend to the Gaussian distribution. However, unlike for MIMO systems (seeFig. 3.2), the rotation in this ase keeps the length of the transmitted vetor unhanged.



4.6. Coding strategies 67

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  1  2

QPSK
IOM rotated QPSK
16QAM
IOM rotated 16QAM

Figure 4.4: Distribution of ∆2 for the single-relay NAF protool.With an inrease in the onstellation size, a rotation with smax generates a densevetor spae, making the extrinsis at the output of the detetor su�er from interferenebetween symbols. In this ase, as the unrotated onstellation generates a reasonable ∆2distribution with a small number of small distanes, an optimized interleaver [18℄ thatapproahes the ideal interleaving ondition is su�ient to provide high oding gains andmaximum diversity. Now if Rc > 1/(β + 1), rotations are mandatory to ensure full di-versity at the reeiver. For the same reasons as when Rc ≤ 1/(β + 1), we use rotationswith smax for small size onstellations. With large size onstellations, it is judiious tominimize the inter-symbol interferene and hoose a rotation with the minimum s thatsatis�es the bounds δmax,2(β, Rc, s) or δmax,3(β, Rc, s). We an then ensure full diversityand at the same time deliver better quality extrinsis (than with smax) to the hanneldeoder. Note that if no iterations are possible at the reeiver, the smin that allows formaximal diversity leads the optimal performane of the D-ST-BICM.The threshold at whih we an hange the oding strategy (i.e. the value of s) annotbe omputed analytially, but simulations showed that a rotation with smax gives betterperformane with BPSK and QPSK modulations, while degrading the oding gain with16-QAM onstellations or higher. To onlude as to whih strategy to follow in order toahieve high oding gains, we an say that:I) With BPSK and QPSK modulations, always use preoders with smax whatever theoding rate Rc is.



68 4. Coded modulations for the amplify-and-forward ooperative hannelII) With 16-QAM modulations and higher:1) If Rc ≤ 1/(β + 1), do not preode, use optimized interleavers from [18℄.2) If Rc ≥ 1/(β + 1), preode with smin that satis�es δmax,2(β, Rc, s) or δmax,3(β, Rc, s).III) If no iterations are possible, preode with smin that satis�es δmax,2(β, Rc, s) or δmax,3(β, Rc, s)whatever the oding rate Rc is.These strategies will be illustrated in the next setion. Finally, note that whatever thevalue of s is, there is no inrease in the APP detetion omplexity.4.6.1 Simulation resultsIn this setion, word error rate performanes are ompared to information outage proba-bility for di�erent system on�gurations to illustrate the results presented in the previoussetions. We onsider the half-duplex SAF ooperative hannels with di�erent odingrates and onstellation sizes. We set the values of E1 = 1, and E2 = E3 = E1/2 so that thereeived energy is invariant from slot to slot. The geometri gain oe�ients gij are allset to 0 dB in this setion. The spae-time preoders are (IOM) as presented in setion3.6. They are seleted from the ensemble of random rotations as:
Pout(S) = P (ISH < (β + 1) .m.Rc) (4.13)As an example, the 3× 3 rotation SIOM,s=2 that satis�es δmax,2(β, Rc, s) obtained for theSAF protool with two relays, 16-QAM input, and half-rate hannel oding is given by:

SNAF−IOM,s=2 =




0.69e−2.84 0 0.72e−0.12

0 1 0

0.72e−1.11 0 0.69e−1.29


 (4.14)Fig. 4.5 shows the outage probability for QPSK input, rotated QPSK input with anIOM rotation, and Gaussian input of the single-relay NAF protool. Without rotation,the disrete input urve is about 2dB away from the Gaussian input. With IOM rotation,the urve roughly ahieves the lower bound without any inrease in detetion omplexity.In Fig. 4.6, we onsider a 16-QAM modulation oded with half-rate odes over thetwo-relay SAF hannel. Without rotation, the deoder is not apable of reovering thediversity as shown in (4.10). Adding a rotation with smax ensures the diversity, but mixesthree 16-QAM symbols whih results in a dense signal spae. We an ahieve slightlybetter performane using a preoder with s = 2 as it reates less interferene betweensignals, while ensuring maximum diversity. Note that this gain appears sine the �rstiteration.Finally, Fig. 4.7 shows the performane of QPSK onstellation on a three-relay SAFooperative hannel using Rc = 1/2 and Rc = 3/4 odes. Diversity is provided in severalways; for Rc = 3/4 odes, a rotation with s = 3 is su�ient to provide diversity, whiletwo s = 2 rotations are used for Rc = 1/2. However, to ahieve optimal oding gains, arotation with smax has to be used.
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Gaussian inputFigure 4.5: Outage probability omparison for the single-relay NAF protool: QPSKinput, rotated QPSK input with 2× 2 IOM rotation, and Gaussian input.For all these on�gurations, performane less than 2dB away from outage probability isahieved for odeword sizes in the range of 1000-1500 oded bits.4.7 Code multiplexing over hannel states for the half-duplex NAF ooperative hannelAs disussed in setion 3.8, hannel multiplexers an ensure maximal diversity orders andoptimal oding gains for turbo odes on blok-fading hannels provided the rate of theode respets Rc ≤ 1/Dst, where Dst is number of states of the BO hannel. For boththe ases of single-input single-output blok-fading hannel with Dst bloks [53℄ and theMIMO hannel with Dst hannel states (see setion 3.8), both the horizontal multiplexerand the h-π-diagonal multiplexer ensured maximal diversity for turbo odes. However, theh-π-diagonal multiplexer showed better oding gain as it helped to equalize the partialHamming weights in (3.59). It is of great bene�t to see what is the optimal hannelmultiplexer for turbo odes in the NAF protool, as it was disussed in setion 4.6 thatfor high spetral e�ienies a rotation degrades the performane of the ode. In the sequel,we will only disuss the ase of half-rate turbo odes over the single-relay half-duplex NAFooperative hannel. The generalization to the β-relay ase is straight-forward as long as
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Rc ≤ 1/ (β + 1). We show in Fig. 4.8 the hannel multiplexers for half-rate turbo odesover the NAF hannel. Note that when the two hannel states of the BO-hannel areseparated by a ommas, this means that the binary element si is sent in the �rst timeslot of the ooperation frame, and onsequently it sees all the states of the matryoshkahannel. The two multiplexers of Fig. 4.8 ensure maximal state diversity at the reeiverover a two-state BO-hannel as shown for MIMO hannel with nt = 2 (see setion 3.8).The di�erene is that with horizontal multiplexing, diversity is always guaranteed by the�rst RSC ode, as all the information bits see the two states of the BO-hannel. Withh-π-diagonal multiplexing, diversity is ensured through the two onstituent odes as forthe MIMO hannel. However, the oding gains provided by the two multiplexers for theNAF protool are di�erent from that of the MIMO hannel. To illustrate this issue, letus onsider the produt ω1ω2 of the partial Hamming weight in (3.59). Suppose that theonstituent RSC odes are two half-rate (7, 5)8 odes, and that the input weight is ω = 2.Consider now error events of length L = 4 + 3j and total Hamming weight wH = 6 + 2j,
i = 0 . . . (N − 4)/3. For horizontal multiplexing, ω1 = 6 + 2j and ω2 = 2. For h-π-diagonal multiplexing, ω1 = 6 + 2j and ω2 = 3 + j. Let ω1i, ω2i, ω1p, and ω2p be thepartial weights of information and parity bits. For horizontal multiplexing, ω1i = ω2i = 2,
ω1p = 6 + 2j, while ω2p = 0. For h-π-diagonal multiplexing, ω1i = 2, ω2i = 2 if j is odd,
ω2i = 1 otherwise. ω1p = 4 + 2j, ω2p = 1 + j if j is odd, ω2p = 2 + j otherwise. Unlike
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s3 X 1 X 1 X 1H-π-diagonal Multiplexer
s1 1 , 2 1 1 , 2 1 1 , 2 1
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π−1(s3) X 1 , 2 X 1 , 2 X 1 , 2Figure 4.8: Single-relay NAF hannel: Horizontal (top) and h-π-diagonal (bottom) mul-tiplexers for a rate 1/2 parallel turbo ode.the ase of two-state BO-hannel where information bits have diversity 1 with horizontalmultiplexing, the horizontal multiplexer better protets the information bits than theh-π-diagonal multiplexer over the single-relay NAF hannel. In fat, this interpretation



72 4. Coded modulations for the amplify-and-forward ooperative hanneljoins the results on the bound on the diversity of Matryoshka blok-fading hannels underideal interleaving derived in setion 4.5, whereas an optimized interleaver makes the odesystemati and plaes the information bits on the blok arrying the maximal diversityorder.4.7.1 Simulation resultsFig. 4.9 and 4.10 shows the performane of half-rate turbo odes with di�erent han-nel multiplexers and with 2 × 2 IOM rotations over the single-relay NAF protool. Asshown in setion 4.6, IOM rotations are best performing for QPSK onstellations, allow-ing the ode to approah the outage probability by less than a dB. On the opposite, itis impossible for the ode to manage the interferene between QAM symbols reated byIOM rotations for large onstellations. In addition, horizontal multiplexing slightly out-performs the h-π-diagonal multiplexing in Fig. 4.9 for large onstellations, as it betterprotets information symbols. The gain of horizontal multiplexing is even higher in Fig.4.10 when the geometri gain gsr between the soure and the relay is onsiderable. Notethat, like for MIMO systems, word error rate performane of turbo-oded modulationsover the NAF protool is insensitive to interleaver size.
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(17, 15)8. gsr = 20 dB.4.8 ConlusionsIn this hapter, a framework for hannel oding over the amplify-and-forward ooperativeprotool with iterattive deoding was established. Bounds on the diversity orders foroded systems for the ase where all terminal have a single antenna. It was shown thatpreoding without introduing time delay to the ooperation frame an lead the D-ST-BICM to ahieve maximal diversity. The absene of delay is even more important in thatit does not inrease the detetion omplexity at the destination. It was also disussedthat preoding all the symbols together, whih might look as a reliable maximum diversitysolution, is in fat harmful for the overall oding gain for large onstellations. These odingstrategies also hold when no iterations are possible at the reeiver. We also presentedhannel multiplexing issues for turbo odes over the AF protool, and showed that wean losely approah the outage probability limit even for large onstellations.



