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Chapter 1

Introduction

Over the past few years, wireless networks applications have gained ever-increasing pop-
ularity. They provide novel opportunities for increased reliability that are non-existent
in point to point communications. However, due to the nature of the wireless channel,
effects such as fading, shadowing, and interference from other transmitters can cause the
channel quality to fluctuate during transmission. One approach to combat such channel
fluctuations is to design a communication system that provides some sort of diversity,
i.e. provides many replicas of the signal to the receiver. Diversity can be temporal,
spatial, or frequential [2]. Multiple-antenna systems (also called Multiple-Input Multiple-
Ouput (MIMO) systems )have been shown to provide spatial diversity that boosts the
performance in fading environments. In addition, the need to transmit at high data rates
is fulfilled with such systems as they allow the simultaneous transmission of multiple
streams (spatial multiplexing). However, in some cases, due to space or cost limitations,
the implementation of more than one antenna on the same terminal is impossible. For
this reason, the concept of cooperative communications was proposed, which means that
terminals can cooperate between each others to provide spatial diversity in a distributed
configuration, thus forming a virtual antenna array.

In this report, we study the design of space-time bit-interleaved coded modulations (ST-
BICM) suited for frequency non-selective single-user block-fading channels. The outline
of the manuscript is as follows:

e In Chapter 2, we first introduce the fundamental information theoretical limits of
block-fading channels in general (namely the outage probability), limits that are
used throughout the report for the analysis of coded modulations. We then de-
scribe the ST-BICM transmitter model, before describing the iterative receiver that
can lead to quasi-maximum likelihood (ML) performance with reasonably low com-
plexity. We end up this chapter by recalling the Singleton bound on the diversity
order of coded systems for a given coding rate.

e In Chapter 3, we propose ST-BICM schemes suited for the multiple-input multiple-
output (MIMO) channel with iterative decoding. First, we design space-time pre-
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coding matrices that minimize the discrete input outage probability, and we show
the good performance of these precoders since the first iteration of an iterative re-
ceiver. Second, we investigate a low-complexity coded scheme for a four-transmit
antenna configuration based on the Alamouti scheme. Finally, we propose the design
of turbo codes for MIMO channels, and we will show that this scheme dramatically
approaches the outage probability limit with relatively low decoding complexity
using intelligent switches (called “code multiplexers”) at the output of the turbo
encoder.

e In Chapter 4, the design of ST-BICM for the amplify-and-forward cooperative pro-
tocol with multiple relays is considered. We derive bounds on the diversity order
for this protocol, and we show that precoders that do not entail an increase in the
detection complexity are optimal diversity-wise. We next discuss coding gain issues
for this protocol, and show simulation results for various coding rates and network
configurations. We finally show the performance of code multiplexers with turbo
codes over this protocol.

e In Chapter 5, in a goal to achieve optimal coding gain over block-fading channels, a
new method for the design of irregular turbo codes is proposed. We first show that
irregular turbo codes outperform LDPC codes for the AWGN channel, and then
we show they outperform the regular turbo codes on block-fading channels using
density evolution methods.

We end up this manuscript by the concluding remarks and some future perspectives.
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Chapter 2

(zeneralities

2.1 Introduction

In this manuscript, we deal with wireless block-fading channels, that were introduced
in 3] to model slowly varying fading channels. In this model, a frame (or a codeword)
sent over the wireless channel sees a fixed number of fading coefficients. Standards such
as Global System for Mobile Communications (GSM) or the promising Orthogonal Fre-
quency Division Multiplexing (OFDM) that involve slow time-frequency hopping are well
represented by this channel model. The block-fading channel model leads to a null ca-
pacity, as the capacity depends on the instantaneous channel instance. In this chapter,
we will start by introducing the information theoretical limit of block-fading channels,
that is outage probability. We will then present the general communication system we
will use throughout this report; a transmitter consisting of a space-time precoded coded
modulation, and a receiver consisting of an iterative detection and decoding blocks. The
last part of this chapter presents the bound on the diversity order of coded systems on
block-fading channels.

2.2 Information theory of fading channels

Back in 1948, Claude E. Shannon established the definition of channel capacity through
the noisy-channel coding theorem [4] as the maximum theoretical rate at which we can
reliably transmit data (i.e. with a vanishing error rate) over a channel with a specified
bandwidth and at a particular noise level. Channel capacity is a deterministic bound
that takes different expressions depending on the channel type. Now suppose that the
input and the output of the channel are given by the two random variables X and Y
respectively. The channel capacity is by definition given by:

C=max Z(X;Y) (2.1)

p(z)
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where p(x) is the input distribution and the mutual information Z(X;Y) between X and
Y is given by:

I(X:Y)=HX)+HY)-H(Y,X)=H(Y)- HY/X)=H(X)- HX/Y) (2.2)

and the entropy function H gives the average amount of bits one needs to represent a
random process. For the additive white Gaussian noise (AWGN) channel for instance,
the channel capacity for a Gaussian input is given by:

E
Cawen = log, (1 + Rﬁ) bits/s/Hz (2.3)
0

It is thus possible to reliably transmit information on an AWGN channel at a rate R <
Cawen through an infinite length codeword. Now for wireless channels, the channel
input-output model is given by:

y=xH+w (2.4)

where x is the input vector, y is the output vector, H is the channel matrix with complex
Gaussian fading coefficients, and w is the AWGN vector. In the presence of ergodic
Rayleigh fading, it was shown in [5] [6] that the channel capacity for a Gaussian input
without side information at the transmitter is given by:

C =Ey [Cy] =Ey [log,det (I + PHH)] (2.5)

where P is a function of the signal-to-noise ratio. For single-antenna quasi-static fad-
ing channels, H = h has a single entry. For multiple-antenna and amplify-and-forward
cooperative channels, the complex channel matrix H takes different forms that will be
discussed in the next chapters. Now as the channel gain process is ergodic, i.e. the time
average is equal to the ensemble average, the channel changes at each realization. In
other words, the randomness of the channel coefficients can be averaged out (removed)
over time as shown in (2.5). This results in the fact that the capacity of an ergodic channel
is information stable as it tends to a deterministic value and long-term constant bit rates
can be supported.

Now for non-ergodic fading channels, the channel gain is a random variable and does not
change with time (at least for the duration of a codeword). The channel gain process is
stationary but not ergodic, i.e. the time average is not equal to the ensemble average. This
means that certain “weak” realizations of the channel coefficients can cause the capacity of
the channel to fall below the transmission rate we want to maintain. Non-ergodic channels
are information unstable [7] as channel capacity is not deterministic. The expression for
the channel capacity is a random variable with probability density function pe,, (i) that
defines the “outage” probability |3][8]:

R
P, = P(OH < R) = /0 ch(i)di (26)
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For block-fading channels, we suppose that a codeword sees n. different realizations of
the channel matrix, and this gives the following expression for the Gaussian input outage
probability:

P, =P (ni ilog2 det (1 + PH}Hj) < R) (2.7)

C—

Note that when D — oo, the averaging over the channel realizations leads to the ergodic
channel capacity as in (2.5). Tt is clear that area under the tail of the capacity given
the channel distribution pe,, (i) in (2.6) is a cumulative distribution function Fy(R). The
outage capacity can be seen as the e-capacity [7] [9] [10] of the channel as:

C.=sup sup {R: Fj(R)<e} 0<e<1 (2.8)
p(z)

The e-capacity C, is the optimum asymptotic rate at which information can be encoded
over the channel via a sequence of channel codes that yield a maximal probability of
decoding error of €. Note that:

OelO =C (29)

which gives the Shannon capacity. The e-capacity approach for outage capacity suits
the convention of “x percent outage” followed by certain papers (see [11] for example).
However, in this report, we will use the outage measure as a probability as in (2.6) to be
able to compare it with word error rate performance of coded modulations.

As proved in [5], maximum capacity over ergodic fading channels (consequently minimum
outage probability over block-fading channels) is achieved with Gaussian inputs, i.e. when
p(z) follows the normal distribution. However, with practical communication systems, we
always deal with discrete input constellations. For this reason, the expression in (2.5) for
Gaussian inputs does not hold anymore. From (2.2), we have:

I(X:Y)=H(Y)— H(Y/X) (2.10)

Now let X € €, a discrete alphabet of 2" vectors. The entropies from (2.10) can be
expressed as [12]:

HY) = - / p(y)loga(p(y))dy

Y

= —/Zp(y/a:)p(x)logg Zp(y/x')p(x') dy (2.11)

HY/X) = =3 pla) [ ply/)logaloly/)dy (212
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This gives the expression of the mutual information as:

In = Z/ (y/x)loga( Z (p%x)) y (2.13)

S .

—2— Gaussaninput, R=05
—a— BPXK
----&--- Gaussian input, R=2

10

12 14 16 18 20 22 24 26 28 30 32
E,/Ny(dB) at the receiver

Figure 2.1: Outage limits for quasi-static channel, BPSK, 16QAM, and Gaussian input,

half-rate channel coding.

Fig. 2.1 shows the outage probabilities of a quasi-static fading channel for different
inputs and half-rate channel coding. As mentioned earlier, Gaussian inputs outperform
all other distributions at the same spectral efficiency. We also notice that with half-
rate coding, the 16-QAM constellation outage probability is closer to the Gaussian input
outage probability than the BPSK modulation. As the outage probability reflects the
variations of the mutual information function depending on the channel realizations, this
behavior is explained by the fact that the mutual information curve of the 16-QAM
constellation at half-rate coding is closer to the Gaussian mutual information line than
the BPSK constellation at the same coding rate (see |13, Fig. 2|). Fig. 2.2 shows the
outage probabilities for different MIMO channel antenna configurations, half-rate channel
coding and Gaussian input. The diversity order is given by n; x n,, but the coding gain
differs for the same diversity order depending on the configuration.
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E/No(dB) at the receiver

Figure 2.2: Outage limits for different MIMO configurations, Gaussian input, half-rate
channel coding.

2.3 Bit-interleaved coded modulation (BICM) with it-
erative decoding

In 1992, it was shown in [14| that by cascading an error correcting code, a random
interleaver and a modulator, a communication system achieves very high gains. Later,
the authors in [15] established a framework for the analysis and design of the so-called
“Bit-interleaved coded modulation” (BICM), and showed that this structure allows to
approach the information theoretical limits of the channel, for the AWGN case as well as
for the ergodic fading case. Since then, this structure has been widely studied for different
scenarios. In [16] [17] [18] among others, the authors studied BICM for non-ergodic fading
channels, and it was proved that this scheme can also approach the outage limit of the
channel. In this report, the BICM model for block-fading channels (i.e. mnon-ergodic
channels) will be considered.

2.3.1 Structure of the BICM transmitter

The general structure of a BICM is shown in Fig. 2.3. It consists of an error correcting
code C of rate R., a deterministic interleaver II, a symbol mapper, and a space-time
precoder. We will now describe each block and give historical notes and classifications
that justify our choices.
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Noise

Information Convolutional Code Interleaver z Space-Time > Channel
R >

AM Mapper —»
Bits c il Q PP Precoder H

Y
\ 4

'

:

Figure 2.3: ST-BICM transmitter scheme.

The error correcting code

The field of channel coding started with Shannon’s landmark paper in 1948 [4]. The idea
is to protect data sent through a channel by adding some redundancy to the transmitted
signal in way to ensure reliable communication. The encoder is a bijection between the
information sequence b of length K and the coded sequence ¢ of length N. The coding
rate is R, = K/N. There are different types of error correcting codes, and they can be
classified into two major categories [19]:

e Algebraic linear block codes: Hamming, Golay, Reed-Muller, BCH, and Reed-
Solomon codes among others. Algebraic coding theory dominated the first decades
of channel coding history. The main objective of this design theory is to maximize
the minimum distance d (also called Hamming distance (d,,;,)) between any two
distinct codewords, that is the minimum number of bits in which they differ. They
are mostly used for high data rates, but fail to approach fundamental limits. In
particular, Reed-Solomon codes are efficient in applications that suffer from bursty
errors, such as magnetic tape and disk storage for instance. They can provide high
error-correction power with relatively small redundancy at very high data rates.

e Probabilistic codes: in [19], it is stated that “probabilistic coding is more concerned
with finding classes of codes that optimize average performance as a function of
coding and decoding complexity’. This class includes convolutional codes, prod-
uct codes, concatenated codes, and trellis decoding of block codes. Convolutional
codes were invented in [20]. They can be grouped into two major categories: non-
recursive non-systematic convolutional (NRNSC) codes, where all information bits
are encoded through shift registers, and recursive systematic convolutional (RSC)
where the uncoded information sequence is sent through the channel and at the
same time is encoded through a feedback register. As a result, the code can be
represented by a trellis, which allows for low complexity decoders. Although they
have infinite length, convolutional codewords can be made finite by proper trellis
termination. In this report, we will mainly use NRNSC codes with BICM due to
their flexibility. Product codes and compound codes were proposed in [21] and
[22| respectively. They consist of a serial concatenation of two or more codes at the
transmitter, and by individual decoding of every code at the receiver. Their concept
lead to the invention of “Turbo-codes” that will be discussed in chapter 5. Another
example of concatenated codes are “low-density parity-check” (LDPC) codes [23].
They are based on sparse generator matrices that allow for probabilistic iterative
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decoding under the message-passing algorithm. Both LDPC and turbo codes have
been proved to be capacity approaching codes for the AWGN channel. However, in
this report, we will only deal with trellis codes (NRNSC convolutional and turbo
codes).

The interleaver

The role of an interleaver is to scramble the bits of a codeword. It is a very impor-
tant block in a BICM under iterative decoding, as it ensures independance between
the extrinsic probabilities and the a priori probabilities exchanged by the nodes in
a graph. In addition, if maximum-likelihood (ML) decoding is possible, an inter-
leaver spreads the consecutive bits of an error events thus it limits their interference.
There are different types of interleavers: pseudo-random, S-random [24], where two
consecutive bits at the input of the interleaver will be placed a distance S away from
each other at the output. In [18], a class of optimized interleavers for block-fading
channels was proposed, class that respects the “ideal interleaving” conditions. These
conditions are summarized as (see proposition 5, chapter 3 in [18]), : “...the inter-
leaver should uniformly place consecutive bits on all the channel time realizations,
transmit antennas, and bit positions of the mapping and prohibit the interference of
these consecutive bits in the mapping’. This class of interleavers will be frequently
employed throughout this report.

The modulator

This block converts m coded bits into a constellation symbol at each channel use.
The bijection from bits to symbols is called mapping (or labeling) The cardinality
of the constellation € is given by Q2] = M = 2™. Now in the case of MIMO systems
with n; > 2 transmit antennas for instance, the mapper takes m x n; bits at each
channel use and converts them into a vector of n;, modulation symbols. There
exist different types of mappings, each suited for certain applications or specific
channel types. Gray mapping, the most widely used, allows for only one bit to
change between any two neighbors of the constellation, but it only exists for square
constellations (i.e. |Q2] = 2%*). The mapping presented in [13] known as “Ungerboeck
mapping” maximizes the Euclidean distance between neighbor constellation symbols
and is suited for trellis-coded modulations. Mapping issues will not be treated in
this report, and only Quadrature Amplitude Modulations (QAM) will be considered.
The energy per M-QAM symbol is given by:
2(M —1)

B,="" 2.15
3 (2.15)
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The space-time precoder

The precoder S spreads the QAM symbols over s time periods. In most cases, the
precoder is linear, i.e. it maps the QQAM vector onto a linear combination of the
constellation symbols. However, in some cases, the space-time precoder is not linear,
as is the case for orthogonal designs [25] [26] and the scheme presented in section
3.7.

2.3.2 The BICM iterative receiver

The codewords at the output of the concatenation of a space-time precoder and a BICM
can be seen as global Euclidean codes [18]. Ideally, such codes should be decoded with
a maximum-likelihood (ML) decoding algorithm, but an exhaustive search over all the
codewords is unfeasible in practice as the codeword size increases. For this reason, the
receiver for such systems is at the image of the transmitter, whereas corresponding blocks
iteratively exchange soft information. Thus the receiver of a space-time (ST) BICM con-
sists of two main nodes: a soft-input soft-output (SISO) a posteriori probability (APP)
QAM detector, that converts the information carried by the constellation mapper and
the space-time precoder as soft information on the coded bits, and a SISO decoder that
takes the information from the detector as a priori and generates more reliable soft infor-
mation (extrinsic probabilities) on coded bits. The final decision is made on the APP on
information bits at the output of the SISO decoder.

Ideally, the optimal SISO detector computes the channel realizations over all possible
“space-time codewords”. This operation might be too complex for high data rates (large
constellation size, large number of antennas, large number of relays...). A complexity
reduction method called “List sphere decoding” [27] reduces the exhaustive list of candi-
dates to a smaller list without degrading the overall system performance. There also exist
sub-optimal detectors such as SISO Minimum Mean-Square Error (MMSE) detectors or
Serial /Parallel Interference Cancellation (SIC/PIC) detectors developed in multi-user de-
tection theory (see [28] and references therein).

As for the channel decoders, there exist hard output decoders and soft output decoders.
For algebraic codes, there only exist hard output decoders [29] [30]. For convolutional
codes, the most famous hard output decoder is the “Viterbi algorithm” [31] (also known
as Maximum-Likelihood Sequence Estimator (MLSE)), that is optimal in the ML sense.
The first soft-output decoding algorithm was proposed back in the 1950s [32]. In 1963,
Gallager proposed what is known as the “sum-product algorithm” (or also “belief prop-
agation”) for the iterative decoding of LDPC codes. Later, in the 1970s, the “forward-
backward algorithm” (or BCJR, following the initials of the authors) was proposed as a
SISO trellis decoder that gives the APP on information bits. Due to its additional com-
plexity and to its sub-optimality codeword-wise, this algorithm did not replace the Viterbi
algorithm until the invention of turbo codes, where the exchange of soft information was
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mandatory (see chapter 5). In the late 1980s, the “soft-output Viterbi algorithm” was
proposed in |33] as a Viterbi algorithm that gives soft information on coded bits, but this
algorithm is sub-optimal compared to the BCJR for iterative processing. Throughout this
report, the BCJR algorithm will be used for the decoding of error correcting codes, due
to its optimality in generating soft information on messages.

