Thése

présentée pour obtenir le grade de docteur

de ’Ecole Nationale Supérieure
des Télécommunications

Spécialité : Electronique et Communications

Olivier Pothier

Codes composites construits a partir
de graphes et leur décodage itératif

soutenue le 27 janvier 2000 devant le jury composé de

Gilles Zémor Président
Gérard Battail Rapporteurs
Ezio Biglieri

Antoine Chouly Examinateurs

Ramesh Pyndiah
Riidiger Urbanke
Joseph Boutros directeur de thése

Ecole Nationale Supérieure des Télécommunications, Paris

To my parents,
for the education they gave me.

To my teachers, in all fields,
I know so little compared to them.

A mes parents,
pour I’éducation qu’ils ont su me donner.

A mes professeurs dans tous les domaines,
puissé-je un jour en savoir autant qu’eux!

Remerciements

Il est de coutime pour un thésard, au moment de mettre un point final &
son rapport, de remercier les personnes qui ’ont aidé et soutenu tout au long
de sa thése. Cette tache me paraissait, il y a encore quelques semaines, loin-
taine, presque inaccessible. Par moment, au cours de la rédaction, je laissais
divaguer mon esprit, et me voyais rédiger cette page dans un halo de brume
joyeuse. Je construisais de belles formules raffinées pour exprimer tour a tour
ma gratitude aux personnes qui apparaissaient telles des icones, a travers la
brume. Ces visions m’ont été réconfortantes, reposantes et stimulantes lors
de la rédaction, tache ingrate.

Au moment de passer a ’acte, la brume se fait brouillard, le halo n’est
plus, les icones ont disparu, les mots ne viennent pas, seule une corne de
brume lointaine et nostalgique semble sonner ’oraison de ces trois ans et
quelques mois supplémentaires. Dépression post-partum ? Icones, fendez le
brouillard, et apparaissez (dans 'ordre protocolaire, s’il vous plait)! Que
toutes celles que je vais oublier ne s’en offusquent pas, mais s’imaginent avec
humour gravées sur le bois doré...

Je tiens tout d’abord a remercier Gilles Zémor, de 'E.N.S.T., pour m’avoir
fait I’honneur de présider le jury de cette thése. Les discussions que j’ai eues
avec lui, en particulier concernant la théorie des graphes, m’ont été d’une
grande aide, bien que concourant souvent & faire naitre en moi un autre
brouillard, celui de la prise de conscience de mon ignorance. Ce dernier est
heureusement soluble dans le travail.

Mes plus vifs remerciements s’adressent au Professeur Gérard Battail,
qui a cordialement accepté d’étre rapporteur de ce travail, et pour lequel
j’éprouve le plus grand respect. La qualité de ce rapport s’est vue remarqua-
blement améliorée par sa relecture attentive et pointilleuse, et ses nombreuses
corrections.

Je tiens également & exprimer ma profonde gratitude envers le Professeur
Ezio Biglieri, du Politecnico di Torino, pour avoir lui aussi accepté d’étre
rapporteur. Ses commentaires élogieux m’ont touché. Qu’il trouve ici 'ex-
pression de ma sincére reconnaissance.

11 REMERCIEMENTS

Je remercie les membres du jury, Messieurs les Professeurs Ramesh Pyn-
diah, de 'E.N.S.T. Bretagne, et Riidiger Urbanke, de 'E.P.F.L., pour leur
lecture attentive de ce manuscrit, leurs remarques constructives et les discus-
sions (parfois animées) que nous avons eues. Leurs réputations scientifiques
honorent mon travail.

Je n’oublie évidemment pas les laboratoires d’électroniques Philips (L.E.P.)
et Mohammad Haghiri en particulier, qui a été a 1’origine du contrat de col-
laboration entre le département Communication de ’'E.N.S.T. et la division
23 du L.E.P. 1l est rare qu’une entreprise accorde une telle liberté au thésard
qu’elle finance. Je remercie tout particuliérement mon encadrant au sein du
L.E.P., Antoine Chouly, dont la gentillesse n’a d’égale que la compétence
technique et la discrétion.

Les mots me manquent lorsque j’en viens & mon directeur de thése. Jo-
seph, sans toi, mon travail et ce rapport, son aboutissement, n’auraient jamais
vu le jour. Merci pour ton enthousiasme, ton dynamisme, ton écoute (tu es
cependant parfois difficile & convaincre), tes orientations, ton encadrement,
mais surtout pour la confiance que tu as su m’accorder.

Les moments que j’ai passés au département Communication de ’'E.N.S.T.
ont été un parfait equilibre de travail solitaire (le thésard est un coureur de
fond), d’échanges scientifiques stimulants, passionnés et parfois impromp-
tus, devant un tableau blanc ou un café noir, et d’enrichissement personnel.
Merci au Professeur Philippe Gallion de m’y avoir accepté, aux secrétaires
Jany Batz, Laurence Monnot et Danielle Childz pour leur aide efficace, merci
a tous les enseignants. Merci & tous les éléves de 'E.N.S.T. qui ont assisté a
mes cours, ou que j’ai encadrés, pour I'approfondissement des connaissances
et les progrés de clarté, de pédagogie et de synthése que vous m’avez forcé a
accomplir.

Et surtout merci & tous mes compagnons de fortune : Christine (taber-
nac’), Mono (hola, feo), Bahram (et sa cravache), Amal (3 ans de vie com-
mune), Loic (trop & dire en une parenthése), Catherine (vraiment trop),
F-X (caliméro des sys-admins), Sandrine (la reléve), Céline (de souche), Cé-
dric (c’est pour bientot ?), X-tof (Champs de Mars, demi-pression), Sabine
(cendrée verzionaise), Stefan (et ses coloc’), Christophe (cachax) et tous les
autres, pour tout ce que vous m’avez apporté.

Merci & tous mes amis de m’avoir accompagné et supporté.

Merci a Marie.

Merci & mes parents.

Paris, le 22 février 2000

iii

Résumé

Cette thése propose et analyse des techniques dont ’objet est la compré-
hension des schémas de codage de canal composites existant et la construction
de nouveaux schémas au moyen de représentations graphiques.

Ces travaux ont été motivés par les récents progres en codage de canal, et
plus particuliérement I'invention en 1993 des turbo codes. Ces derniers font
partie d’une classe plus étendue de codes, les codes composites.

Les codes composites consistent en l’association de codes constituants
liés. Chacun de ces codes posséde un décodeur élémentaire a entrée et sortie
souples. Le décodage des codes composites s’effectue de maniére coopérative
a 'aide de décodeurs élémentaires qui échangent des informations probabi-
listiques, au cours d’un processus itératif. Les critéres classiques d’évaluation
des codes, sous I’hypothése d’un décodage & maximum de vraisemblance,
montrent dés lors leur limite dans ’analyse de ces codes. Le décodage itéra-
tif peut cependant étre interprété comme une propagation de probabilités le
long d’un graphe représentant le code composite.

Dans une premiére partie, une représentation graphique spécifique, le
graphe de dépendance, est introduite pour les turbo codes. Elle se révele
étre un outil utile dans la compréhension et ’analyse du décodage itératif.

Dans une seconde partie, nous élargissons 1'utilisation de représentations
graphiques a la construction de nouveaux codes composés, les codes GLD
(generalized low density), qui se trouvent a la croisée des chemins des codes
a faible densité de Gallager, et des codes graphiques de Tanner. Une étude
théorique et pratique de ces codes est menée. Enfin, des entrelaceurs spéci-
fiques aux codes GLD, et a leur décodage itératif, sont présentés.

COMPOUND CODES
BASED ON GRAPHS
AND THEIR ITERATIVE DECODING

OLIVIER POTHIER

Ecole Nationale Supérieure des Télécommunications, Paris
Digital communication group, COMELEC Department

Committee in charge :

Gilles Zémor Chairman
Gérard Battail Reporters
Ezio Biglieri

Antoine Chouly Examiners

Ramesh Pyndiah
Riidiger Urbanke
Joseph Boutros Advisor

January 27, 2000

vii

Contents
Remerciements i
Résumé iii
Contents vii
List of Figures xi
List of Tables XV
Acronyms and Notations xvii
Introduction 1
1 Turbo codes and their decoding 5
1.1 Structure of turbocodes 8
1.1.1 Parallel turbocodes. 8
1.1.2 Serial turbocodes 10
1.2 Summary of analytical performance 11
1.2.1 Parallel turbocodes. 11
1.2.2 Serial turbocodes 12
1.3 TIterative decodingo 13
1.3.1 Soft-input soft-output decoding of a convolutional code 13
1.3.2 Tterative decoding of a parallel turbo code 14
1.3.3 [Iterative decoding of a serial turbocode 16
1.4 Simulationsresults 18
2 TIterative decoding convergence of turbo codes 23
2.1 Graphical representation of turbocodes 23
2.2 Dependency grapho 29
2.3 Convergence analysis 35

2.3.1 Height of the dependency graph 36

viii CONTENTS

2.3.2 First-cycle level in the dependency graph 41

24 Concluding remarks oL 43
3 Low density parity check codes 45
3.1 LDPC structure and decoding 46
3.1.1 Definition of low density-parity check-codes 46
3.1.2 Analytical properties of LDPC codes 48
3.1.3 Gallager’s probabilistic decoding algorithm ol

3.2 Graphical representation 56
3.2.1 Dependency graph o7

3.3 Low-density interpretation of turbocodes 61
4 Generalized Low Density codes 65
4.1 Structure of GLD codes 66
4.1.1 Parity-check matrix description 66
4.1.2 Graphical description00 67
4.1.3 CodingRate. 70
4.1.4 A special case : GLD codes with J =2 levels 70
4.1.5 Another special case : Product Codes 73

4.2 Ensemble performance 75
4.2.1 Average weight distribution of GLD codes 75
4.2.2 Lower bound on the asymptotic minimum distance . . 77
4.2.3 BSC channel threshold 83

4.2.4 Upper bound on minimum distance for a fixed length . 89
4.2.5 ML decoding error probability over the AWGN channel 93

4.3 Tterative decoding of a GLD code 97
4.4 Tterative decoding performance 99
4.4.1 Probability distribution of the output of the SISO de-
codero 100

4.4.2 APP propagation and performance of GLD code with
infinite lengtho L oL 106
4.5 Simulationresultso L 0oL oL 110
5 GLD interleavers based on graphs 119
5.1 Influence of graph and code parameters on iterative decoding . 120
5.1.1 Girth, code length and minimum distance 122
5.1.2 A brief survey of known (n, g)-graphs and (n, g)-cages . 125
5.2 Random interleavers with girthg >4 126
5.3 Interleavers with girth6 127
5.3.1 Interleavers from projective geometry PG(2,¢q) 128

5.3.2 Interleavers from Cayley graphs 132

CONTENTS ix

5.4 Interleavers with girth 8 135
5.5 Simulationresults 136
5.5.1 Performanceresults 136

5.5.2 Estimation of the cycles distribution 137
Conclusion 146

A First cycle distribution of dependency graphs constructed

from row-column interleavers 147
A.1 Row-column interleaver definition 147
A.2 Graphical properties of row-column interleavers 148
B The forward-backward algorithm 153
B.1 Markov source Model L. 154
B.2 Markov source model 154
B.3 Discrete memoryless channel model 154
B.4 The Forward-Backward Algorithm 155
B.5 Forward-backward algorithm 155
B.5.1 Definition of the quantities o, Sand v 156
B.5.2 Recursive computationof oo 157
B.5.3 Recursive computationof 8 158
B.5.4 Expressionofyo 158
B.5.5 Initialization. 159
B.5.6 Summary of the FB algorithm 159

B.6 Application of the FB algorithm to the SISO decoding of con-
volutional codeso 160

B.6.1 Simple SISO decoder for convolutional codes based on
the forward-backward algorithm 162

B.6.2 SISO decoder for convolutional codes based on the
forward-backward algorithm suitable for iterative de-

coding Lo 162
B.6.3 Initial and final states initialization 165

B.7 Application of the FB algorithm to the SISO decoding of a
linear blockcodeso 165

B.8 Complexity analysis of the SISO decoder of linear block codes
based on the FB algorithm 168
C Publications 173

Bibliography 173

CONTENTS

xi

List of Figures

1.1
1.2
1.3
14
1.5
1.6

1.7

1.8

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11

2.12

2.13
2.14

Encoder of a parallel turbo code with J levels.
Encoder of a serial turbocode.
General SISO decoder scheme for a (M, N) code.
Iterative decoding of a parallel turbo code.
Iterative decoding of a serial turbocode.
Performance of a parallel turbo code with J = 2 identical RSC
codes (37,21), overall rate R =1/2 and N =65536.
Comparison between simulation of turbo decoding and ML
union bound for a parallel turbo code with J = 2 identical
RSC codes (7,5), overall rate R =1/2 and N =400.
Comparison between simulation of turbo decoding and ML
union bound for a serial turbo code.

Bayesian network of a general channel code.
Bayesian network of a convolutional code.
Belief propagation algorithm in a convolutional code network.

Bayesian network of a turbo code with interleaver size N = 16.

Army network without cycle..
Number of soldier count. First step.
Number of soldier count. Second step.
Army network with acycle.
Erroneous umber of soldier count. First step.
Erroneous number of soldier count. Second step.
Bit Error Rate of the central information bit of a recursive sys-

tematic convolution code (1,35/23) for different observations

window size W.o
Dependency graph DG(ug) for the turbo code depicted in

Figure2.4
Dependency graph without clump collision. W =3.
Average population of the dependency graphs for N = 65536.

Random interleaving. W =3.

26

36

xii

LIST OF FIGURES

2.15 Average population of the dependency graphs for N = 65536.
Row-column interleaving. W =3.

2.16 Minimal cycles distribution of different interleavers.
2.17 Comparison of row-column and random interleaving, N =

4096. Eb/NO from 0.0 dB to 0.5 dB with 0.1 dB step.

3.1 Properties of the parity check matrix H of LDPC codes.

3.2 Average asymptotic values of the normalized Hamming dis-
tance of the ensemble of LDPC codes.

3.3 Dependency graph of an LDPC code with j =2 and £ =3. . .

3.4 Diagram of the LDPC SISO decoder of bit b; at the -th iter-
ationstep

40
41

46

20
ol

o4

3.5 Simulation results of an LDPC code with parameters : (510, 3,6). 55
3.6 Simulation results of an LDPC code with parameters : (48000, 3,6). 55

3.7 Graphical representation of an LDPC code with parameters
(N, j,k) as a Tanner random code.
3.8 Dependency graph of b; for an LDPC code with parameters

3.9 Probability propagation in the dependency graph of an LDPC
code during the SISO decoding of b; at iteration step ¢.

3.10 Individual bit error probabilities of a (500, 3,4) LDPC code,
at Eb/Ny=3.25 dB. Iterations from 1 to 20.

3.11 Parity check matrix of a turbo code of rate R = 1/3 composed
of two constituent codes of rate r =1/2.

4.1 Parity-check matrix H ofa GLD code
4.2 The GLD code as a Tanner random code.
4.3 Two-level GLD code compact graph representation.
4.4 Connected compact graph of a block product code
4.5 Average weight distribution of 2-level GLD codes based on
the Hamming (15, 11) as constituent code, compared with the
binomial approximation. 000,
4.6 Agpi(s) for the Hamming (15,11, 3) constituent code.
4.7 B(Agpt, s) plotted as a function of A,y for the 2-level GLD code
based on the Hamming (15,11, 3) constituent code
4.8 GLD asymptotical lower bounds on minimum distance com-
pared with the Varshamov-Gilbert bound
4.9 Error vector e and codeword ¢; L.
4.10 E(p) vs. p for the 2-level GLD code based on the Hamming
(15,11, 3) constituent code

o8

7

LIST OF FIGURES xiii

4.11

4.12
4.13

4.14

4.15

4.16
4.17
4.18
4.19

4.20

4.21

4.22

4.23

4.24

4.25

4.26

4.27

4.28

5.1

5.2

Upper bound for fixed length and asymptotic lower bound on
the minimum Hamming distance of two GLD codes with J = 2
levels 92
Tangential Sphere Bound 95
Bit Error Probability upper bounds and simulation results for
the J = 2 GLD code with Hamming (15,11, 3) constituent

code. N =420, K =196.. 97
The I-th GLD decoding iteration 99
Permutation of the parity-check matrix of the GLD codes with

J=2levels. 99
SISO decoder using log-ratios 103
Decoder output pdfs computation 105
Neighborhood of the bit ¢; in the infinite graph 107
APP pdf of the infinite GLD code with J = 2 and Hamming

(7,4,3) constituent code. 108

Performance of perfect iterative decoding of GLD code with
infinite length compared with simulation results for fixed length.109
(361,196) and (400, 196) Product Codes with respective con-
stituent code (19,14,3) and (20,14,4). 112
Simulation results of the C”' code : BER (left) and FER
(right) wvs. iteration steps number for Eb/N, from 0.6 to 3.4
dB with a 0.2dBstep. L. 114
Simulation results of the C? code : BER (left) and FER
(right) wvs. iteration steps number for Eb/N, from 0.6 to 3.4
dB witha 0.2dBstep. 115
Simulation results of the CY*” code : BER (left) and FER
(right) vs. iteration step number for Eb/N, from 0.6 to 3.4
dB with 0.2dBstep. 115
Simulation results of the C*' code : BER (left) and FER
(right) vs. Ej,/N, for decoding iteration steps number 1,2, 3,5,10.116
Simulation results of the C? code : BER (left) and FER
(right) vs. Ej,/N, for decoding iteration steps number 1,2, 3,5,10.117
Simulation results of the C9EP code : BER (left) and FER
(right) vs. Ej,/N, for decoding iteration steps number 1,2, 3,5,10.117
Compared performance of CF*, C*? and C¢*P. 118

Graph G with n = 6. The constituent code vertices are repre-
sented by squares, and the coded bits lie on the edges. 121

Dependency graph of a compound code with graph G, n =4. . 121

Xiv LIST OF FIGURES
5.3 Girth configurations. i is the highest level without cycle in the
dependency graph. The left figure represents an even girth
configuration, and the right figure an odd one. 121
5.4 Classical (4, 3)-graph (left) and (3,4)-graph (right). 125
5.5 n-clumped random matching of size N 126
5.6 Matching and bipartite graph of the generalized row-column
interleaver with N =12andn=3. 128
5.7 PG(m,q) bipartite graph representation 130
5.8 PG(2,2) graphical representation 131
59 Cycleoflength4 o 0oL 134
5.10 GLD codes based on Cy : (n =7,k = 4, dpin, = 3) for Ey/Ng =
3.8dB ... 137
5.11 GLD codes based on C'y : (n = 12,k = 8,dpmim = 3) for
different Ey/Ng values 138
5.12 n =3, N = 9 row-column (left) and random (right) interleavers.139
5.13 Dependency graph of the bit node 1 for the n = 3, N =9
row-column GLD code.o 139
5.14 Dependency graphs of the bit vertices 1 (left) and 3 (right) for
the n =3, N =9 Random GLD code. 140
5.15 Cycle distributions of GLD codes based on the (12, 8, 3) short-
ened Hamming code. 00 142
A.1 Graph of the (3,4) interleaver. 149
A.2 First collision in the dependency Graph at level 3 151
B.1 Interpretation of the expressionofo 157
B.2 Forward-backward algorithm block diagram 160
B.3 SISO decoder for an isolated convolutional code 162
B.4 Syndrome trellis of the (7,4,3) Hamming code. 167
B.5 General trellis model for a (n, k) linear block code. 169

XV

List of Tables

2.1

2.2

3.1

4.1
4.2
4.3
4.4
4.5
4.6

4.7

4.8

5.1

B.1

Bounds on the height of a cycle-free dependency graph with
N =65536. e
Bounds on the height of a cycle-free dependency graph with
N=1024

Gallager’s construction of the parity-check matrix of a (20, 3, 4)
LDPCcode C.