74 4. Coded modulations for the amplify-and-forward ooperative hannel



75
Chapter 5Design of irregular turbo odes forblok-fading hannels
5.1 IntrodutionIn setion 3.8 and 4.7, we showed that turbo-oded modulations using onventional turboodes are apable of approahing the outage limit of two types of blok-fading hannels,that are the MIMO hannel and the NAF ooperative hannel. Fig. 5.1 shows the outageboundaries for a two-state blok-fading hannel. The fading oe�ients α1 and α2 belongto {0, +∞}. It was disussed in [52℄ and [64℄ that, in order to approah the outage limitover blok-fading hannels, two onditions have to be met:
• Reduing the gap on the ergodi line: this is done by using a ode that has a lowdeoding threshold.
• Reduing the gap at in�nity: this is done by using a blok-wise maximum distaneseparable (MDS) ode, i.e. a ode that ahieves the Singleton bound of (2.25) [87℄.In this hapter, in a goal to outperform onventional turbo odes on the blok-fading han-nel, we design irregular turbo odes with exellent deoding thresholds over the AWGNhannel, whih meets with the �rst ondition. We then propose a slight modi�ation ofthe h-π-diagonal multiplexer [53℄ that suits the irregular turbo ode, in a way to ensurefull diversity and meet with the seond ondition. Our design is limited to half-rate ir-regular turbo odes over two-state blok-fading hannels. Generalization to higher statediversity hannels is straight-forward as long as Rc ≤ 1/Dst. We will start by introduingturbo odes in general, whih allows us to present the struture suitable for the designof irregular turbo odes. We will then present the Density Evolution (DE) and GaussianApproximation (GA) methods that allow us to design our odes. We will onlude byshowing �nite-length results for the AWGN hannel and DE results for the blok-fadinghannel.
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Figure 5.1: Outage boundaries for 2-state blok-fading hannel.5.2 Turbo odesIn 1993, Berrou et al. [88℄ astonished the oding ommunity by introduing a new lassof �turbo odes� that ould ahieve near-Shannon-limit performane with relatively lowdeoding omplexity. In this hapter, we will onsider the onept of turbo oding todesign irregular turbo odes for di�erent hannel types.The enoder of a parallel turbo ode is shown in Fig. 5.2 below. An information sequeneb is enoded by a reursive systemati onvolutional (RSC) ode to generate a �rst paritybit sequene; the same sequene is then srambled by an interleaver Π and enoded by aseond RSC ode to generate a seond parity bit sequene. If the turbo enoder transmitsall the three sequenes, the overall rate would be 1/3. In order to obtain a half-rateturbo enoder, we usually punture half of the parity bits of the �rst parity sequene,and alternatively half of the bits of the seond parity sequene. The use of reursiveonvolutional enoders and a random interleaver is essential to make the turbo ode�random-like�. Indeed, the work of Battail in [38℄ on random odes was the motivationbehind the turbo odes.The iterative probabilisti deoder for the above turbo enoder is shown in Fig. 5.3.Deoders SISO 1 and SISO 2 are soft-input soft-output [89℄ deoders using the forward-bakward algorithm [89℄ for RSC ode 1 and RSC ode 2. Eah deoder reads the obser-vations on information bits and the observations on its own parity bits. The interleaver Πpermutes the observations of the �rst deoder to give them to the seond one. A deodergenerates extrinsi probabilities on information bits that are fed to the other deoder asa priori probabilities on information bits.At the �rst iteration, all a priori probabilities are set to 1/2. With the iterativeproess, only extrinsi information evolves through the iterative proess, not the hannel
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Figure 5.2: Parallel turbo enoder.
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Figure 5.3: Parallel turbo deoder.observations. At the last iteration, deisions are made on the a posteriori probabilitieson information bits. We an see that turbo odes are atually turbo deoded not turboenoded, as the iterative feedbak of extrinsi information realls the feedbak of exhaustgases in a turbo-harged engine.Fig. 5.4 shows the performane of a half-rate parallel turbo ode with two RSC (37, 21)8onstituent odes on an AWGN hannel for di�erent interleaver sizes.The urve has two main regions; the waterfall region, that is due to the fat thatthe use of a length-N interleaver e�etively redues the number of low-weight odewordsby a fator of N [62℄ [63℄; and the error �oor region, that is due to the relatively poorminimum distane. Indeed, it was shown in [90℄ that the minimum distane of turbo odesis upper-bounded by a quantity that grows only logarithmially with the interleaver size,and the authors in [91℄ proposed an interleaver design that always ensures this bound.In most ases, the two onstituent RSC enoders in Fig. 5.2 are idential (i.e. sameonstraint length and generator polynomials). This is equivalent to the fat of mergingthe two onstituent enoders into a single one, and doubling the size of the interleaver.To do so, a 2-fold repeater has to be added before interleaving. Fig. 5.5 below gives the
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Eb/N0(dB) at the receiverFigure 5.4: Performane of half-rate parallel turbo ode with two RSC (37, 21)8 on-stituent odes, N = 4096 (ontinuous red urves) and N = 65536 (dashed blue urves).representation of the equivalent enoder, that we will all �self-onatenated� turbo ode:
Repetition RSC EncoderΠFigure 5.5: Equivalent �self-onatenated� turbo enoder.It looks atually as a repeat-aumulate (RA) ode in whih the information sequeneis transmitted as well. The deoder for suh a turbo enoder is di�erent from the lassialturbo enoder, as there is only one SISO deoding blok (see Fig. 5.6). In this ase,extrinsi information is generated by the �extrinsi omputing� (EC) blok by simplysetting the a priori probability on an information bit equal to the extrinsi probability ofthe other bit in the repeated pair.In this new representation, eah information bit is onneted to the ode trellis viatwo edges in the propagation tree. We hene say that the degree of the information bits is
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Figure 5.6: Equivalent turbo deoder.
d = 2, and that the turbo ode is regular. Using this struture, one an reate irregularityby repeating a ertain fration fi of the bits i times, providing bits that are more pro-teted than in the regular ase. Like for low-density parity hek (LDPC) odes [1℄ [92℄,irregularity an boost the performane of turbo odes for large blok lengths. The �rstwork that introdued irregularity to turbo odes in order to ahieve better performaneis [93℄. Results as lose as 0.3dB from apaity at bit error rate of 10−4 were obtainedby repeating a fration of the oded bits (i.e. both the information and parity bits) morethan twie. In [94℄, in a slightly di�erent design, a fration of the information bits isrepeated d times with d > 2, while the parity bits remained of degree 1. In order notto alter the oding rate, a fration fp of the parity bits is puntured, whih lead to evenbetter results.The enoder of an irregular turbo ode is similar to that of Fig. 5.5, with the di�erenethat an information sequene b is fed to a non-uniform repeater that divides the informa-tion bits into d lasses with d = 2, ..., dmax, where dmax is the maximum bit-node degree.The number of bits in a lass d is a fration fd of the total number of information bits atthe turbo enoder input, knowing that bits in lass d are repeated d times. Finally, theoutput of the non-uniform repeater is interleaved and fed to the RSC onstituent ode,of whih (1− fp)% of the parity bits are transmitted. The deoder is also similar to thatof Fig. 5.6, with the di�erene in that the extrinsi probabilities in the EC blok areomputed as:

ξ(bdj) =

db−1∏

ℓ=0,ℓ 6=j

ξ(bdℓ) (5.1)The normalization of these extrinsi probabilities is not neessary as far as we operatewith log-likelihood ratios (LLR). However, this normalization is performed for �nite lengthsimulations in setion 5.6. Now let K denote the length of the information sequene, Nthe interleaver size, ρ the rate of the RSC onstituent ode, and Rc the rate of the turboode. We an write the following:
dmax∑

d=2

fd = 1 (5.2)
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dmax∑

d=2

d.fd = d (5.3)
N = K

dmax∑

d=2

d.fd = K.d (5.4)
Rc =

K

K + N
ρ
−N

=
1

1 +
(

1
ρ
− 1
)

d
(5.5)

ρ =
1

1 + (1− fp)
(

1
ρ0
− 1
) (5.6)where ρ0 = k/n is the initial rate of the onstituent RSC ode before punturing.In the next setions we will introdue methods that allow to evaluate the onvergenebehavior of odes de�ned on graphs in general, that will be used to design irregular turboodes in the sequel.5.3 Density evolution for irregular turbo odesIn this setion, we onsider rate-Rc irregular turbo odes built from a rate-ρ RSC on-stituent ode and degree pro�le {fd}d=1,...,dmax