As mentioned previously, the optimum decoding of a ST-BICM is to compute a ML de-
coding algorithm over the global code. This means that the separation between detection
and decoding is largely sub-optimal; an exhaustive ML search of the transmitted vector
at the detector level can provide information that can mislead the decoder in choosing
the probable codeword. For this reason, in a way to approach the optimality of the global
ML detection, we will use an iterative detection and decoding receiver throughout this
manuscript.

Fig. 2.4 shows the general structure of an iterative receiver suited for fading channels.
The two major blocks represent the SISO detector and the SISO decoder, that are sep-
arated by interleaving blocks (the block II7! is a de-interleaver). The iterative process
consists of exchanging soft information between the two blocks.

| SISO e SISO 7+
y Detector Decoder
! 7(ci)

Figure 2.4: ST-BICM iterative receiver.

The SISO detector receives a complex vector y € CN* given by:
y=zSH+w=xH+w (2.16)

where z € CM is the vector of QAM symbols, S is a IV, x N, space-time precoder, H is the
complex channel matrix, and w is a circularly symmetric zero-mean complex Gaussian
noise vector with variance Ny. For a MIMO system with n, receive antennas, N, = s.n,,
while for a cooperative system with [ single-antenna relays, N, = 3 + 1. In addition,
N; = s.n; for a MIMO system with n; transmit antennas, and N, = § + 1 for a co-
operative system, all employing 2™ — QAM modulations. The detector first computes
the channel likelihoods p (y/x) over C*r, then it generates the extrinsic probabilities on
coded bits ¢ (¢;) based on the channel likelihoods and the a priori probabilities 7 (¢;) fed
from the SISO decoder. At the first iteration, all the a priori probabilities are unbiased.
Throughout the iterative process, the exchange of probabilities on coded bits between the
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two blocks should give more reliable soft information on the information bits. An ideal
convergence of the process would lead to near-ML performance.

In the following we will describe the optimal APP detector based on a marginalization
over an exhaustive list. Note that complexity reduction for such detectors was proposed
in |27|. By definition, the APP of a coded bit ¢; is the probability to detect ¢; when y is
received:

ey — PR
APP(c;) = p(ci/y) o)

where N; = s.n; for a MIMO system with n; transmit antennas, and N; = § + 1 for

i=1,..,mN, (2.17)

a cooperative system, all employing 2™ — QAM modulations. In this expression of the
APP on coded bits at the detector, it is obvious that the probability on coded bits p(¢;) is
nothing but the a priori probability fed from the SISO decoder, thus p(¢;) = 7(c;). Now
the conditional probability density function p(y/c;)p(c;) is obtained by the marginalization
of the joint probability density function of the channel likelihood and the coded bits as
follows:

p(y/e) = Y ply.ci/e) (2.18)

j#i, j<mNy
= > ply/e) ] () (2.19)
j#i, j<mNy ui

Here we suppose that the coded bits transmitted during the same time period are in-
dependent. Now as the noise is AWGN and by supposing that the receive antennas are
independent we can write:

1 —|ly—x
p(y/ch '-'>CmNt) — 27TN06 lly—xH]||%?/2No (220)

Now in an iterative process in general, a block (i.e. a detector or a decoder) should not
give information on a bit to the other block that is known to this block. The APP on
a coded bit computed by the detector can be written as the product of two independent

probabilities:

APP(c;) = &(ei)m(¢y) (2.21)
As 7(¢;) is computed by the SISO decoder, giving back APP(¢;) to the SISO decoder
is not appropriate. For this reason, the extrinsic probability £(¢;) is given to the SISO
decoder. Now let us define ¢y, ..., ¢;, ..., cmn, € (¢;) as the set of the mN; bits in y having
the i bit equal to ¢;, we can write the following normalized expression for the extrinsic
probabilities [18]:

p(y/ci =1)

€& = SNa=0)+ry/a=T) (2.22)

> caen [(efllyfx H||2/2No> Huﬁﬁ(cu)]

= (2.23)
oot [(e ¥ T ()]
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Note that, luckily enough, the expression for p(y) from (2.17) is cancelled through the
normalization. Indeed, the computation of this quantity that depends on the transmitted
signal and the noise is tedious.

2.4 Bounds on diversity for coded systems on non-ergodic
channels

On a single-antenna ergodic fading channel, a frame sees different channel realizations at
each time epoch. This gives a Nakagami distribution of high order (represented by the
sum of the ||h;||?) at the output of the detector and thus gives a high order of diversity.
The diversity order that can be achieved by a ST-BICM on such channels is thus mainly
limited by the minimum Hamming distance d,,;, of the channel code. Over block-fading
channels with a limited number of states, the situation is different. In the sequel, we will
call BO-channel the binary-oriented channel with input ¢; and output £(¢;) as observed
by the channel encoder and the channel decoder.

Definition 1 Under the genie condition (i.e. perfect a priori information) in the BO-
channel, the number of independent binary-input non-ergodic fading sub-channels is de-
noted by Dy and called the state diversity.

As an example, in the single-input single-output block-fading channel where a codeword
spans n. channel realizations, we have that Dy = n.. Now let wy(c¢) denote the Hamming
weight of a codeword c of length L. generated by a linear binary code. We write wy(c) =
ZZD;{ w;, where w; is the partial Hamming weight transmitted on the binary-input sub-
channel ¢ within the BO-channel. The state diversity dy(c) achieved by the codeword ¢ is
the number of non-zero partial weights. For a given transmitter structure, the achievable
state diversity is dy; = min.,o ds(c). Now suppose that each L./Dy, bits are transmitted
over one channel state. By grouping all the bits transmitted over one channel state into
one symbol, we get a non-binary code of length Ny = Dy, built on an alphabet of size
2Le/Dst - The Singleton bound on the Hamming distance of the non-binary code (K, N;)
is thus given by:

ds¢ < Ng—Ks+1=Ng— N, R.+1 (2.24)

Finally, state diversity is upper-bounded by |34]||35]
dst S LDst(l - Rc) + 1J S Dst (225)

Note that the maximal diversity given by the outage limit under a finite size QAM al-
phabet also achieves the above Singleton bound [10]. We can notice from (2.25) that full
diversity is attained only if R, < 1/Dg. As Dy, grows to infinity (i.e. tends to an ergodic
fading channel), the diversity order of a coded system is limited by wg(c).
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2.5 Conclusions

We discussed the outage probability for block-fading channels, that represents the funda-
mental lower-bound on the performance of coded modulations for long enough codewords
on this type of channels. We then presented our system model, that will be used through-
out this manuscript to design schemes that approach the outage probability limit. We
finally explained the bounds on the diversity order of a binary code over block-fading
channels, bound that will be elaborated further to fit to specific types of block-fading
channels, namely the multiple-input multiple-output (MIMO) channel and amplify-and-
forward cooperative fading channel.
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Chapter 3

Coded modulations for the multiple-
antenna channel

3.1 Introduction

Since the late nineties, employing multiple-antennas on a communicating terminal has
been of great interest as a result of the dramatic increase in capacity these systems can
provide [5]|6]. Moreover, for block-fading channels, multiple-antennas are a mean to pro-
vide spatial diversity that allows to combat the fluctuations of the quality of the channel.
Since then, researchers in the wireless communication community studied and designed
efficient schemes for such systems that allow for maximal diversity orders and high per-
formance. With the exception of few works that will be mentioned in this chapter, most
designs only considered the protection of constellation symbols under ML decoding, with-
out taking into account the presence of an error correcting code. In this chapter, we will
propose coded modulation schemes for the multiple-antenna channel that perform close to
channel limits. We will start by a state-of-the-art of coding schemes for the MIMO chan-
nel in section 3.2. We will then show the frame error rate of uncoded space-time rotations
as a function of the frame length (that constitutes the motivation behind our work), the
general system model, and the bounds on the diversity order achieved by multiple-antenna
systems. Next we will discuss our three proposed schemes; the first one consists of de-
signing space-time precoders that minimize the discrete-input outage probability (section
3.6), the second consists of the extension of the Alamouti scheme to a system with n; = 4
transmit antennas (section 3.7), and the third considers code multiplexer design for turbo
codes (section 3.8).

3.2 A brief historical note

After the pioneering works in [5][6] on multiple-antenna channels, the author in [36] pro-
posed the Bell-Labs Layered Space Time codes (BLAST), that demultiplex the symbol
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stream over n; transmit antennas, while the receiver recovers the transmitted symbols
through n, receive antennas. This scheme was capable of achieving high data rates
through spatial multiplexing, but it was not capable of recovering the diversity provided
by the transmit antennas as no “smart” processing was performed at the transmitter level.
For that reason, the authors in |26]|37| proposed design criteria for “space-time codes”; in
a goal to make benefit from the transmit diversity at the receiver. These criteria consisted
of minimizing the pairwise error probability of a pair of space-time codewords by maxi-
mizing both the determinant and the rank of the codeword matrix. The codes proposed
at first were constructed following orthogonal designs, from the famous Alamouti code
for n, = 2 [25] to the generalization for any number of transmit antennas in |26]. In the
same paper [26], the authors proposed the “space-time trellis codes”; these codes follow
the concept of convolutional codes as they are encoded via a trellis. They have better
error rate performance than orthogonal space-time block codes, but they require a viterbi
decoder thus an increase in decoding complexity. The problem with these codes is that
they severely degrade the information rate by introducing redundancy, and this degra-
dation is proportional to the number of transmit antennas. Indeed, for an orthogonal
complex space-time block code employing n; antennas, the maximal achievable rate is:

R, = 1+ logym (3.1)
2. logy 1y
As a nresult of this limitation of orthogonal designs, the use of algebraic tools to build
space-time rotations that attain full diversity and full spatial multiplexing was consid-
ered. Indeed, precoding signals for fading channels, which is well-known in single antenna
transmissions, has been rediscovered for multiple-antenna channels. In fact, Battail was
the first to suggest rotations to combat channel fluctuations in [38]. The pioneering work
on multi-dimensional rotated modulations achieved in the nineties, such as |39][40][41],
opened the way for the study of multi-dimensional rotations (i.e. linear unitary precoders)
in MIMO channels. Rotations in single antenna systems have been designed by classical
algebraic criteria, except for orthogonal transforms proposed by Rainish which are based
on the minimization of the cut-off rate [42|. Also, it has been shown in [43| that ran-
dom rotations perform as good as algebraic rotations in a high-diversity high-dimensional
environment. In [44] [45] [46] among others, the authors proposed then algebraic construc-
tions of space-time codes for uncoded multiple-antenna systems, and they outperformed
orthogonal designs as they were full-rate, i.e. one symbol is sent per transmit antenna per
symbol time. However, new problems have arisen with these designs, as the determinant
of the codeword matrix vanishes with an increase in the constellation size. The race to
the optimal space-time code for uncoded systems was ended by the works in [47| [48|
[49] for n; = 2 and by [50] for n, = 3,4,6. Indeed, these works provide space-time codes
that have non-vanishing determinants, thus they yield optimal performance with uncoded
systems under maximum-likelihood detection. As an example, the Golden code [47] is an
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algebraic precoder optimized for n; = n, = 2, its precoding matrix is:

0.52¢—70-55 0 0 0.85¢+71.01
0.85¢—70-55 0 0 0.52¢ 7212
Spupe — . . 3.2
Ge 0 0.85¢17258  ().52¢70-55 0 (3:2)
0 0.52¢—70-55 (). 854055 0

As an alternative to the design criteria proposed in |26]|37|, linear dispersion (LD) codes
[51] were designed for multiple antenna channels by a search that maximizes the ergodic
capacity of the channel under a Gaussian channel input. Such a design is not necessarily
suitable for a non-ergodic channel with a finite number of states, as these channels are
information unstable [7|. Also, the type of input alphabet is not considered in the search
for linear dispersion codes.

The major drawback of the aforementioned design criteria is that they do not take into
account the concatenation with an error correcting code in the system. Furthermore,
space-time signal modulations must be combined to error-correcting codes in order to
achieve optimal performance in the information theoretical sense.

For this reason, the authors in [17][18| considered bit-interleaved coded modulations for
space-time coding (ST-BICM). They showed that quasi-optimal global ML performance of
the coded modulation is achieved by imposing specific constraints (called genie conditions)
on the structure of the space-time precoder under ideal interleaving. In fact, in order
to guarantee maximum diversity order and maximum coding gain at the output of the
detector, the design must guarantee two conditions:

e Orthogonal sub-rows in the linear precoding matrix.
e Equal norm sub-rows in the linear precoding matrix.

If these conditions are met, perfect a prior: probability feedback will be assumed in the
iterative joint detection and decoding of ST-BICM, hence quasi-ML performance will be
attained in practice after some iterations at a high signal-to-noise ratio. As an example,
the cyclotomic rotation given below is an algebraic precoder satisfying the genie conditions
for ST-BICM with n;, = 2:

1 1 €j67r/15 _ej67r/15
1| ef2n/15  jei2n/15  _gisn/15 jeisu/15
Scyelo = [i5] = 9 | eddm/15  _ jdAm/15 510m/15 £d107/15 (3.3)
eIOT/15 _ei6n/15  _oj12m/15 _jejl2m/15

where we have the following:
e Vector (¢;1,¢;2) is orthogonal to vector (¢;3,¢;4) on any row ¢, i =1...4.

o Vectors (¢;1, ¢i2) and (¢; 3, ¢;4) have equal norms.
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Note that most of the algebraic space-time rotations designed for uncoded systems

guarantee at least one of the above conditions. The precoding matrix Sgc of the Golden
code from (3.2) for instance guarantees the first genie condition, and the second condition
can be compensated by an error correcting code with high coding gain [18].
In this chapter, we will propose space-time precoders suited for the ST-BICM scheme
whose design is mostly based on the conditions established in [17]|[18] for optimal perfor-
mance. Before doing so, we will show the behavior of the frame error rate performance of
uncoded space-time rotations and recall the bounds on the diversity orders that can be
attained by a ST-BICM on MIMO block-fading channels under ideal interleaving.

3.3 Upper bound on the frame error rate for uncoded
space-time signaling

Suppose that we concatenate Ny space-time precoded blocks forming a frame to be trans-
mitted on a block-fading channel with a probability of error P¢(Ny). Suppose now that
each block has diversity order d, so the probability of error P. of each independent code
is a function of the signal-to-noise ratio v and a chi-square random variable y given by:

2d
y=> v vi~N; (0,0 (3.4)
i=1
d—1,—y/20?
y“te
i E— 3.5
) = L (3.5)
Now let P;(Ns) denote the frame error rate as a function of Ny:
+00 N
Py = [ (1= (= o)™ o)y (3.6)
0
We can write that [34]:
Pr(Np) < 1= (1= Py, p))™" < Np.Poly,y) (8.7)

which gives the upper bound on P¢(Ny) as Ny goes to infinity as [18, Appendix AJ:

Py < [ " mmin[L N, Py, )] ply)dy (3.8)

- /Oa p(y)dy + - Ny.Pe(7,y)p(y)dy (3.9)

«

where « is given by:

P.(y,a) = — (3.10)
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Now let us suppose that when v goes to infinity we get:

Py, y) = e v/ (3.11)
which gives the value for « as:
a= %log(%) (3.12)
Now we can write the first term of (3.9) as:
o =1k R
Pr1(Ny) :/o py)dy = 1—€akz%ﬁ :ea;H (3.13)

Then we can write:

lim Pp(Ny) = [

3.14
Y—+00,Ns—+o0, d! ( )
Finally we can write the second term of (3.9) as:
400
Pra(Ny) = Ny-Pe(v, y)p(y)dy (3.15)
and:
+00 ym—l6 1+3)y
lim Pp(Ny) = i N d 3.16
i Pra(Ny) = lim o Y (3.16)
_7(1+%) d—1 1 + ot k
= lm NT—— il k‘Z)} (3.17)
y—+00 ( +§) 0
1
= lim ——— (3.18)

g=o0 (1 + 2)

We can notice from equation (3.14) that the frame error rate of an uncoded system
degrades as log(Ny)? where d is the diversity order. Hence, it is impossible to approach
outage probability with uncoded systems, as a coding scheme that approaches outage
probability has to be insensitive (or slightly sensitive) to block length. For the Alamouti
scheme for instance, the frame error rate is upper-bounded by:

210g% (%) + 4log(53L) + 4
Py(y) < 2l e

v

In a similar way, it was found in |52| that the frame error rate obtained by concate-

nating Ny (8,4,4) block codes is upper-bounded by:

(3.19)

21og?(2Ny) + 3/71log(7TN;) + 21og(2Ny) + 24/7

(2Rey)?
In addition, it was observed in [53| that the frame error rate of convolutional codes

P¢(Ny) < (3.20)

varies logarithmically with Ny on block-fading channels.
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3.4 System model and notations

In this chapter, we consider the BICM scheme as presented in section 2.3 concatenated
with a space-time precoder as shown in Fig. 2.3.
The channel model for a precoded ST-BICM is given by:

y=zSH+w=xH+w (3.21)

where z € Q = (M-QAM)™ and N, = R, - s-n;, the parameter s being the time spreading
of a precoding matrix S of dimensions N; x N;/R,,, where R, is the rate of the precoder. In
general, S is a full-rate unitary matrix (i.e. R, = 1) whose structure is matched to iterative
detection as the class of cyclotomic rotations proposed in [17|[18]. The MIMO channel
matrix has dimensions N;/R, x N,/R,, and assuming that the number of independent
channel realizations observed during one codeword transmission is n., we get:

1/R,
H = diag (H,,...,H,,....H,,... H, ... H,, ... H, ... H,, .. H,_ | (322
/ Ry/
S.RPTLC S.fip/MNe

the additive white Gaussian noise vector w of dimension N, /R, is assumed to be circularly
symmetric with zero mean and mean Ny. The Rayleigh fading channel is quasi-static fre-
quency non-selective, i.e. the whole transmitted frame undergoes one channel realization.
The channel coefficients are supposed to be perfectly known (perfect CSI) to the receiver,
but not to the transmitter. We make the assumption of perfect channel estimation and
perfect synchronization. Digital transmission is made as follows: uniformly distributed
information bits are fed to a binary convolutional encoder C. Coded bits {c¢;} are then
interleaved through II, Gray mapped into QAM symbols, precoded through S and trans-
mitted on the MIMO channel given by (3.22). The coherent MIMO detector computes
an extrinsic information £(¢;) based on the knowledge of H, the received vector y, and
independent a priori information 7(c;) for all coded bits. The coding rate is R, € [0, 1].
The transmitted information rate is equal to R = R,R.n;log, M bits per channel use,
where M is the cardinality of the bi-dimensional QAM constellation. An interleaver I
enables iterative probabilistic MIMO detection |54]|55| of the binary-oriented channel.