Minimum rates of 2-level GLD codes and different constituent
codes L e
Parity-check matrix of thecode
Systematic form of the parity-check matrix of the code
Product code based on (4, 3, 1) single-parity-check codes
Asymptotic lower bounds on the normalized minimum Ham-
ming distance § of GLD codes with J =2 levels
Asymptotic lower bounds on the normalized minimum Ham-
ming distance § of 3-level GLD codes
BSC crossover probability threshold p of 2-level GLD codes
compared with the threshold p(C) of the code of same rate
achieving capacity. % indicates that p is closer than 1072 to

BSC crossover probability threshold p of 3-level GLD codes
compared with the threshold p(C) of a code of same rate
achieving capacity. * indicates that p is closer than 1072 to

Cycle count for the n = 3, N = 9 GLD code with random
interleaver. Lo Lo

Complexity of the FB algorithm as a SISO decoder for a linear
block code (n,k)

xvi LisT OF TABLES

Xvii

Acronyms and Notations

We present here the main acronyms and notations used in this document.
We tried to keep consistent and homogeneous notations in the entire report.
However, in some rare places, notations do not have their general meaning
summarized here. In these cases, they are redefined before their use. Nor-
mally, acronyms are recalled the first time they appear in any chapter.

Acronyms
APP A Posteriori Probability
AWGN Additive White Gaussian Noise (channel)
BCH Bose-Chaudhuri-Hocquenghem (code)
BER Bit Error Rate
BPSK Binary Phase Shift Keying (modulation)
BSC Binary Symmetric Channel
cdf cumulative (probability) density function
DG Dependency Graph
DMC Discrete Memoryless Channel
iild independent and identically distributed
FB Forward-Backward (algorithm)
FER Frame (Block) Error Rate
GLD Generalized Low Density (code)
IOWEF Input-Output Weight Enumerator Function
LDPC Low Density Parity Check (code)
LLR Log Likelihood Ratio
MAP Maximum a posteriori (decoding)
ML Maximum Likelihood (decoding)
PCCC Parallel Concatenated Convolutional Code
pce parity check equation
pdf probability density function

SCCC

Serial Concatenated Convolutional Code

xviii ACRONYMS AND NOTATIONS

spcc single parity check code
SISO Soft-Input Soft-Output (decoder)
SOVA Soft-Output Viterbi Algorithm
SNR Signal-to-Noise Ratio
VA Viterbi Algorithm
VG Varshamov-Gilbert (bound)

Notations

¢; If not specified, the 7-th bit of the considered codeword
c¢; If not specified, the j-th codeword of the considered code
¢y If not specified, a codeword of weight ¢
C If not specified, the considered compound code
Co If not specified, the considered constituent code
dgmin The minimum Hamming distance of the considered code
E, Carrier Frequency Energy per information bit
Ey,/Ny Signal to Noise Ratio per information bit
k If not specified, the dimension of the considered constituent code
K If not specified, the dimension of the considered compound code
¢ If not specified, the weight of the considered codeword
LR, log ratio of the probabilities of any random variable
a that can take two values : In(p(a =1)/p(a = 0))
n If not specified, the length of the considered constituent code
N If not specified, the length of the considered compound code,
or the length of the interleaver of the considered turbo code
N(¢) Weight distribution of the considered code
W Average weight distribution of the considered ensemble of codes
No/2 Two sided Power Spectral Density of the AWGN
P, Bit Error Probability (or BER)
P.,, Word Error Probability (or FER)
r If not specified, the rate of the considered constituent code
R 1If not specified, the rate of the considered compound code

Introduction

This thesis proposes and analyses channel coding techniques using graphi-
cal representations in order to construct and understand existing and new
compound coding schemes.

We were motivated by recent progress in channel coding, especially the
invention of turbo codes in 1993. From 1948, when Claude Shannon layed
the mathematical foundation of the information theory, till the empirical
breakthrough due to the outstanding performance of turbo codes, the two
major research directions taken by scientists working on communication over
the binary symmetric and Gaussian channels were the construction of pow-
erful codes approaching the capacity limit on one side, and (jointly or not)
the development of efficient decoding algorithms on the other side. Forty five
years of research led to a large amount of knowledge and numerous successful
applications. Codes based on algebraic constructions were used for high rate
(greater than 1/2) and low noise applications. Their decoding takes benefit of
their algebraic properties. Convolutional codes and their trellis-based decod-
ing algorithm, using a maximum likelihood and probabilistic approach, were
applied for low rates (less than 1/2) and noisy channels. The best perfor-
mance was obtained by the serial concatenation of these two types of codes.
The graph theory was confined to the algebraic part of channel coding.

Turbo codes, i.e. parallel concatenation of convolutional codes and their
iterative “turbo” decoding, can be seen as an instance of a more general
class of codes, called compound codes. Compound codes can be defined as
a collection of interacting constituent codes. Each of these constituent codes
must be easily decodable. The decoding of the compound code is performed
by means of cooperative elementary decoders that exchange information be-
tween the constituent codes. Several decoding steps are necessary, leading to
an iterative process.

2 INTRODUCTION

The first compound scheme was introduced thirty five years ago by Gal-
lager. In his thesis, Gallager introduced the low density parity check (LDPC)
codes, and presented an iterative “probabilistic” decoding algorithm. How-
ever, for complexity reasons, LDPC codes had almost fallen into oblivion.
Recent results indicate that irregular LDPC codes can even beat turbo codes
for extremely large code length.

Conventional evaluation criteria of channel codes, i.e. minimum Ham-
ming distance and Maximum Likelihood (ML) decoding bounds, turn out
to be of limited usefulness to understand and evaluate the performance of
compound codes and their decoding. Graph theory, that stays on the fringe
of the channel coding community interests, gained a renewed attention and
contributes to the understanding and evaluation of iterative decoding. In-
deed, the latter can be interpreted as a probability propagation along a graph
representing the compound code.

Thesis outline

This thesis is divided into two parts. The first part (Chapters 1 and 2) is
devoted to turbo codes. Chapter 1 describes their structure and iterative
decoding, and briefly recalls classical results. It analyses the “ingredients”
that make turbo codes so powerful. Chapter 2 introduces a graphical repre-
sentation of turbo codes, called the dependency graph, which is a useful tool
in the analysis of iterative decoding.

The second part (Chapters 3, 4, and 5) enlarges the use of graphical
representations to the construction of new compound codes, called gener-
alized low density (GLD) codes, that are also iteratively decodable. GLD
codes stand at the crossroad of Gallager’s LDPC codes and Tanner’s graph
codes. LDPC codes definition, properties, and decoding method are briefly
presented in Chapter 3. Chapter 4 extensively studies GLD codes and their
iterative decoding. Chapter 5 is an even deeper intrusion of the graph theory
into channel coding theory, where we propose algebraic graphs that lead to
GLD codes with good iterative decoding properties.

Chapters 2, 4 and 5 constitute the original work that has been carried
through. The two parts of this document can be read almost independently.
For this reason, several notions may have been introduced twice, for example

INTRODUCTION 3

the notion of dependency graphs, however with consistent definitions.

Note that we restrict our study to the following frame : we assume an
additive white Gaussian noise (AWGN) channel in almost all this work, and a
binary antipodal phase shift keying (BPSK) modulation. we focus our atten-
tion to small length codes suitable for frame transmissions. Furthermore, in
this report, the soft-input soft-output decoding of parallel turbo-, low-density
parity-check-, product- and generalized low-density parity-check codes uses
the forward-backward algorithm and does not use weighting factors during
the extrinsic information propagation. We aimed to avoid the influence of
any simplication or empirical modification of the decoding algorithm.

INTRODUCTION

Chapter 1

Turbo codes and their decoding

Turbo codes (parallel concatenation of convolutional codes) have been intro-
duced in 1993 by Berrou, Glavieux and Thitimajshima [22], who presented
an iterative decoding scheme based on soft-input soft-output (SISO) decod-
ing of the constituent convolutional codes!. Their outstanding performance
raised astonishment, curiosity and even incredulity in the coding community.
Independently and at the same time, Lodge, Young, Hoeher and Hagenauer
[67] [68] introduced a similar iterative decoding of product codes.

The concatenation of several constituent codes dates back to the earlier
ages of channel coding : iterated product codes were introduced by Elias in
1954 [38|, and serially concatenated codes have been studied by Forney [41].
The great success of turbo codes came from their decoding procedure.

Battail [10] pointed out that turbo codes take benefit of three major
concepts : random-like coding, concatenation of several constituent codes
into a compound code, and successive soft-input soft-output (SISO) decoding
of the constituent codes. These concepts were already used thirty years earlier
by Gallager in his low-density parity-check (LDPC) codes [47|, before they
sink into oblivion. Chapter 3 summarizes the major characteristics of LDPC
codes.

Since 1993, a huge amount of work has been carried out on turbo codes.
The major research directions taken by scientists throughout the world in-

XTurbo code” is a misleading name. It is actually intended to mean parallel concate-
nated convolutional codes (PCCC) and their “turbo” decoding, as pointed out in [55].

6 1. TURBO CODES AND THEIR DECODING

clude :

e Understanding and analyzing turbo code performance :

— The average “effective” minimum distance and the input-output
weight enumerator function (IOWEF) of the ensemble of turbo
codes sharing the same constituent codes have been studied in
[15] [35] [104], leading to an assessment of their theoretical maxi-
mum likelihood (ML) performance, using the union bound (UB).
The growth rate of the minimum distance as a function of the
interleaver length has been further studied in [60)].

— Improved bounds on ML performance, using Gallager’s bound [37]
or the tangential sphere bound (TSB) [93] [92] allow to overcome
the weakness of the UB, that diverges below the cutoff rate.

— The turbo decoder is however not an ML decoder. Hence, even
if the ML bounds gave insights on the performance, specific anal-
ysis of iterative decoding performance had to be done. Hokfelt
et al. [57] [58] studied it in term of the correlation of extrinsic
probabilities, and Ten Brink [98] introduced the mutual informa-
tion transfer characteristics of SISO decoders as a tool to better
understand the iterative decoding convergence.

— The representation of turbo codes as compound codes based on
graphs led to fruitful developments made by Frey, Kschischang,
Loeliger, MacKay, McEliece and Wiberg. These works are referred
to in Section 2.1. Chapter 2 of this report is a contribution to this
topic.

e Finding design criteria for turbo codes :

— The choice of the constituent codes have been investigated by
Benedetto and Montorsi [14] [15]. It appears that the convolu-
tional codes must be recursive, and have a primitive feedback poly-
nomial. The choice of the direct polynomial(s) has no influence,
provided it (they) has (have) the same degree as the primitive
feedback polynomial.

— The first method to build improved random interleavers for turbo
codes was designed by Divsalar and Dolinar [36]. This so-called
S-random interleaver aims at spreading as much as possible the
pairs of adjacent information bits. Hokfelt et al. [57] [58] showed

1. TURBO CODES AND THEIR DECODING 7

however that these interleavers do not always present the best de-
correlation properties. The influence of the interleaver cycles on
the iterative decoding is extensively studied in this report, as re-
gards turbo codes (Chapter 2), LDPC (Chapter 3) and GLD codes
(Chapter 5). Algebraic constructions of deterministic interleavers
for GLD codes that outperform random interleavers are presented
in the last chapter.

e Extending the turbo decoding scheme to other compound systems :

— Serial concatenation of convolutional codes is a straightforward
extension of conventional turbo codes [16] [17]. Serial turbo codes
exhibit better “effective” minimum distance and higher interleav-
ing gain? than parallel turbo codes [16]. However, the performance
of their iterative decoding is farther from ML decoding than that
of parallel turbo codes.

— Iterative decoding of block product codes has been studied by
Pyndiah et al. [84] [85] [86].

— The “turbo” principle has been adapted to iterative soft-output
equalization and channel decoding by Glavieux et al. [49], and
called turbo equalization.

— Iterative joint demodulation and decoding schemes were also stud-
ied in [29] [77].

e The SISO decoding of individual codes presented in [22] involves max-
imum a posteriori (MAP) symbol-by-symbol decoding by the forward-
backward (FB) algorithm. Reducing its complexity by allowing a sub-
optimal implementation is a major task to widespread the use of turbo
codes in all-day applications. The work of Hagenauer et al. [52] and
Robertson et al. [89] [90] contributed to it.

In this short introductory chapter, we only describe the structure of turbo
codes. We briefly recall the major analytical results and explain the iterative
turbo decoding as an APP passing procedure independent of the specific
SISO algorithm applied on the constituent codes.

2The notion of “interleaving gain” is introduced in Section 1.2.

1. TURBO CODES AND THEIR DECODING

1.1

Structure of turbo codes

In this section, we present the general structure of parallel and serial turbo

codes.

1.1.1 Parallel turbo codes

A parallel turbo code C with J levels is a linear binary block code of dimension
N. It results from the parallel concatenation of J convolutional codes C7,
1 <5 < J, as depicted in Figure 1.1.

X1

N Dbits

— = Y1

(TLl — kl) X N/kl bits

--------- foo> X2
N bits
— = Y2

(TLQ — k‘z) X N/kz bits

--------- fooo=> XJ
N bits
— = YJ

N Code C!
N bits Ry =ki/m
N/, trellis steps
c
R=)
8
g]:[2 """"""""""""
o]
o Code (C?
N bits Ry = ky /s
N/ky trellis steps
5
8
g HJ """"""""""""
o]
o Code C’
Ry =k;/n;

(TL_]—]{JJ) X N/k‘_] bits

N/kj trellis steps

Figure 1.1: Encoder of a parallel turbo code with J levels.

The convolutional codes C? are either recursive systematic convolutional
(RSC) codes of rate R; = k;/(k; + 1) or non-recursive non-systematic con-

1.1. STRUCTURE OF TURBO CODES 9

volutional (NRNSC) codes of rate R = k;/n;. Their constraint length is L;
and their memory v; = L; — 1. Benedetto et al. [14] [15] proved theoretically
that turbo decoding works only if the constituent codes are RSC. Hence, we
focus our attention on these codes.

The trellis of each code C7 starts at the zero-state and ends after N/k; +
T; trellis transitions again at the zero-state. Each code needs at most Tj
transitions to return to the zero-state, where :

T; = Lj — 1 =v; transitions (NRNSC code) (1.1)

or
L;—

1
T; =] | transitions (RSC code) (1.2)
J
Practically, we often chose J = 2 and C! = C2%, and always recursive system-
atic codes.

The N information bits are encoded by C!, and, for any j, interleaved
through an interleaver II; and then encoded by C/. Each RSC code C? pro-
duces (n; — k;)N/k; parity bits denoted by y;. The information bits z = xy
and 9, -,z are the same, apart from the permutation II;. Hence, only z
is transmitted so as to increase the global rate R of C.

For J = 2, and if we neglect the trellis endings, the rate R satisfies :
R1R2 Rl

= = if Ry =R 1.3
Ri+ R, — RiR, 2R, = T (13
Taking into account both the trellis endings, we have :
R Ry
= 1.4
Ri + Ry — R R, + mBdmh (14
R
= - if Ry =R, (1.5)

_ 2n1Th
2— R, + RN

The most frequently used turbo codes have J = 2 levels, two identical RSC
convolutional codes C' = C? and either R = 1/3 (with Ry = 1/2), or R =
1/2 if every second parity bit of each constituent code of rate Ry = 1/2 is
punctured. It is also possible to avoid puncturing by directly using RSC
codes of rate R; = 2/3 which however results in more complex trellises.

Some recent techniques allow us to avoid the loss (in terms of rate) due
to the trellis endings, by the use of specific RSC convolutional codes and
tail-biting.

10 1. TURBO CODES AND THEIR DECODING

1.1.2 Serial turbo codes

A serial turbo code C is also an (M, K) linear binary block code (where M
is the length and K the dimension). It results from the serial concatenation
of two convolutional codes C! and C?, as depicted in Figure 1.2.

Permutation
b z' z c
Czde ct I Czde C?
K bits 1/ N bits 2/ M bits
K/k; = N/n; trellis steps N/ko = M/n, trellis steps

Figure 1.2: Encoder of a serial turbo code.

C! is called the outer code and C? the inner code. Similarly to a parallel
turbo code, the trellises of both codes start and end at the zero state, after
K/ky + T, trellis transitions for C' and N/k, + Ty for C?. The outer code
can be chosen either systematic or not, but the inner code must be recursive
systematic so as to make the iterative decoding efficiently work.

The K information bits b are encoded by C' to produce N = K/R; bits
z', which are interleaved by II and encoded by C? to produce M = N/R,
coded bits c. Since C? is systematic, ¢ contains the permuted version of .

Neglecting the endings of both trellises, the rate of the serial turbo code
C is R = Ry x R,. Taking them into account, it becomes? :

K R Ry

R = —
M+ Ty + 0T 1+ (mTh + noTy) lefzz

(1.6)

The conventional choice of constituent codes for obtaining an overall rate
R=1/2is Ry =2/3 and Ry = 3/4. Hence, for the same rate R, a serial turbo
code uses constituent codes of higher rates and complexity than a parallel
turbo code.

3

we consider that the coded bits corresponding to the ending of the trellis of C; go
directly to the channel, and are not fed to the interleaver and the inner code.

1.2. SUMMARY OF ANALYTICAL PERFORMANCE 11

1.2 Summary of analytical performance

In this section, we describe the properties of turbo codes as derived from
their average weight distribution. The union bound on the average bit error
probability of ML decoding is expressed as a function of the individual weight
distributions of the constituent codes and the length N of the interleaver, for
both cases of parallel and serial turbo codes. We discuss the results given in
[14] |15] (parallel turbo codes) and [104] (serial turbo code).

1.2.1 Parallel turbo codes

We assume that the considered turbo code has J = 2 levels and that its
RSC constituent codes C! and C? are identical, with rate By = Ry = 1/2. In
the absence of puncturing, the rate of C is R = 1/3. We neglect the trellis
endings. We define the IOWEF of C! as :

N N N
1 1 w : w

AW, 2)= > > A WeZi= Y WYA%(w,Z) (1.7)

W=Wmin J=Jmin W=Wmin

where

ct al Cl 7j

A" (w,Z) = Z VA (1.8)
J=Imin

where Agjj is the number of codewords of C! where the input weight (of the
information bits) is w and where the weight of the parity bits is j. A% (w, Z)
is called the conditional IOWEF, since the input weight w is fixed. The term 1
which corresponds to the all-zero codeword is excluded from the polynomial.
Since the trellis of the RSC C! starts and ends at the zero-state, wpi, = 2.
The minimum weight of the parity bits is denoted by jni. It does not
necessarily correspond to an input of weight w,,;, = 2. We define z,,;, as the
minimal parity weight corresponding to an input of weight w,,;, = 2. Hence,

The average IOWEF Afw- of the ensemble of parallel turbo codes (i.e.
averaging over all the possible interleaver choices) can be expressed as :

(4% (w, 2)]”

o

AP (w, Z) = (1.9)

12 1. TURBO CODES AND THEIR DECODING

Methods to compute this function are given in [35]. Assuming a BPSK
modulation and an AWGN channel, the conventional union bound on the bit
error probability under the assumption of ML decoding results in :
-1 & w w AC . —RE}/N,
Peb<§ > NW AP (w, Z) with W = Z = e” "0/ (1.10)

W=Wmin

where the function erfc(z) has been upper bounded by e~®. This formula
is often used to predict the performance of turbo codes although it suffers
from two major drawbacks : it is not accurate and even diverges for low
values of the SNR, and it does not reflect the iterative decoder performance,
which is not an ML decoder. The first problem has been studied by Duman
and Saheli [37] who proposed an improved bound based on the Gallager
bound, and Sason and Shamai [92] [93] who proposed an even more accurate
bound based on the tangential sphere bound [81]. These improved bounds
are presented in the context of GLD codes in Section 4.2.5.

Defining a more detailed conditional IOWEF of the constituent codes that
counts the number of simple error events® that constitute any error event,
Benedetto and Montorsi [15] were able to prove that any parallel turbo code
with NRNSC constituent codes does not exhibit interleaver gain, i.e. the
error probability does not decrease as the interleaver length increases. In the
case of RSC constituent codes, the error probability can be roughly expressed
as :

1 [N/2] 2% (H2+22min)i
2 Z N (1 _ Hzmin72)2i

i=1

Peb g

(1.11)

where H = e #%/No_ Hence turbo codes built with RSC codes exhibit an
interleaving gain of 1/N, and an asymptotic approximation of their minimum
Hamming distance is :

dogf = 2 + 22min (1.12)
Hence, z,,i, has to be maximized, which corresponds to the choice of a prim-
itive feedback polynomial for the constituent codes.

1.2.2 Serial turbo codes

The same analysis has been carried out for serial turbo codes in [16]. We do
not detail it here. Let d; be the minimum Hamming distance of C!, the outer

4A simple error event is a path in the trellis that diverges from the zero-state and
returns to it only once.