. We assume that the all-zero odeword ismodulated into x = −1,−1, ...,−1 and transmitted over an AWGN hannel with vari-ane N0. At the output of the hannel, eah reeived BPSK symbol an be written as
y = x + n = −1 + n, so the onditional probability density funtion (PDF) is given by:

p(y|x = −1) =
1√

2πN0

e−(y+1)2/2N0 (5.7)The LLR of the hannel observation y is thus:
LLR0 = log

p(y|x = −1)

p(y|x = +1)
=

2

N0

y =
2

N0

(−1 + n) (5.8)This gives a Gaussian random variable that follows the distribution p0(x) ∼ N (m0, v0)with:
m0 = − 2

N0

, v0 =
4

N0

(5.9)The propagation tree for irregular turbo odes is shown in Fig. 5.7. A bit-node ofdegree d with probability µd = d.fd/d has d − 1 inoming extrinsi probabilities and oneoutgoing a priori probability also alled partial APP. The APP of an information bit isobtained by the sum of the inoming extrinsis and the outgoing partial APP assoiatedto the same edge of the graph. We assume that the in�nite-size interleaver has no yles,assumption that gives a perfet tree graph representation.For every bit bd of degree d, we ompute the forward-bakward algorithm [89℄ over a
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Figure 5.7: Propagation tree of an irregular turbo ode.window W around the bit, whose size should be large enough to guarantee a orret APPevaluation. The algorithm omputes extrinsi information on bd whose distribution isomputed. In [95℄, it was shown that for onvolutional odes, when the hannel observa-tion and the a priori probabilities at the input of the ode are independent and identiallydistributed (i.i.d), the a posteriori probability density is independent of the bit position.Consequently, the extrinsis are independent from a priori probabilities, thus only onehistogram is su�ient to evaluate the extrinsi probability distribution of all the informa-tion bits bd, d = 1, ..., dmax. Throughout the iterative proess, the a priori probability ofa bit of degree d is omputed as the sum of d − 1 extrinsis given by the distribution ofthe extrinsis.The log-ratio of the extrinsi information at iteration i is de�ned as:
LLRi =

log(ξi(bd = 1)

log(ξi(bd = 0)
(5.10)A signal-to-noise ratio is said to be admissible if the error probability vanishes after a �nitenumber imax of iterations of the APP deoder. The smallest admissible signal-to-noiseratio is alled threshold. We desribe hereafter the Density Evolution (DE) method:

• Initialize the hannel noise variane N0 = N0(Eb/N0).
• Initialize the extrinsi probability density funtion pLLRi

(x) by a Dira impulse.
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• For eah iteration i = 1, ..., imax� Given the density pLLRi−1

(x) of LLRi−1, ompute the new density pLLRi
(x) ofthe outgoing extrinsi information LLRi.� Compute the error probability Pb(i) on information bits.� Stop the density evolution if Pb(i) is vanishing (i.e. < 10−5).

• if i = imax and Pb(i) > 10−5, hoose a greater value for Eb/N0 and restart, elsehoose a smaller value and restart.The total bit error probability at iteration i is given by:
Pb(i) =

dmax∑

d=2

fdPb(d, i) (5.11)Where Pb(d, i) is the bit error probability of lass d given by the area under the tailof the probability density funtion pd,i(x) of the APP inside lass d written as:
pd,i(x) = F−1

[
F [p0(x)]Fd [pLLRi

(x)]
] (5.12)Where p0(x) ∼ N (−2/N0, 4/N0) is the probability density funtion of the hannel like-lihood. Density evolution gives a very aurate limit on the onvergene behavior ofapaity-approahing odes, and it was used to �nd optimal degree pro�les for LDPCodes in [1℄ [96℄. However, �nding a good degree pro�le using density evolution requiresintensive omputations and a long searh, sine the optimization problem is not onvex[97℄. Furthermore, it does not provide any insight to the design proess, as one has toperform an exhaustive searh over a wide range of pro�les to �nd the best ones. In thenext setion, a less-aurate - but muh faster - method for studying the onvergenebehavior of iterative deoding will be studied.5.4 Gaussian approximation for irregular turbo odesIn [98℄, an approah for �nding onvergene behavior of iterative deoders using extrinsiinformation transfer (EXIT) harts was proposed. Although this method is not as a-urate as density evolution, its low omputational omplexity makes it very attrative.EXIT harts provide one-dimensional analysis that an redue the problem of optimizingthe degree pro�le of an irregular ode to a linear program. This way the optimizationalgorithm beomes muh faster and gives a qualitative insight to the onvergene behaviorof the deoder.There have been many approahes based on one-dimensional analysis of graph odes, andthey assume that the PDF of the deoder's log-ratio is approximately Gaussian. All GAare more or less equivalent, di�erenes stand in the Gaussian parameters estimation and