3.5 Diversity bounds for coded multiple-antenna sys-

tems

In ST-BICM, there exists a strong interaction between the error correcting code with
interleaving and the linear precoder, both in terms of diversity and coding gain maxi-
mization [18]. Complexity can be controlled by the choice of a space-time rotation S with
minimal time spreading factor s that guarantees full diversity [56]. In other terms, the
lowest, complexity solution would be to first let the channel decoder recover the highest
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amount of diversity possible, then the detector recovers the remaining diversity through
time spreading. For a MIMO channel, the channel diversity is defined as D., = nyn.n,,
which is equal to the intrinsic diversity order of the physical channel. For a given transmit-
ter structure, the achievable channel diversity is do, = limgng— 400 — l0g(F.)/log(SNR),
where SN R is the signal-to-noise ratio and P, is the error probability.

When S is the identity matrix, the ST-BICM diversity order is upper-bounded by [35]:

dep, < min (n, [ngne(l — R.) 4+ 1], D) (3.23)

With a vanishing coding rate, i.e. R. — 0, it is possible to attain the overall system
diversity order n,n.n; produced by the receive antennas, the transmit antennas and the
distinct channel states. Unfortunately, this is unacceptable due to the vanishing trans-
mitted information rate. Precoding is one means to achieve maximum diversity with a
non-vanishing coding rate. Under linear precoding that spreads QAM symbols over s
time periods, the Singleton bound becomes [56]:

Ty Ne

dep, < min <sn,_ U (1 —=R.)+ 1J , Dch> (3.24)
Now if s = ny.n., from the above inequality, we observe that precoding may achieve
maximal diversity n,n. without the use of error-correcting codes. Unfortunately, near-
outage performance is impossible in this case due to the weak coding gain of all kinds of
space-time precoders, as was discussed in section 3.3. The near-outage performance of
ST-BICM is a judicious trade-off between error-control coding and linear QAM precoding.
The genie conditions are optimal, in terms of ML performance, when all diversity given
by the transmit antennas is collected at the detector (i.e. s = m;). A supplementary
condition (that will be discussed later) called “Dispersive Nucleo Algebraic” (DNA) has
been proposed in [18] to keep optimality when s < m; while having the genie conditions
on sub-groups of transmit antennas.

With a judicious choice of an error-correcting code and a linear precoder, maximum
diversity is easily attained (d., = D). In general, a Nakagami distribution of order
D./ Dy is associated to each binary-input sub-channel embedded within the BO-channel.
Recall that D, is the state diversity seen by the binary code. To illustrate the above
definitions, we list the following examples:

e Forn, =2, n, =1, Dy, =2, and without rotation (s = 1). We get Dy = 2.

e For n, = 2, n, = 2, D, = 4. Without rotation (s = 1), we have Dy = 2. With a
cyclotomic rotation (s = 2), we get Dy = 1.

e For n, =4, n, = 2, D, = 8. Without rotation (s = 1), we have Dy = 4. With a
cyclotomic DNA rotation (s = 2), we get Dy = 2.
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3.6 Space-time precoders based on information outage
minimization
3.6.1 Introduction

At that stage, in the existing works, the authors achieved optimal (quasi-ML) performance
with a space-time precoded BICM under iterative detection and decoding. The genie
conditions ensure that a priori information fed back from the decoder becomes perfect
after a certain number of iterations. However, in some practical receivers, an iterative
algorithm might not be possible due to resource limitations. The high data rates and the
high processing speed required in a communication system can put strict constraints on the
number of iterations. For this reason, we will present full-rate space-time precoders that
lead the ST-BICM to perform well since the first iteration. Hence, we propose a simple
information theoretical design of multi-dimensional rotations that take into account the
interaction between channel coding and symbol space-time spreading.

3.6.2 Linear precoding designs

For a fixed rotation S and n,. fixed MIMO channel matrices H;, i = 1...n,, defined by
the n. fading blocks, let Zgy = Z(z;y) denote the average mutual information of the
equivalent channel with QAM input z and complex output y as in (3.21). The expression
of Zsy is a slight modification of (2.14) that gives:

1 & >, plylz’, SHy)
Tsir = smany — — 3 By yps, |1 z 3.25
TS TR, P YIS {OgQ ( p(y|z, SH;) (3.25)

where F,ysg, is the conditional mathematical expectation over z and y. The channel
likelihood is written in its classical form

(3.26)

2
p(y|z, SH) o exp (—%)

Expression (3.25) assumes that the precoder S does space-time spreading within the
same fading block H;. Its main role is to collect transmit diversity. Time diversity n. is
collected by the convolutional code whereas receive diversity is naturally collected by the
detector. The information rate transmitted by the space-time BICM is R = s.m.n;. R,
bits per s time periods (with R, = 1 for full-rate precoders). An outage occurs if the
instantaneous capacity, i.e. Zgy in our case, is less than R (see section 2.2). The outage

probability associated to the rotation S at a given signal-to-noise ratio is

P,+(S) = P(Zsg < s.m.ni.R.) (3.27)



3.6. SPACE-TIME PRECODERS BASED ON INFORMATION OUTAGE MINIMIZATION 31

10
10 \\\ o
= BN
: e,
-2 \ .....
10 N
e N N
DN O
\\ . .
L[ Outage Probability, QPSK Input T, \\
Outage Probability, QPSK Input with precoding K
3 = Qutage Probability, Gaussian Input
10‘ I T T T T o
4 5 6 7 8 9 10 11 12 13
Ey/No (dB)

Figure 3.1: Outage limits for n, =n, =s=2,n, =1, and R. = 1/2.

The new design, called TOM (Information Outage Minimization), selects a matrix
Stom within the ensemble X of random unitary matrices such that

= i 2
Siom = arg i Pout(S) (3.28)

As an example, choosing the best rotation within an ensemble R limited to 2000 matrices
yields the matrix written below, for QPSK alphabet with n;, = s = 2 and coding rate
R.=1/2

0.57e LT 0.64¢™I155 .14 79189 (.49¢ 1122
0.34e9994 (.51 ™7282 (.57¢9126  (.54¢H027
0.59¢ 77138 0.04¢ 77004 0.61e 7146 (.52 1712
0.46¢ 77084 0.57¢™IL™ (.53¢1305 (.43 7266

Stom =

By minimizing the discrete-input outage probability, the random rotation makes the dis-
tribution of the input vector x = zS to the channel look like a Gaussian distribution. Fig.
3.2 shows the distribution of the vector zSiom for a BPSK modulation, the bell shape
of the curve is flagrant. The problem with the matrix Syon is that it does not satisfy
the genie conditions. Although it boosts the performance after a “one-shot” detection and
decoding process, it does not guarantee optimal convergence of the iterative process. To
make our design suited for both “one-shot” detection and iterative decoding, a smaller
set N of random unitary matrices is obtained by adding to N the first genie constraint,
i.e. orthogonal sub-rows in S. This condition is much more important than the second
genie constraint (i.e. equal-norm sub-rows) as it gives independent extrinsic probabilities
at the output of the SISO detector. This second design, called G-IOM, selects a matrix
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Figure 3.2: Distribution of zSyon for a BPSK modulation.

SG—IOM satisfying
SG—IOM = arg min Pout(s) (329)
SeENG

As an example, choosing the best rotation within an ensemble N limited to 2000 matrices
yields the matrix written below, for QPSK alphabet with n;, = s = 2 and coding rate
R.=1/2

0.88¢ 77030 0 0 0.48¢ 7055
S | 0.48¢77033 0 0 0.88¢17257
GrioM 0 0.47e~9212 () 88¢*255 0
0 0.88¢ 17296 () 47¢ 7149 0
10°
N
107 \\\ ....

Pout
S/

o IEERETIEEE Outage Probability, QPSK Input

Outage Probability, QPSK Input with precoding
---:-----‘IOuta}qurlobabilitv. (}aug;_’anlrﬂput i i i
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Ey/No (dB)

3

10°

Figure 3.3: Outage limits for n, =n, =s =2, n, =1, and R. = 3/4.

Now for the case of n, = 4, using a half-rate convolutional code allows us to employ a
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DNA precoder with s = 2 as it ensures maximal diversity through (3.24). We thus design
a DNA-TOM precoder that minimizes and satisfies DNA constraints [18]; the first step is
to pick a 4 x 4 rotation from the ensemble x4 of random rotation, and the second step
is to place the orthogonal nucleotides inside an 8 x 8 matrix and separate them with null
nucleotides. We obtain the following rotation for n; = 4 and s = 2 (see proposition (2),
page 54, in [18]):

¢ ¢z 0 0 13 ¢a 0 0
0 0 ¢ ¢12 0 0 @13 Qu
a1 P22 0 0 a3 g 0 O
0 0 ¢a P22 0 0 a3 oy
31 @32 0 0 ¢33 @z 0 0
0 0 @31 ¢ 0 0 ¢33 ¢
¢s1 Qa2 0 0 @u3 a0 O
0 0 ¢u1 ¢a2 0 0 Qa3 Qu

Spna = (3.30)

with:
0.73¢77081 (). 2217462 () 1519060 () 17259

0.21e%7399  0.56e7444 (.62770% .50/
0.57¢t701 0.13e77128  (.57¢77063  (.57¢+70-90
0.29e 101 (0. 7817349 (0 5177227 ().20e 1709

PpNna-_TOM =

The DNA-IOM precoder is thus obtained by combining Spna with ®pna_1om. Also,

the DNA-cyclotomic precoder is constructed by combining Spnxa to @pNna—cyclo = Scyelo
given previously in (3.3).
Fig. 3.1 and 3.3 show the outage limit for different type of precoders in terms of Word
Error Rate versus signal-to-noise ratio. The outage probability has been also evaluated
for other system parameters. In fig. 3.1, the precoding matrix enhances the coding gain of
the discrete-input outage curve. In fig. 3.3, following the expression in (3.24), a precoding
matrix with s = 2 is mandatory to recover the diversity at the receiver, as illustrated by
the discrete-input outage curves of the unrotated case (that does not achieve diversity),
and the rotated case. All outage evaluations have been made by (3.25) and (4.13), without
Gaussian and analytical approximations when the channel input is a Gaussian alphabet
as in [57][11].

3.6.3 Simulation results

In order to emphasize the diversity order created by coding at the transmitter side, all
computer simulations have been conducted with the number of receive antennas n, = 1.
Fig. 3.4 and 3.5 illustrate the word error rate performance of a space-time BICM for n; = 2
transmit antennas, n. = 2 channel states, s = 2 time period spreading and a coding rate
R. = 1/2. Fig. 3.6 illustrates the case with n; = 4 transmit antennas and a precoding
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spread factor s = 2. At the first iteration, for n, = 2, IOM precoding slightly outperforms
other rotations. After 10 detection/decoding iterations, IOM is outperformed by G-IOM
and other algebraic rotations. The slight difference in performance is still apparent for

Ny = 4.
10° T T p— -
TR
- \# +.
& \ e +
10t Ef\ ks
x D
31:&
-2
10 2
B
| [ -=--+--- Cyclotomic, iter 1 \é&
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b —*— [OM, iter 1
8-+ Cyclotomic, Golden Code, G-IOM, iter 10 %\
3 —K— I10M, iter 10
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E/Ny(dB) at the receiver

Figure 3.4: QPSK modulation, n; = s = n. = 2, n, = 1, rate 1/2 16-state (23,35)
convolutional code, interleaver size N = 2048 bits, 1 and 10 iterations.
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Figure 3.5: QPSK modulation, n; = s = n. = 2, n, = 1, rate 1/2 16-state (23,35)
convolutional code, interleaver size N = 2048 bits.
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Figure 3.6: BPSK modulation, n;, = 4, s = n. = 2, n, = 1, rate 1/2 16-state (23, 35)
convolutional code, interleaver size N = 2048 bits.

3.7 Space-time precoders based on the Alamouti scheme

3.7.1 Introduction

One orthogonal design that highly caught the attention of the wireless communications
community is the Alamouti code [25] with R, = 1/2 for n, = 2. This pragmatic orthogonal
scheme allows to convert a 2 x 1 (n; X n,.) antenna configuration onto a 1 x 2 configuration,
by creating two independent parallel channels. Many attempts have tried to generalize
the Alamouti scheme to systems with larger antenna configurations, among them the
ABBA code [58], but in all cases the optimization was done by trading one parameter
(diversity order, rate of the precoder R, < 1/2...). In this section, we present a ST-BICM
design suited for a MIMO system with n, = 4, design that uses the Alamouti structure to
separate blocks of space-time rotated symbols. In our case, the rate of the precoder is still
R, = 1/2 even though we have more than two transmit antennas. However, the difference
with the n; = 2 case is that interference among blocks is introduced. For this reason, we
look at the problem as if we had a Code-Division Multiple Access (CDMA) system with
two users (represented by the two blocks), and inter-block interference becomes similar to
inter-user interference in CDMA. There exists several methods to remove the inter-user
interference in a CDMA system, and the most efficient algorithms are those that use
soft information from a channel decoder [28][59]. In our case, we chose to remove the
inter-block interference using the parallel interference cancellation (PIC) algorithm, that
proves to be optimal in computer simulations in our context. The performance of this
system under quasi-static fading and iterative detection and decoding proved to be close
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to system limits. All these points will be clarified in the sequel.

3.7.2 Matrix-Alamouti scheme

In a ST-BICM, the cardinality of the generated set of vectors is given by |Q| = 2mN m
being the number of bits per bi-dimensional QAM constellation symbol. The cardinality
increases exponentially with n; thus leading to a high decoding complexity at the receiver.
If n, =4, m = 2, and R, - s = 2 for instance, Q2] = 2'® = 65536, which is intractable
for practical applications. In the sequel, we investigate a non-linear space-time precoding
scheme that combines the symbols in a matrix-Alamouti form [25]. Let us first define the
operators mat(.) and vec(.) : mat(.) transforms a vector into a matrix by putting its last
sub-part beneath its first sub-part, while vec(.) performs exactly the inverse task. Let us
also define the operator { where:

ut = vec(UY) (3.31)

where u is a complex vector and U is any complex matrix. In the new model, x is
rewritten as a 1 X 16 row vector:

X = [xl Xy —Xb X ] (3.32)

where x; = z;S and xy, = z,S are space-time vectors in C*, obtained by multiplying a
QAM symbol vector z; € (M-QAM)* with a 4 x 4 space-time rotation S. Many design
criteria for n, = 2 antennas lead to different classes of rotations S as found in |17][44][47],
or IOM and G-IOM rotations presented in section 3.6. Although the rate of the precoder
in (3.32) is R, = 1, it is capable of converting the set of cardinality [Q] = 2™ onto a
smaller set Q. of cardinality || = 2mTNt, and this is due to the orthogonality inherent to
the Alamouti structure. In addition, the bound on the diversity of this scheme is exactly
that of a system with n, = 2, as it creates two “parallel” streams via x; and x, that have
a diversity order of 2 x n, each, independently from the coding rate R, in (3.24). With
a conventional 4 x n, system, when R. — 1, full spreading with s = 4 is mandatory to
recover full channel diversity, yielding an exponential increase in detection complexity.
With the scheme proposed in this section, full spreading means s = 2. The purpose is
then to drastically reduce the complexity at the detector while recovering maximum di-
versity with high coding rates.

By replacing x in (3.21) by its form in (3.32), we get a slightly different channel model
than the one of (3.21) and (3.22) as follows:

H, 0
H 0
[ 1 yﬂZ[xl Xy —X) xi{] -
0 Hy (3.33)
0 Hp

+[W1 Wg]
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where all vectors y;, y2, w; and wy are in C?*, and:

Hl 0 H2 0
bl |i 0 H1 :| ) b2 |: 0 ]:_I2 :|

where H; and H, are 2 x n, channel coefficients matrices. We can write the received
signal vectors from (3.33) as follows:

y1 = XiHp +xHp +wy (3.34)
y: = —xiHy +xiHp + wy (3.35)

The new expressions for y; and y, from (3.34) and (3.35) become:

Y, =mat(y;) = mat(x;)H; + mat(xy)Hy + mat(w)
- G1H1 + G2H2 -+ W1 (336)

Y, = mat(y2) = mat (—Xg) H, + mat <x§) H, + mat(ws)
- —GlH, +GIH, + W, (3.37)

where G; and G, are 2 x 2 matrices, and W; and W, are 2 X n, matrices.
In order to recover the transmit diversity, the combining scheme in [25] has to be per-

formed on (3.36) and (3.37). However, as matrix multiplication is not commutative, two
combining schemes can be implemented.