1.3. ITERATIVE DECODING 13

constituent code, and dy, the minimum distance of C2, the inner constituent
code. The major results are :

e The inner code C2 must be RSC to produce an interleaving gain, which
equals 1/N(@+1/2 This value is higher than the interleaving gain of
parallel concatenation. C! is often chosen as NRNSC so as to maximize
the gain.

e the effective minimum distance is roughly deg = %%, which is also

2
larger than that of parallel concatenation.

From this theoretical analysis, serial turbo codes should exhibit better
performance than parallel turbo codes, at the cost of a higher complexity
due to larger trellises.

1.3 TIterative decoding

1.3.1 Soft-input soft-output decoding of a convolutional
code

We describe the principle of the SISO decoding of a convolutional code C* of
rate Ry = ki/ny. This code starts and ends at the zero-state after N/k; =
M /ny trellis steps. Hence, it can be considered as an (M, N) block code.

Let ¢ = (c1,- - -, cy) be a transmitted codeword of C'. Let r = (ry, -+, 7x)
be the vector of the received samples as the decoder input. The a posterior:
probability of the i-th bit ¢; is equal to :

APP(e) = Plelr) = 37 Plaselr) = 3 PR g

The a priori probability P(c;, ¢) is zero if ¢; does not correspond to the
value of the i-th bit of the considered codeword ¢. Furthermore, if we assume
that the a prior: probabilities on the bits are independent and that
the channel is memoryless, the likelihood p(r|c;, ¢) can be expressed as the

14 1. TURBO CODES AND THEIR DECODING

product of the likelihoods of the symbols :

APP(ci) o< 3 plrloP(e) = 3. [[p(rjle)n(c;) (1.14)

ceCl/c; ceCl/e; j=1

where 7(c;) is the a priori probability of the j-th bit of the codeword.

Any practical SISO decoder (such as the forward-backward algorithm,
described in detail in Appendix B) computes the APP of the bits given their
observations (their likelihoods) and their a priori probabilities. The SISO
decoders used in turbo decoding (either parallel or serial) are fed with M
observations®, and either N or M a priori informations (on all the bits or
only the information bits) depending on their availability. They can compute
N or M APP and also deliver N or M updated a priori probabilities, called
extrinsic informations.

The SISO decoder of a linear block code (M, K) can be implemented
using other algorithms, but they all share the same inputs and outputs. This
common structure is depicted in Figure 1.3

p(r;le;) APP(c;)

—_—= —_—

M observations General SISO decoder N or M

a posteriort

fa(M,N d
of a (M, N) code N or M Extrinsic

= .
Ext(c;) informations

N or M a priori

m(c;)

Figure 1.3: General SISO decoder scheme for a (M, N) code.

1.3.2 Tterative decoding of a parallel turbo code

Since a parallel turbo code combines two RSC convolutional codes, its de-
coding uses two instances of SISO decoder for an RSC code, cooperating

5Tf puncturing is implemented, the likelihood corresponding to any punctured bit is set
to 1/2.

1.3. ITERATIVE DECODING 15

together. Hence, we first describe the quantities (APP and extrinsic infor-
mations) that the SISO decoder of an RSC code has to compute.

Let (by, - - -, by) be the information bits of the RSC code C! and (cy 1, -+, cur)

its parity bits. Hence, the codeword c is constructed as follows :

Q:(bl;"';bN,CN+1,"',CM) (115)

The SISO decoder receives the M observations, together with N a prior:
probabilities w(b;), 1 <1 < N of the information bits. Since it has no a priori
informations on the parity bits, their corresponding a prior: probabilities are
set to 1/2. The decoders computes the APP and extrinsic probabilities of
the information bits b;, 1 <7 < N. The APP of b; can be expressed as :

APP(b;) o > [Ip(rifb)m(e) IT p(rile;) (1.16)

ceCl/b; =1 ij+1
M
p(rilbi) x) H p(rib)m(b) I p(ryle;)
ceCl/b; I=1,1F#i J=N+1

The extrinsic probability of b; is defined as the nowelty introduced by the
decoder, i.e. the part of the APP of b; that was not known before decoding
C!. Hence, we have :

N
Ext(b;) <[] p(ri|b)nm H p(rjle;) (1.17)
l1=1,l#4 j=N+1

These formulas are theoretical, and a practical decoder implements either
the FB or any other optimal or suboptimal algorithm to compute them.
Moreover, it often works in the log domain, and more precisely using the
log-ratio (LR) defined as : LR(APP)(b;) = APP(b; = 1)/APP(b; = 0), so as
to simplify the computation and avoid that of normalization factors if the
communication medium is modelled as an AWGN channel.

Two decoders, described by formulas (1.16) and (1.17), are used in the
iterative decoding of a parallel turbo code with J = 2 RSC constituent codes
C! and C?. The extrinsic outputs of the first decoder (i.e. the novelty on the
information bits computed by the SISO decoder of C!) are injected through
an interleaver (which is identical to the one at the encoder part) to the a
priori inputs of the second decoder. The extrinsic outputs of the latter are
fed through an inverse interleaver to the a prior:i inputs of the first decoder.
This process is iterated, starting with a priori probabilities 1/2 at the first

16 1. TURBO CODES AND THEIR DECODING

—r |)
b1 —= -] 11 :) !
I -1
— L 11
bNe_IT#_ ! T
1 L T L —
CNﬁ?ZT.l ﬁom SISO APP —= obs SISO APP
: <Z(Ti\”rl RSC g?coder RSC ggcoder
1 M.
Cr— 5 = apriori Extr [II = apriori Extr
2 -
CNFT 2
: TN+1
0%4'9_%2 d It
™

Figure 1.4: Iterative decoding of a parallel turbo code. Solid lines correspond
to values that do not vary during the iterative process, bold lines to values
that vary (extrinsic/a priori probabilities), and dashed lines to APP values
used to decode the bits.

decoding of C!. This iterative decoding, named “turbo” decoding, is depicted
in Figure 1.4.

After a fixed or variable number of iteration steps (a step consists of
decoding a single constituent code), the last APP values are used to decide
upon the bits.

1.3.3 TIterative decoding of a serial turbo code

We assume that the outer code C! is an NRNSC code, equivalent to a (NN, K)
code, and that the inner code C? is an RSC code, equivalent to a (M, N) code.
The inputs of C!, i.e. the information bits, are denoted by b = by, - - -, bx, and
its outputs by 2’ = z/,---, ;. Since C! is not systematic, the information
bits are not part of z’. The interleaved version z of z’ is the input of C2,
which is systematic. Hence, its output is : ¢ = (21, -, ZN,CN11," " CM)-
The corresponding received symbols are denoted by r = (r1,-- -, rum)-

The SISO decoder of C? is almost the same as the one used for parallel
turbo codes. However, since, C? does not directly handle the information
bits b, it is not necessary to compute the APP of x. But, the extrinsic

1.3. ITERATIVE DECODING 17

probabilities can be computed for all the bits in z. We have for 1 < j < N :

APP(z;) o« Y. p(rlc)P(c) (1.18)
c€C?/x;
N M
X Z Hp(rl\xl)ﬂ(acl) H P(Tm|Cm) (1.19)
ceC?/x; =1 m=N+1
x p(rjlz;) x m(x;) Z H p(ri|z)m H P(Tm|Cm)
c€C?/x; I=1,l#j m=N+1

The corresponding extrinsic information is :

Ext(z;) Z H p(r|z) 7 H P(Tm|Cm) (1.20)

cECQ/le 1,1#£j m=N+1

This single equation defines the SISO decoder of C2. It computes the N
extrinsic probabilities corresponding to the “middle” bits, given the all the
observations and a priori probabilities of the middle bits.

The SISO decoder of C! works differently. The observations corresponding
to its coded bits 2’ are directly the channel outputs properly de-interleaved,
since C? is systematic. However, C' is not systematic, and hence the APP
of the information bits is now different. On the other hand, the extrinsic
informations it has to compute correspond to its coded bits z’. We have, for
1<i<K:

APP(b;) < > Hp | 2) (b)) (zy(b;)) (1.21)

cecl Jb; 1=1

where zj(b;) is the I-th bit of ¢, the codeword of C' that corresponds to a
sequence of information bits b with value b; at position 1.

We also have :

APP(x;) x Z Hp(n|m;)7r(x§) (1.22)

ceCt /!, 1=1

o p(ri|a}) x> Hprzlfvl)

cECl/z’ I=1,1#]

so the extrinsic probability of the coded bits x; is :

Ext(z}) o< > H p(ri|z))m(z;) (1.23)

cECl/:c' I=1,l#j

18 1. TURBO CODES AND THEIR DECODING

Equations (1.21) and (1.23) define the decoder of the NRNSC C?. The
structure of the turbo decoder of a serial turbo code is represented in Figure
1.5.

X — 7
! —= LI H_l :|:
: A
|
| |
x wir L1
N__|S|"N_] obs oo APPHE —>fobs g gy APP
<ZE) RSC gg:coder NRNS% 1olet:oder
—= -1
CN+1 LI) TNl =1 apriori Extr 7]%/_ I ™= apriori Extr []
— > I1
Cypr M N

Figure 1.5: Iterative decoding of a serial turbo code. Solid lines correspond
to values that do not vary during the iterative process, bold lines to values
that vary (extrinsic/a priori probabilities), and dashed lines to APP values
used to decode the bits.

Important remark : In either the parallel or serial turbo decoding, we
were able to decompose the APP formula by assuming that the different a
priori probabilities are independent. The interleaver, which separates the
encoders in both schemes, has this role : the extrinsic probabilities at the
output of any SISO decoder are correlated. They are fed to the next SISO
decoder as a priori information through the interleaver. The latter breaks
the dependencies in the extrinsic stream.

1.4 Simulations results

In this section, we present some results on the turbo codes performance. Fig-
ure 1.6 plots computer simulations of the performance of a parallel turbo code
over the AWGN channel (BPSK modulation). The code has two identical
constituent code with generator polynomial (37,21) and a randomly chosen
interleaver of length N = 65536. The iteration involved 20 steps. We can
clearly see the “error floor” of parallel turbo codes, due to the comparatively
small minimum Hamming distance of these codes.

1.4. SIMULATIONS RESULTS 19

Bit error probability

|
o

LN RRLLL B R L) B R R ALLL B R BULALLL R B AL IS~ <2 1| I R RLLL

Al vl v v vl il

o
3
o
)
o
3
o
©
o
©
i
o

Eb/NO (dB)

Figure 1.6: Performance of a parallel turbo code with J = 2 identical RSC
codes (37,21), overall rate R = 1/2 and N = 65536.

Figure 1.7 compares the ML union bound (1.9) with the simulation re-
sults of turbo decoding of a parallel turbo code with J = 2 identical RSC
codes (7,5), overall rate R = 1/2 and N = 400. We observe that the ML
bound diverges for low values of the SNR, and that, in this case, the iterative
decoding is very close to the upper bound ML decoding where it is signifi-
cant. However, this is not always true, because iterative decoding does not
implement ML decoding, and the bound is computed for the average ensem-
ble of turbo codes generated by random interleaving, whereas the simulation
is performed for a specific interleaver which can be better or worst than the
average. In the context of GLD codes, we present a case where, for a specific
interleaver choice, the iterative decoding performance is better than the ML
union bound (see Figure 4.27).

Figure 1.8 presents the same type of comparison for a serial turbo code
of overall rate R = 1/2. The outer code C! is NRNSC, with rate R = 2/3
and polynomials (236, 155, 337).The outer code C! is RSC, with rate R = 3/4
and polynomials (23,25,33,37). The length of the interleaver is N = 600,
and the length of the turbo code M = 800. The performance of iterative
decoding is here very far from the ML union bound performance. It appears
from our simulation results that the iterative decoding performs better (i.e.

20 1. TURBO CODES AND THEIR DECODING

=)

=
o

T

,_.
oI
5

=
S}
b

G—© Simulation results
— ML union bound

w

.
o\

=
S}
IS

,_.
o\
&

o

Bit error probability
=
o

=
o
4

!
@

(o L B I L L L L B L O L IR

=
(=)

=
o
b

ton v P P b P by b By by

iy
o

S

!
[
N
w
N
o
[e2]
~
[oe]
©
)

EB/NO (dB)

Figure 1.7: Comparison between simulation of turbo decoding and ML union
bound for a parallel turbo code with J = 2 identical RSC codes (7, 5), overall
rate R =1/2 and N = 400.

1.4. SIMULATIONS RESULTS

21

is closer to the ML UB) for parallel turbo codes than for serial ones.

0

10

1

10

-2

107~

Bit error probability
S
I

G—© Simulation
— ML union bound

1.0

2.0

3.0

EB/NO (dB)

4.0 5.0

6.0

Figure 1.8: Comparison between simulation of turbo decoding and ML union
bound for a serial turbo code. Code length : 800, rate : R = 1/2. See text

for the other parameters.

22

1. TURBO CODES AND THEIR DECODING

23

Chapter 2

Iterative decoding convergence of
turbo codes®

This chapter introduces a special graph representation of turbo codes!, called
the dependency graph, which is useful to understand the iterative decoding
process as propagating probabilities along this graph. It also gives informa-
tion on the number of iteration steps needed for convergence and checks the
efficiency of the interleaver separating the two constituent codes.

2.1 Graphical representation of turbo codes

Graphical representation of error control codes dates back to Gallager (1963)
[47] and has been studied by authors such as Tanner [97]. The graph theory
is gaining more and more interest in the coding community, especially after
the recent works of Sipser and Spielman [95], Wiberg, Loeliger and Kotter
[105] [106], Frey and Kschischang [44] [45] [61]. Indeed, the latter shows
a single graphical model framework that can represent compound codes like
turbo codes [22], serially concatenated codes [17] [18], Gallager’s Low Density
Parity Check (LDPC) codes and product codes in a unified manner.

*Parts of this chapter have been presented at the Canadian Workshop on Information
Theory, 1997 and also submitted to IEEE Trans. on Information Theory.

'In this Chapter, “turbo code” refers only to parallel concatenated recursive systematic
convolutional codes.

24 2. ITERATIVE DECODING CONVERGENCE OF TURBO CODES

In [44], Frey and Kschischang observed that the iterative decodings of
compound codes are instances of probability propagation algorithms that
operate on a graphical model of the codes. Pearl’s “belief propagation” algo-
rithm [78] which operates on graphs and has been developed in the context
of expert systems is strongly connected with Gallager’s decoding algorithm
of LDPC codes [73] and turbo decoding [76].

In this section, we introduce a graphical representation of turbo codes,
based on their Bayesian network. A Bayesian network is a directed acyclic
graph. The paradigm of channel coding can be represented by a Bayesian
graph, as shown in Figure 2.1. The information bits are denoted by u, the
encoder states by s (if there are any), the encoder outputs by x and the
channel output by y. The edges are oriented so as to indicate the causality :
the states s are directly driven by the information bits u, and the encoder
output x is jointly influenced by the states s and the inputs u.

Figure 2.1: Bayesian network of a general channel code.

The relationship described by a directed edge between a “parent” p and
a “child” ¢ is usually the conditional probability P(c|p). Hence, the joint
distribution of all the variables in the network can be expressed from the
parent-child probabilities by following the edges. For the channel decoding
paradigm, we have :

P(u,s,x,y) = P(u)P(s|u)P(x|u, s)P(y|x) (2.1)

This kind of global joint probability can always be written if the graph does
not contain any directed cycle.

Kschischang and Frey [61]| presented a general algorithm that is used to
compute marginal probabilities in graphical models by propagating the prob-
abilities. Applied to Bayesian networks, it gives Pearl’s belief propagation

2.1. GRAPHICAL REPRESENTATION OF TURBO CODES 25

algorithm. The maximum a posteriori (MAP) decoding is an instance of
the latter when applied to the general network depicted in Figure 2.1. It
consists of computing the a posteriori probabilities (APPs) p(u;|y). The au-
thors showed that the APPs are computed thanks to a marginalization of
(2.1) performed by probability propagation along the graph.

Figure 2.2 shows the Bayesian network of a convolutional code. The
numerical indices represent the time. We copied the information bits into the
states vertices to simplify the graph. We can further simplify it by merging
the three vertical vertices u, (u,s) and (z,y) into a super-verter. The final
network is a simple chain.

Figure 2.2: Bayesian network of a convolutional code.

The conventional MAP decoding algorithm of convolutional codes (the
forward-backward algorithm [3]) is graphically equivalent to a forward prop-
agation of the probabilities along the code chain, followed by a backward
propagation. It guarantees that all the observations are distributed over all
the vertices and that the APPs are exactly computed. It is depicted in Figure
2.3. Briefly and without introducing any notation, the probabilities propa-
gate from the channel output vertices to the states vertices in the first step.
The next two steps correspond to the forward and backward recursions. The
last step propagates the probabilities to the information bit vertices.

For simplicity’s sake, we assume that a turbo code is made of only J =
2 constituent convolutional codes linked by an interleaver of size N. Its
Bayesian network can be drawn as follows.

Each convolutional code is represented by a simple chain with N vertices
and NV —1 edges. A vertex is a super-node containing the information bit, the

26 2. ITERATIVE DECODING CONVERGENCE OF TURBO CODES

Figure 2.3: Belief propagation algorithm in a convolutional code network.

encoder state and output, and the channel output, as previously stated. The
network of the turbo code is obtained by linking the two chains representing
each of the two constituent codes by a random matching (the interleaver).
The example of a Bayesian network for a turbo code with interleaver size
N = 16 is shown in Figure 2.4. Wiberg et al. [105] [106] were the first to

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

o r 2 3 3 5 6 4 8 9 10 1 12 13 14 15

Figure 2.4: Bayesian network of a turbo code with interleaver size N = 16.

introduce this graphical representation of turbo codes. We do not orient the
edges representing the interleaver since they do not introduce any causality.

The soft-snput soft-sutput (SISO) iterative decoding of turbo codes can be
easily explained using this graph. The first decoding step consists of appling
the forward-backward (FB) algorithm to the upper constituent code. It gives
estimates of the distributions of the information bits given the observations
related to the upper code. The information (more precisely the extrinsic
probability in the turbo literature, or the parent-child probability in the
probability propagation literature) associated with each bit u; is passed to
the second chain by the edges representing the interleaver. The same FB
algorithm is then applied to the lower chain in a second step, taking into

2.1. GRAPHICAL REPRESENTATION OF TURBO CODES 27

account the observations related to the lower code as well as those coming
from the first decoding step. The extrinsic probabilities computed at this
step are passed through the interleaver edges to be used by the upper decoder
together with its own observations at the next iteration step.

However, this decoding procedure is not stricto sensu the belief propaga-
tion algorithm. Indeed, the network has cycles (e.g. (7,8,9,8,9',10',7)) and
the probabilities propagation is only an approximation for computing them.
We use an efficient probability propagation algorithm (the FB algorithm) for
each constituent code, but we ignore the cycles.

The harmful influence of a cycle can be easily understood using a sim-
ple example derived from [44], the army network®. Let us assume an army,
composed of a general in his headquarters (HQ) and a hierarchical structure
of soldiers. It is depicted as a Bayesian network in Figure 2.5. Each sol-
dier (including the general) is represented by a vertex, and each hierarchical
relationship by an edge.

The first army to be considered has no cycle in its network. The task
to be achieved is to let the headquarters know the total number of soldiers,
and then to propagate this information to all the soldiers. This is depicted
in figure 2.7.

In a first step, each soldier s (beginning from the leaves of the network)
transmits to his superior Sup(s) the sum of the number of soldiers he received
from his subordinates Sub;(s) plus one (himself). This is depicted in Figure
2.6. At the end of this step, the general counts 6+ 4 + 1 soldiers plus himself,
1.e. 12 soldiers.

In a second step, each soldier s (beginning with the general) transmits to
each of his subordinates Sub;(s) the number of soldiers he received from his
superior Sup(s), plus the sum of the number of soldiers that all the other
subordinates Sub;(s), j # i gave him? in the first step plus one (himself)%. At
the end of this second step, each soldier knows the exact number of soldiers
in the army by adding the number he sent in the first step with the number
he received in the second step.

Zthis example is closer to the iterative SISO decoding of turbo codes than it may look
at first glance :

3 — it is exactly the notion of extrinsic observation used as an a priori in the next step,

4 _ it corresponds to his own observation.

28 2. ITERATIVE DECODING CONVERGENCE OF TURBO CODES

HQ

Figure 2.5: Army network without cycle.

Figure 2.6: Number of soldier count. First step.

Figure 2.7: Number of soldier count. Second step.