5.5. Irregular turbo ode design 83in the hart parameters (mutual information, signal-to-noise ratio, error probability...).The problem with GA methods with LDPC odes is that approximation is aurate onlyfor messages sent from bit-nodes, as the onvolution of the extrinsi distribution with thePDF of the hannel likelihood (that is Gaussian) in (5.12) gives a �somehow� Gaussiandistribution. On the opposite, the extrinsis distribution from hek-nodes is far frombeing Gaussian, as the heks are onneted to a small number of bit-nodes in a LDPCode propagation tree. With onvolutional odes however, as the hek onstitues thewhole window over whih the deoding algorithm is omputed, the distribution of theextrinsi probabilities at the output of the deoder is loser to a Gaussian distribution.In the density evolution method, we need the output density pLLRi−1
(x) of the previousiteration in order to ompute the input density of the next iteration. The advantageof GA on this issue is that it allows to start the analysis from any stage of the deod-ing proess. To analyze one iteration, onsider the tree of Fig. 5.7. We want to trakthe behavior of the iterative deoder through the value of the output error probability

Pout at the bit-node as a funtion of the input error probability Pin at the hek-nodes.The values of the input error probabilities are piked from the range [0, P e0], where Pe0orresponds to the error probability given the hannel signal-to-noise ratio per reeivesymbol Es/N0. The di�erent values of Pin are then mapped onto Gaussian distributionsthat are fed to hek-node input. After a �one-step� density evolution (as explained insetion 5.3), the distribution obtained at the output of the bit node is approximated bya Gaussian distribution, from whih Pout is �nally omputed. There exist several metristo approximate the distribution of the output of the bit-node with a Gaussian one, themost aurate being the mathing of the symmetri Gaussian density to the true densitybased on a mutual information measure as in [99℄.In [100℄, the author proposed a funtion J(σ) that maps standard deviation σ of a sym-metri Gaussian density to its mutual information, with:
J(σ) = 1−

∫ +∞

−∞

e−(t−σ2/2)2/2σ2

√
2πσ

. log(1 + e−t)dt (5.13)With irregular turbo odes, the hannel observation is available at the parity bits of theRSC onstituent ode, thus Pout is omputed by approximating the distribution of theextrinsis at the output of the hek-node by a Gaussian distribution using (5.13) withoutan additional onvolution with the hannel observation.5.5 Irregular turbo ode designDesigning irregular turbo odes for the AWGN hannel was done in [93℄ [94℄. In thissetion, we propose a new method for designing irregular turbo odes based on both GAfrom [99℄ and DE methods.First, we ompute the EXIT hart for di�erent values of fd as in [99℄. This hart gives us



84 5. Design of irregular turbo odes for blok-fading hannelsthe value of Pout,d for degree d as a funtion of Pin as:
Pout,d = fd(pin) (5.14)Next, by imposing the onstraints:

• fd ≥ 0 ∀ d

• ∑dmax

d≥2 fd = 1We ompute:
dmax∑

d≥2

d.fd

d
. fd(pin) < pin ∀pin ∈ (0, p0] (5.15)using the method desribed in setion 5.4. The above equation gives us a range of valuesof fd suh that the tunnel in the EXIT hart is open, whih means that the iterativedeoding onverges. The �nal step is then to perform density evolution over the range ofvalues of the fd, and hoose the degree pro�le that has the lowest threshold. Note that inorder to get Rc = 1/2 or Rc = 1/3 odes for instane, strit onstraints are imposed on

fp. For this reason, the linear programming method used to optimize the degree pro�leof LDPC odes in [99℄ was not onsidered for irregular turbo odes. In fat, this methodonsists of maximizing the rate of the ode by maximizing a funtion that depends on
d, giving no insight on the punturing rate fp. In order to optimize the degree pro�leat a �xed rate, one should disregard this method. Indeed, our design gives the followingexpression for the rate of the irregular turbo ode:

R =
K

K + ⌊Kd (1− fp)⌋+ n⌈L−1
k
⌉

(5.16)This means that limK→∞ R = 1/2. Optimization results have shown that one an obtaingood performane odes by only seleting a small number of non-zero degrees, thus lower-ing the number of density evolution simulations to be performed. As an example, supposewe want to design a half-rate irregular turbo ode with only two non-zero frations, say
f2 and f12. The apaity limit for Rc = 1/2 and BPSK modulation is around 0.18dB.We set the signal-to-noise ratio per reeive symbol to −2.8dB, suh that by introduinga half-rate ode (i.e. by loosing 3dB) we fall slightly above the apaity limit. We nextdraw the EXIT hart as shown in Fig. 5.5; as there is one onstituent RSC ode in aself-onatenated turbo ode, we an judge if the iterative reeiver onverges for a ertaindegree if the transfer funtion of (5.14) falls below the bisetrix of the [Pin, Pout] plane.We then selet the degree pro�le pair {f2, f12} that allow for the tunnel to be open, andwe �nally get the results of Tab. 5.1 by DE simulation. Similarly, the degree pair {f2, f10}gives the results of Tab. 5.2. In Fig. 5.5, we an see that the number of iterations neededfor the DE method to onverge inreases while approahing the deoding threshold of theode. Thus at 0.27dB, the deoder needs about 278 iterations to onverge.
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Figure 5.8: EXIT harts, single Gaussian distribution, Es/N0 = −2.80dB.Table 5.1: Convergene for half-rate irregular turbo odes, AWGN hannel, degree pro�le
{f2,f12}.