First combining scheme - FCS

We can write the combined versions of Gy and Gy as follows:

r, = HY, +YIH,
— HIGH, +HIGH,+ HW, + WiH, (3.38)

r, = H)Y,-YiH,
— H!G.H, + HIG,H, + HiW, - WIH, (3.39)
Although this combining scheme introduces colored noise, it is capable of totally re-

moving the inter-block interference. However, it gives an estimate of the signal as HIGJ-HZ-
that is not of the form of the matched filter (i.e. HIHZ), thus it does not recover all the
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transmit diversity. Indeed, for n, = 2 for instance, the equivalent channel matrix after
combining is given by:

vec(HIGlHl + H;Gng) L

|hi1 2 + |hsi)® Righay + Righar hiphia + Wi has  |hia|* + | haal?
hiihi1 + R hsy  hishin 4+ hishst Ry his + hiihsy  hishis + hlohso
Ry hor + P31 har hiyhor + Riohyr R hos + R has highos + hiohas
|hot|® + |hat|®  hiohor + Nighar  hiyhoo + Rjhas |haol® + |has|?

(3.40)

7z

We observe from (3.40) that only 2 of the 4 symbols of z;S are multiplied by Nakagami
distributed random variables of order 4, thus the overall system diversity is limited to 4.
The same reasoning applies to I's.

Second combining scheme - SCS

By permuting the matrix product of the first combining scheme, we get other versions of
I'1 and I'y; denoted by G,.; and G, in the sequel:

G, = YH +HY!
- G,HH! + HH,G, + G,H,H! - H,H!G, + W, H! + H,W! (3.41)

G, = YH —-HY!
= HHI|G, + G,H,H! + G HH) - HHIG, + W,H] - H/W] (3.42)

The first two terms of (3.41) and (3.42) are the desired signal estimates. The second
two terms are the interference introduced by the combining scheme, and the last two terms
are the colored noise components. In this scheme we are able to recover the transmit
diversity via the first two terms of (3.41) and (3.42), as shown in the following equation
for n, = 2:

vee(GiHH! + HbHIG) £ z,SHg, (3.43)
where
A+ As Niihar + Ryhae hithiy + hiahl, 0
Hg — hsihy, + hsahiy, A+ Ay 0 hi1hs, + hiohi, (3.44)
0 hiihor 4 hishaa  hsihiy + hsahly Ay + Ay
and

A = Vln’Z + Vl12’2, Ay = ’h21’2 + Vl22’2, A = ’h31‘2 + ’h32‘2> Ay = Vl41‘2 + ’h42‘2



3.7. SPACE-TIME PRECODERS BASED ON THE ALAMOUTI SCHEME 39

By symmetry, we get:

A+ As hsihiy + haohly  hijhar + hishoo 0
He — HTS _ Ry har 4 Riohas A+ Ay 0 hiihar + hiyhoo
: ! hi1hs, + highl, 0 As + As hsihy, + hsahi,
0 hiihiy + highsy  hiihat + hiohas Ay + Ay

(3.45)
As shown in (3.43), every symbol in z;S and z,S undergoes Nakagami distributed random
variables of order 4, which leads to an overall system diversity of 8.

However, this combining scheme introduces considerable interference along with col-
ored noise. In an uncoded system, this combining scheme does not converge as the
received signal constellation is not clearly delimited within distinct Voronoi regions, even
for significantly high signal-to-noise ratios. This scenario is similar to that of multi-user
detection (MUD) in heavily loaded CDMA systems, where users introduce interference to
each others. Hence, we can use detection techniques known for coded MUD-CDMA as in
[28][59] and their references to get reliable estimates of the signals. Therefore, we choose
to map one interleaved codeword through z;, and another interleaved codeword using z,,
as if we had two “virtual” users. This results in sending a frame that has the length of
two codewords. The transmitter for the proposed system is shown in Fig. 3.7.

Noise
Convolutional Code Interleaver z Space-Time | ;,s g -
AM Mapper —»| —» i 1
a I, Q pp Precoder Matrix 1 MIMO
Information Alamouti | ! Channel !
Bits - 3 ;
Convolutional Code Interleaver Z2 Space-Time |2z2S Encoder || H v
¢ o QAM Mapper —» — i
& 2 Precoder —> —>

Figure 3.7: Transmitter model for matrix-Alamouti encoded ST-BICM.

In our case, as convolutional codes are employed, one can send a unique codeword
instead of two. However, we have to make sure that the coded bits that are mapped onto
z; are far from the coded bits that are mapped onto zs in the trellis of the code, and the
two parts of the code should be interleaved separately. In this way we avoid introducing
inter-block interference at the transmitter.

3.7.3 Iterative joint detection and decoding

Let us write (3.41) and (3.42) as:

g = vec(Ge) = z1SHg, + zoSH;, + vec(WlHI + HQW;) (3.46)

g = vec(Ge) = 2,SHg, + z:SH,, + vec(W,HI — H; W) (3.47)



3. CODED MODULATIONS FOR THE MULTIPLE-
40 ANTENNA CHANNEL

where Hg, and Hg, are taken from (3.44) and (3.45). In addition, we have:

0 —hai1hiy — haohly,  hg1h3, + hsahi, 0
where

and H;, = HJ}I by symmetry.

Now let N denote the number of M-QAM symbols in one convolutional codeword (i.e.
there are 2N M-QAM symbols in a frame for both convolutional codes). In order to get
reliable estimates of the combined signals, one has to efficiently remove interference from
(3.46) and (3.47). This gives us:

g/cl - gcl - ZVQSHI1
— 2,SHyg, + (2o — 72)SH;, + vec(W,H! + H,WY) (3.48)

g2 = 82— ZN18H12
— 2,SHg, + (21 — 21)SHy, + vec(W,H) — H; W) (3.49)

The first term in (3.48) and (3.49) is the desired signal part, and the other two are
the residual interference and colored noise terms. In this case, the likelihoods of g, and
g follow the multivariate Gaussian distribution as:

p(é\;l ‘ ZlusHS1) NN(ZISHSUEI); p(ngQ ‘ Z27SH5'2) NN(ZQSHSQ722)

where
>, =F [(g; ~ 7:SHs,) (g1 — zlsHSI)] (3.50)
S, =E [(gr; — 2,SHg,)' (85 — ZQSHSQ)} (3.51)
Let us define:
Vi(z1) = 8a — z1SHg, (3.52)
‘/2 (Zg) = évcg — ZQSHS2 (353)

After the interference and colored noise covariance matrices X; are computed, the soft-
input soft-output (SISO) detector computes the extrinsic probabilities &; (¢;) that the j*
bit of codeword 7 is equal to 1, as given by the slight modification of (2.23) as:
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e 2P | ~Vi (21) 80V (2)' T e ()
6 (cp) = 2= p[ ( )1 <T)] - (3.54)
e, € |~Vi ()27 (20) | 1o (@)

and

S et ety €2p | ~Va (2) 8V (2)'| T, o2 ()
6 (o) = 2 p[ ( )1 (T)] - (3.55)
S anco, 20 | V2 (22)T5 "V (22)' | T, 202 ()

Where 71 (¢.) and 75 (¢,) are a priori probabilities generated by soft-input soft-output
(SISO) decoders for the 1% and the 2" convolutional codes respectively. As shown in
Fig. 3.8 below, the extrinsic probabilities are then fed back from the SISO detectors
to their respective SISO decoders that use the forward-backward (BCJR) algorithm to
give a posteriori probabilities of the coded bits. In addition, the decoders give back a
priori m (¢.) and 7y (¢,) probabilities to their respective SISO detectors as in the classical
receiver, and also to the detectors of different indices in order to compute the covariance
matrices X; and better remove the interference at each iteration. Unlike the conventional
receiver where the extrinsic probabilities generated by the detector are computed once at
the first iteration using (2.23), the extrinsic probabilities (3.54) and (3.55) in this case are
computed at each iteration as the 3; matrices change. However, in most cases, this linear
increase in complexity is negligible compared to the exponential increase in complexity
introduced by a signal set of higher cardinality. Let us take the following example: suppose
we have a conventional ST-BICM with R. = 3/4 and n; = 4 transmit antennas. In order
to recover maximal diversity, we need to use a space-time precoder with s = 4. This
gives a cardinality of the space-time signal vector as |Q)] = 2™Vt = 216m gyer which the
exhaustive search to compute the extrinsic information in (2.23) is performed. However,
with the matrix-Alamouti scheme, s = 2 is sufficient to recover the diversity. This gives
Q.| = 2%, using a higher order M-QAM constellation to compensate R, = 1/2. So
even if we need t iterations for the receiver to converge, we still have a drastic complexity
reduction, as 2 x t x 28m « 216m

In computer simulations presented in the next section, vectors z; and z, in (3.50) —
(3.53) were replaced by their soft estimates. Thus, we have:

212

==
'M%\z

S
I
—

(81— 2iSHs,) (g — 21:H, )| (3.56)

t

IS
=z~
'M»\z

-
Il
—

(82— 22SH,)' (8 — 22SH,)| (3.57)
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Figure 3.8: Iterative receiver model for matrix-Alamouti encoded ST-BICM
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Figure 3.9: Performance for a frame size of 4096 coded bits ( 2 x 2048 for matrix-
Alamouti ), R. = 1/2, n; = 4 and n, = 2 antennas.

3.7.4 Simulation results

In this section, frame error probabilities are illustrated versus signal-to-noise ratios and
frame size for n; = 4 and n, = 2. Comparisons are done with respect to discrete input
and Gaussian input outage probabilities. The convolutional code is the half-rate 16-
state (23,35)s non-recursive non-systematic code (NRNSC) and the interleavers are the
optimized interleavers from [18]. Fig. 3.9 shows the frame error rate performance for
different a frame sizes of 4096 coded bits. The matrix-Alamouti scheme is compared to
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Figure 3.10: Performance for R, = 2/3, BPSK modulation, n; = 4 and n, = 2 antennas.
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Figure 3.11: Frame error rate versus frame size, R, = 1/2, E,/Ny = 9 dB, n, = 4 and

n, = 2 antennas.

the DNA-cyclotomic rotations and the D-STTD scheme first proposed in |60] and included



3. CODED MODULATIONS FOR THE MULTIPLE-
44 ANTENNA CHANNEL

in the IEEE802.11n standard, all at a coding rate R. = 1/2. As DNA-cyclotomic rotations
are full-rate (i.e. R, = 1), it was simulated with BPSK modulation in order to preserve
the same spectral efficiency with the other two schemes that are simulated with QPSK
modulations. In fact, with half-rate coding, the matrix S of matrix-Alamouti scheme does
not need to spread the symbol vectors, as diversity can be ensured with s = 1. In this
case, our scheme performs equally with the two others. However, by setting S = Scyecio
from (3.3), we observe a gain with respect to the other schemes. This for sure is at the cost
of a slight additional complexity, as s = 2 in this case. Fig. 3.10 shows the performance
Alamouti scheme with R. = 2/3, that is the half-rate 16-state (23,35)s NRNSC code with
puncturing, with BPSK modulation. When S = Scgyecio, the coded modulation achieves
full diversity with s = 2 as explained in section 3.7.2. With this coding rate, the D-
STTD scheme does not ensure maximum diversity, and the standard ST-BICM requires
a spreading factor of s = 4 as defined in 3.24 to achieve maximum diversity. Finally, Fig.
3.11 compares the performance of the matrix-Alamouti scheme with the DNA-cyclotomic
scheme for different frame sizes at a signal-to-noise ratio of 9dB. We can see that our
scheme is more robust to an increase in the frame size than the conventional scheme.

3.8 Outage-approaching turbo codes for the multiple-

antenna channels

3.8.1 Introduction

As shown in section 3.3, the frame error rate of uncoded space-time signaling is upper-
bounded by a quantity that varies as logd(n), where d is the diversity order. In order to
approach the outage probability limit, the frame error rate of any given coding scheme
should be independent of the block length [10, 16]. Therefore, such space-time coding tech-
niques will fail in approaching the outage capacity limit of the quasi-static MIMO channel.
Algebraic space-time codes described in section 3.2 and any convolutionally /algebraically
coded STBC also fail in approaching the outage limit. Hence, our objectives are

e Design a space-time code based on state multiplexing [53] and turbo encoding
[61][62] in order to achieve near outage limit performance.

e Control the detection/decoding complexity and propose relatively low complexity
schemes.

e Make the word error probability insensitive to the block length. This is the inter-
leaving gain of turbo codes translated to the field of non-ergodic fading channels as
discovered in |16]]10].
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3.8.2 Code multiplexing over channel states

The physical channel we consider is a quasi-static frequency non-selective MIMO channel
with n; transmit antennas and n, receive antennas. On a Gaussian channel, the pairwise
error probability supposing the zero codeword is emitted by a linear encoder is given by:

PO—=c)=Q ( 2%?%(@) (3.58)

where wy(c) is the Hamming weight of the codeword and E,/Nj is the signal-to-noise
ratio. Now, on a Rayleigh fading channel with Dy, states, the conditional pairwise error
probability becomes:

Dy
2R B} &

P(0—c¢)=Q N, 2 wile)| a2 (3.59)
=0

where w;(c) represents the partial weight of the codeword ¢ undergoing fading h;, and
> wi(c) = wp(c). After performing a mathematical expectation over the channel states,
we can upper-bound the pairwise error probability as:

Dgy
1 1
PO—>C<—I|— 3.60
( )< 247 1+wi(c)—}§f” (3.60)
1= 0

Hence the diversity order d(c) that can be achieved by the code is given by the number
of non-zero partial weights w;(c). In addition, for high signal-to-noise ratios, the pairwise
error probability behaves like:

1 1
MTiwle)  (Bo/No)™
So our objectives are to first guarantee that Vi, w;(c) # 0, to attain maximum diversity,
ZD:S{ wi(c) and hence the coding gain. For this purpose,
the authors in |53| proposed the “code multiplexer” defined as follows:

P(0—c) x (3.61)

second to maximize the product []

Definition 2 The multiplexer is an intelligent switch that distributes turbo coded bits s;
over the Dy parallel sub-channels of the BO-channel.

Actually, the multiplexer should be called “de-multiplexer” or equivalently “channel inter-
leaver”. We have chosen the word “multiplexer” in order to avoid any confusion with the
interleaver denoted by II used inside a turbo code. Fig. 3.12 shows two important multi-
plexing examples from [53] suite for a non-ergodic fading channel with Dy, = 2 states. The
two digits 1 and 2 represent the two states of the BO-channel. The symbol X represents
a punctured parity bit. Note that in this chapter we will only consider half-rate codes
multiplexed over two-state non-ergodic channels, but generalization to any rate codes on
non-ergodic channels is straight-forward as long as R. < 1/Dy.
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Horizontal Multiplexer

st 111111
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Figure 3.12: Horizontal (top) and h-m-diagonal (bottom) multiplexers for a rate 1/2
parallel turbo code.

Proposition 1 Let C be a rate 1/2 parallel turbo code transmitted on a 2-state channel
and built from RSC(g1(x), go(x)). Under horizontal state multiplexing and for any input
weight w, the number n of codewords in C with incomplete state diversity is

nw,dg <2)=0 VYV w>2

Proof 1 For any non-zero turbo codeword, it is well-known that the Hamming weight of
S1 08 W > Whin = 2 [62]. Also, the Hamming weight of both sy and s3 must be positive
despite puncturing. Hence, it is trivial that dg = 2 since sy is always transmitted on the
first channel state and (s, s3) are transmitted on the second channel state.

RSC1 Trellis \ B/
Ty IR AL
| N o\ _—

DA

Figure 3.13: Trellis error events for input weight w = 2. The two interleaving configura-
tions are indicated. Diversity is guaranteed by full-span transitions.

The recursive systematic convolutional constituent has constraint length v + 1. Its
feedback generator polynomial is ¢;(x) and its forward generator polynomial is go(z).
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Definition 3 A recursive systematic convolutional code is said to be a full-span convolu-
tional code if the generators satisfy deg(g;(x)) = v and g;(0) =1, fori=1,2.

Trellis transitions outgoing from the 0-state and those incoming to the O-state will be
called full-span transitions, i.e. both bits are set to 1 on the transition label.

Proposition 2 Let C be a rate 1/2 parallel turbo code transmitted on a 2-state channel
and built from a full-span RSC(g1(x), go(x)). Under h-m-diagonal state multiplezing and
for any input weight w, the number n of codewords in C'" with incomplete state diversity is

Nw,ds <2)=0 V w>2

Proof 2 For w =2 and w = 3: if a full-span transition is interleaved (via 7) into a full-
span transition, then state diversity is guaranteed. As shown in Fig. (3.13) and (5.15),
one of the full-span transitions in RSC1 is converted into a full-span transition in RSC2.
For w > 4: Consider the case where w = 4. FExcept for the unique interleaving con-
figuration depicted in Fig. (3.16), all turbo codewords exhibit dg = 2 due to full-span
transitions. Now, let x;(s;) € {1,2} denote the BO-channel state over which the binary
element s; belonging to RSC; is transmitted. We distinguish two cases when a critical
configuration is transmitted on the channel.

Case 1: error event in RSC1 starts at state 1, x1(s1) = 1. Diversity is guaranteed by
RSC1 because x1(s2) = 2.

Case 2: error event in RSC1 starts at state 2, x1(s1) = 2. Then, we distinguish two
sub-cases:

Case 2.1: Information bit sy is set to 1 within the error event and hits state 1 yielding
X1(s1) = 1. Hence, diversity is guaranteed by RSC1 without the help of RSC2.