2.2. DEPENDENCY GRAPH 29

The network of the second army presents a cycle, as depicted in Figure
2.8. The same information propagation algorithm is applied to this network.

In the first step, the soldier represented by a black vertex reports twice to
his superiors. Hence, at the end of this step, the number of soldiers counted
by the general is 6 + 4 + 1 + 1 plus himself, that is, 13. This error occurs
because the same information (that from the black vertex) propagates by
two different paths to the general.

The erroneous number of soldiers propagates to the whole army during
the second step of the algorithm. The error would have been greater if the
black vertex were not a leaf, since all the information coming to it would
have been propagated twice. Furthermore, how would he calculate the total
number of soldier if the values computed from its two edges gave different
results 7

Using the SISO iterative decoding for turbo codes means choosing to
ignore the presence of cycles. If the network had no cycles, the belief prop-
agation algorithm would stop when each vertex has been processed once. In
fact, because the turbo codes have cycles, the propagation procedure never
self-terminates.

Hopefully, the situation is not so desperate, and furthermore, the practi-
cal implementation of turbo decoding gives astonishingly good results. This
leads to question the influence of cycles on iterative decoding. We partially
answer in the following sections, and answer in Chapter 5 as regards gener-
alized low density (GLD) codes.

2.2 Dependency graph

As previously stated, if the turbo code Bayesian network had no cycles, the
iterative turbo decoder would be an exact MAP decoder, and would converge
in a fixed number of iteration steps. By construction, the presence of cycles
in the network can however not be avoided.

Intuitively, large cycles have a smaller influence on the decoding pro-
cess. This is confirmed by the performance of improved interleavers for turbo
codes, such as the S-random interleaver developed by Dolinar and Divsalar

30 2. ITERATIVE DECODING CONVERGENCE OF TURBO CODES

HQ

Figure 2.8: Army network with a cycle.

Figure 2.10: Erroneous number of soldier count. Second step.

2.2. DEPENDENCY GRAPH 31

[36] : since for any two information bits u; and u;, their distances d; in the
upper chain and d, in the lower chain satisfy : d; +dy > S+ 1, the length of
the minimal cycle® in the graph depicted in Figure 2.4 is lower-bounded by
S+ 3.

We will construct a graph, called the dependency graph, that allows us
to identify the cycles and to analyze the convergence of turbo code iterative
decoding.

We can distinguish two types of edges in the network of a Turbo code :
strong and weak links. An edge linking two vertices via the interleaver is
called a strong link. An edge linking two vertices via the convolutional code
chain is called a weak link. When propagating through strong links, the
information is never attenuated. On the contrary, each weak link acts as
a “forgetting factor” and the information is faded when passing through it.
This notion of weak link is supported by both theory and empirical results.

We prove that the observation (and the a priori information) associated
with a vertex in the convolutional code chain will not propagate indefinitely,
so it has an influence limited by the constraint length to neighboring nodes.

Our aim is to find the “propagation limit” of the observations in the
forward-backward algorithm. For a complete description of this algorithm,
and the definitions of the relevant quantities, please refer to Appendix B.

Starting from time ¢ + 1, let us assume that no more observations and
a priori informations are available. We look for time 7 when the forward
recursion of the algorithm becomes stable, i.e. ay,(m) = K,VYm € [1..M],
where K is a constant value and M is the number of states in the trellis.
Letting 7 > 1, we have :

airj(m) = Prob(S,; =m, Yf”) = Prob(S,1; = m, YY)

M
= Z Pl"Ob(SH_j_l = m', let).PI'Ob(St_H = m|5’t+j_1 = m', let)

m/=1

Given the state Sii; 1, Siy; is independent from the previous observations,
SO we can write :

M
arj(m) = Y Prob(Spj1 =m/, Ylt)J.Prob(SHj =m|Spjo1=m') (2.2)

N
m'=1

apj—1(m’)

5Tt is called the girth of the graph.

32 2. ITERATIVE DECODING CONVERGENCE OF TURBO CODES

Assuming (without loss of generality) the convolutional code rate to be
1/n, we have since no a priori probabilities are available :
1
Prob(Si+; = m|Siyjo1 =m') = §B(m', m) (2.3)
where B(m/,m) = 1 if there is a transition m — m/, otherwise B(m', m) = 0.
Then we have :

M
Q45 (m Z i1 (m).B(m/, m) (2.4)

l\Dlr—t

By iterating downward to zero on j, we obtain :

at+] m 2] Z Z

M
> a(m1)B(my, mg)B(mg, ms) - - - B(mj, m)
mj=1
M
Let B®(m!/,m) = E (m/,m")B(m"”,m) and let us define recursively
oM
Yu > 2, Bt (m! m) = E B(m',m")B™ (m", m), we can rewrite . ;(m)
as follow :
L S~ B0y /
ous(m) = 55 3 B mau(o))

where BY)(m', m) denotes the number of paths in the trellis which connect
the states m and m’' in exactly j steps.

Obviously, the smallest j for which BY(m/, m) becomes constant for all
couples (m,m') is the memory v = L — 1 of the encoder. Thus, let K’ be
that constant value. We can write :

KI

o 2 alm) =K, Ym € [L.M] (2.6)

m/=1

Oty (m) =

The same computation holds for the backward recursion, considering the
B’s. Hence, we conclude that an ¢solated information propagates in the trellis
in a window of width W = 2v + 1.

However, in a real decoding scheme, the observations and a prior: in-
formations are not isolated so the previous result gives us only an order of

2.2. DEPENDENCY GRAPH 33

magnitude. The effective window size W of the influence of informations
can be estimated by simulation. We transmit over the AWGN channel with
BPSK modulation the coded bits of a convolutional code, seen as a block
code since we terminate the trellis. At the decoder side, we implement the
FB algorithm on the whole block length, but we are only interested in the
APP value of the central information bit. We truncate the observations to a
window of width W centered on the middle symbol. All other observations
are erased. Figure 2.11 shows the results in terms of BER for a recursive
systematic code of memory v = 4 and generator polynomials (1,35/23).

W=9 -—
W =17 -+~
W=33 -8--
W =65 -
W =129 -&-

Bit Error Rate

1e-03 Ym

le-04 ey

le-05

0.0 1.0 2.0 4.0 5.0 6.0

3.0
Eb/NO (dB)

Figure 2.11: Bit Error Rate of the central information bit of a recursive
systematic convolution code (1, 35/23) for different observations window size

w.

We observe that truncating the observations up to a window of width
8v + 1 almost does not affect the results in terms of BER. Truncation to
narrower widths ((4v + 1) or (2v + 1)) lead to significant degradations.

Even if these observations are useful and can lead to an improved imple-
mentation of the FB algorithm (by the use of a sliding observation window
of appropriate length), it is not completely accurate in the context of SISO
iterative decoding, since we do not take hard decisions at the output of the
constituent code decoder, but we transmit extrinsic values to the other de-

34 2. ITERATIVE DECODING CONVERGENCE OF TURBO CODES

coder. However, finding a valid criterion for the degradation introduced by
an observation truncation in terms of extrinsic probabilities is not an easy
task, and further investigations need to be carried out to find a more precise
way for characterizing the influence of the observation width W.

However, we can take into account the weakness of the link introduced
by the convolutional codes between vertices by drawing a dependency clump
of size W around each vertex, and by stating that, as a first approximation,
a vertex does not depend on other vertices outside its clump. As already
stated, the value of W is not exactly known.

We are now able to draw a graph called dependency graph, denoted by
DG(u;), for each information bit u;, # = 1...N. This graph stems from
vertex u; at level 1. For any vertex at any level, taking into account the
information attenuation in each constituent code, we consider the clump of
size W containing the vertex and its W — 1 neighbors. Then, we consider a
new level by following the strong links of each vertex in all clumps using the
following additional rules :

e We discard any vertex already present at any preceding level (this case
is represented by a cross in Figure 2.12).

e We do not follow the strong link from the center of any clump (it would
always give its parent vertex which is already used) except at the first
level where a bit b; has no parent.

This construction leads to Figure 2.12 drawn for the bit ug of the turbo

code represented in Figure 2.4, where we consider a dependency clump of
length W = 3.

The dependency graph is thus organized in levels, each level corresponding
to 1/2 iteration step of the turbo decoding. Vertices of the same level are
linked together using weak links only. The strong links connect vertices
belonging to two adjacent levels. Iterative SISO decoding of the bit u; can
be interpreted as follows : the forward-backward algorithm is applied on
the population of each level, starting from the lowest one and propagating
upward until it reaches the first one containing the information bit u;.

We can further note that cycles are present in the dependency graph
DG (u;), as soon as a “clump collision” occurs (as shown in Figure 2.12 at

2.3. CONVERGENCE ANALYSIS 35

< J 12|

8 1
10~ 32

6(’ 2|

2 5/2 |

2 3

1 XS 2y

population iterations

Figure 2.12: Dependency graph DG(ug) for the turbo code depicted in
Figure2.4

level 2 for vertex 9') or as soon as we eliminate a vertex. The influence of the
dependency graph height and cycles on the performance of turbo decoding
is addressed in the next section.

2.3 Convergence analysis

We introduce two quantities related to the dependency graph that are linked
to the iterative decoding, namely the height of the graph, and the level
where a cycle closes itself for the first time. Since the dependency graphs
of a turbo code depend almost only on its interleaver (only the memory of
the constituent codes is involved in the dependency graph through the clump
size W, and furthermore in an unclear way), dependency graphs provide us
a tool to analyze the influence of the interleaver in a turbo coding scheme.

36 2. ITERATIVE DECODING CONVERGENCE OF TURBO CODES

2.3.1 Height of the dependency graph

The height of the dependency graph DG(u;) gives the maximum number of
iteration steps to reach iterative decoding convergence® for bit b;. Hence,
the maximum number of iteration steps necessary to reach total convergence
is obtained by finding the dependency graph of maximal height. The aver-
age number of iteration steps can be computed ignoring the levels with a
negligible population.

Height of theoretical dependency graphs without cycles

If there are no clump collisions, the theoretical height of any dependency
graph can be calculated theoretically. Figure 2.13 shows this theoretical
dependency graph for a clump length of W = 3.

level :
1

Figure 2.13: Dependency graph without clump collision. W = 3.

The first level has W vertices, and W strong links will descend to the
second level. The second level has W? vertices, and W (W — 1) strong links
will descend to the third level. The third level has W?(W — 1) vertices,
and W (W — 1) strong links will descend from it. Generally, the level i has
V(1) = W2(W — 1)"=2 vertices, and E(i) = W(W — 1)*~! descending strong
links. The black vertices belong to the upper convolutional chain (odd levels)

6We define the convergence as the number of iteration steps for which the APP of a
bit b; is computed given all the observations at the channel output.

2.3. CONVERGENCE ANALYSIS 37

and the white vertices belong to the lower convolutional chain (even levels),
if the top vertex b; belongs to the upper chain’.

We can count the total number of vertices in this graph, in order to
estimate its height h. The first estimate results from considering the total
number of vertices that are present in the graph, without distinguishing the
upper and lower vertices, that is 2/N. The total number of vertices at levels
strictly smaller than A is strictly lower than 2V, and the theoretical total
number of vertices at level h is greater than, or equal to, 2N. We have :

2N{> W4+W2+W2(W —1) + W2(W —1)2 4 - + W2(W — 1)r3
< WHW2+W2(W — 1)+ W2(W —1)2 + -+ - + W2W — 1)h2

(2.7)
which leads to :

2N — W) (W —2) 2N — W)(W — 2)

1+logy, 4 ll + < h < 2+logy,_, |1+

w2 w2

(2.8)

A more accurate estimation of h takes separately into account the N
upper and N lower vertices.

even height
Let us first assume that the height of the dependency graph is even. The
number of upper vertices can be bounded by counting the number of vertices
in the even levels :

Nl W2+ W2(W —1)2+ -+ WHW — 1)h* (2.9)
< W2 WAHW =124 -+ WHW — 1)h2 '
which leads to :
N(W —2 NW -2
logyy 4 [1 -+ L < h<2+4logy_ ll + %1 (2.10)
Bounding the number of lower vertices gives :
N W4+ W2(W —1) + W2(W =13 + -« + WEHW — 1)5 (2.11)
< WH+W2W - 1)+ W2W —1)3 +--- + WEW — 1)h3 '

which leads to :
(N -—W)(W —2)
W(W —1)

2+logy 4 ll +

< h < 4+logy [1 LW W)W - 2)1

WWw —1)
(2.12)

"We always draw dependency graphs starting from an upper vertex.

38 2. ITERATIVE DECODING CONVERGENCE OF TURBO CODES

odd height
Let us now assume that the height of the dependency graph is odd. The
number of upper vertices can be bounded by counting the number of vertices
in the odd levels :

N{ > W+ W(W —1) + Ws(W

1)3+"'+W2(W—1)h_4
< WH+W2W - 1) +W2W —1)3 +--

_ 1) S+ WAHW - 1)h?

(2.13)

which leads to :
(N-W)(W —2)
wWWw —1)

(N = W)(W - 2)
W(W —1)
(2.14)

< h < 3+logy_; |1+

1+logy_y [1 +

Bounding the number of lower vertices gives :

N[> WPEWRW — 12 4 WAW - 1) (2.15)
< W2HW2W =12+ -+ W2(W —1)h=3 '

which leads to :

N(W —2)

1+1 1
+ O8w_1 l + W

<h<3+1 1+ — 2.16
<h< —i—ogw_ll—i- W] (2.16)

These bounds have been calculated for the two different block sizes N =
65536 and N = 1024, and odd values of W from 3 to 9. The tightest values
(between (2.8), (2.10) / (2.12), and (2.14) / (2.16)) are summarized in Tables
2.1 and 2.2.

W =3]1583 <h <1641
W=5| 863<h<897
W=7] 7.00<h<730
w

=9] 621 <h<6.48

Table 2.1: Bounds on the height of a cycle-free dependency graph with N =
65536

At a fixed length N, these bounds are clearly decreasing functions® of W.
Hence, the smallest value of W i.e. W = 3, leads to the highest dependency
graph. Its height is an upper bound on the number of decoding iterations
needed to reach convergence for a code that presents cycle-free dependency
graphs for all its bits u,.

8and also increasing functions of the length N.

2.3. CONVERGENCE ANALYSIS 39

W =3]941 <h <9.83
W=5|563<h<597
W=7)|468 <h <498
W =91]421 <h <448

Table 2.2: Bounds on the height of a cycle-free dependency graph with N =
1024

Dependency graph height of realistic interleavers

However, any finite interleaver and turbo code exhibit dependency graphs
with cycles. As the presence of a cycle in a dependency graph results in de-
creasing the number of vertices at the level where it appears, it also increases
the total height of the dependency graph.

As an example, Figures 2.14 & 2.15 show the average population, ¢.e.
the number of vertices per level, (computed for the N dependency graphs,
W = 3) of two different interleavers of size N = 65536. The first one is
chosen at random and the second one is the conventional block row-column
interleaver. We see from the population distribution that a maximum of
32/2 = 16 iteration steps® and an average of 22/2 = 11 are needed to converge
in the case of a random interleaver. This number is much larger, a maximum
of 258/2 = 129 and 254/2 = 126 on the average, in the case of a row-column
interleaver. This behavior will be explained in the next Section, where we
prove that any row-column interleaver has minimal cycles of length 3.

We empirically remark, on several examples of purely random interleavers
with different lengths NV, that the maximal height of their dependency graphs
is twice the height of the corresponding theoretical cycle-free dependency
graph.

Our first conclusion is that a good interleaver must produce compact
(short) dependency graphs to enable a fast propagation of informations. The
fact that we do not know the actual clump size W is not important : we
just compare the average/maximal heights of the dependency graphs of the
competing interleavers for different values of W.

9An iteration step corresponds to two decoding steps.

40 2. ITERATIVE DECODING CONVERGENCE OF TURBO CODES

30000

25000

20000 / \
15000 / \
10000 / \“

5000

"randont —-—

Nurmber of Vertices per Level

0 5 10 25 30 35

15 20
Nunber of 1/2 Iterations

Figure 2.14: Average population of the dependency graphs for N = 65536.
Random interleaving. W = 3.

1200
"classical" -—

1000

800

600

400

Nunber of Vertices per Level

200

100 150 200 250 300
Nunber of 1/2 Iterations

Figure 2.15: Average population of the dependency graphs for N = 65536.
Row-column interleaving. W = 3.

2.3. CONVERGENCE ANALYSIS 41

2.3.2 First-cycle level in the dependency graph

We saw that a cycle including the DG summit is generated by a collision
between two clumps. These cycles contain strong links and weak links. For
short cycles, the number of weak links is not as large as to make the infor-
mation fade before reaching the summit, and so the information propagating
upward in the dependency graph will reach the summit via two different
routes and will modify the APP of the summit bit.

1.0

0.8 r

Random
N=256

Row-Column Interleavers

Random -
N=65536

o
(o]
T

Random
N=4096

Cycle Probability

N
SN
T

0.0

Dependancy Graph Level

Figure 2.16: Minimal cycles distribution of different interleavers.

Figure 2.16 illustrates the first cycles distribution for different interleaver
sizes. It can be easily shown that all minimal cycles of a classical row-column
interleaver start from the summit and terminate at level 3 : see Appendix A.

Our second conclusion is that a good interleaver must produce dependency
graphs with cycles as large as possible to guarantee the lowest dependency of
wcoming probabilities.

These conclusions involve two contradictory properties : dependency
graphs can not be “compact” and have large cycles at the same time. In-

42 2. ITERATIVE DECODING CONVERGENCE OF TURBO CODES

deed, the diameter'® d of any graph is linked to its girth g by the inequality :
g<2d+1 (2.17)

Intuitively, the maximal height of all the dependency graphs of a turbo code
is linked to the diameter of the Bayesian network of the code (the relation
depends on the chosen clump size W), and the minimum first cycle level is
liked to the girth (and also to W).

This fact explains why decoding iteration steps remain useful even if
convergence (as we defined it) has been reached. All the observations have
been conveyed to each bit, but are corrupted by the presence of cycles.

The performance comparison of two turbo codes with same rate R = 1/3,
interleaver length N = 4096, and J = 2 constituent codes with generators
(1,21/37), but using two different interleavers (row-column and purely ran-
dom) validates our conclusions. It is depicted in Figure 2.17.

— - - Row-Column Interleaver
—— Random Interleaver

Pe(bit)

L
1 2 3 4 5 6 7 8 9 10 11 12
Number of Iterations

Figure 2.17: Comparison of row-column and random interleaving, N = 4096.
Eb/NO from 0.0 dB to 0.5 dB with 0.1 dB step.

10Tt is the greatest distance between any two vertices.

2.4. CONCLUDING REMARKS 43

Indeed, the dependency graph of the row-column interleaver is much
higher than the one of the random interleaver (hence convergence is slower),
and furthermore its first cycle distribution (i.e. a Dirac measure at level
3) is worst as shown in Figure 2.16 (hence extrinsic informations are more
dependent).

2.4 Concluding remarks

In this chapter, we introduced a graphical tool, the dependency graph, that
can be used to compare interleavers for turbo codes, regardless of the chosen
constituent codes. Since dependency graphs with either large height or short
cycles can be identified, the idea of expurgating the bits having such “bad”
DGs should be studied further on.

44

2. ITERATIVE DECODING CONVERGENCE OF TURBO CODES

45

Chapter 3

Low density parity check codes

Gallager introduced in 1962/1963 error-correcting codes based on low-density
parity-check matrices. These low-density parity-check (LDPC) codes [46] [47]
exploited the following fruitful ideas :

e the use of random permutations linking simple parity-check codes to
build an efficient low complexity code that imitates random coding,

e an iterative decoding technique where a prior: informations and chan-
nel observations are both used to compute a posterior: and new a priori
informations.

Unfortunately, Gallager’s work has been forgotten by the majority of the
scientific community during the past three decades, until the recent invention
of turbo codes [22] which share the same above ingredients with LDPC codes.

LDPC codes then gained great attention again, and several scientists work
on them. Among these recent works, MacKay 73| showed that Gallager’s
decoding algorithm is related to Pearl’s belief propagation algorithm [78§],
Luby et al. [69] [70], Richardson et al. [88] and MacKay et al. [72] studied
wrregular LDPC schemes. They exhibit performance extremely close to the
capacity limit, and outperform turbo codes for large code lengths.