f2 f12 (Eb/N0)min d fp0.89 0.11 >1.00 3.10 0.3548390.90 0.10 0.32 3.00 0.3333330.91 0.09 0.34 2.90 0.3103450.92 0.08 0.27 2.80 0.2857140.93 0.07 0.32 2.70 0.2592590.94 0.06 0.35 2.60 0.2307690.95 0.05 0.40 2.50 0.2000000.96 0.04 0.41 2.40 0.1666670.97 0.03 0.45 2.30 0.1304350.98 0.02 0.47 2.20 0.0909090.99 0.01 0.51 2.10 0.0476191.00 0.00 0.55 2.00 0.0000005.6 Simulation results5.6.1 Finite-length performane over the AWGN hannelFig. 5.10 shows the performane of the rate-1/2 irregular turbo ode designed in setion5.5 with (25,37,35) RSC ode onstituent against irregular LDPC ode from [1℄. The



86 5. Design of irregular turbo odes for blok-fading hannelsTable 5.2: Convergene for half-rate irregular turbo odes, AWGN hannel, degree pro�le
{f2,f10}.

f2 f10 (Eb/N0)min d fp0.87 0.13 >1.00 3.04 0.3421050.88 0.12 0.42 2.96 0.3243240.89 0.11 0.44 2.88 0.3055560.90 0.10 0.38 2.80 0.2857140.91 0.09 0.32 2.72 0.2647060.92 0.08 0.41 2.64 0.2424240.93 0.07 0.40 2.56 0.2187500.94 0.06 0.41 2.48 0.1935480.95 0.05 0.42 2.40 0.1666670.96 0.04 0.44 2.32 0.1379310.97 0.03 0.47 2.24 0.1071430.98 0.02 0.50 2.16 0.0740740.99 0.01 0.53 2.08 0.0384621.00 0.00 0.55 2.00 0.000000irregular turbo ode learly outperforms the irregular LDPC ode for a odeword sizeof 105, while the gain is smaller for 106. It is important to mention that the numberof iterations needed for the deoder to onverge is logarithmially proportional to theinterleaver size N of the ode [101℄. Now as irregular odes are by de�nition asymptotiallygood, it is better to use regular turbo odes for smaller interleaver sizes. The struture ofthe self-onatenated turbo ode presented in this hapter allows to easily swith betweenirregular and regular on�gurations, by only making the repeater uniform and sending allthe parity bit sequene (i.e. no punturing).5.6.2 Density evolution over blok-fading hannelsIn this setion we show the word error rate performane of half-rate irregular turbo odesover a two-state blok-fading hannel via density evolution. As in setion 5.3, we assumethat the all-zero odeword is modulated into x = −1,−1, ...,−1 and transmitted over ablok-fading hannel with nc states (nc = 2 in our ase). The reeived signal y an bewritten as:
y = hx + w (5.17)where w is the AWGN omponent with zero mean and variane N0, and h is the realfading oe�ient that belongs to the set:

Ψ = {α1, α2, · · · , αnc
} (5.18)
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Figure 5.9: Convergene behavior of half-rate irregular turbo odes with degree pro�le
f2 = 0.92 and f12 = 0.08.In [52℄, it was shown that the frame error rate performane of turbo odes under iterativedeoding an be written as:

Pef =

∫

Ψ∈D0(c)

p(Ψ)dΨ (5.19)where
D0(c) =

{
Ψ ∈ R

nc

+ | lim
i→∞

lim
N→∞

P i
ew(N) = 1

} (5.20)is the outage region of the turbo ode and i is the number of iterations of the deoder. Thisregion ontains the values of the fading oe�ients that lead the deoder not to onverge.This means that the error probability of large interleaver sizes is given by the distributionof the deoding threshold as a funtion of the fading. As in [52℄, we deided to run theDE algorithm only when there is no outage, and when αmin
Eb

N0
> Eb

N0
|th, where αmin isthe lowest fading value within the set Ψ, and Eb

N0
|th is the ode threshold over the AWGNhannel. To attain the best possible performane over the two-state blok-fading hannel,we onsider the half-rate irregular turbo ode with degree pro�le f2 = 0.92 and f12 = 0.08that exhibits a threshold of Eb