Case 2.2: Information bit s; = 1 never hits state 1 in the trellis event of RSC1, x1(s1) # 1.
This situation occurs because equality is not satisfied in (2.25) when R. = 1/2 and Dy = 3,
i.e. it is possible to create RSC1 codewords that never hit state 1. Thanks to the structure
of the h-pi-diagonal multiplezer, at least one full-span transition in RSC2 has x2(s3) = 1
for xa(s1) = 2.

The same proof applies for w > 4.

Example with RSC(7,5)s

A critical configuration is a configuration (or an event) in which the diversity is not
guaranteed by the first RSC alone, thus the receiver relies on the parity bit of RSC 2
to recover the diversity. Let us now give an example of critical configurations for w = 4
as defined in the proof of prop. 2. When xi(s;) = 1 and x;(s2) = 2, the RSC trellis is
represented by the transition matrix
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Figure 3.14: Effect of h-m-diagonal multiplexing on trellis events. Illustration for input
weight w = 6 with and without de-interleaving of the second parity bit.

0 0 D1 Dy LW 0
4 _ | DiDLW 0 L 0
e 0 DLW 0 DyL
i 0 Do L 0 DLW ]
When y;(s1) = 2 and x;1(s2) = X, the transition matrix is
0 0  DoDsLW 0
o | DeDsLW 0 L 0
2 0 Dy LW 0 DsL
0 D3I 0 DyLW |

The complete weight enumerator T'(W, D, L) of simple error events is given by the top
left entry of the product A A3 A1 A, ... or AyA1A5A; ... depending on the position of the
outgoing transition. A critical configuration is given by a product of type Ay(A;Ay)* for
an event of length 204+ 1. For / = 1...3 no critical configurations are found. For ¢ = 4,

we have

T(W,D,L) = ...+ (2D,D3D4 + DSDHL'W* + ...
Therefore, the shortest critical event for w = 4 has length L = 9. It includes 4 information
bits with x1(s; = 1) = 2, 4 parity bits with xi(se = 1) = 2, and 2 punctured bits with
X1(s2 = 1) = X. In this case, without a de-interleaver at the output of RSC 2, one cannot
track the position of the parity bit s3 at the output, as shown in Fig. 3.14. Therefore, we
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Figure 3.15: Trellis error events for input weight w = 3. The six interleaving configurations
are equivalent to two distinct configurations.
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Figure 3.16: A critical configuration for full-span outgoing and incoming transitions.

Input weight w = 4.

cannot make sure that full diversity is attained. However, a de-interleaver at the output
of RSC 2 makes the coded bits of the turbo code synchronized within the trellis of the
RSC constituents.

At this point, based on the study of 7, the reader sees no difference between h-7-diagonal
and horizontal multiplexers. Indeed, propositions (1) and (2) state that both multiplexers
achieve full state diversity. The error rate performance depends on the achieved diversity
and on the so-called coding gain or product distance defined by the product wyws of partial
Hamming weights. Now, it should be clear that horizontal multiplexing shows a great
unbalance between w; and ws. As an example, for input weight w = 2, consider RSC(7,5)
error events of length L = 4+3i and total Hamming weight wy = 6+2i,1=10...(N—4)/3.
For horizontal multiplexing, w; = 2 and wy = 4 + 2i. Therefore, its coding gain behaves
as O(N). For h-m-diagonal multiplexing, w; = wy = 3 + i. Hence, the coding gain
of h-r-diagonal multiplexing increases as O(N?). The loss is even more dramatic for
w = 3. The latter is neglected on the Gaussian channel since its contribution to the
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error rate performance is O(1/N). On non-ergodic fading channels, when w = 3, turbo
codewords satisfying wg(s2) >> 1 and wg(s3) >> 1 will suffer from the unbalance of
horizontal multiplexing. A comparison between h-w-diagonal and horizontal multiplexers
is illustrated in Fig. 3.18 with 2 transmit antennas and a QPSK modulation.

3.8.3 Word error rate performance with n, = 2

0
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Figure 3.17: BPSK modulation, quasi-static channel, n, = 2, n, = 1, turbo code with
R.=1/2, (17,15)s, N = 400.

In this section, computer simulations are made for n, = 2 and without linear precod-
ing (s = 1) on the quasi-static MIMO channel. The rate 1/2 turbo code is built from
RSC(17,15)s and a pseudo-random interleaver 7 of size N. All curves include word error
rate versus signal-to-noise ratio per bit. Fig. 3.17 shows the performance of a BPSK
modulation with 2 transmit and 1 receive antenna, and N = 400. Fig. 3.18 shows a sim-
ilar situation with a QPSK modulation. The performance with 2 transmit and 2 receive
antennas is given in Fig. 3.19. Notice that the word error rate is roughly the same for
N =400 and N = 6400. Finally, the performance of 8-PSK is illustrated in Fig. 3.20 and
compared to both outage limits (discrete and Gaussian inputs).

3.8.4 Linear precoding via DNA rotations with n; =4

In the case of n, = 4 transmit antennas, we have Dy, = 4. Maximum state diversity in
(2.25) cannot be attained with R. = 1/2 if Dy = 4. Therefore, we add a linear precoder
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Figure 3.18: QPSK modulation, quasi-static channel, n, = 2, n, = 1, turbo code with
R.=1/2, (17,15)s, N = 400.
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Figure 3.19: QPSK modulation, quasi-static channel, n, = 2, n, = 2, turbo code with
R.=1/2, (17,15)s, N = 400/6400.

in order to downgrade Dy, from 4 to 2. This does not affect the physical channel diversity
D.y,. If the rotation has s = 4, i.e. a full spreading unitary precoder as usually studied
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Figure 3.20: 8-PSK modulation, quasi-static channel, n, = 2, n,, = 2, turbo code with
R.=1/2, (17,15)s, N = 1600.
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Figure 3.21: BPSK modulation, quasi-static channel, n, = 4, n, = 2, turbo code with
R.=1/2,(17,15)s, N = 1600. Linear precoding via a cyclotomic DNA rotation

in the literature, then Dy will reduce to 1. Also, MIMO detection complexity increases
exponentially with s. The solution to maintain Dy = 2 is given by Dispersive Nucleo
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Algebraic (DNA) precoders discussed in section 3.6 for s < n;. Now, let us observe the
MIMO channel with Spna as in (3.30). The QAM vector z = (z1, 29, . . ., 2g) goes through
the precoder before H. Consider the lattice point zSH without adding Gaussian noise.
One would notice that z; is transmitted via the 1st and 2nd transmit antennas if ¢ is odd,
and via the 3rd and 4th transmit antennas if 7 is even. Consequently, the DNA precoder
converts the 4 x n, MIMO channel onto two 2 x n, MIMO channels. Binary elements
mapped to z; when i is odd (resp. 7 is even) will be sent through the first BO-sub-channel
(resp. the second BO-sub-channel). As a final illustration, Fig. 3.21 shows the error rate
of BPSK modulation with 4 transmit and 2 receive antennas.

3.9 Conclusions

In this chapter, we proposed space-time bit-interleaved coded modulations for the multiple-
antenna channel that perform close to outage limit. In |18], it was shown that cyclotomic
rotations satisfying genie/DNA conditions are the best choice for precoding in space-time
bit-interleaved coded modulations, due to their enhanced performance and their flexibility.
These rotations are optimal in both algebraic and information theoretical senses. They
exist for any set of MIMO channel parameters, mainly the number of transmit antennas
and the precoder time-spreading factor. However, the families of IOM linear precoders
we presented in this chapter correct the failure of cyclotomic rotations to lead the system
to reasonable performance since the first iteration in an iterative receiver when the sys-
tem has delay constraints. They also exist whatever the MIMO system configuration is,
with the difference in that their design requires Monte Carlo simulations. They can be
designed by relaxing the genie constraints or by maintaining one constraint depending on
the decoding technique we want to employ.

In addition, we proposed a low-complexity space-time coding scheme for n, = 4 based on
the Alamouti scheme. This low-complexity scheme ensures state diversity Dy = 1, which
means it can be used with all coding rates R, € [0, 1] while maintaining maximal channel
diversity d., = 4 X n,. In addition to exponentially reducing the detection complexity,
this scheme showed a slight degradation of the frame error rate over a quasi-static fading
channel, that is more robust than classical ST-BICM. As configurations with n, = 4 are
particularly of interest in recent wireless communication systems (such as TEEE.802a/b/g
standards), the low-complexity solution together with the high performance provided by
this scheme are valuable.

Finally, we studied turbo-coded modulations for the MIMO channel based on the works in
[53] on “code multiplexers”. When the coding rate of the turbo-code satisfies R. < 1/Dy,
the use of multiplexers at the output of the encoder ensures low detection complexity and
near-outage limit performance. Surprisingly enough, the frame error rate performance
of turbo-coded modulations is insensitive to block length. This is probably due to the
interleaving gain of the turbo-code on AWGN channels translated to non-ergodic fading
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channels, whereas the number of neighbors of a turbo-codeword increases linearly with
the interleaver size [63|. Note that it was recently shown in [64] that LDPC codes have
almost the same behavior over block-fading channels. However, the coding gain with
regular turbo codes on block-fading channels is slightly better than that of regular LDPC
codes.

To summarize, we can follow these strategies for low-complexity decoding of coded mod-
ulations over the MIMO channel:

e If R. < 1/Dg and an iterative receiver can be used, use turbo-codes with multiplex-
ers for n; = 2 antennas and turbo-codes with multiplexers along with DNA rotation
for n, = 4 as proposed in section 3.8.

e Ifn; = 4 and an iterative receiver can be employed, use the Matrix-Alamouti scheme
presented in section 3.7 whatever the channel coding rate is.

e Else, if R. > 1/Dy, use cyclotomic rotations [18] with an iterative receiver.

e If no iterations are allowed at the receiver, use IOM rotations presented in section
3.6 with all channel configurations.
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Chapter 4

Coded modulations for the amplify-
and-forward cooperative channel

4.1 Introduction

As discussed in the previous chapter, multiple-antenna systems can provide reliable com-
munication (through large diversity orders) and high data rates in block-fading environ-
ments. The advantages of such systems is widely recognized and they are proposed in
many standards. However, due to size (and sometimes cost) limitations, the implemen-
tation of many antennas on a single terminal is unfeasible. This is the case of the uplink
transmission in a cellular link for instance.

Since the early 1970s, the idea of the relay channel in information theory was proposed
[65]. In [66], the authors proved the gain in capacity the relay channel has and sketched
the rate regions for this channel under different hypothesis. Inspired by these works, the
authors in [67, 68| proposed the concept of “user cooperation diversity”, whereas user’s
terminals help each other to convey their signals to a destination. This allows for the sig-
nals to attain high spatial diversity orders by using the antennas of other terminals and
thus by forming a virtual antenna array. Note that this is not a simple relaying problem,
as users are responsible for the “partner’s” signals as well as their own signals.

One main application is the cooperation of in-cell users in a cellular system. Reliable
communication can be achieved through diversity and by relaying signals from terminals
that are far from the base station. The drawback is the fact that the inter-user channel
is noisy, thus imposing various cooperation protocols we will discuss later in this report.
Another potential application is in wireless ad hoc networks, such as mesh networks for
instance. A wireless ad hoc network does not depend on a central control unit, and it does
not have a fixed infrastructure. The nodes communicate by forming a network based on
channel conditions and mobile locations.

The main problems in non-cooperative networks is their rigid infrastructure, whose block-
ing probability increases with the number of terminals that are sharing the network. Many
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service providers have experience dealing with temporary elevations in network traffic.
COSMOTE, the Greek telecommunications company responsible for providing service to
the 2004 Olympic games, had to deploy additional resources in the area surrounding the
Olympic complex. This extra equipment allowed this system to successfully deliver over
100 million text messages during the 17 day duration of the games. Similarly, sporting
events and large public gatherings in the United States regularly take advantage of the
so-called Cell-on-Wheels (COW) services in order to account for location-dependent traf-
fic spikes. With cooperative communications, networks will not experience such problems
anymore, as the more users there are in a network, the more reliably one can communicate.
In addition, the hardware implementation of multiple antennas on the same terminal that
is difficult to realize is traded for protocol algorithms shared among terminals through
the network, which is easily updatable and gains in flexibility.

In this chapter, we will start by recalling the communication protocols for the cooperative
fading channel. We will then establish the system model for coded modulations over the
amplify-and-forward protocol. Then we will discuss bounds on diversity for this type of
protocol, that are followed by coding strategies and simulation results. The last part of
this chapter discusses channel multiplexing issues for turbo-coded modulations over such
protocols.

4.2 Cooperative communications protocols

After the authors in [67, 68] introduced the concept of cooperative diversity, many papers
proposed cooperation protocols that define the way the cooperation between users is per-
formed. These protocols can be classified into two major categories, that are amplify-and-
forward (AF) and decode-and-forward (DF). Note that the large majority of the existing
designs we will recall in the sequel are based on the so-called “Diversity-Multiplexing
Tradeoft” (DMT) of the channel [69]. The DMT is a piece-wise linear function that rep-
resents, at very high signal-to-noise ratios, the tradeoff between the maximum achievable
rate (as a function of the signal-to-noise ratio) and the maximal achievable diversity order
over the wireless channel. Although the DMT bound gives an insight on the superiority
of a given protocol (or a given antenna configuration for MIMO systems) and allows for
the design of optimal space-time precoders for uncoded systems, its relevance as a design
tool for coded modulations with iterative decoding is arguable.

4.2.1 Amplify-and-forward protocols

In these protocols, the relays scale the signals received from the source (or by other relays)
and forward them to the destination (or to other relays) without other treatment. These
protocols are easy to implement in practical communication systems, as the computational
complexity they introduce at the relay is limited to the scaling operation. The orthogonal
amplify-and-forward (OAF) protocol was first introduced in [70| for the single-relay case.
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Figure 4.1: Cooperative fading channel.

By orthogonal we mean that the source and the relay do not send data simultaneously.

The second major work concerning this family of protocols is the framework established in

[71]| for the single-relay case. The authors proposed three amplify-and-forward protocols

that are:

e Protocol I: the source broadcasts a signal to both the relay and the destination in

the first phase. In the second phase, the relay scales the signal and forwards it to
the destination, while the source transmits another message to the destination. This
protocol is also known as the non-orthogonal amplify-and-forward (NAF) protocol

72].

Protocol II: the source broadcasts a signal to both the relay and the destination in
the first phase like in Protocol 1. In the second phase, only the relay scales the signal
it received in the previous phase and forwards it to the destination. This protocol
is the OAF protocol introduced in [70].

Protocol III: the source sends a signal only to the relay in the first phase. The
second phase is similar to the second phase in Protocol L.

In addition to introducing these protocols, the authors discussed and analyzed some infor-

mation theoretical aspects of cooperative protocols that brought insight to the behavior
of such systems. From these three protocol, Protocol I caught the attention of the re-

searchers in the community as it allows for high data rates (the source always transmits).
Indeed, in [72], it is shown that the NAF protocol outperforms the AF protocol for high
data rates. However, for the case of more than one relay, the NAF protocol suffers from a
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limitation , as half of the symbols in the cooperation frame are protected. For this reason,
the authors in [73] proposed the slotted amplify-and-forward (SAF) scheme; by allowing
inter-relay communication (see Fig. 4.1), on can protect 5 out of § 4 1 symbols. For
this reason, the SAF scheme largely outperforms the g-relay NAF scheme for high data
rates. Many space-time code design for uncoded fading channels for the AF protocols
were proposed, among them [74] [75] [76, 77|, but optimal space-time codes for uncoded
systems can be found in [73] [78].

4.2.2 Decode-and-forward protocols

This class groups the protocols in which the relays operate on the signal they receive from
the source (or from other relays) before forwarding it. The first protocol, the selection
decode-and-forward, was introduced in [70] for the single-relay cooperative channel. In
this protocol, the relay estimates the channel coefficient between the source and the relay,
say hg., and it computes ]hSTP. If this value falls below a threshold, the relay remains idle.
If not, the relay decodes the message and forwards it to the destination. This scheme was
generalized to multiple relays in [79]. In [72], the authors introduced the dynamic decode-
and-forward protocol wherein the time for which the relays listen to the source depends
on the source-relay channel gain. In [80], the authors treated the compress-and-forward
protocol and proved it to be optimal for the single-relay channel. Note that unlike the
decode-and-forward protocol where the relays have to know the source-relay channel, the
relays in the compress-and-forward protocol have to know all the channel coefficients of
the incoming paths. In [81], the authors proposed an intuitive distributed turbo code that
achieves high performance; it consists of broadcasting a convolutional codeword to both
the relay and the destination, the relay decodes the codeword, interleaves it, and encodes
it prior to forwarding to the destination that performs iterative decoding between the two
codes. Similar constructions can be found in [82| for distributed turbo codes and in [83)]
for LDPC codes.

4.3 Space-time bit-interleaved coded modulations for
the amplify-and-forward cooperative channel

As discussed in section 4.2.1, many distributed space-time codes for uncoded systems have
been proposed in the literature. However, the optimal codes in [73] [78] that achieve the
DMT frontier of the channel introduce delay in the cooperation frame of the NAF/SAF
protocol, which means that the source broadcasts for several time slots before the co-
operation at the relay starts. Indeed, as these codes were initially designed for MIMO
systems, the spreading factor s = n, for such systems is translated into a delay d = s — 1
for the NAF /SAF protocols. This delay actually results in an exponential growth of the
detection complexity at the receiver.
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Nevertheless, in the presence of an error correcting code, it was shown in chapter 3 that
one can trade diversity from the channel detector to the channel decoder over block-fading
channels by using space-time rotations. In addition, for the SAF channel, unlike for the
MIMO channel, the maximal diversity order 3 + 1 of the channel can be achieved using
a rotation that does not lead additional complexity. This is a key point for our design
framework in the rest of this chapter.