In this chapter, we briefly recall the construction of the original LDPC
codes, their analytical properties as derived by Gallager and their iterative

46 3. LOW DENSITY PARITY CHECK CODES

decoding. We present their graphical representation as Tanner codes [97]
on random graphs. We show that turbo codes can be represented as block
codes with a special low-density parity-check matrix. This chapter does
not claim to be self-contained but its aim is rather to be an introduction
for the generalized low-density (GLD) codes presented in Chapter 4, whose
construction is inspired by LDPC codes, and that share common properties
with them.

3.1 LDPC structure and decoding

3.1.1 Definition of low density-parity check-codes

An LDPC code C with parameters (N, j, k) is a binary linear block code of
length N whose parity-check matrix H has j ones in each column, k£ ones in
each row, and thus zeros elsewhere. The numbers j and £ have to remain
small with respect to NV in order to obtain a sparse matrix H. Such a matrix
is represented in Figure 3.1.

n columns
1 00 1 00
M 0 01 010 k 1’s per row
TOWS 010 1 00 -

T j 1’s per column

Figure 3.1: Properties of the parity check matrix H of LDPC codes.

This matrix has hence M = N—K = Nj/k rows i.e., the number of single
parity-check equations (pce) of the code. Each coded bit belongs to j pces,
and any pce involves k coded bits. The rate of the code is : R > 1 — j/k.
The inequality holds because we do not constraint the matrix H to have
independent rows.

3.1. LDPC STRUCTURE AND DECODING 47

Gallager’s construction of a low-density parity-check matrix H with pa-
rameters (N, j, k) consists of dividing it into j sub-matrices H!,- -, H’, each
containing a single one in each of its columns. The first of these, H', looks
like a “flattened” identity matrix (that is, an identity matrix where each one
is replaced by k ones in a row, and where the number of columns is multi-
plied accordingly). The j—1 other sub-matrices H?,-- -, H? are derived from
H' by j — 1 column-wise random permutations my, - - -, 7; of H'. Table 3.1
shows the parity-check matrix of a particular (20,3,4) LDPC code. It can
be noted that summing in each sub-matrices all the rows leads to an all-one
row. Hence, there are at least 7 — 1 dependent rows and hence the rate is
greater than 1 — j/k.

1 11100O0O0OO0OO0OO0OOO0OO0OO0OOO0OO0OO0O0
o o0o0o0111100O0O0O0OO0O0OO0O0O0TO00QO0
o o0oo0o00O0OO0OO0O011T1T1TQO0O0O0O0O0OO0O00O0
o o0o0o0O0O0OO0OO0OO0OO0OO0OOOI1T1TT1TT1TTG0UO0TQO0O0
o0 0O0O0OO0OO0OO0OO0OO0OO0OO0OOOOOOT>I 1T TI1TT1
1 0001O0O0O0O0OT1O0O0OO0OT1TQO0O0OO0OO0OTO0OGO0OTO
o1r00010O0O0O1TO0O0O0O0OO0OO0OT11IO0TO0®O
o o01o0o0010O0O0O0O0O0OT1TTO0O0OO0OT1ITTO00@O0
o o0o010O0O0OO0OO0OO0OI1O0O0OO0O1TO0O0O0OT1TT0®O0
o o0o000O0OO0O1O0O0OO0OT1TUO0GO0OO0OT1TTQO0TO0TQO0T1
1 000O01O0O0O0OO0OO0O1O0O0OO0OO0OO0OT1TO0T O
o100O0O010O0O01O0O0O0O0OT1TTO0TG0TGO0OO0
o o0100O0O0OT1O0OO0OO0OO0O1O0O0OO0OO0O0OT1T0@0
o o0010O0O0O0O1TO0OO0OO0OO0OT1TO0OO0OT11IO0TGO0F®O
o0 001O0O0OO0OO0O11TO0OO0OOOOTTOOOTOT1

Table 3.1: Gallager’s construction of the parity-check matrix of a (20, 3,4)
LDPC code C.

C can be seen as the intersection of j super-codes C',---,C’ whose re-
spective parity-check matrices are the sub-matrices H',---, H’. Since each
sub-matrix consists of N/k single parity-check equations of k bits that are
mutually exclusive, each super-code is the direct sum of N/k independent
single-parity-check (k,k — 1) codes (spcc) Co. We have :

C= (J] c? (3.1)

48 3. LOW DENSITY PARITY CHECK CODES

and :
N/k

Ct=pC (3.2)

It is important to note that the matrix H is not in systematic form.
Therefore a systematization has to be done, for two reasons. The first one is
to compute the actual dimension, and rate, of the code. The second reason is
the ease of encoding. Let us denote by H' = [P|I] the result of the systemati-
zation of H, and Ilg the column permutation applied. H' is no longer a low
density parity check matrix. G = [I |PT] is the systematic generator matrix
associated with H’'. If b is the information bits vector, the corresponding
codeword is ¢ = bG. We have cH'" = 0, but also IIg'(c)H” = 0. Since Gal-
lager’s probabilistic decoding (see Section 3.1.3) takes benefit of the sparsity
of matrix H, an LDPC coding scheme uses the systematic generator matrix
G at the encoder and the LDPC matrix H at the decoder. The received sym-
bols must be interleaved by ITg*. For a large length, the encoding complexity
is high, which is a practical drawback of LDPC codes. There exist ways to
get around the encoding problem : they use the graphical representation of
LDPC codes (see Section 3.2) to reduce the encoding complexity [70].

3.1.2 Analytical properties of LDPC codes

Gallager presented several analytical results on LDPC codes. We only sum-
marize here those related to the minimum Hamming distance of LDPC codes,
since the methods used to find them are also used in our original work.

LDPC codes with j = 3 are asymptotically good

Gallager compared the asymptotic average! minimum Hamming distance
properties of the LDPC codes to the ones of the whole ensemble of binary
linear block codes of same rate R. By the random coding argument, it
is well known that the latter reaches the Varshamov-Gilbert (VG) bound
([11] p. 251) : asymptotically, when the length N of the parity-check codes

laverage” means that we consider the ensemble of LDPC codes with same parameters
(N, j,k), constructed with all the possible choices for the interleavers ma,---,7;, and we
average the results on this ensemble.

3.1. LDPC STRUCTURE AND DECODING 49

tends to infinity, the average normalized Hamming distance of their ensemble
0o = dpmin/N satisfies :

H{(do) = (1 — R)log(2) (3-3)

where H denotes the natural entropy function.

Computing the average number of codewords N,;(¢) of weight ¢ of the
LDPC code ensemble of parameters (N, j, k), Gallager proved that when N

is large enough :

Njr(£) < C (A, N)exp (—NBji (M) (3.4)
where Bj; and C (A, N) are defined as follows :

Bie() = (G- DHN) — 1 [u(s) + (k=12 +jsA (35)

CON) = [2eNAA — AT exp (%) (3.6)

where A = ¢/N, p(s) is a function depending only on k and s is a parameter
that has to be optimized. We omit the details since they can be found in [47]
and since we use the same approach in the next chapter to prove that GLD
codes are also asymptotically good.

Asymptotically, the sign of the exponent function Bjj(\) determines the
behavior of N;x(l) : if Bjr(A) > 0, then N;x(l) tends to zero when N tends
to infinity. The highest value of A such that Bj,(\) > 0 obtains gives us an
asymptotic lower bound on the average normalized Hamming distance §;y.
We computed the values of 4, for different choices of (j, k) and compared
them with the VG bound. The results are presented in Figure 3.2.

We observe that d,;, > 0 for all the computed values with j > 3. Hence,
the LDPC codes are asymptotically good? if j > 3. Furthermore, LDPC
codes are close to the VG bound when j increases.

LDPC codes with j =2 are not asymptotically good

Gallager used a graphical argument to prove that LDPC with j = 2 are
not asymptotically good. We reproduce his argument here, since he used a
concept similar to the dependency graph.

2j.e. their minimum Hamming distance increases linearly with the length of the code.

50 3. LOW DENSITY PARITY CHECK CODES

05 T { T { T { T { T { T { T { T { T { T
0.4
— Varshamov-Gilbert bound
. L J
(8]
e
8 03 _
0
©
8 L (5!6) -
N
< (4,5
£ 02 ' —
S 5,7)
zZ
L 8) J
o1 G @8 -
@n X
r (3,5) 7
(3.6)
OO 1 l 1 l 1 1 l 1 1 l

1 1 1
00 01 02 03 04 05 06 07 08 09 10

Rate

Figure 3.2: Average asymptotic values of the normalized Hamming distance
of the ensemble of LDPC codes.

Let us consider a LDPC code with parameters (IV, 2, k). Let us associate
a vertex with each coded bit, and consider the N/k single-parity-check equa-
tions as “super” edges linking the k vertices representing the coded bits that
they involve. Since j = 2, any vertex belongs to two “super” edges.

Let us choose any vertex and build the equivalent of the dependency
graph which stems from it : we follow its two edges, and put its 2(k — 1)
neighbors in the first level. Let us iterate this process with the bits of the
first level as shown in Figure 3.3 for £ = 3. We plot the two different “super”
edges of any vertex with two different types of lines in order to distinguish
them easily.

Let us assume that the shortest cycle passing through the summit arises

at level c. The i-th level (i < ¢) contains 2(k — 1) vertices. We can roughly
bound the number of vertices at level c-1 as :

2(k -1t <N (3.7)

3.1. LDPC STRUCTURE AND DECODING 51

Figure 3.3: Dependency graph of an LDPC code with j =2 and k£ = 3.

which leads to :
N
c<1+log, , (5) (3.8)

For the shortest cycle, we consider the set of vertices that are at the inter-
section of the “super” edges in the cycle. They are represented in black in
Figure 3.3. The word with all coded bits set to zero, except the ones corre-
sponding to the black vertices that we set to one, is clearly a codeword of C.
Its Hamming weight d satisfies :

d=2c (3.9)

since there are exactly two black vertices on levels 1 to ¢ — 1 plus the summit
and the last vertex. Hence, we have :

N
d<2+2log, , (5> (3.10)

We just found a nonzero codeword that has a Hamming weight that increase
only logarithmically with N. Hence, LDPC codes with j = 2 can not be
asymptotically good.

3.1.3 Gallager’s probabilistic decoding algorithm

In this section, we slightly modify the notations of the LDPC codes : j is
replaced by J and k by K.

52 3. LOW DENSITY PARITY CHECK CODES

APP decoding of a single parity-check equation

Let b, 1 <1 < K, be the coded bits belonging to a particular pce. Let py,
1 <1 < K, be the probability that the bit b, equals 1. We assume these
bits are independent. Let S be the event that the pce is verified and S the
complementary event. The probability of S (respectively S) corresponds to
the probability to have an even (respectively odd) number of bits b; equal to
1. It can be written [47] :

1+ﬁ(1—2p,) _ 1—ﬁ(1—2pz)
P(S) = —= and P(S)= —=1 (3.11)

2 2
Assuming that the coded bits are known wvia their observed values y;, 1 <
[< K, at the output of a memoryless channel, the probability that the pce
is verified given the observations is :

K
L+ IT[1 = 2P (b = 1{y,)]

P(S|{y}is) = ——— (3.12)
Fixing the value of the coded bit b;, and applying the Bayes rule, we have :
P (b =115 {y},) o Ploy=1/w)P (Slby=1,{y},) (3.13)
1= 1 [1—2P(b = 1g)
o P(b = 1ly)———

Similarly, we have :

U=1,I'#l

P (b =015, {y},5s) o P(br = 0lw) (3.14)

2

Iterative decoding of LDPC codes

Considering a complete (N, J, K) LDPC code, each bit belongs now to J
pces. For each pce m, let us denote by L£(m) its set of K coded bits, and
by S(m) the event that it is verified. For each coded bit b, let us denote by
M(l) the set of J pces that involve it. We define :

APP} = P (b ==z|S(m),m € M(l),{y}) (3.15)
mi = Pi=z|S(m'),m € M(l),m' #m) (3.16)

2 = P(Sm)|b =z, Quy, ' € L(m),I' £ 1) (3.17)

m,l

3.1. LDPC STRUCTURE AND DECODING 53

The APP is defined in the usual way. @, represents the partial a posteriori
probability of the bit b;, since it does not take the m-th pce into account.
Hence, it does not depend on the pce m, and can be used as an enhanced
observation probability inside V7 ;, the probability that this pce m is verified.

Using (3.11), we have :

1+ 1 [1-204,]
Vit = lez(m)’lzl (3.18)

and similarly :

b v L‘H U'#l [1 N 2Q}n’ll]
Vpy = ——L (3.19)

At the first iteration, @y, ; is initialized to the likelihood of b;.

The V7, can now be used to update the @7, ;. Indeed, since for a fixed b,
the set of bits involved in all the pces m € M(l) are statistically independent,
we can rewrite (3.16) using the Bayes rule as we did in (3.13), but taking
now into account J — 1 pces :

me < P =z[y) I1 Vo
m' eM(l),m'£m

x P(ylby = x)n(b = x) 1I ey
m' eM(l),m'#m

o< P(ylb = z) I1 'l (3:20)
m'eM(l),m'#£m

The a priori term 7(b, =) was deleted, since there is no a priori information
on the bit b; that comes from somewhere else than its parity check equations.
An estimate of the APP of all the bits can be derived at this step as :

APP(b=2) x Pyl =2) [[V&, (3.21)
meM(l),m

The process is iterated by introducing the new values (3.20) into (3.18) and
(3.19).

Figure 3.4 represents the SISO decoding for the bit b;, at the ¢-th iteration
step. The V values are computed in a middle stage and the partial APPs

@ are updated. A complete decoding iteration step consists of applying this
SISO decoding to all the coded bits 6;, 1 <1 < N.

54 3. LOW DENSITY PARITY CHECK CODES

P(yl‘bl = 1)]
APP(i+1)
S O T
1 - 1-st pce of by : my
m1,l’1;£l(z'/ { \ - Vi | A /:\
Qinl 1 £l i)) —=[Fq (3.18)-ma.t [] 14 ‘
17k : : .)
ml:l’K»#l (Z) \VJ Jyl teI‘JZQS of Vl m1,l (’[/ +].)
K-1 bits of my :] m,]l-
different from b; : different|from V;
1 N j-th pce of b; : m; I/
'in])l’17él (Z/\ { \ . V1 , -
anj ,l;ﬁéz(zg \ } —=Fiq (3.18) 2 1D -
. : g -
my 4 #1(0) — / el ot V| mi (i 1)
-1 bits of m; .] ,
different from b, different|from V1, ,
1 ,\ A J-th pce of b; : my
'inJ,l’l;él (Z/ { \ : N\ .
Q. 11(1) =i (318} —] X
Qs 21(1) \\/} ') omad . torms of V! moa(i+1)
. K-1 bits of m.s ‘L terms of V,
different from b; different from V

Figure 3.4: Diagram of the LDPC SISO decoder of bit b; at the i-th iteration
step

Two scheduling strategies are possible. At the i¢-th iteration step, J new
partial APP values Qinj 4(i+1) are computed by the SISO decoding of bit b;.
At the same iteration ¢, the SISO decoding of any bit by, I' > [, belonging
to m, one of the pces of b, can use as input either Q}nj,l(z') or Q}nj,l(i +
1), previously computed, since I’ > [. The first strategy is called parallel
scheduling, since the SISO decodings of all the bits are independent, and
the second serial scheduling. Serial scheduling should improve the iterative
convergence speed, since at a fixed iteration step %, the last bits benefit from
the partial APP values of the first bits that have been improved. However,
we do not observe any significant gain compared with parallel scheduling.

Two LDPC codes have been simulated, using BPSK modulation over the
AWGN channel. The first one has as parameters : (510,3,6). Its actual
dimension is K = 257 hence its rate is R = 0.503. We used the parallel
scheduling version of the iterative SISO decoding with a maximum of 40
iteration steps. The second one has parameters (48000, 3,6). Its theoretical

3.1.

LDPC STRUCTURE AND DECODING

%)

rate is also 1/2. We limited the same decoding algorithm to 30 iterations.
The results are plotted in Figures 3.5 and 3.6.

10
104
G—© Eb/N0=2.0 d 157%-
-- step:0.1dB
5—8 Eb/N0=3.1 dB
sy Er-o-ig =
By o,
2 107 > - [l = =
= 3 10° ST
g RS .
=4 o I~ it
> = SEL i
5 5 s e
= 3 = N
210 2 10° \;\o N
a 3
RS
G-Oiter=0 = SN
G- iter=3 \\S\ O
---- iter=6 ;\‘S\S\
-4 y GO iter = 18|
10 10" 51 iter =30
— iter = 40 50
10° 1%
0 10 20 30 40 2 2.2 24 2.6 28 3
iteration number Eb/NO (dB)

Figure 3.5: Simulation results of an LDPC code with parameters : (510, 3, 6).

-0- 0O -0
- S O o
m% e
e T s G -
+ -
e
107 N D
z R X ‘ 210
£ v £
: \ :
S o
S 16° . \ s
5 \ 5 10 \
5 b v |5 \
3 \ N 3 \
-4 ©©1.00 dB \ 108 G-9© lter=0 \ E
10 o0 1.25 dg G-8 lter=3 \
©©1.30 dB--} ——- Iter=6,9,12,15 \
&41.40d \ GO Iter=18 \\
++1.50 B\ N . G4 lter= 21
. +x200dg | \ 10 — iter=24
10 %
t
\‘ X
PR S S SR S SRR O B 167
0 10 15 20 25 30 1 12 14 16 18
iteration number Eb/NO (dB)

Figure 3.6: Simulation results

(48000, 3, 6).

of an LDPC code with parameters

56 3. LOW DENSITY PARITY CHECK CODES

3.2 Graphical representation

Any LDPC code C with parameters (N, j, k) can be represented as a regular
bipartite graph : the Tanner graph. Its properties are the following : its
left part has N vertices, representing the coded bits. Its right part has
M = Nj/k vertices, representing the single-parity-check codes. There is an
edge connecting a bit vertex to a spcc vertex if this bit belongs to the spcc.
Hence, the degree? of the left part is j, and the degree of the right part is .
Figure 3.7 shows this representation.

degree : j
"
\y ;’
N coded bit degree : k Nj/k spc
vertices code vertices
N bit vertices jL constituent code vertices

Figure 3.7: Graphical representation of an LDPC code with parameters
(N, j, k) as a Tanner random code.

If the parity-check matrix is chosen at random, just satisfying the weight
conditions on the rows and columns, the resulting graph is also purely ran-
dom : the edges are chosen at random, just satisfying the degree conditions
on the bit and spcc vertices. Gallager’s construction (see Section 3.1.1 and

3The degree of a vertex is the number of edges connecting this vertex to others. All
the vertices of a regular graph have the same degree. We then speak of the degree of the
graph. A regular bipartite graph has two degrees : one for its left part, and one for its
right part. For further definitions, and for an introduction to the graph theory, please
refer to e.g. [34]

3.2. GRAPHICAL REPRESENTATION 57

Table 3.1) is slightly more specific. Since each coded bit belongs to one and
only one spcc Cy of any of the j super-codes C!,---,C’, the right part of the
graph is divided in j clumps of N/k spcc vertices. Any coded bit vertex
has hence a single edge connecting it to any of the clumps. This scheme is
detailed in the context of GLD codes in the next chapter (see Figure 4.2).

Tanner derived bounds linking the minimum Hamming distance, the num-
ber of vertices and the girth of the graph, for any compound code defined
by a graph. Applying these results to LDPC codes is straightforward. We
derived such results for GLD codes in Section 5.1.1.

3.2.1 Dependency graph

The notion of dependency graph, already introduced for the turbo codes, is
even more natural in the context of LDPC (and GLD) codes. Basically, it
consists of choosing a coded bit vertex b; in the graph of the LDPC code,
pulling it upwards and observing the vertices that go up level by level.

The j spcc vertices which b; depends on go up first, followed by the j(k—1)
coded bits vertices that belong to these spccs, and so on. The closer from b; a
vertex is, the more important influence on b; it has. Figure 3.8 represents the
first levels of such a dependency graph drawn for a specific bit b; belonging
to an LDPC code with 7 =3 and k£ = 4.

Gallager’s probabilistic decoding algorithm, presented in the previous sec-
tion, can be interpreted as performing probability propagation along this
dependency graph.

AAt the first iteration step, the estimated a posteriori probability of b,
APP,(1) is computed taking into account only the probabilities that the
pces of the first spce vertex level are verified (thanks to (3.21)). These
probabilities are computed with the Q(1) values of the j(k —1) coded bits at
the first bit level (3.19), initialized to the likelihoods of the bits. Hence, this
first estimate APP takes into account only a small part of all the available
observations {y}.