N0

|th= 0.27dB over the AWGN hannel that is the best amongall other pro�les. Note that as this ode is self-onatenated, the h-π-diagonal multiplexerdoes not apply as it is. Now for this ode to attain the maximal diversity Dst = 2 withoptimal oding gain, we propose the modi�ation of the h-π-diagonal multiplexer as shown
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0.92, f12 = 0.08, fp = 0.28, s-random interleaving (dashed blue urves), versus half-rateirregular LDPC [1℄ ode (ontinuous red urves), AWGN hannel.in Fig. 5.11. where s1 represents the information bits and s2 the parity bits of the RSCH-π-diagonal Multiplexer
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π−1(s2) 2/X 1/X 2/X 1/X 2/X 1/XFigure 5.11: H-π-diagonal multiplexer for a rate 1/2 irregular turbo ode.ode, among whih a fration fp is puntured (represented by the X). In Fig. 5.12, weshow the word error rate performane of the half-rate irregular turbo ode with (25,37,35)RSC ode onstituent, degree pro�le f2 = 0.92 and f12 = 0.08, is ompared to that ofa regular turbo ode with two (13,15) RSC ode onstituents whom half parity bits arepuntured over the two-state blok-fading hannel, BPSK input. The regular turbo odewith h-π-diagonal multiplexing is about 1dB away from outage probability, while theirregular turbo ode with the modi�ed h-π-diagonal multiplexer roughly oinides withthe BPSK input outage probability.
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Figure 5.12: Word error rate omputed with the DE algorithm for Rc = 1/2 turbo odesover the 2-state blok-fading hannel, BPSK modulation.5.7 ConlusionsIn this hapter, we presented the design of irregular turbo odes that are apable ofahieving the outage probability of the blok-fading hannel. By satisfying the two on-ditions that are 1) a low deoding threshold over the AWGN hannel and 2) full diversitythrough hannel multiplexing, irregular turbo odes outperform all other existing odesfor su�iently large blok length. Following the de�nitions in [16℄, irregular turbo odesare good odes, i.e. they exhibit a vanishing gap with the outage limit for N →∞, whileregular turbo odes are weakly good odes, as they ahieve a onstant gap from outageprobability for any interleaver size.
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Chapter 6ConlusionsThis manusript presented spae-time bit-interleaved oded modulations for both themultiple-antenna blok-fading hannel and the amplify-and-forward ooperative fadinghannel with single-antenna nodes. What these shemes have in ommon is that they wereapable of ahieving the maximal diversity orders the blok-fading hannels -they weredesigned for- allowed and they provided high oding gains with relatively low deodingomplexity at the reeiver.For the multiple-antenna hannel, we proposed the following:
• Information Outage Minimizing (IOM) spae-time preoders: these preoders allowfor optimal performane of the ST-BICM if no iterations are possible at the reeiver.They an also be adapted so that they beome optimal for both �one-shot� deodingand iterative deoding
• Matrix-Alamouti spae-time preoder: appliation of the Alamouti sheme with twotransmit antennas to four transmit antennas. With proper signal deoupling anditerative interferene anellation/deoding, frame error rate robust with respet tothe frame size was ahieved.
• Turbo-ode design for multiple-antenna systems: these systems ahieved optimalword error rate performane insensitive to the interleaver size by using a speialmultiplexer that plaes the binary elements at the output of the ode �intelligently�on the hannel states. This performane is ahieved at no additional ost in om-plexity.For the amplify-and-forward ooperative fading hannel, the following results werearried out:
• Bounds on the diversity order of oded systems over the Matryoshka blok-fadinghannel representing the slotted amplify-and-forward protool were derived. Thesebounds an be ahieved by judiious preoding without a�eting the deoding om-plexity.



92 6. Conlusions
• Coding strategies based on the bounds on diversity that allow to ahieve high odinggains depending on the oding rate, modulation size, and number of relays.
• Turbo-ode design for the amplify-and-forward ooperative fading hannel: the odemultiplexer that suits the Matryoshka blok-fading hannel model proved to beoptimal. Again, word error rate performane insensitive to blok size at no inreasein omplexity is ahieved.Finally, we proposed irregular turbo odes that exhibit a vanishing gap with the outageprobability for large blok lengths over the single-input single-output blok-fading hannel.This is done through an adapted hannel multiplexer that suits the self-onatenatedstruture of the ode. This result an be applied to any blok-fading hannel type. Thematerial elaborated in this report opens the way for the following perspetives:
• Study of sub-optimal reeivers for the SAF protool: indeed, the upper-triangularstruture of the hannel matrix an allow for the implementation of sub-optimal de-tetors suh as the Suessive Interferene Canellation (SIC) or the SISO-MinimumMean-Square Error (MMSE) detetors that an provide a drasti omplexity redu-tion with respet to the exhaustive APP detetor.
• Derive bounds on the diversity order of the MIMO-SAF hannel: investigate onwhat diversity orders a D-ST-BICM an ahieve in the ase where the nodes havemultiple antennas.
• Study of Deode-and-Forward protools from the D-ST-BICM point-of-view.
• Study of the shemes proposed in this manusript for Multi-Carrier (MC)-CDMAsystems and OFDM systems.
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