To our knowledge, no work has yet treated channel coding issues for AF cooperative pro-
tocols in general. In this chapter, we consider the problem of coding for the half-duplex
non-orthogonal slotted amplify-and-forward (NAF/SAF) cooperative channel. We only
consider a network with single-antenna nodes. We derive bounds on the diversity order of
this protocol that are achieved by a distributed space-time bit-interleaved coded modu-
lation (D-ST-BICM) scheme under iterative APP detection and decoding. These bounds
lead to the design of space-time precoders that ensure maximum diversity and high coding
gains.

4.4 System model and parameters

We consider the amplify-and-forward fading relay channel. We impose the half-duplex
constraint, whereas terminals cannot transmit and receive signals simultaneously. We
consider the TDMA-based Protocol T from [71] that is also known as the non-orthogonal
amplify-and-forward (NAF) protocol. For the case of more than one relay, we use the
“naive” slotted amplify-and-forward (SAF) cooperative protocol proposed in [84|, where
inter-relay communication is allowed; the source transmits in all time slots, and starting
from the second slot, only one relay scales and transmits the message received in the
previous time slot. By protecting (3 symbols out of J + 1, this protocol can achieve a
diversity order of 3 with a length-3 + 1 vector, whereas the classical G-relay NAF scheme
achieves the same diversity order with a length-24 vector. The main reason we use this
protocol is because it induces low detection complexity. The “naive” SAF protocol gives
the following signal model:

ydi - \/(?Zhsdxl + V 1 - gihnd%—lyn_l + wdi (41)

Yri = V gsrigihsrixi + \/ Gri_ari (1 - gi)h"'i—lTiryi_lyTi—l + wr, (42)

with ¢ = 1,...,6 + 1. Subscripts s, d, and r; correspond to source, destination, and
i relay. The unit variance complex symbol z; is transmitted in the 7** slot, the received
signal at the destination in the i'* time slot is y,,, while y,, is the signal received by the
i'" relay. The coefficients & represent the energy transmitted by the source in the i
slot. The geometric gain gj, is defined as E|h;|?/E|hg|* [73]. The hy are the complex
Gaussian fading coefficients that are constant for the duration of a codeword and w,, and
w,, are AWGN noise components. The 7, are the energy normalization coefficients at the
it" relay, subject to E|v,y,,_,|*> < 1, and 79 = 0. In matrix form, we can write for a system
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with [ relays:
vqe=xH+ w, =2zSH + w, (4.3)

where y, is the length-(5 4 1) vector of received signals and z is the length-(G + 1)
vector of M-QAM symbols. Sisa (5 + 1) x (6 + 1) precoding matrix, and H is given by:

hit hia hag
0 hy h
H— 22 o3 (4.4)

0 0  hss

where

his = \/Eha
h12 = VvV gsrlgl(l - 82)71hsr1 hrld
h13 - \/gsv‘lgrlrggl(]- - 52)(]- - 53)’71’72hsr1 h?‘17‘2 hrgd

h23 = VvV gsr282(1 - 83)72hsr2hr2d

Finally, the vector w, is a length-(/3 + 1) colored Gaussian noise vector whose entries are

given by:
wy = Wq
Wy = (1 — &)vihrqwry + wq 2

wy = /(1= &)1 = E)nvehrmhraawe + v/ (1 — E)vahroatrs + was

an so on. We set:
I' =E [wlw.] =2N,0 (4.5)

Where the 7 operator denotes transpose conjugate. By performing a Cholesky decompo-
sition on ©, we get:
©=vw (4.6)

Thus the equivalent channel model would become:
yo ¥ =zSHU ' +w (4.7)

where w is a white Gaussian noise vector.

4.5 The diversity of coded modulations over precoded
SAF channels

The maximum diversity inherent to the SAF channel is d,,.., = (0 + 1, and it can be
collected by an APP detector (at the destination) if linear precoding is used at the trans-
mitter. In general, it is sufficient to use a linear precoder that mixes the 3+ 1 constellation
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symbols being transmitted on the channel to achieve the full diversity with uncoded sys-
tems and without increasing the decoder complexity. However, using larger precoders can
further improve the performance. From an algebraic point of view, a linear precoder of
size (3+1)% x (3+41)? is the minimal configuration to achieve the best coding gains (with-
out channel coding) at the price of an increase in detection complexity (The complexity
of an APP detector grows exponentially with the number of dimensions) [85].

On the other hand, for coded systems transmitted on block-fading channels, the channel
decoder is capable of collecting a certain amount of diversity that is however limited by
the Singleton bound [35|. As shown in [86], the lowest complexity solution is to first
recover the channel code diversity and then collect the remaining diversity through linear
precoding. For this purpose we derive hereafter an upper bound on the diversity order of a
coded transmission through a precoded SAF channel, and deduce the precoding strategy
to achieve the full diversity.

First, we will introduce a new model of block-fading channel that will be used in the
following to compute the bounds on the diversity order of coded SAF channels.

4.5.1 Matryoshka block-fading channels

In this section we consider a block-fading channel model where the set of random variables
of a higher diversity block always include the set of random variables of a lower diversity
one, like Matryoshka dolls:

Definition 4 Let us consider A independent Rayleigh fading distributions. Let M(D, L)
be a channel built from the concatenation of |D| blocks, where D and L are the sets of
diversity order and lengths of each block, respectively. The integer |D| is the cardinality of
D. The i-th diversity block is defined by a linear combination of a subset S(i) of D(i) < A
Rayleigh distributions, such that S(i + 1) C S(i), i.e., the blocks are sorted such that
Vi < j,D(i) > D(j) and we assume that D(1) = X has the highest diversity order.

Fig. 4.2 shows the representation of the Matryoshka block-fading channel. Notice that
np = A for the non-precoded channel.

D(1) D(2) D(np)
S(1)={ar,-,an} | S@2)cSA) |- |Snp) CSnp—1)
— L(1) bits — | «L(2) bits — — L(np) bits —

Figure 4.2: Matryoshka block-fading channel model.

Let us now transmit a BPSK-modulated and interleaved codeword of a rate-R, code
on the channel M(D, L). First, let us focus on the pairwise error probability (PEP) of
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two given binary codewords ¢ and ¢’. Due to the channel model, the diversity order of
this PEP is equal to the diversity order of the lowest index block seeing a non null bit of
¢ — . The performance of the coded modulation has a diversity order upper bounded by
Omaz defined as follows:

Proposition 3 The diversity observed after decoding a rate-R. code transmitted over a
M(D, L) channel is mazimized by Opaz :

i—1 |D| i
Omaz = D(i) where Y L(k) < R. Y L(k) <Y L(k) (4.8)

k=1

and is achievable for any linear code.

Proof: This proof is inspired from the Singleton bound’s one. The code has parameters
(N, K), where N = 2171 £(k) and K = R.N.

If K > 31_" £(k), whatever the code, a puncturing of the last ZLD:ZE(k;) bits leads
to a null minimal Hamming distance code. This means that there exists two codewords ¢
and ¢’ such that the first ZEZ L(k) bits of ¢ — ¢ are null, and involves that 6,,,, < D(i).

If the code is linear, there exists an interleaver that makes the code systematic. If
the information bits are transmitted on the blocks of higher diversity order and K <
> -1 L(k), the Hamming distance after puncturing the last Z',giﬂﬁ(k:) bits remains
strictly positive and induces that 0,4, > D(7).0]

As a remark, whatever the QAM modulation is, the log-likelihood ratio expression
of the channel model at the output of the APP detector always takes equivalent BPSK
modulations at its input. The bound on the diversity order applies then to any discrete
modulation.

4.5.2 Precoded SAF channel models and associated bounds

Non-precoded SAF channels

The time periods of the SAF channel can be sorted into § + 1 blocks, the j-th block
corresponding to the transmission through 0 < 7 —1 < (3 relays. We will assume that the
interleaver of the BICM is ideal, i.e., that for any pair of codewords (¢, ¢’), the w non-null
bits of ¢ — ¢ are transmitted in different blocks of 3 + 1 time periods. The interleaving,
modulation and transmission through the channel transform the coded words ¢ and ¢
into the points C and C’ in an Euclidean space. For a fixed channel, the performance is
2

directly linked to the Euclidean square distance |C —C’|*, which can be rewritten as a sum

of w square Euclidean distances associated to the non-null bits of ¢ — (.
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The performance of a BPSK modulation transmitted through j — 1 relays during j
time periods of a quasi-static SAF channel has a diversity order j. The square distance
|C —C']? is a function of the fading coefficients of the equivalent channel. It can be factor-
ized as follows: Z’g:i d? where dj, is the total Euclidean distance seen by the k-th block.
Finally, the diversity order of a given pairwise error probability is equal to the maximal
index k such that dj is non-null. At very high SNR, the performance is lead by the worse
pairwise error probability, the diversity order of the BICM is then the lower bound of all
pairwise error probabilities diversity orders.

At the output of the APP detector, an equivalent block-fading channel is observed
and the constituent blocks do not have the same intrinsic diversity order: A soft output
belonging to the § + 2 — j-th block carries the attenuation coefficients {hgsq; hsri oy a;
v b Py -hrj72,nj71hrj71d}. As a remark, blocks are sorted such that the j-th block
carries a diversity order 3+ 2 — j. Under perfect interleaving, the equivalent SAF channel
at the output of the APP detector is a matryoshka M([6+ 1,05,...,1],[N/(6+ 1),...,
N/(B + 1)]) channel, where N is the number of coded bits per codeword. With this
observation, we can conclude that the upper bound on the diversity order of a non-
precoded SAF channel is

e () = L= A (19)

which is equal to the classical Singleton bound on the diversity order of block-fading
channels [16].

Precoded SAF channels

Let us now introduce a linear precoder that rotates symbols of s different diversity order
blocks together. First of all, let us focus on two different scenarios:

e The linear precoder size is lower than (or equal to) G+ 1. In this case, the dimension
of the received vector y; remains unchanged, thus there is no increase in detection
complexity, and no delay is introduced to the protocol.

e The linear precoder size is lower than (or equal to) (d+1)(G+1)x (d+1)(5+1), where
d is the delay (i.e. the source broadcasts for d + 1 time slots before the relays start
to cooperate). In this case, the complexity of the detector increases exponentially
with d. As mentioned previously, these precoders are mandatory to achieve optimal
performance for uncoded systems. However, in the presence of channel coding, they
can be avoided.

We will now present two precoding strategies and compute the bound (4.8) for these two
particular cases.
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First strategy: a single precoder First, let us assume that s diversity blocks of size
N/(B+ 1) are linearly precoded together, then the diversity order of the new sN/(5+ 1)-
length block is the maximum diversity order of the precoded blocks. As the other blocks
keep their own diversity, it seems natural to maximize their diversity orders in a way to
increase the coding gain at the output of the decoder (The best performance is achieved
for a block-fading channel with diversity orders as equal as possible.). The length of the
precoder input vector is § + 1. We propose to precode the first block with the s — 1 last
blocks, i.e., the highest diversity order with the s — 1 lowest ones. At the output of the
APP detector, the channel model is a matryoshka M (D, £) where D = [+ 1,0,..., 5]
and £ = [sN/(B+1),N/(B+1),...,N/(8+1)], which leads to the following upper bound
on the diversity order:

Omaz2(B, Re, s) = min(s + [(1 — R.) (B+1)], 8+ 1) (4.10)
Indeed, by replacing D = [3+1,0,...,s] and L = [sN/(B+1),N/(+1),...,N/(5+1)]
in (4.8), we observe that if R. < s/(f+1) then R.(f+1) <s+i—1< R.(G+1)+1, else
we have that ¢ = 1 and 0,02 2(5, Re, s) = D(1). It is then easy to show that the upper
bound on the diversity is given by (4.10). Note that, in the representation of Fig. 4.2, we
have that np = A — s + 1 with precoding.

If s = 1, then d,,002(s) is equal to the Singleton bound on the diversity order of
an uncorrelated block fading channel with equal per-block diversity. If s > 1, 0naz.2(5)
is greater than the upper bound on the diversity order for block fading channels. For
example, the full diversity order cannot be achieved for the transmission of a s = 2-
precoded BICM with rate 2/3 on a block fading with diversity order 3 (the diversity is
upper bounded by 2). For the SAF channel, the full diversity order can be achieved in
that case, as shown in Fig. 4.3.

As a remark, in order to achieve the upper bound on the diversity of a block fading
channel, at least one non null bit of any word ¢—¢’ should be placed in as many independent
blocks as given by the singleton bound. For precoded SAF channels, the bound is achieved
as soon as one non null bit of any word ¢ — ¢ is placed in a block of diversity higher than
Omaz1(8). The last problem has less constraint than the first one. Tables 4.1 and 4.2 show
the values of 0,,42.2(5, R, s) for different coding rates with respect to the number of relays
and the value of s. We can notice that full diversity is obtained with s > (84 1) R, in all
configurations.

Second strategy: (4 1)/s precoders Let us assume that s divides § + 1, we can
then use (5 + 1)/s precoders: The first precodes the highest diversity order block with
the s — 1 lowest ones. The second, if any, precodes the second highest diversity order
block with the s — 1 lowest non-precoded ones, and so on. By using this precoding
strategy that includes several independent precoders, we further increase the diversity
of the extrinsic probabilities at the input of the decoder, and consequently the diversity
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Figure 4.3: Two-relay SAF cooperative channel, R.=2/3 RSC (25,37,35)g code, BPSK
modulation, 1440 coded bits.

Table 4.1: 0,00 2(0, Re, s) for R. = 1/2

g\s|1]2[3]4]5
1 |22

2 [2]3]3

3 [3]4]4]4
4 [3]4]5]5](5
5 |4][5|6]6]6
6 [4]5|6]7](7
7 |5][6|7]8][8
8 [5]6|7]8]09

at the output of the decoder. Indeed, the equivalent M (D, L) channel has parameters
D=+108,....0+2—(8+1)/s]and L = [sN/(B+1),...,sN/(G + 1)], which leads

to the following upper bound on the diversity order:

Omaz.3(3, Re, 8) = min (W +1+ L%J 0+ 1) (4.11)
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Table 4.2: 0,402(0, Re, s) for R, = 3/4

f\s|1]|2]3[4|5]|6
1 112
2 11213
3 2134
4 213145
5 21314156
6 21314567
7 314151678

It can be easily shown that
6maa:,2(67 Rca S) S 5ma$,3(ﬁa Rca 3) (4'12)

However, the maximum diversity order 0,,422(5, Re, S) = Omaz3(5, Reys) = B+ 1 is
achieved for the same s > (8+1)R.. The advantage of d,,,4. 3(03, Re, S) over 0paq.2(5, Re, 5)
is for non-full diversity schemes. In addition, it is important to note that the bounds in
(4.10) and (4.11) have straight-forward applications to systems employing delay precoders.

4.6 Coding strategies

Based on the bounds on the diversity order derived in the previous section, one can
choose a good coding strategy given the system parameters (i.e. number of relays, coding
rate...). As for the coding gain, it is tedious to analytically compute the pairwise error
probability for the NAF and SAF protocols, as it involves integrations over the product
of two or more complex Gaussian variables representing the different channel gains /.
Now consider A? =|| (x—x)SH || with x —x = Zgg d?. Next, we look at the
distribution of A? as an empirical tool that helps us in choosing the best coding strategy.
Fig. 4.4 shows the distribution of A2 for the single-relay NAF protocol. From the bounds
on diversity of (4.10) and (4.11), we notice that if R, < 1/(8 + 1), we do not need to
precode for diversity purpose, as the channel decoder recovers the entire diversity of order
G 4+ 1. However, we can see that for unrotated QPSK input, there is a high number of
small squared distances, thus we can eliminate the small values of A? by rotating the
QPSK vector. When the vector z has relatively small cardinality, it is useful to rotate the
transmitted signal constellation with s = s,,,, = 41 in a way to combine all the symbols
together. A rotation plays the role of "smoothing" the distribution of the input vector
x, making it tend to the Gaussian distribution. However, unlike for MIMO systems (see
Fig. 3.2), the rotation in this case keeps the length of the transmitted vector unchanged.
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Figure 4.4: Distribution of A? for the single-relay NAF protocol.

With an increase in the constellation size, a rotation with s,,,, generates a dense
vector space, making the extrinsics at the output of the detector suffer from interference
between symbols. In this case, as the unrotated constellation generates a reasonable A?
distribution with a small number of small distances, an optimized interleaver [18| that
approaches the ideal interleaving condition is sufficient to provide high coding gains and
maximum diversity. Now if R. > 1/(8 + 1), rotations are mandatory to ensure full di-
versity at the receiver. For the same reasons as when R. < 1/( + 1), we use rotations
with s,,., for small size constellations. With large size constellations, it is judicious to
minimize the inter-symbol interference and choose a rotation with the minimum s that
satisfies the bounds 0,,42(5, Re, $) OF Opmaz 3(5, Re, s). We can then ensure full diversity
and at the same time deliver better quality extrinsics (than with $,,,,) to the channel
decoder. Note that if no iterations are possible at the receiver, the s,,;,, that allows for
maximal diversity leads the optimal performance of the D-ST-BICM.

The threshold at which we can change the coding strategy (i.e. the value of s) cannot
be computed analytically, but simulations showed that a rotation with s,,,, gives better
performance with BPSK and QPSK modulations, while degrading the coding gain with
16-QAM constellations or higher. To conclude as to which strategy to follow in order to
achieve high coding gains, we can say that:

[) With BPSK and QPSK modulations, always use precoders with s,,,, whatever the
coding rate R, is.
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IT) With 16-QAM modulations and higher:

1) If R. < 1/(f+ 1), do not precode, use optimized interleavers from [18].

2) If R. > 1/(8+ 1), precode with $,,;, that satisfies 0,4.2(5, Re, 8) OF Opmaw3(3, Re, S).