At the end of the first iteration, where all the coded bits are processed
once, their partial APPs are updated with Q(2), computed at the first it-
eration step. Hence, the next decoding of b, takes now into account the

58 3. LOW DENSITY PARITY CHECK CODES

Figure 3.8: Dependency graph of b, for an LDPC code with parameters
(N, 3,4).

observations coming from the first two bit vertex levels of its dependency
graph. This probability propagation is represented in Figure 3.9, with nota-
tions that are consistent with Figure 3.4.

APP(i+1)
_

Figure 3.9: Probability propagation in the dependency graph of an LDPC
code during the SISO decoding of b; at iteration step 1.

When the iteration steps number is equal to the height of the dependency
graph of b;, the SISO decoding b; takes into account all the available obser-
vations. Hence, the maximum height of all the dependency graphs has the

3.2. GRAPHICAL REPRESENTATION 59

same meaning as for the turbo code DG. It is the number of iteration steps
needed for convergence.

However, this decoding is not perfect. Indeed, (3.20) holds only if the sets
of bits involved in the V' probabilities are independent, which is no longer true
if one bit (or more) appears twice. Hence, as soon as a cycle is present in the
DG, the SISO iterative decoding suffers from dependencies. The first cycle
level is therefore the maximum number of iteration steps where decoding is
perfect. Unfortunately, it is always lower than the height of the DG. The first
cycle distribution in the dependency graphs represents the iterative decoding
“quality” of the randomly chosen parity-check matrix H.

But, whereas for turbo codes the DG characteristics highly depend on the
clump size W, which is not known, the DGs of LDPC codes do not depend
on an arbitrary parameter. The results found are accurate. We drew all the
DGs of a (500, 3,4) LDPC code built using Gallager’s construction, and two
randomly chosen interleavers. The DGs of 8 bits exhibited cycles of length
4, namely [= 71,111, 242,285,292, 297,359, 379. All the other dependency
graphs have no cycles of length 4. We simulated decoding this LDPC code
over an AWGN channel (BPSK modulation) and estimated the BER of the
individual bits. The results obtained are plotted in Figure 3.10. The black
arrows represent the positions of the bits involved in short cycles.

We notice an astonishing agreement between the bits involved in short
cycles and their poor protection compared with the other bits. As predicted,
their degradation appears at the second iteration step. This result proves
that the dependency graph is a valid and useful tool to analyze the iterative
SISO decoding process. It can be used to predict the behavior of particularly
chosen interleavers.

An algorithmic method to increase the length of the shortest cycles has
already been presented by Gallager, working directly on the parity-check
matrix H. Chapter 5 investigates the same problem in the more general
context of GLD codes, by the use of algebraic interleavers.

3. LOW DENSITY PARITY CHECK CODES

60

500

vy i% v

T: 1 1S | | =111 LEST |

(=]
—

W <~
o o
— —

sanljigeqo.d Jolla g fenpiaipul

\
400

\
300

\
200

\
100

bit position

Figure 3.10: Individual bit error probabilities of a (500, 3,4) LDPC code, at

3.25 dB. Iterations from 1 to 20.

Eb/Ny=

3.3. LOW-DENSITY INTERPRETATION OF TURBO CODES 61

3.3 Low-density interpretation of turbo codes

To conclude this introduction to LDPC codes, and to emphasis their link
with turbo codes, we show on a simple example that turbo codes (parallel
concatenation of recursive systematic convolutional codes) have a low-density
parity-check matrix H.

Let us consider a non-systematic non-recursive convolutional code Cy of
rate R = 1/2. It has two generator polynomials ¢;(X) and go(X) of degree
v + 1, where v is the memory of the encoder. Let u(X) be the input of the
encoder, and z1(X) and z9(X) its outputs. We consider this code as a block
code, and write the encoder output as a matrix product :

[21(X) 2(X) | =u(X) [91(X) g(X)] (3.22)

Hence we can define an equivalent generator matrix G :

G = [91(X) g2(X)] (3:23)
and similarly, an equivalent parity check matrix for C; :

H=[0(X) a(X)] (3.24)
It is easy to check that :

[21(X) 22(X) [HT =0

for any output of C,.

The matrix H is also the parity-check matrix of Cj, the recursive sys-
tematic convolutional code sharing the same generator polynomials with C,.
Indeed, the outputs 2 (X) and z4(X) of Cj are :

[24(X) 25(X) [=u(X)[1 0:(X)/a(X)] (3.25)
and we can define G’ as :
G'=[1 nX)/nX)] (3.26)

The natural form of H', the parity check matrix of Cj is therefore :

H = [9(X)/g1(X) 1] (3.27)

62 3. LOW DENSITY PARITY CHECK CODES

But we have :
[24(X) 24(X) |[HT =0

& [2(X) 25(X) |H g (X) =0
[24(X) 24(X) [HT =0 (3.28)

More generally, we can show that any convolutional code of rate k/n
can be described by a linear block code of length n and dimension k£ over

GF(2)[X].

Let us now consider the special case of a recursive systematic convolu-
tional code Cy of rate R = 1/2 and whose input u(X) has a finite degree
N —1 (i.e. the input vector has size N). Its parity check matrix H can now
be written as an N x 2N matrix over GF(2) whose coefficients are fixed by
its generator. The first (respectively second) N x N part of H consists of
shifted rows representing the coefficients of go(X) (respectively g;(X)). For
example, choosing g, = (7), g» = (5) and N = 8, we have :

101000O0O01 1100O0O0°T0
01 010O0O0O0/011100O0°0
001010O0O0/0O0O01T1T1Q0O00
000101O0O0/0O0O0ODBT1TT1T1TO0TFPO0

H= 00001O01O0/000O01T1T1T0 (3.29)
000O0O0OT1O0T1|{0000O0T1T1T1
000O0O0OOT1TO0|/00O0O0OOO0OT1S1

00 00O0O0OO0OT1T|0O0O0O0OO0O0GO0T1]
Please note that for simplification purpose, we do not terminate the trellis.

We consider a conventional turbo code C, resulting from the parallel con-
catenation of two identical recursive systematic convolutional codes Cy and
Cy, whose common inputs are separated by an interleaver of length N and
matrix? II.

Let u be the information bit vector (of length N), and v’ its interleaved

version :
u' = ull (3.30)

Let v be the vector of the parity bits of Cy, and v' the vector of the parity
bits of Cj. We denote by Hy (resp. Ha) the N x N matrix consisting of

411 is a matrix of size N x N with exactly 1 one per row and column

3.3. LOW-DENSITY INTERPRETATION OF TURBO CODES 63

shifted rows representing the coefficients of g;(X) (resp. g¢2(X)). Applying

(3.28), we have :
T

[u v]|[H, Hi] =0 (3.31)
for Cy and :

[v o][H, Hi] =0
& [ul v]|[H, H] =0
& ullH," +v'Hy T =0
& [u v |[HI" H] =0 (3.32)

for C{. Since the codewords of the turbo code C have the form : [u v v],
the parity-check equation that they satisfy is :

T
H H 0
! 2 1
[u v]leT 0 HI] =0 (3.33)

Hence, the parity-check matrix of the whole turbo code is :

[H, H; o0
e 0] a3

It is represented in Figure 3.11. The shaded areas in the matrix are those
where the ones can be found. The number of ones per row and per column
in the “diagonal” sub-matrices H; and Hj is upper bounded by L = v + 1,
the constraint length of the constituent codes, which is always very small
compared with the length of the interleaver. The interleaver does not change
the weights of the sub-matrix HoII”. The upper bounds on the weights in
the different areas of H; are pointed by arrows in the Figure.

Therefore, this turbo code can be seen as an irregular LDPC code, since
the weight of ones per row and column is not strictly constant, but always
very small compared with the size of the parity-check matrix.

The iterative decodings of LDPC and turbo codes are different : the
conventional turbo decoding takes advantage of the trellis structure of each
constituent code to decode it in a single step. It does not process each row
of the equivalent LDPC matrix separately, as the LDPC decoding scheme
does. From the “diagonal” sub-matrices, it is easy to observe that the LDPC
decoding of the turbo code matrix will not yield good results : there is a lot
of very short cycles (square patterns in the matrix).

64 3. LOW DENSITY PARITY CHECK CODES

HT

Figure 3.11: Parity check matrix of a turbo code of rate R = 1/3 composed
of two constituent codes of rate r = 1/2.

Finding convolutional codes that lead to “diagonal” sub-matrices with-
out short cycles leads to self-orthogonal convolutional codes. Their mem-
ory increases rapidly, and classical SISO decodings (FB or SOVA) become
intractable. However, we can use their LDPC matrix representation, and
Gallager’s probabilistic decoding. This has been done in [30], and also in [39]
using time-varying convolutional codes. Hence, a single well-chosen convo-
lutional code (i.e. without the use of any interleaver) with high memory can
be iteratively decoded.

65

Chapter 4

The Generalized Low Density
codes®

If I had more time I could write a shorter letter.
Blaise Pascal

In this Chapter, we present a class of codes called generalized low density
(GLD) codes. This family of pseudo-random error correcting codes is built
as the intersection of randomly permuted binary BCH codes. It is a direct
generalization of LDPC codes (see Chapter 3). GLD codes can also be seen as
Tanner codes based on random bipartite graphs. Independently, Lentmaier
and Zigangirov [63| introduced the same construction.

We study the ensemble performance of these codes and prove that they are
asymptotically good. Upper and lower bounds on their minimum Hamming
distance are provided, together with their maximum likelihood decoding error
probability.

An iterative soft-input soft-output decoding for any GLD code is pre-
sented, and a method to estimate the performance of perfect® iterative de-

coding of GLD codes is derived.

Simulations of GLD codes with J = 2 levels were performed over the

*Parts of this chapter have been presented at the ICC’99 conference (Vancouver) and
the VT'C’99 conference (Houston).

!By perfect, we mean iterative decoding on a code whose graph has no cycle. This
assumption also corresponds to an infinite length of the code.

66 4. GENERALIZED LOwW DENSITY CODES

AWGN channel with binary antipodal modulation (BPSK) using the iterative
decoding scheme presented. We compare the results in terms of performance
and complexity with those of product codes, and sketch the main lines of a
case study involving transmission of short frames.

4.1 Structure of GLD codes

We will describe the structure of GLD codes in two different ways. The
first one uses their parity check matrix so they appear as an extension of
the LDPC codes and the second one their graphical representation as an
extension of Tanner codes.

4.1.1 Parity-check matrix description

The generalization of LDPC codes is straightforward. We based it on Gal-
lager’s construction of LDPC codes. Let us describe the structure of an
(N, K) GLD code C :

e Each single-parity-check code (k,k — 1) of an LDPC code is replaced
by a linear block code Cy(n, k, d) called the constituent code.

e As an LDPC code was the intersection of j super-codes, a GLD code
is the intersection of J super-codes® C7 :

C= (J} Cr. (4.1)

e As the first super-code of an LDPC code was the direct sum of N/k
independent SPC codes, the first super-code C! of a GLD code is the
direct sum of L = N/n independent constituent codes Co(n, k,d) :

L
c'=Pc (4.2)
=1

2we change the number of super-codes from j to J because it no longer corresponds to
the column weight.

4.1. STRUCTURE OF GLD CODES 67

e [is called the repetition factor and J the number of levels of the code.

e The super-codes C’, j € {2---.J} are merely bitwise permutations of
the first one :
¢/ =m(c) (4.3)

e The complete number of constituent codes involved in a GLD code is
thus JN/n = JL.

In terms of the parity-check matrix, each row of the matrix depicted in
Table 3.1 is replaced by n — k rows including a single copy of Hy, the parity
check matrix of Cy, the remainder being filled with zeros. The full parity-
check matrix H of the GLD code is the concatenation of the sub-matrices H7
j € {1---J} of the super-codes. All the sub-matrices are obtained by pseudo-
random column-wise permutations 7;(H'). We have H? = my(H')---H' =
m;(H*'). Figure 4.1 shows the parity-check matrix of a GLD code.

Even if the property of constant weight per row and column is no longer
satisfied for GLD codes, the property of low density still holds. If we denote
by k (resp. j) the average number of ones per row (resp. per column) in Hy,
the average number of ones per row for the GLD code is k and the average
number of ones per column is Jj. These quantities are constant once Cy and
J are chosen, and do not depend on N, the length of the GLD code.

Note that it is not possible to define in the general case the GLD codes
as a serial (neither parallel, nor hybrid) concatenation of two or multiple
constituent codes. Section 4.1.5 exhibits a special case of GLD codes : the
product codes.

4.1.2 Graphical description

The GLD code C can also be described using a random regular bipartite
graph with the following properties. In this sense, it is also a generalization
of Tanner codes [97] to a random matching, as depicted in Figure 4.2.

1. The left part contains the N bit vertices (i.e., the coded bits or the
codeword). The degree of all the bit vertices is J (i.e., each bit is
involved in J constituent codes).

68 4. GENERALIZED LOwW DENSITY CODES

Hl
|

™2

H2

HYI

N

Figure 4.1: Parity-check matrix H of a GLD code

4.1. STRUCTURE OF GLD CODES 69

2. The right part contains the JL constituent code vertices. The degree
of all the constituent code vertices is n (its length).

3. An edge between a bit vertex and a code vertex means that this bit
belongs to that constituent code.

4. The constituent code vertices are grouped into J clumps of L vertices (a
clump corresponds to a super-code). The J edges stemming from every
single bit vertex are connected to code vertices belonging to different
clumps (it corresponds to the condition that the constituent codes of a
super-code are independent).

5. The set of edges characterizes the interleaver.

J™ clump
of L codes

N bit vertices J L constituent code vertices

Figure 4.2: The GLD code as a Tanner random code.

This description is equivalent to the one presented in Section 4.1.1, but a
little bit more general. Indeed, the bits should not belong to the first super-
code (i.e., the first clump of codes in the graph) in the strict order induced
by the direct sum.

Let us notice that nothing in the properties stated above forbids that
two (or more) bit vertices are connected to the same J constituent codes.
However, we try to avoid this situation that creates cycles of length 4 in the

70 4. GENERALIZED LOwW DENSITY CODES

graph® since Chapter 5 proves that short cycles have a negative influence on
iterative decoding.

4.1.3 Coding Rate

The rate of a GLD code can be lower-bounded by observing its parity-check
matrix as follows. Let us first assume that the rows of H are independent.
The number of rows in each sub-matrix corresponds to (n — k) L. Thus, the
total number of rows N — K’ in H satisfies :
J(n—k)N
Ne k' = Jn—iL=20=ON 0N (4.4)
n
where 7y denotes the rate of Cy. Since the number of columns in H is N, we
have :
KI
~ =
The rate R of the GLD code should be K'/N. But nothing guarantees that
the rows of H are independent. Hence, the actual dimension K of the code

can be greater than K’. Consequently, we found a lower bound on the rate
of a GLD code :

1—J(1 —rg). (4.5)

R:%z1—ﬂyw@ (4.6)

In the following, even if K > K', we will neither discard the redundant rows
in H nor modify some constituent codes, so as to keep the well structured
construction of the matrix and the graph. Some constraints might just be
used more than once.

4.1.4 A special case : GLD codes with J = 2 levels

We will prove in Section 4.2 that GLD codes based on Hamming constituent
codes are asymptotically good even if J = 2, and that iterative decoding
(presented in Section 4.3) is very simple to implement in this case. Moreover,
as the rate decreases linearly with J (see (4.6)), the case of 2-level GLD codes
is of particular interest.

3Cycles of length 4 are the shortest a GLD graph can have

4.1. STRUCTURE OF GLD CODES 71

A GLD code is then the intersection of two super-codes, each of them
being composed of L independent constituent codes. The constituent codes
belonging to the first super-code are called the upper codes, and the ones
belonging to the second super-code are the lower codes. There are exactly
2L constituent codes. A simple application of (4.6) shows that :

RJ:2 Z 27”0 —1 (47)

which indicates that we have to choose in the general case constituent codes
with rate greater than 1/2. Table 4.1 shows the rate bound for 2-level GLD
codes based on different constituent codes.

Constituent code GLD Code
type | n | k| r¢ || Minimum Rate

Hamming 7 1 4]0.57 0.14
Hamming 15 111 | 0.73 0.46
Shortened Hamming 12| 8 | 2/3 1/3
Extended Hamming 16 | 11 | 0.69 0.38
Hamming 31126 |0.84 0.68
Shortened Hamming 20 |15 | 3/4 1/2
Ext. and Shortened Hamming | 24 | 18 | 3/4 1/2

Table 4.1: Minimum rates of 2-level GLD codes and different constituent
codes

The effective rate of a GLD code depends not only on the rate of its
constituent code, but also on its repetition factor and the interleaver chosen,
as shown in the next section.

A 2-level GLD code has also a special graphical representation. It can be
described by a bipartite biregular random graph we call the compact graph
of the 2-level GLD code.

Its left part contains the upper code vertices and the right part the lower
code vertices. Consequently, the left part represents the super-code C! and
the right part C2. As each bit is connected to exactly two constituent codes,
an edge is drawn between every two vertices when the corresponding con-
stituent codes share a bit. As the super-codes are composed of independent
constituent codes, there is no edges in-between the vertices of one part. Thus,
the graph is bipartite. As all the constituent codes have the same length n,
the graph is biregular of degree n. Figure 4.3 represents this graph.

72 4. GENERALIZED LOwW DENSITY CODES

C! C?

former bit vertex

Co

L upper code vertices L lower code vertices

Figure 4.3: Two-level GLD code compact graph representation.

4.1. STRUCTURE OF GLD CODES 73

Avoiding that bits belong to exactly the same set of constituent codes
in the general case corresponds here to avoid parallel edges in the compact
graph.

4.1.5 Another special case : Product Codes

Let us examine 2-level GLD codes with a repetition factor L equal to n. The
length of these GLD codes is N = Ln = n?. Each of the two super-codes C!
and C? is thus composed of n constituent codes.

Let us forbid any parallel edge in the compact graph of these codes. As
each constituent code vertex is of degree n, and as there is exactly n code
vertices in the other part, this implies that the compact graph is connected®.
It corresponds to the definition of a product code, where each bit belongs to
two codes (the horizontal and the vertical ones).

Example :

Figure 4.4: Connected compact graph of a block product code

4it means that there is an edge connecting each pair of vertices that belong to different
parts.

74 4. GENERALIZED LOwW DENSITY CODES

Figure 4.4 shows the compact graph of a GLD code of length N = 16,
constituent code length n = 4 and repetition factor L = n. The numbers on
the edges label the bits, the upper codes are labeled from 1 to 4 and the lower
codes from 1’ to 4'. Let us assume that the constituent codes are (4,3, 2)
single-parity-check codes. This leads to the parity-check matrix description
of the code presented in Table 4.2. After systematization (involving one row

| 1 2 3 4|5 6 7 8|9 1011 1213 14 15 16|

1931 1 1 1

2 1 1 11

3 1 1 1 1

4 1 1 1
11 1 1 1

2/ 1 1 1 1

3 1 1 1 1

4 1 1 1 1

Table 4.2: Parity-check matrix of the code

deletion and column reordering), this matrix has the form depicted in Table
4.3.

[1 2 35 6 7 9 10114 8 12 13 14 15 16

1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
111111111 1

Table 4.3: Systematic form of the parity-check matrix of the code

The dimension of the code is thus K = 9, that is the rate of the code is
R = (3/4)?, a value higher than the bound given in (4.7). The last form of the
parity-check matrix is that of the product code based on single-parity-check
codes (4, 3,1) shown in table 4.4.

Further comparisons between GLD codes and product codes are presented
in section 4.5, in terms of performance, complexity and flexibility.

4.2. ENSEMBLE PERFORMANCE 75

314
718
11] 12
15 16

—l= o

—| o ot

0
3 14

Table 4.4: Product code based on (4,3, 1) single-parity-check codes

4.2 Ensemble performance

In this section, we first study the average weight distribution of GLD codes
over all the possible interleavers, as a function of the number of levels J, the
constituent code Cy, and the length N.

From this distribution, we deduce an asymptotical upper bound that
allows us to prove that GLD codes are asymptotically good and to compare
their minimum distance with the Varshamov-Gilbert bound.

We also derive the maximum transition probability of the BSC channel
that an asymptotical GLD code with fixed rate can achieve with maximum
likelihood decoding, and compare it to the BSC capacity.