IIT) If no iterations are possible, precode with s,,;,, that satisfies 6,4, 2(3, Re, S) O dpmaw 3(3, Re, S)
whatever the coding rate R, is.

These strategies will be illustrated in the next section. Finally, note that whatever the
value of s is, there is no increase in the APP detection complexity.

4.6.1 Simulation results

In this section, word error rate performances are compared to information outage proba-
bility for different system configurations to illustrate the results presented in the previous
sections. We consider the half-duplex SAF cooperative channels with different coding
rates and constellation sizes. We set the values of & = 1, and & = & = £;/2 so that the
received energy is invariant from slot to slot. The geometric gain coefficients g;; are all
set to 0 dB in this section. The space-time precoders are (IOM) as presented in section
3.6. They are selected from the ensemble of random rotations as:

Pou(S) = P (Tsy < (B+1).m.R.) (4.13)

As an example, the 3 x 3 rotation Sroa s—2 that satisfies 0,4 2(5, Re, s) obtained for the
SAF protocol with two relays, 16-QAM input, and half-rate channel coding is given by:

0.69¢ 28 0 0.72¢7 912

SNAF-10Ms=2 = 0 1 0 (4.14)
0.72¢~11 0 0.69¢~ 12

Fig. 4.5 shows the outage probability for QPSK input, rotated QPSK input with an
IOM rotation, and Gaussian input of the single-relay NAF protocol. Without rotation,
the discrete input curve is about 2dB away from the Gaussian input. With IOM rotation,
the curve roughly achieves the lower bound without any increase in detection complexity.

In Fig. 4.6, we consider a 16-QAM modulation coded with half-rate codes over the
two-relay SAF channel. Without rotation, the decoder is not capable of recovering the
diversity as shown in (4.10). Adding a rotation with s,,,, ensures the diversity, but mixes
three 16-QAM symbols which results in a dense signal space. We can achieve slightly
better performance using a precoder with s = 2 as it creates less interference between
signals, while ensuring maximum diversity. Note that this gain appears since the first
iteration.

Finally, Fig. 4.7 shows the performance of QPSK constellation on a three-relay SAF
cooperative channel using R, = 1/2 and R, = 3/4 codes. Diversity is provided in several
ways; for R. = 3/4 codes, a rotation with s = 3 is sufficient to provide diversity, while
two s = 2 rotations are used for R. = 1/2. However, to achieve optimal coding gains, a
rotation with s,,,, has to be used.
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Figure 4.5: Outage probability comparison for the single-relay NAF protocol: QPSK
input, rotated QPSK input with 2 x 2 IOM rotation, and Gaussian input.

For all these configurations, performance less than 2dB away from outage probability is
achieved for codeword sizes in the range of 1000-1500 coded bits.

4.7 Code multiplexing over channel states for the half-
duplex NAF cooperative channel

As discussed in section 3.8, channel multiplexers can ensure maximal diversity orders and
optimal coding gains for turbo codes on block-fading channels provided the rate of the
code respects R. < 1/Dg, where Dy, is number of states of the BO channel. For both
the cases of single-input single-output block-fading channel with D, blocks [53] and the
MIMO channel with Dy, channel states (see section 3.8), both the horizontal multiplexer
and the h-m-diagonal multiplexer ensured maximal diversity for turbo codes. However, the
h-m-diagonal multiplexer showed better coding gain as it helped to equalize the partial
Hamming weights in (3.59). It is of great benefit to see what is the optimal channel
multiplexer for turbo codes in the NAF protocol, as it was discussed in section 4.6 that
for high spectral efficiencies a rotation degrades the performance of the code. In the sequel,
we will only discuss the case of half-rate turbo codes over the single-relay half-duplex NAF
cooperative channel. The generalization to the (-relay case is straight-forward as long as



4. CODED MODULATIONS FOR THE AMPLIFY-
70 AND-FORWARD COOPERATIVE CHANNEL

107t |-

WER

10

| | —=— 1OM rotation with s=2
| | ----®--- 1OM rotation with s=3
—»— Unrotated ;
| —=2— 1OM rotation with s=2, 1iteration |-
----©--- |OM rotation with s=3, 1 iteration Py
~ -+~ Qutagelimit, Gaussian Input do N L RN
0O 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
E,/Ny(dB) at the receiver

-3

10

Figure 4.6: Two-relay SAF cooperative channel, R.=1/2 NRNSC (23,35)g code, 16-QAM
modulation, 1440 coded bits.

R. <1/(6+1). We show in Fig. 4.8 the channel multiplexers for half-rate turbo codes
over the NAF channel. Note that when the two channel states of the BO-channel are
separated by a commas, this means that the binary element s; is sent in the first time
slot of the cooperation frame, and consequently it sees all the states of the matryoshka
channel. The two multiplexers of Fig. 4.8 ensure maximal state diversity at the receiver
over a two-state BO-channel as shown for MIMO channel with n; = 2 (see section 3.8).
The difference is that with horizontal multiplexing, diversity is always guaranteed by the
first RSC code, as all the information bits see the two states of the BO-channel. With
h-w-diagonal multiplexing, diversity is ensured through the two constituent codes as for
the MIMO channel. However, the coding gains provided by the two multiplexers for the
NAF protocol are different from that of the MIMO channel. To illustrate this issue, let
us consider the product wywsy of the partial Hamming weight in (3.59). Suppose that the
constituent RSC codes are two half-rate (7,5)s codes, and that the input weight is w = 2.
Consider now error events of length L = 4 4 35 and total Hamming weight wy = 6 + 27,
i =0...(N —4)/3. For horizontal multiplexing, w; = 6 + 2j and wy = 2. For h-7-
diagonal multiplexing, w; = 6 + 2j and wy = 3 + j. Let wy;, woy, wip, and wy, be the
partial weights of information and parity bits. For horizontal multiplexing, wy; = wy; = 2,
wip = 6 + 27, while wy, = 0. For h-m-diagonal multiplexing, wy; = 2, wq; = 2 if j is odd,
wo; = 1 otherwise. wy, = 4 + 27, wey, = 1+ j if j is odd, wy, = 2 + j otherwise. Unlike
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Figure 4.7: Three-relay SAF cooperative channel, R.=1/2 (23,35)s (continuous red lines)

and 3/4 (13,25,61,47)s (dashed blue lines) NRNSC codes, QPSK modulation, 1024 coded
bits.
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Figure 4.8: Single-relay NAF channel: Horizontal (top) and h-m-diagonal (bottom) mul-
tiplexers for a rate 1/2 parallel turbo code.

the case of two-state BO-channel where information bits have diversity 1 with horizontal
multiplexing, the horizontal multiplexer better protects the information bits than the
h-m-diagonal multiplexer over the single-relay NAF channel. In fact, this interpretation
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joins the results on the bound on the diversity of Matryoshka block-fading channels under
ideal interleaving derived in section 4.5, whereas an optimized interleaver makes the code
systematic and places the information bits on the block carrying the maximal diversity
order.

4.7.1 Simulation results

Fig. 4.9 and 4.10 shows the performance of half-rate turbo codes with different chan-
nel multiplexers and with 2 x 2 IOM rotations over the single-relay NAF protocol. As
shown in section 4.6, IOM rotations are best performing for QPSK constellations, allow-
ing the code to approach the outage probability by less than a dB. On the opposite, it
is impossible for the code to manage the interference between QAM symbols created by
IOM rotations for large constellations. In addition, horizontal multiplexing slightly out-
performs the h-w-diagonal multiplexing in Fig. 4.9 for large constellations, as it better
protects information symbols. The gain of horizontal multiplexing is even higher in Fig.
4.10 when the geometric gain g, between the source and the relay is considerable. Note
that, like for MIMO systems, word error rate performance of turbo-coded modulations
over the NAF protocol is insensitive to interleaver size.

--- Horizontal Multiplexing
--- H-tediagonal Multiplexing “El S
--- 2x210M Rotation LN
- Outage limit, Gaussian input, R=1 |~ s

Horizontal Multiplexing A
| —=— H-rediagonal Multiplexing )
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10°°

Figure 4.9: Single-relay NAF channel: Frame error rate comparison for QPSK (dashed
blue lines) and 64-QAM (continuous red lines) modulations, turbo code with R, = 1/2,
(17,15)s. gsr = 0 dB.
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Figure 4.10: Single-relay NAF channel: Frame error rate comparison for QPSK (dashed
blue lines) and 64-QAM (continuous red lines) modulations, turbo code with R, = 1/2,
(17,15)s. gsr = 20 dB.

4.8 Conclusions

In this chapter, a framework for channel coding over the amplify-and-forward cooperative
protocol with iterattive decoding was established. Bounds on the diversity orders for
coded systems for the case where all terminal have a single antenna. It was shown that
precoding without introducing time delay to the cooperation frame can lead the D-ST-
BICM to achieve maximal diversity. The absence of delay is even more important in that
it does not increase the detection complexity at the destination. It was also discussed
that precoding all the symbols together, which might look as a reliable maximum diversity
solution, is in fact harmful for the overall coding gain for large constellations. These coding
strategies also hold when no iterations are possible at the receiver. We also presented
channel multiplexing issues for turbo codes over the AF protocol, and showed that we
can closely approach the outage probability limit even for large constellations.
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Chapter 5

Design of irregular turbo codes for
block-fading channels

5.1 Introduction

In section 3.8 and 4.7, we showed that turbo-coded modulations using conventional turbo
codes are capable of approaching the outage limit of two types of block-fading channels,
that are the MIMO channel and the NAF cooperative channel. Fig. 5.1 shows the outage
boundaries for a two-state block-fading channel. The fading coefficients «; and a5 belong
to {0, +o00}. It was discussed in |52] and [64] that, in order to approach the outage limit
over block-fading channels, two conditions have to be met:

e Reducing the gap on the ergodic line: this is done by using a code that has a low
decoding threshold.

e Reducing the gap at infinity: this is done by using a block-wise maximum distance
separable (MDS) code, i.e. a code that achieves the Singleton bound of (2.25) |87].

In this chapter, in a goal to outperform conventional turbo codes on the block-fading chan-
nel, we design irregular turbo codes with excellent decoding thresholds over the AWGN
channel, which meets with the first condition. We then propose a slight modification of
the h-m-diagonal multiplexer [53| that suits the irregular turbo code, in a way to ensure
full diversity and meet with the second condition. Our design is limited to half-rate ir-
regular turbo codes over two-state block-fading channels. Generalization to higher state
diversity channels is straight-forward as long as Rc < 1/Dg. We will start by introducing
turbo codes in general, which allows us to present the structure suitable for the design
of irregular turbo codes. We will then present the Density Evolution (DE) and Gaussian
Approximation (GA) methods that allow us to design our codes. We will conclude by
showing finite-length results for the AWGN channel and DE results for the block-fading
channel.
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Figure 5.1: Outage boundaries for 2-state block-fading channel.

5.2 Turbo codes

In 1993, Berrou et al. [88] astonished the coding community by introducing a new class
of “turbo codes” that could achieve near-Shannon-limit performance with relatively low
decoding complexity. In this chapter, we will consider the concept of turbo coding to
design irregular turbo codes for different channel types.

The encoder of a parallel turbo code is shown in Fig. 5.2 below. An information sequence
b is encoded by a recursive systematic convolutional (RSC) code to generate a first parity
bit sequence; the same sequence is then scrambled by an interleaver II and encoded by a
second RSC code to generate a second parity bit sequence. If the turbo encoder transmits
all the three sequences, the overall rate would be 1/3. In order to obtain a half-rate
turbo encoder, we usually puncture half of the parity bits of the first parity sequence,
and alternatively half of the bits of the second parity sequence. The use of recursive
convolutional encoders and a random interleaver is essential to make the turbo code
“random-like”. Indeed, the work of Battail in [38] on random codes was the motivation
behind the turbo codes.

The iterative probabilistic decoder for the above turbo encoder is shown in Fig. 5.3.
Decoders SISO 1 and SISO 2 are soft-input soft-output [89] decoders using the forward-
backward algorithm [89] for RSC code 1 and RSC code 2. Each decoder reads the obser-
vations on information bits and the observations on its own parity bits. The interleaver 11
permutes the observations of the first decoder to give them to the second one. A decoder
generates extrinsic probabilities on information bits that are fed to the other decoder as
a priori probabilities on information bits.

At the first iteration, all a priori probabilities are set to 1/2. With the iterative
process, only extrinsic information evolves through the iterative process, not the channel
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Figure 5.2: Parallel turbo encoder.
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Figure 5.3: Parallel turbo decoder.

observations. At the last iteration, decisions are made on the a posteriori probabilities
on information bits. We can see that turbo codes are actually turbo decoded not turbo
encoded, as the iterative feedback of extrinsic information recalls the feedback of exhaust
gases in a turbo-charged engine.

Fig. 5.4 shows the performance of a half-rate parallel turbo code with two RSC (37,21)sg
constituent codes on an AWGN channel for different interleaver sizes.

The curve has two main regions; the waterfall region, that is due to the fact that
the use of a length-N interleaver effectively reduces the number of low-weight codewords
by a factor of N [62]| |63]; and the error floor region, that is due to the relatively poor
minimum distance. Indeed, it was shown in [90] that the minimum distance of turbo codes
is upper-bounded by a quantity that grows only logarithmically with the interleaver size,
and the authors in [91] proposed an interleaver design that always ensures this bound.
In most cases, the two constituent RSC encoders in Fig. 5.2 are identical (i.e. same
constraint length and generator polynomials). This is equivalent to the fact of merging
the two constituent encoders into a single one, and doubling the size of the interleaver.
To do so, a 2-fold repeater has to be added before interleaving. Fig. 5.5 below gives the
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Figure 5.4: Performance of half-rate parallel turbo code with two RSC (37,21)g con-
stituent codes, N = 4096 (continuous red curves) and N = 65536 (dashed blue curves).

representation of the equivalent encoder, that we will call “self-concatenated” turbo code:

\J

Repetition RSC Encoder——»

y
—
y

Y

Figure 5.5: Equivalent “self-concatenated” turbo encoder.

It looks actually as a repeat-accumulate (RA) code in which the information sequence
is transmitted as well. The decoder for such a turbo encoder is different from the classical
turbo encoder, as there is only one SISO decoding block (see Fig. 5.6). In this case,
extrinsic information is generated by the “extrinsic computing” (EC) block by simply
setting the a priori probability on an information bit equal to the extrinsic probability of
the other bit in the repeated pair.

In this new representation, each information bit is connected to the code trellis via
two edges in the propagation tree. We hence say that the degree of the information bits is
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Figure 5.6: Equivalent turbo decoder.

d = 2, and that the turbo code is regular. Using this structure, one can create irregularity
by repeating a certain fraction f; of the bits ¢ times, providing bits that are more pro-
tected than in the regular case. Like for low-density parity check (LDPC) codes [1] [92],
irregularity can boost the performance of turbo codes for large block lengths. The first
work that introduced irregularity to turbo codes in order to achieve better performance
is |93]. Results as close as 0.3dB from capacity at bit error rate of 107* were obtained
by repeating a fraction of the coded bits (i.e. both the information and parity bits) more
than twice. In [94], in a slightly different design, a fraction of the information bits is
repeated d times with d > 2, while the parity bits remained of degree 1. In order not
to alter the coding rate, a fraction f, of the parity bits is punctured, which lead to even
better results.

The encoder of an irregular turbo code is similar to that of Fig. 5.5, with the difference
that an information sequence b is fed to a non-uniform repeater that divides the informa-
tion bits into d classes with d = 2, ..., d;paz, Where d,,4, is the maximum bit-node degree.
The number of bits in a class d is a fraction fy of the total number of information bits at
the turbo encoder input, knowing that bits in class d are repeated d times. Finally, the
output of the non-uniform repeater is interleaved and fed to the RSC constituent code,
of which (1 — f,)% of the parity bits are transmitted. The decoder is also similar to that
of Fig. 5.6, with the difference in that the extrinsic probabilities in the EC block are

computed as:
dy—1

Ebg) = [I €ba) (5.1)
(=0,0#]
The normalization of these extrinsic probabilities is not necessary as far as we operate
with log-likelihood ratios (LLR). However, this normalization is performed for finite length
simulations in section 5.6. Now let K denote the length of the information sequence, N
the interleaver size, p the rate of the RSC constituent code, and R, the rate of the turbo
code. We can write the following:

dmaz

S f-1 (5.2)
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dmaz

Y dfi=d (5.3)
d=2

dmaa:
N=K) dfi=Kd (5.4)
d=2
K 1
+5 - 1+ (% . ) d

- 1
=) (5 -1)

where py = k/n is the initial rate of the constituent RSC code before puncturing.

(5.6)

In the next sections we will introduce methods that allow to evaluate the convergence
behavior of codes defined on graphs in general, that will be used to design irregular turbo
codes in the sequel.

5.3 Density evolution for irregular turbo codes

In this section, we consider rate-R,. irregular turbo codes built from a rate-p RSC con-

stituent code and degree profile {f;}4—1 We assume that the all-zero codeword is

7"'7dmaa:'
modulated into x = —1,—1,..., —1 and transmitted over an AWGN channel with vari-
ance Ny. At the output of the channel, each received BPSK symbol can be written as
y =x+mn = —1+n, so the conditional probability density function (PDF) is given by:

1

r=—1 :76—(114-1)2/2]\70 5.7
pole = 1) = <= (5.7)

The LLR of the channel observation y is thus:

polz=-1)_2 2 55

LLRy =lo = —
0 gp(y\x:—l—l) Noy Ny

This gives a Gaussian random variable that follows the distribution po(z) ~ N (mqg, vo)

ith:
wi 5 4

AN

The propagation tree for irregular turbo codes is shown in Fig. 5.7. A bit-node of

my = — (5.9)

degree d with probability pq = d.fy/d has d — 1 incoming extrinsic probabilities and one
outgoing a priori probability also called partial APP. The APP of an information bit is
obtained by the sum of the incoming extrinsics and the outgoing partial APP associated
to the same edge of the graph. We assume that the infinite-size interleaver has no cycles,
assumption that gives a perfect tree graph representation.