Average upper bounds on the minimum distance of GLD codes of fixed
length and constituent code are calculated semi-analytically, together with a
tight upper bound on the bit error probability of the ML. decoding over the
AWGN channel.

4.2.1 Average weight distribution of GLD codes

The direct computation of the exact weight distribution of a GLD code be-
comes rapidly intractable when N (or equivalently L) increases. However,
the weight distributions of the constituent codes used in practical GLD codes
(Hamming codes, extended Hamming codes, BCH codes with error correc-
tion capacity ¢t = 2 and extended BCH codes) are well known. See [79] p. 142
for Hamming and extended Hamming codes, see [74] p. 451 & p. 669 and [21]
Ch. 16 for the family of BCH codes. The case of the shortened versions of
the former codes is different. The weight distribution might depend on the
shortening pattern. But it is always possible and simple to get the distri-

76 4. GENERALIZED LOwW DENSITY CODES

bution of the constituent code, either by formulas or computations. Indeed,
the rate of the constituent codes must be high so as to obtain a GLD code of
reasonable rate (4.6) and thus the dimension of the dual code remains small.
Exhaustive search of all the codewords of the dual code and application of
the MacWilliams identity ([79] p. 66) lead to the weight distribution of the
constituent code.

The average weight coefficients of a GLD code can be easily obtained by
averaging over all the possible interleavers ;.

Let us denote by ge,(s) (or g(s) for brevity’s sake) the moment generating
function of Cy, that is the exponential polynomial whose coefficient g; of
degree 7 is the normalized number of codewords with weight 7. For example,
the moment generating function of the (7,4, 3) Hamming code is :

1+ 7€ +7e® + e
ch(S) = 16 (48)

As the J super-codes C; of length N are the direct sum of L = N/n
independent constituent codes Co, their moment generating functions G, (s)
are simply a power of g(s) :

Ge,(s) = G(s) = g(s)"/" = Ee: Q(e)e” (4.9)

where Q(¢) is the probability that a codeword of C; has a weight £. We
assume without loss of generality that all the super-codes are built from the
same constituent code.

Since the total number of codewords in C; is (2¥)L = (2¥)¥/* the number
of codewords of C; having weight £ is :

N;(0) = N(£) = 269 Q(e) (4.10)

Thanks to the fact that Ci,---,C; are randomly permuted versions of the
same super-code, and thus independent, the probability P(¢) that a vector
of weight ¢ belongs to C = C;(---NC, is the product of the probabilities
that it belongs to each code, that is N(E)/(]Z) :

P() = (A([}V()”> (4.11)
£l

4.2. ENSEMBLE PERFORMANCE 7

Finally, the average number of codewords in C having weight / is :

_ (JEN/n) J
N = <N) « p(r) = 20007 (4.12)

()"

number of codewords

10°
10°
— GLD:J=2, C0=(15,11,3
--- Binomial approximation
10°
g . \
0 80 160 240 320 400

codeword weight

Figure 4.5: Average weight distribution of 2-level GLD codes based on the
Hamming (15, 11) as constituent code, compared with the binomial approx-
imation.

This formula is the starting point of different analytical or semi-analytical
results presented in the following sections.

4.2.2 Lower bound on the asymptotic minimum dis-
tance

We want in a first step to upper-bound N (¢). Using exactly the same bound-
ing technique as in [47], that is upper bounding roughly each coefficient Q(¥)
in (4.9) by the entire function G(s), we obtain :

Q) < G(s)e™™ (4.13)

78 4. GENERALIZED LOwW DENSITY CODES

Defining p(s) = In (g(s)) and the normalized weight A = /N, (4.13) can be
rewritten as :
p(s)

Q) <ew - - 101 (114)

n

Let us now lower-bound the denominator in 4.12, namely the binomial coef-
ficient. Extended Stirling bounds® on n! are [12] [1] :

1
V2rz 2Pe 7 < 2! < V27mz ZPe P exp {—} (4.15)

12z

and give for the binomial coefficient :

exp {NH (\) - gy} _ (N\ (N exp {NH (\)}
2N (1 — \) = («’5) - (AN) = A (1—=2) 10

where H()) is the natural entropy function :
H(A)==AIn(A) — (1 =X)In(1 = X) (4.17)
Introducing (4.14) and (4.16) into (4.12) gives :
o oumm BN (T— N exp {—JN [rs— 4]}
exp {(J = 1) [NH (\) - mrar)}

J-1 -1
< a8 oo { i

12NA (1—)
x exp{—N [(J—) H(\) - % (1 (s) + k1n2) + J)\S]}

We define :
J-1 J—1
C(A\,N) =4/20NA(1 =)\) exp{m} (4.18)
and :
B\ s) = (J — 1) H () -%[u () + kIn 2 + J)s (4.19)

The final upper bound on the average number of codewords of weight ¢ in
the GLD codes is :
N(f) < C(\,N) x e NBOw) (4.20)

5The bounds given in [47], p. 12, equation (2.3) are false.

4.2. ENSEMBLE PERFORMANCE 79

Asymptotically, when the length N tends to infinity, W tends to zero
if B(A, s) is strictly positive. Our aim is now to find (if it exists) the smallest
value d of Ain |0 - --1/2[satisfying B(d,s) = 0 and B(A,s) > 0for A €]0---4][.
This value of 6 would give us an asymptotical lower bound on the normalized
minimum distance of the GLD code.

B(), s) is a function of an arbitrary parameter s we have to optimize in
order to get the tightest bound, namely we want B(J, s) as large as possible
for each A. Let us denote by fy(s) the part of B(),s) that depends on s :

() = —%,u(s) + JAs (4.21)

Finding the value of s that maximizes B(J,s) is equivalent to finding the
value that maximizes fy(s). When we set the derivative of f,(s) equal to
zero, we get :

1 (s)

Aopt = 2 (4.22)

We do not try to invert this relation. We will cover a large range of values
of s, and (4.22) will give us the value A\, of A for which B(J, s) is optimal.
Before doing this, we have to make sure that (4.22) is one-to-one in order to
cover the whole range of values assumed by A between 0 and 1/2 and that
fx(s) is a convex N function of s.

As g(s) is the moment generating function of the constituent code, it can
be written as :

g(S) = Zgiew = 2_k Zwie“ (423)
i=0 i=0
where w; is the number of codewords of Cy of weight . We have :
n .
1g;€"
J(s) _ 5"

,LL,(S) = g(s) = i gieis (424)

n . n . n \2
(% #00) (£ 00%) - (£ i0e)
=0 1=0 1=0
n 2
(£
1=0

and :

2n

Z ulels

=0

VY
(Z 91’6’3)
=0

80 4. GENERALIZED LOwW DENSITY CODES

where, for each [€ [0,-- -, 2n] u; equals :

! l
wo=Y.5°9i9-5— Y il —5)g;91—;
) =0

l
= Y 902 -1
7=0
EX
= Y gim—i@2i -1+ (-) —2j)

7=0
E
= > 995 (25 = 1)° (4.25)

J=0

This proves that each u; is non-negative, and so is p”(s) for all s. Thus,
Aopt = p'(s)/n is a monotonic increasing function of s. We have :

igiez.ﬁ

M=

7

[
—

/\opt =

gi€*
0

n

n
1=

—

)\OPt s—)fooo
—

)‘opt s—>—|—c>o1

(4.26)

Figure 4.6 shows A, (s) for a specific constituent code.

Let us now show that f,(s) is a convex N function of s. We have :

J

x(8) = ——u"(s) (4.27)

Hence, f}(s) is non-positive, and f}(s) is a monotonic increasing function,
which is negative for all values of s such that p'(s)/n < A and positive for
all values of s such that p'(s)/n > A. Consequently, fi(s) and B()\,s) are
convex N functions of s, with their maximum value satisfying (4.22).

We can now calculate the asymptotic lower bound on the minimum dis-
tance of GLD codes as follows :

1. Start with a negative value of s.

2. Calculate A, thanks to (4.22).

4.2. ENSEMBLE PERFORMANCE 81

3. Calculate By (s) = B(Agpt, S).

4. If Boy(s) > 0, increase the value of s and return to 2, else 6 = Ay is

an asymptotical lower bound on the normalized minimum distance of
the GLD code.

Constituent Rate of the

code Cy GLD Code)
Hamming (7, 4, 3) 0.143 | 0.187
Hamming (15, 11, 3) 0467 | 0.026
Hamming (31, 26, 3) 0.677 5.11e-3
Hamming (63, 57, 3) 0.810 1.14e-3
Extended Hamming (16, 11, 4) 0.375 0.072
Extended Hamming (32, 26, 4) 0.625 0.015
Extended Hamming (64, 57, 4) 0.781 3.40e-3
BCH (¢ = 2) (3L, 2L,5) 0355 | 0.116
BCH (¢ = 2) (63,51, 5) 0619 | 0.031
Extended BCH (32, 21, 6) 0.313 0.143
Extended BCH (64,51, 6) 0.594 0.038

Table 4.5: Asymptotic lower bounds on the normalized minimum Hamming
distance § of GLD codes with J = 2 levels

Constituent Rate of the
code Cy GLD Code)
Hamming (15, 11, 3) 0.2 0.231
Hamming (31, 26, 3) 0517 | 0.080
Hamming (63,57, 3) 0.715 0.030

Extended Hamming (16,11, 4) 0.063 0.354
Extended Hamming (32, 26, 4) 0.438 0.115
Extended Hamming (64,57, 4) 0.672 0.043

BCH (t = 2) (31,21, 5) 0.032 0.395
BCH (t = 2) (63,51,5) 0.429 0.132
| Extended BCH (64,51,6) [0.391]0.153 |

Table 4.6: Asymptotic lower bounds on the normalized minimum Hamming
distance ¢ of 3-level GLD codes

82 4. GENERALIZED LOwW DENSITY CODES

values of A Om(s)

-4 -2 0 2 4

values of s

Figure 4.6: Ay (s) for the Hamming (15, 11, 3) constituent code.

0.01

0.005 —

exponent function B()
o

-0.005] —

001 P O S I

normalized weighh

Figure 4.7: B(Aopt, s) plotted as a function of A,y for the 2-level GLD code
based on the Hamming (15,11, 3) constituent code

4.2. ENSEMBLE PERFORMANCE 83

Tables 4.5 and 4.6 show the values of § found by this method for different
constituent codes, with respectively J = 2 and J = 3 levels. All the values
found are strictly positive, which means that GLD codes are asymptotically
good. It is interesting to compare these values with the Varshamov-Gilbert
bound ([11] p. 251). Figure 4.8 shows that GLD codes are not far from it,
and even become quite close when J = 3 or ¢ = 2 (double error-correcting
BCH constituent codes).

1

0.9

0,8(% J=2, Hamming Codes
J=2, Ext. Hamming

J=2, BCH t=2 Codes

J=2, Ext. BCH t=2 Codes
J=3, Hamming Codes
J=3, Ext. Hamming Codes
J=3, BCH t=2 Codes
J=3, Ext. BCH t=2 Code

0.7

0.6

+V*xp>o0OO

0.5

Rate

0.4

03

0.2

0.1

0

0 0.1 0.2 03 0.4 05

Lower bound on the minimum distance &

Figure 4.8: GLD asymptotical lower bounds on minimum distance compared
with the Varshamov-Gilbert bound

4.2.3 BSC channel threshold

In this section, we consider communication over a BSC channel with transi-
tion probability p. Let us compute the maximum value of p such that the
word error probability P,, for ML decoding of GLD codes goes to zero when
N is arbitrarily large.

In a first step, we will derive an upper bound of P,, for any value of N,
depending only on the weight distribution N (/) of the GLD code. In a second
step, we will use the result (4.20) on the asymptotic average distribution of
GLD codes to compute P2, the asymptotic average error probability of ML

decoding of GLD codes, and compare it with the BSC capacity.

Let us assume that the all-zero word 0 of a linear binary block code C of

84 4. GENERALIZED LOwW DENSITY CODES

length N is transmitted over the BSC channel. Let E be the ensemble of all
possible error vectors, that is :

E =GF2)"\ Wy (4.28)

where V) is the Voronoi region of 0. Let us partition £ with respect to the

N
Hamming weight of its vectors £ = |J E; as :
i=1

E; = {e€ E/w(e) =1}
= {e€ GF(2)"/w(e) =i and Ic # 0 € C/dn(e,c) < du(e,0)}

where w() is the Hamming weight of a vector and dg(,) is the Hamming
distance of two vectors. We have :

Poy = ple) =) > ple)= ; Elpi(l —p)N = ; |E;|p'(1 — p)N

eckE 1=1e€cFE;
(4.29)

Let us denote by FEj(c;) the set of error vectors of weight 4 that lead to
the decoding of the codeword ¢; of weight j :

Ei(c)) = {e € Ei/dule,c;) < i} (4.30)
v
e |1 1o 0]
&?i—z
¢ (Lo 1o 0]
J

Figure 4.9: Error vector e and codeword ¢;. The 1s of each vector are drawn
at the first positions of the vectors to help understanding.

Let us denote by / the number of 1s that an element e of Ei(gj) has in
common with ¢; (see Figure 4.9). Hence, e has 7 — [ones where ¢; has zeros.

4.2. ENSEMBLE PERFORMANCE 85

The Hamming distance between e and cjis:
dule,c;)) =j—1 +i—l=i+j—2l (4.31)

4.30) leads to the following inequality for [:
(g y
[%] <! < min(i, j) (4.32)

That means that an error occurs when at least half of the 1-bits of a codeword
are covered by an error vector. The same argument is used on the ensemble
of the linear binary block codes to derive the random-coding upper bound
on the error probability in [79] pp. 92-99. Hence, the cardinality of Fj(c;)

equals :

J\(N—3J

Eile)| = 3 - (4.33)

\I/\i—1
1=[4]

Let us denote by E;; the set of error vectors of weight ¢ that lead to the

decoding of a codeword of weight j. There are N(j) such codewords. Because

an error vector e of E; ; can be closer to two or more codewords of weight j
than to the all-zero codeword, we have the following inequality :

. J\(N -7
[Eigl < NG) > - (4.34)
/ l 7 — 1
I=14]
We then have :
N min(%,7) / - .
. JIN(N =7
<y vo x (1)(72) (4.35)
J=damin l:[%]
and :
N , N min(i,j) NN
Py < > P(1=-p"" > NG X . (4.36)
T . ‘\ 7—1
1=0Hmin J=A0Hmin l:|—%-|

Note that the bounding occurs in and only in (4.34). This last inequality
can be used to compute the ML decoding word error probability of any
linear code of which we know the weight distribution. It is tighter than
the conventional union bound on the error vectors weight combined with the
Chernoff-Bhattacharrya bound on the pairwise error probability (|[103] p.63) :

Pw< S NOV(1—p) (4.37)

86 4. GENERALIZED LOwW DENSITY CODES

We are interested in the maximum crossover probability p of the BSC
that leads to an asymptotically vanishing word error probability P2 in (4.36)
when N tends to infinity. In (4.29), we have to focus our attention on the
term that occurs with the highest probability. Intuitively, when N grows,
the weight 7 of the error vectors tends to p/N. First, compute the probability

that the normalized error weight =i/N is :
p—e<O<p+te (4.38)

where € is an arbitrary nonnegative value. It is closely related to the Chernoff
bound on the tail of a binomial distribution. If 7 is a random variable with
finite moments of all order and pdf p(n) we have :

Prob (n >) < B (e207)) = M) (4.39)

where s is any non-negative value and I'(s) = In}" e*’p(n). Minimizing (4.39)
z

on s results in :
Prob (n > 7) < M=) (4.40)

where 7 = I'(s) = ﬂdsﬂ. We apply this equality to the weight of an error
vector of length N. We define

n=wle)= Zl en (4.41)

where e, are the iid components of the error vector e and take the value
0 with probability 1 — p and 1 with probability p. Equality (4.40) can be
rewritten in this case :

Prob (n > i) = Prob (n > ON) < VD) =57 ()] (4.42)
where
['(s) s .
(s) = =X e plen) =In (1 - p+pe’) (4.43)

The optimal value of € is :

J— ! f— pe
=A== — 44
and leads to :
o= LD s — (1= p) £ In(0) — In(p) —In(1—) (4.45)

p(1-10)

4.2. ENSEMBLE PERFORMANCE 87

v(s) =In(1 —p) — In(1 — 0) (4.46)
and finally (4.42) results in :
Prob (7 > ON) < pV? (1 — p)" =D NHO) for §>p (4.47)

Replacing n by N —n, pby 1 —p and 6 by 1 — # leads to the opposite tail
bound :

Prob (n < ON) < pV? (1 — p)" D NEHO) for H<p (4.48)

The asymptotic exact expression of Prob(n > 6#N) can be found in [4§]
pp.188-193. Let us take § = p + € in (4.47) and # = p — € in (4.48) to
compute the probability that the normalized error weight is outside the in-
terval [p — €, p + €]. We have :

Prob(n> (p+e)N) < p™? (1 —p)NE P pNe(1 — p)N(-9 (4.49)

X exp {N lH(p) +eH'(p) + ;H”(p) + 0(62)1 }

H'(p) =In (%) and H"(p) = —Zﬁ (4.50)
it follows that :
Prob(n > (p+¢€¢) N) < exp {—Nﬁim - NO(GQ)} (4.51)

and the same bound holds for Prob (n < (p — €) N). Consequently, we have :
2

€
2p(1—p)
Hence, it is always possible to choose an € > 0 such that this bound tends to
zero when N goes to infinity . We can now rewrite (4.29) as :

Prob(n € [0,p— €U [p+e¢,1]) < 2exp {—N + No(eZ)} (4.52)

Pew = 2 Bl (1=p)" "+ X [Ep(1-p)"
tENX[0,p—€]U[p+e€,1] 1EN X [p—e€,p+e]
2
< 2expy—N—-——+ No(é }x 14 2Ne|E,n|p"N (1 — p)NO-P
o+ vt B %1~ p)

Asymptotically, we have :

min(pN,j) / - s
Py < 2Nep?N(1—p)VU7) iv: N(j) ZJ (‘Z)(N])

J=dHmin l:[%]

NepPM (1 — p)N-P) gN()\N) migji’A) (?ﬁ) (N (1 :A)>(4.53)

IA

88 4. GENERALIZED LOwW DENSITY CODES

The product of the binomial expressions is clearly maximum when [= \/2
and it follows :

1 pa—

Pz Na - S None (T) s
=5 2 N(p-3)

Using the asymptotic average distribution N(£) of GLD codes (4.20) and the

asymptotic equivalent of the binomial coefficient (4.18), and focusing on the
exponential term, we have :

1
P35 <) D(N,\p,e)exp{—NE (), s,p)} (4.55)
A=d

where

A 1
D (N,\,p,e) = NeC (\,N) —

2 \/zer (p— A/2) (H2=22)

(4.56)

and

p—A/2
1-2A

E()\,s,p):B(/\,s)—)\ln(Q)—(l—)\)H< >+H(p) (4.57)

The asymptotic average word error probability PSS tends to zero if the small-
est term E (), s,p) in the exponential part is non-negative. Defining E(p)
as :

E(p) = miny ;s {E (), s,p)} (4.58)

we have : L
PX =0 <= E() >0 (4.59)

We can now find the BSC crossover probability threshold p which is the
highest value for which E(p) is non-negative, with an algorithm similar to
the one described in Section 4.2.2 for B(Ayp, S).

1. Start with a small value of p.

2. Calculate the maximal value E(p) of E(),s,p) thanks to (4.57) and
(4.19) by varying A (and s as they are related).

3. If E(p) > 0, increase the value of p and return to 2, else pyres = p is
an asymptotical upper bound on the crossover probability of the BSC
that leads to a vanishing word error probability of ML decoding of the
GLD code.

4.2. ENSEMBLE PERFORMANCE 89

E(p) is plotted in Figure 4.10 for the 2-level GLD code based on the Hamming
(7,4,3) constituent code. The BSC crossover probability threshold is p =
0.109 whereas the probability threshold for a code achieving the capacity
at the same rate is p(C) = 0.121. Tables 4.7 and 4.8 show the values of
p compared with p(C) for different kinds of 2- or 3-level GLD codes. GLD
codes thus achieve near-capacity performance when their length is arbitrarily
large.