For every bit by of degree d, we compute the forward-backward algorithm [89] over a
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Figure 5.7: Propagation tree of an irregular turbo code.

window W around the bit, whose size should be large enough to guarantee a correct APP
evaluation. The algorithm computes extrinsic information on b; whose distribution is
computed. In [95], it was shown that for convolutional codes, when the channel observa-
tion and the a priori probabilities at the input of the code are independent and identically
distributed (i.i.d), the a posteriori probability density is independent of the bit position.
Consequently, the extrinsics are independent from a priori probabilities, thus only one
histogram is sufficient to evaluate the extrinsic probability distribution of all the informa-
tion bits by, d = 1, ..., dymae- Throughout the iterative process, the a priori probability of
a bit of degree d is computed as the sum of d — 1 extrinsics given by the distribution of
the extrinsics.

The log-ratio of the extrinsic information at iteration ¢ is defined as:

_ log(&i(ba = 1)
log(&i(ba = 0)
A signal-to-noise ratio is said to be admissible if the error probability vanishes after a finite

number 4,,,, of iterations of the APP decoder. The smallest admissible signal-to-noise
ratio is called threshold. We describe hereafter the Density Evolution (DE) method:

LLR; (5.10)

e Initialize the channel noise variance Ny = No(FEp/Ny).

e Initialize the extrinsic probability density function prrg,(x) by a Dirac impulse.
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e For each iteration i = 1, ..., 40z

— Given the density prrr,_,(x) of LLR;_ 1, compute the new density prog, () of
the outgoing extrinsic information LLR;.

— Compute the error probability FPy(i) on information bits.

— Stop the density evolution if Py(7) is vanishing (i.e. < 107°).

o if i = 4,4 and Py(i) > 107°, choose a greater value for F,/N; and restart, else
choose a smaller value and restart.

The total bit error probability at iteration ¢ is given by:

dmaz

Py(i) =Y faPy(d, i) (5.11)

Where P,(d, i) is the bit error probability of class d given by the area under the tail
of the probability density function pg;(x) of the APP inside class d written as:

pai(x) = F " [F [po(2)] F* [prrr, ()] (5.12)

Where po(x) ~ N(—2/No,4/Np) is the probability density function of the channel like-
lihood. Density evolution gives a very accurate limit on the convergence behavior of
capacity-approaching codes, and it was used to find optimal degree profiles for LDPC
codes in [1] [96]. However, finding a good degree profile using density evolution requires
intensive computations and a long search, since the optimization problem is not convex
[97|. Furthermore, it does not provide any insight to the design process, as one has to
perform an exhaustive search over a wide range of profiles to find the best ones. In the
next section, a less-accurate - but much faster - method for studying the convergence
behavior of iterative decoding will be studied.

5.4 Gaussian approximation for irregular turbo codes

In [98], an approach for finding convergence behavior of iterative decoders using extrinsic
information transfer (EXIT) charts was proposed. Although this method is not as ac-
curate as density evolution, its low computational complexity makes it very attractive.
EXIT charts provide one-dimensional analysis that can reduce the problem of optimizing
the degree profile of an irregular code to a linear program. This way the optimization
algorithm becomes much faster and gives a qualitative insight to the convergence behavior
of the decoder.

There have been many approaches based on one-dimensional analysis of graph codes, and
they assume that the PDF of the decoder’s log-ratio is approximately Gaussian. All GA
are more or less equivalent, differences stand in the Gaussian parameters estimation and
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in the chart parameters (mutual information, signal-to-noise ratio, error probability...).
The problem with GA methods with LDPC codes is that approximation is accurate only
for messages sent from bit-nodes, as the convolution of the extrinsic distribution with the
PDF of the channel likelihood (that is Gaussian) in (5.12) gives a “somehow” Gaussian
distribution. On the opposite, the extrinsics distribution from check-nodes is far from
being Gaussian, as the checks are connected to a small number of bit-nodes in a LDPC
code propagation tree. With convolutional codes however, as the check constitues the
whole window over which the decoding algorithm is computed, the distribution of the
extrinsic probabilities at the output of the decoder is closer to a Gaussian distribution.
In the density evolution method, we need the output density prr. ,(x) of the previous
iteration in order to compute the input density of the next iteration. The advantage
of GA on this issue is that it allows to start the analysis from any stage of the decod-
ing process. To analyze one iteration, consider the tree of Fig. 5.7. We want to track
the behavior of the iterative decoder through the value of the output error probability
P,.; at the bit-node as a function of the input error probability P;, at the check-nodes.
The values of the input error probabilities are picked from the range [0, Peg|, where Peg
corresponds to the error probability given the channel signal-to-noise ratio per receive
symbol Fs/Ny. The different values of P, are then mapped onto Gaussian distributions
that are fed to check-node input. After a “one-step” density evolution (as explained in
section 5.3), the distribution obtained at the output of the bit node is approximated by
a Gaussian distribution, from which P, is finally computed. There exist several metrics
to approximate the distribution of the output of the bit-node with a Gaussian one, the
most accurate being the matching of the symmetric Gaussian density to the true density
based on a mutual information measure as in [99].

In [100], the author proposed a function J(o) that maps standard deviation o of a sym-
metric Gaussian density to its mutual information, with:

+o0 67(t702/2)2/202
o V2o

With irregular turbo codes, the channel observation is available at the parity bits of the

J(o)=1- . log(1+ e ")dt (5.13)

RSC constituent code, thus P,,; is computed by approximating the distribution of the
extrinsics at the output of the check-node by a Gaussian distribution using (5.13) without
an additional convolution with the channel observation.

5.5 Irregular turbo code design

Designing irregular turbo codes for the AWGN channel was done in [93| [94]. In this
section, we propose a new method for designing irregular turbo codes based on both GA
from [99] and DE methods.

First, we compute the EXIT chart for different values of f; as in [99]|. This chart gives us
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the value of P, 4 for degree d as a function of F;, as:

Pout,d - fd(pzn) (514)
Next, by imposing the constraints:

o [ >0 Vd

dmaz
® Zdzg Ja=1

We compute:

Ja
d>2 d

using the method described in section 5.4. The above equation gives us a range of values
of f4 such that the tunnel in the EXIT chart is open, which means that the iterative
decoding converges. The final step is then to perform density evolution over the range of
values of the f;, and choose the degree profile that has the lowest threshold. Note that in
order to get R. = 1/2 or R. = 1/3 codes for instance, strict constraints are imposed on
fp- For this reason, the linear programming method used to optimize the degree profile
of LDPC codes in [99] was not considered for irregular turbo codes. In fact, this method
consists of maximizing the rate of the code by maximizing a function that depends on
d, giving no insight on the puncturing rate fp- In order to optimize the degree profile
at a fixed rate, one should disregard this method. Indeed, our design gives the following

expression for the rate of the irregular turbo code:

K
e Ty A =

(5.16)

This means that limg .., R = 1/2. Optimization results have shown that one can obtain
good performance codes by only selecting a small number of non-zero degrees, thus lower-
ing the number of density evolution simulations to be performed. As an example, suppose
we want to design a half-rate irregular turbo code with only two non-zero fractions, say
fo and fio. The capacity limit for R. = 1/2 and BPSK modulation is around 0.18dB.
We set the signal-to-noise ratio per receive symbol to —2.8dB, such that by introducing
a half-rate code (i.e. by loosing 3dB) we fall slightly above the capacity limit. We next
draw the EXIT chart as shown in Fig. 5.5; as there is one constituent RSC code in a
self-concatenated turbo code, we can judge if the iterative receiver converges for a certain
degree if the transfer fucntion of (5.14) falls below the bisectrix of the [P, Py.] plane.
We then select the degree profile pair {f, fi2} that allow for the tunnel to be open, and
we finally get the results of Tab. 5.1 by DE simulation. Similarly, the degree pair { fo, fi0}
gives the results of Tab. 5.2. In Fig. 5.5, we can see that the number of iterations needed
for the DE method to converge increases while approaching the decoding threshold of the
code. Thus at 0.27dB, the decoder needs about 278 iterations to converge.
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Figure 5.8: EXIT charts, single Gaussian distribution, F,/Ny = —2.80dB.

Table 5.1: Convergence for half-rate irregular turbo codes, AWGN channel, degree profile
{fa, 12}

J2 Jiz | (By/No)min | d Ip
0.89 | 0.11 >1.00 3.10 | 0.354839
0.90 | 0.10 0.32 3.00 | 0.333333
0.91 | 0.09 0.34 2.90 | 0.310345
0.92 | 0.08 0.27 2.80 | 0.285714

0.93 | 0.07 0.32 2.70 | 0.259259
0.94 | 0.06 0.35 2.60 | 0.230769
0.95 | 0.05 0.40 2.50 | 0.200000
0.96 | 0.04 0.41 2.40 | 0.166667

0.97 | 0.03 0.45 2.30 | 0.130435
0.98 | 0.02 0.47 2.20 | 0.090909
0.99 | 0.01 0.51 2.10 | 0.047619
1.00 | 0.00 0.55 2.00 | 0.000000

5.6 Simulation results

5.6.1 Finite-length performance over the AWGN channel

Fig. 5.10 shows the performance of the rate-1/2 irregular turbo code designed in section
5.5 with (25,37,35) RSC code constituent against irregular LDPC code from [1]. The



86 5. DESIGN OF IRREGULAR TURBO CODES FOR BLOCK-FADING CHANNELS

Table 5.2: Convergence for half-rate irregular turbo codes, AWGN channel, degree profile
{f2,f10}-

fo | fio | (Bo/No)min | d Jp

0.87 1 0.13 >1.00 3.04 | 0.342105
0.88 | 0.12 0.42 2.96 | 0.324324
0.89 | 0.11 0.44 2.88 | 0.305556
0.90 | 0.10 0.38 2.80 | 0.285714

0.91 | 0.09 0.32 2.72 1 0.264706
0.92 | 0.08 0.41 2.64 | 0.242424
0.93 | 0.07 0.40 2.56 | 0.218750
0.94 | 0.06 0.41 2.48 | 0.193548

0.95 ] 0.05 0.42 2.40 | 0.166667
0.96 | 0.04 0.44 2.32 1 0.137931
0.97 | 0.03 0.47 2.24 1 0.107143
0.98 | 0.02 0.50 2.16 | 0.074074
0.99 | 0.01 0.53 2.08 | 0.038462
1.00 | 0.00 0.55 2.00 | 0.000000

irregular turbo code clearly outperforms the irregular LDPC code for a codeword size
of 10°, while the gain is smaller for 10°. It is important to mention that the number
of iterations needed for the decoder to converge is logarithmically proportional to the
interleaver size N of the code [101]. Now as irregular codes are by definition asymptotically
good, it is better to use regular turbo codes for smaller interleaver sizes. The structure of
the self-concatenated turbo code presented in this chapter allows to easily switch between
irregular and regular configurations, by only making the repeater uniform and sending all
the parity bit sequence (i.e. no puncturing).

5.6.2 Density evolution over block-fading channels

In this section we show the word error rate performance of half-rate irregular turbo codes
over a two-state block-fading channel via density evolution. As in section 5.3, we assume
that the all-zero codeword is modulated into x = —1,—1, ..., —1 and transmitted over a
block-fading channel with n, states (n. = 2 in our case). The received signal y can be
written as:

y=hx+w (5.17)

where w is the AWGN component with zero mean and variance Ny, and h is the real
fading coefficient that belongs to the set:

U ={o,q, .} (5.18)
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Figure 5.9: Convergence behavior of half-rate irregular turbo codes with degree profile
fo =0.92 and f1, = 0.08.

In |52], it was shown that the frame error rate performance of turbo codes under iterative
decoding can be written as:

Py = / p(W)d (5.19)
\IJED()(C)

where

Dolc) = {\11 eR™ | lim lim P! (N)= 1} (5.20)

1—00 N —00

is the outage region of the turbo code and 7 is the number of iterations of the decoder. This
region contains the values of the fading coefficients that lead the decoder not to converge.
This means that the error probability of large interleaver sizes is given by the distribution
of the decoding threshold as a function of the fading. As in [52], we decided to run the
DE algorithm only when there is no outage, and when amm% > ﬁ—g e, where agp, is
the lowest fading value within the set ¥, and % |¢n 1 the code threshold over the AWGN
channel. To attain the best possible performance over the two-state block-fading channel,
we consider the half-rate irregular turbo code with degree profile fo = 0.92 and f;5 = 0.08
that exhibits a threshold of % lsn=0.27dB over the AWGN channel that is the best among
all other profiles. Note that as this code is self-concatenated, the h-r-diagonal multiplexer
does not apply as it is. Now for this code to attain the maximal diversity D, = 2 with
optimal coding gain, we propose the modification of the h-mw-diagonal multiplexer as shown
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Figure 5.10: Trregular turbo code with Re—1/2, (25,37,35) RSC code constituent, fo =
0.92, fio = 0.08, f, = 0.28, s-random interleaving (dashed blue curves), versus half-rate
irregular LDPC [1]| code (continuous red curves), AWGN channel.

in Fig. 5.11. where s; represents the information bits and sy the parity bits of the RSC

‘ H-7-diagonal Multiplexer ‘

s1 1 2 1 2 1 2
a7 l(se) | 2/X | 1/X | 2/X|1/X|2/X|1/X

Figure 5.11: H-w-diagonal multiplexer for a rate 1/2 irregular turbo code.

code, among which a fraction f, is punctured (represented by the X). In Fig. 5.12, we
show the word error rate performance of the half-rate irregular turbo code with (25,37,35)
RSC code constituent, degree profile fo = 0.92 and fio = 0.08, is compared to that of
a regular turbo code with two (13,15) RSC code constituents whom half parity bits are
punctured over the two-state block-fading channel, BPSK input. The regular turbo code
with h-w-diagonal multiplexing is about 1dB away from outage probability, while the
irregular turbo code with the modified h-m-diagonal multiplexer roughly coincides with
the BPSK input outage probability.
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Figure 5.12: Word error rate computed with the DE algorithm for R. = 1/2 turbo codes
over the 2-state block-fading channel, BPSK modulation.

5.7 Conclusions

In this chapter, we presented the design of irregular turbo codes that are capable of

achieving the outage probability of the block-fading channel. By satisfying the two con-
ditions that are 1) a low decoding threshold over the AWGN channel and 2) full diversity
through channel multiplexing, irregular turbo codes outperform all other existing codes

for sufficiently large block length. Following the definitions in [16|, irregular turbo codes

are good codes, i.e. they exhibit a vanishing gap with the outage limit for N — oo, while

regular turbo codes are weakly good codes, as they achieve a constant gap from outage

probability for any interleaver size.
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Chapter 6

Conclusions

This manuscript presented space-time bit-interleaved coded modulations for both the
multiple-antenna block-fading channel and the amplify-and-forward cooperative fading
channel with single-antenna nodes. What these schemes have in common is that they were
capable of achieving the maximal diversity orders the block-fading channels -they were
designed for- allowed and they provided high coding gains with relatively low decoding
complexity at the receiver.

For the multiple-antenna channel, we proposed the following:

e [Information Outage Minimizing (IOM) space-time precoders: these precoders allow
for optimal performance of the ST-BICM if no iterations are possible at the receiver.
They can also be adapted so that they become optimal for both “one-shot” decoding
and iterative decoding

e Matrix-Alamouti space-time precoder: application of the Alamouti scheme with two
transmit antennas to four transmit antennas. With proper signal decoupling and
iterative interference cancellation/decoding, frame error rate robust with respect to
the frame size was achieved.

e Turbo-code design for multiple-antenna systems: these systems achieved optimal
word error rate performance insensitive to the interleaver size by using a special
multiplexer that places the binary elements at the output of the code “intelligently”
on the channel states. This performance is achieved at no additional cost in com-
plexity.

For the amplify-and-forward cooperative fading channel, the following results were
carried out:

e Bounds on the diversity order of coded systems over the Matryoshka block-fading
channel representing the slotted amplify-and-forward protocol were derived. These
bounds can be achieved by judicious precoding without affecting the decoding com-
plexity.
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e Coding strategies based on the bounds on diversity that allow to achieve high coding
gains depending on the coding rate, modulation size, and number of relays.

e Turbo-code design for the amplify-and-forward cooperative fading channel: the code
multiplexer that suits the Matryoshka block-fading channel model proved to be
optimal. Again, word error rate performance insensitive to block size at no increase
in complexity is achieved.

Finally, we proposed irregular turbo codes that exhibit a vanishing gap with the outage
probability for large block lengths over the single-input single-output block-fading channel.
This is done through an adapted channel multiplexer that suits the self-concatenated
structure of the code. This result can be applied to any block-fading channel type. The
material elaborated in this report opens the way for the following perspectives:

e Study of sub-optimal receivers for the SAF protocol: indeed, the upper-triangular
structure of the channel matrix can allow for the implementation of sub-optimal de-
tectors such as the Successive Interference Cancellation (SIC) or the SISO-Minimum
Mean-Square Error (MMSE) detectors that can provide a drastic complexity reduc-
tion with respect to the exhaustive APP detector.

e Derive bounds on the diversity order of the MIMO-SAF channel: investigate on
what diversity orders a D-ST-BICM can achieve in the case where the nodes have
multiple antennas.

e Study of Decode-and-Forward protocols from the D-ST-BICM point-of-view.

e Study of the schemes proposed in this manuscript for Multi-Carrier (MC)-CDMA
systems and OFDM systems.
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