0.030—

0.025|-

0.020~ m
0.015[~ m

= L
o 0.010-

0.005[~ m

0.000}-

-0.005]

-0.0100—

e b e ING T
0.100 0.105 0.110 0.115

BSC crossover probability

Figure 4.10: E(p) vs. p for the 2-level GLD code based on the Hamming
(15,11, 3) constituent code

4.2.4 Upper bound on minimum distance for a fixed
length

In this section, we use the expression (4.12) of the average weight distribution
of the GLD codes to compute an upper bound on the minimum Hamming
distance of the ensemble of GLD codes with fized length. The major difference
with Section 4.2.2 is that we do not use the inequality (4.13).

The probability that the minimum distance dg,;, of a linear block code
C of length N is lower than, or equal to, D is the probability that there exists
a sequence v of length N and weight [lower than, or equal to, D that is a
codeword of C :

Prob (dsmin < D) = Prob (Ju € GF(2)" /w(v) = ¢ < D and v € C) (4.60)

90 4. GENERALIZED LOwW DENSITY CODES

Constituent
code C p p(C)
Hamming (7,4, 3) 0.277 | 0.281
Hamming (15, 11, 3) 0.109 | 0.121
Hamming (31, 26, 3) 0.047 | 0.059
Hamming (63, 57, 3) 0.021 | 0.029

Extended Hamming (16,11,4) || 0.149 | 0.156
Extended Hamming (32,26,4) | 0.063 | 0.072
Extended Hamming (64,57,4) | 0.027 | 0.035
BCH (¢ = 2) (31,21, 5) 0.164 x | 0.165
BCH (¢ = 2) (63,51,5) 0.072 | 0.074
Extended BCH (32,21, 6) 0.182 x | 0.183
Extended BCH (64, 51, 6) 0.080 % | 0.081

Table 4.7: BSC crossover probability threshold p of 2-level GLD codes com-
pared with the threshold p(C) of the code of same rate achieving capacity. x
indicates that p is closer than 1073 to p(C).

Constituent
code Cy P C
Hamming (15, 11, 3) 0.242 x | 0.243
Hamming (31, 26, 3) 0.104 x | 0.105
Extended Hamming (16,11, 4) || 0.353 x | 0.354
Extended Hamming (32, 26,4) || 0.131 x | 0.132

Table 4.8: BSC crossover probability threshold p of 3-level GLD codes com-
pared with the threshold p(C) of a code of same rate achieving capacity. *
indicates that p is closer than 1072 to p(C).

4.2. ENSEMBLE PERFORMANCE 91

This probability is clearly less than the sum of the probabilities that the
individual sequences v of the considered weight are codewords :

Prob (dgmin < D) <). Prob(veC) = i (N) P(¢) (4.61)

v/€<D =1 !

where P({) is defined as the probability that a sequence of weight ¢ is a
codeword.

We calculated P(¢) for the average ensemble of GLD codes of fixed length
N, level number J and constituent code Cy as a function of the weight enu-
merator function of the constituent code in (4.11). Applying (4.12) in (4.61)
leads to :

Prob (dymin < D) < iW (4.62)
=1

N(¢) is directly connected to Q(£), the normalized number of codewords
of weight [of a super-code as defined in (4.9). We no longer use the approx-
imation (4.13), but we calculate with symbolic tools its exact value. It is the
coefficient of degree [of the N/n-time convolutions of g(s), the moment gen-
erating function of the constituent code Cy. Although limited by computer
capacity®, this method can lead to :

e the complete weight distribution N(¢) of the GLD code (see the next
section for its application to ML decoding).

e an upper bound of its minimum Hamming distance by taking the right
hand side of (4.62) equal to 1 as follows.

We have :
dimin < A (4.63)

where A is the smallest integer such that

YN =1 (4.64)

=1

6thanks to a numerical multi-precision library, and symbolic polynomial tools specially
developed, it is possible to reach in a reasonable time the exact average weight distribution
N(2) for codes up to length N = 7000.

92 4. GENERALIZED LOwW DENSITY CODES

Figure 4.11 shows this bound A calculated for two sets of 2-level GLD
codes of length N in the range 200---600. The first one is based on the
(20,15, 3) constituent code, a (31,26, 3) shortened Hamming code. The sec-
ond one is based on the (24,18, 4) constituent code, an extended then short-
ened (32,26,4) Hamming code. Both of them have an overall rate of R = 1/2.

30

& - © (20,15,3) asymptotic lower bound
0—o0 (20,15,3) upper bound for fixed length
25 & — © (24,18,4) asymptotic lower bound
©— (24,18,4) upper bound for fixed length

Minimum Distance Bounds

%00 300 400 500 600
Length N of the GLD Code

Figure 4.11: Upper bound for fixed length and asymptotic lower bound on
the minimum Hamming distance of two GLD codes with J = 2 levels

The granularity of the curves is due to the floor function in (4.64) and
to the fact that the length of a GLD code is a multiple of the constituent
code length. These upper bounds are compared with the asymptotical lower
bounds derived in Section 4.2.2 which are § = 2.586e — 2 for the first GLD
code and 6 = 3.708¢ — 2 for the second. The average minimum distance of
these codes is clearly a linear function of their length.

4.2. ENSEMBLE PERFORMANCE 93

4.2.5 ML decoding error probability over the AWGN
channel

The exact average weight distribution N(¢) can also be used for computing
the average bit error probability of ML decoding of GLD codes. Indeed, the
interleaver acts on all the coded bits” so that they are equally protected (this
statement also has been verified by computer simulation).

Hence, from any bound on the word error probability over the AWGN
channel, we can derive an upper bound on the average bit error probability
P, without having to compute the input-output weight enumerator function
(IOWEF) as in the conventional methods used to bound the ML decod-
ing performance of turbo-codes ([14] for parallel concatenated convolutional

codes, [16] and [104] for serially concatenated convolutional codes).
In all this section, we assume that the codewords of the GLD code are
transmitted as a set of N antipodal signals of baseband energy E; = 1 (bit

0 associated with symbol —1 and bit 1 with symbol 1). Hence, the Ej term
in the signal to noise ratio E,/Ny equals E, = 1/2R.

Union Bound

The simpler bounds are derived directly from the union bound :

Py <> N(¢) x 1erf(: RZ& (4.65)
- 2 Ny
P <3 L x N x Lerte (/R (4.66)
wS 2y serfe N :

But their classical drawback is that they are not tight and even diverge for
low values of the signal-to-noise ratio per information bit.

"this is a major difference with classical compound codes such as parallel or serial
concatenated convolutional codes or product codes.

94 4. GENERALIZED LOwW DENSITY CODES

Improved bound based on Gallager’s bound

In [37], Duman & Salehi derived an upper bound on the word (and bit) error
probability of turbo codes with ML decoding using a modified version of
Gallager’s bound [48] rather than the standard union bound. Their method
is directly applicable to GLD codes.

The broad outlines of this bound are the partition of the code to constant-
weight sub-codes, the application of Gallager’s bound on each sub-code and
finally the union bound to get an upper bound on the word error probability
of the overall code.

The code C is partitioned in the set of sub-codes Cy, £ = 1,---, N defined
as the collection of the all-zero codeword together with all the codewords of
weight . Note that C; is not necessarily linear. Let us denote by D; the
Voronoi region associated with ¢;, 7 = 1,---, N considered as a codeword of
C, and denote by D; its Voronoi region when it is considered as a codeword
of Cy. It is clear that for all 7 :

D; C D; (4.67)
Assuming the all-zero codeword ¢, is emitted, the union bound gives :

P=3 | pie)dy < 3> | pwie)dy £ ZP@ (4.68)
= 1yED {=1 ¢;€Cy ED’
c; ;éco
where p(y|cy) is the likelihood of the codeword ¢,. Duman & Saheli applied

Gallager’s bound to P, and found after some manipulations :

1— a—1 —N%
PY < N(t)ra N7 (a —) (4.69)
p
g
By B ¢ (ﬁ+ lp)
a2 P T a4 T 1— — | r/
X exp NRNO 1+a(p)+,0< N) o _ ol

p

for the AWGN channel case, where 3 = (1 — ¢/N)/[(1/a) — (¢/N)(1 — p)],
0<p<l,and 0 < a <1/(1—p). @ and G are two parameters that have to
be optimized to find the lowest value of P{%).

Consequently, and using the average weight distribution N (¢) of the GLD
codes, we have the following improved upper bounds on the ML decoding

4.2. ENSEMBLE PERFORMANCE 95

word- and bit-error probabilities :

N

_ min 7
Pew S Z 0<p<1 e(w) (470)
=1 0<a<1/(1—p)
N .
— 14 min 7
Peb S Z N 0<p<1 e(w) (471)
=1"" 0<a<1/(1-p)

where PL) is equal to the expression (4.69) where N (/) is replaced by N(¥).

Tangential Sphere Bound

An improved version of the tangential bound of Berlekamp [20] (valid for
signals set of equal energy) has been presented by Poltyrev ([81] and [54]) and
applied to turbo-codes by Sason and Shamai ([92| and [93]). This tangential
sphere bound is tighter than the Duman & Saheli bound. As all the codewords

Figure 4.12: Tangential Sphere Bound

have the same energy N, they can be represented as points belonging to the
sphere of radius v/N. The Euclidean distance between two codewords with
Hamming distance ¢ is 6, = 2VIN. Let z = ZiN:l z; be the N-length AWGN
vector. The probability of ML decoding error P,,, can be written as follows :

P., = Prob(E|z € Cy) Prob (2 € Cy) + Prob (E|z € Cy) Prob (z ¢ Cy)
< ming {Prob (E|z € Cy) Prob (z € Cy) 4+ Prob (z ¢ Cy)} (4.72)

96 4. GENERALIZED LOwW DENSITY CODES

where Cy is the N-dimensional cone of half-angle 6 centered at the origin
and pointing to ¢, (the all-zero transmitted codeword), and E the ensemble
of error events. Let z; be the noise component in the origin direction, and
z2 the noise component orthogonal to z; and defining together with z; the
plane containing the origin, ¢, and ¢,, a codeword of weight ¢ (see Figure
4.12).

Let us start by fixing z; and defining y = 3N, z; and y; = YV 5 z;. They
have a x? distribution with respectively N —1 and N — 2 degrees of freedom.
The probability of a decoding error given z; is :

P.,(z1) < miny { Z N(¢)Prob (,Bg(zl) <29 <71y,y < rfl) + Prob (y > rgl)}
2:8,(

21)<T2;
> N(¢)Prob (ﬂz(zﬂ <29 <Tuyyn <7I— 56(21)2)
< ming{ &Be(a1)<rz 4.73)
+Prob (y > rfl)

where all the quantities are shown in Figure 4.12 and defined in [54].

is shown that @ (or equivalently r) has an optimal value 6, (resp. r,) that
minimizes P,,(z1). This value only depends on the weight distribution N(¢).
By summing over all possible values of y, y; and z; according to their pdf,
the final result is :

T21 Tfl —Be(=1)?
%0 > N [p(z2) [ply)dyidz
P, < / Ehea)<ra Bela) 0 p(z1)dz (4.74)
~o0 + f p(y)dy

22 Z1 2 Tz

< 70 e,—%_IZdzl £:B4(Z)< V() [Q (@) -« (71)] X(N-2,0) (7"21 - ﬂ‘v’(zl)Q)

- 7 Be(21)<rzq

- 2

2mo +1 - X%N—l,a) (7“21)

where X,) is the cdf of a random variable following a central x* distribution
with n degrees of freedom and standard deviation o :

x/20?

2 -1,—-t5 1 L
X(n.o /t e 27dt = —— / u2” e “du 4.75
) = 25 07T (r() 4 o

which has the following equivalent when n is large [1] :

o) ~ 1 Q (%ﬂ") (1.76)

4.3. ITERATIVE DECODING OF A GLD CODE 97

The word (respectively bit) error probability bound on the ensemble of

GLD code is obtained by replacing N(¢) by N(¥) (respectively £/N x N(£))
in (4.74).

The three upper bounds on the bit error probability are plotted in Figure
4.13 for a 2-level GLD code and Hamming constituent code (15,11, 3). The
repetition factor is equal to L = 28, leading to an (N = 420, K = 196)
code. They are compared with the performance of a GLD code with a fixed
pseudo-random interleaver iteratively decoded as explained in Section 4.3.

10°

10 &

|

102

T T TTTTTT
I
L
|

10

Bit Error Rate
T T \H\Hw
I
1 Ll
|

10 -- Union Bound
-~ Duman & Saheli Boun
—— Tangential Shere Bound
G—& iteration #1
6—o iteration #2
&—< iteration #3
+—+ iteration #5
31 iteration #10

ALY
Lo
|

=5

10

LAY |
Y|

10°
0.8 12 16 2 2.4 2.8 3.2 3.6

Eb/NO (dB)

Figure 4.13: Bit Error Probability upper bounds and simulation results for
the J = 2 GLD code with Hamming (15,11, 3) constituent code. N = 420,
K =196.

4.3 Iterative decoding of a GLD code

In this section, we restrict the presentation of the iterative decoding of GLD
codes to the case of 2-level codes for three major reasons. First, we proved
that GLD codes with only J = 2 levels are asymptotically good. Second, two

98 4. GENERALIZED LOwW DENSITY CODES

levels is the best choice in terms of rate, as it decreases with J (4.6). Third,
the structure, graphical representation and decoding are simpler. However,
the decoding scheme presented can be applied to GLD codes with more than
2 levels as briefly discussed later.

The GLD decoding scheme is similar to Gallager’s probabilistic decoding.
The basic idea is the same : for each coded bit, we compute its probability
given its received sample considering that it belongs to the super-code C!.
This probability is fed to the super-code C? decoder as an a priori informa-
tion. We then compute the probability of each bit given its received sample
and this side information considering it belongs to C2. This second probabil-
ity is returned of the first super-code decoder as an a prior: information and
this process is iterated.

Each super-code decoding is performed by means of an MAP decoder®.
Its complexity is not prohibitive if we exploit the fact that a super-code is
composed of L = N/n independent constituent codes of small length n. It
is performed using L simple soft-input Ssoft-output (SISO) decoders that
can furthermore work in parallel on every constituent code. In our imple-
mentation, we used forward-backward decoders [3| on the code trellis. Their
complexity is still reasonable in our case as we use small length n constituent
codes of high rate (see Appendix B for a description of the FB algorithm ap-
plied to block codes and an analysis of its complexity). Other SISO decoding
algorithms for linear block codes, optimal or suboptimal, such as replication
decoding [4] [53], Chase algorithm [31] (see also [84]), modified Battail-Fang
[7] and Fossorier-Lin [43] algorithms with soft output, log-map and max-log-
map simplified versions of the FB [90], or even SOVA [8] [51] could also have
been used.

The super-code decoding generates for each coded bit ¢;, 2 =1,---, N an
a posteriort probability APP; and an extrinsic probability Fxt;. The latter
is fed through the appropriate interleaver to the other super-code decoder.
Decisions on each coded bits ¢; can be taken at each decoding step by a
threshold decoder on APP,. One iteration step consists on the successive
decoding of the first and the second super-codes, i.e. two decoding steps.

Let us denote by r = (ry,---,ry) the channel outputs corresponding
to the codeword ¢ = (¢, --,cy). We first compute the likelihoods y =
(y1,- -+, yn) where y; = p(r;|c; = 0). The a priori probabilities of the C* SISO

8 A more appropriate term would be symbol by symbol MAP Probability computer.

4.4. ITERATIVE DECODING PERFORMANCE 99

decoder at the first iteration are set to 0.5 for all bits as no side information
is available. The [-th iteration of the decoding scheme is presented in Figure
4.14. Remember that 7, is the interleaver function : m9(H;) = H,, hence to
retrieve the structured version of the second sub-matrix H, at the C? SISO
decoder stage, the coded bits have to be interleaved with 75", as shown in
Figure 4.15.

Yy
Obs Ext —1 { Obs Ext 2
¢! SISO decoder \72_1)962 SISO decoder Ext*(1)
Ext* (!
L FB decoders X_l() L FB decoders
apriori APP 7TQ \2priori APP Uy 6_ .1 l 1
a priori'(]) a priori?(I) APP?(l) a priori’ (I +1)
APP(l)
1 +
¢ ¢l —1/2) ¢ ¢(1)
Figure 4.14: The I-th GLD decoding iteration
-1
it
H; —1 e -1 7T2_1(H1)
H = S~~~ 0= H) =
l H2:7T2(H1)] o =1 T2 () l H1

Figure 4.15: Permutation of the parity-check matrix of the GLD codes with
J =2 levels.

4.4 Iterative decoding performance

The decoding algorithm presented in the last section is clearly not optimal,
even if the decoding of each super-code is so. We see in Figure 4.13 that there

100 4. GENERALIZED LOwW DENSITY CODES

is a loss in a large range of Ej/Ny between the simulation results for a fixed
interleaver GLD code and the upper bound on the ML decoding error of the
average ensemble of GLD codes of same length. The questions are : where
does this loss come ? From the interleaver choice, or from the decoding ? The
influence of the interleaver choice and good interleavers suitable for iterative
decoding are analyzed in Chapter 5. We focus our attention in this section
to the second part of the question. Independently of the interleaver choice,
how far is the iterative decoding performance from that of ML ? Is it possible
to derive a bound on the iterative decoding error probability ?

To get rid of the interleaver influence, we consider an interleaver of infinite
length. Hence, there is no cycles that can disturb the iterative process.
Obviously, the technique based on the weight distribution can no longer be
applied. The basic idea of this approach is to analyze the propagation of the
probabilities issued from the iterative decoding in the graph representing a
GLD code. This approach is derived from the original work of Richardson
and Urbanke [87] for LDPC codes. We will estimate the probability density
function of the outputs of the constituent code SISO decoders in a GLD code,
and analyze how these pdfs change with iterations. This work has been jointly
achieved with Boutros and Vialle [27] where a universal propagation formula
is derived for compound codes.

4.4.1 Probability distribution of the output of the SISO
decoder

In this section, we consider the communication over the AWGN channel of a
binary stream coded with a constituent linear block code Cy of length n. We
assume that the all-zero codeword is transmitted. The received codewords
are decoded with a SISO decoder. Our aim is to characterize the probability
density function of the APP at the output of the decoder. This APP is
considered as a random variable.

Let us denote by a(c; = 1) the product of the likelihood and the a priori

probability of ¢;, j =1,--+,n : a(c; = 1) = p(y|c; = 1)m(c; = 1). We define
b; as the log-ratio of a(c;) :

b =In <“(09728> (4.77)

4.4. ITERATIVE DECODING PERFORMANCE 101

We have the following basic relation :
a(c; =1) = e%a(c; = 0) (4.78)

The APP of any bit ¢; is :

APP(c;=1) «) ﬁ a(c; =¢;) =ale; =1) > [] ale; = ¢;) (4.79)

where c; is the value (0 or 1) of the j-th bit of the codeword ¢. LR(Ext)(c;),
the log—ratlo of the extrinsic probabilities of ¢;, is :

LR(Ext)(¢;) = In¢—— (4.81)

Ve
o
|
o
o s,
b
<

c€Cqy | j=1,j#i j=1,j#i
;=1 ¢;j=1 ¢;=0
— ln < v :) 7 : > (4.82)
n n
I[1 a(c;=1) II a(c; =0)
c€Cy | j=Lj#i J=1,j#4
L Ci=0 L gjzl gj:O 1)
(\
n
Yoexp| X b
c€Co J=1,j#i
¢;=1 ¢;=1
= In{-> ! , (4.83)
n
> oexp | b;
c€Cq J=1,j#i
L ;=0 gj:I)

Example :
Let us take the (7,4,3) Hamming code whose codewords are :

4. GENERALIZED LOwW DENSITY CODES

102

Ci Co C3 C4 Cy Cg

Co

Ci Cy C3 C4 Cy Cg

Co

and compute the extrinsic probabilities of ¢ :

A\

7

N N N N~

(o= RN el en e il e B e i eo)

0 © O © FH W ©

Q

N’ N N N N N N

3

N\ 7 Y

TN TN TN TN TN N TN

O O OO O OO

L | | e | | | I (|

N o o o o Mmoo ©
S I R R I R R R R RS
S N N N N N N

T I I SIS T v o233 I B T B I3 T

ccoocococ o Tooocoocooo
S S
—

L | | e L | | | VA

M F N W0

(o -~ 2 TR S N I

O T O 0 O O J | | © O O O O O Q
N N N N N N N N N N N N N N
T I I IIII T 10 1T 8T 8T T T
~~ ~ ~ ~ —~ —~—~ O O~ —~ —~
SO oo O OOy oo oo -

S 3

—_~ N SN S
T T T N TR T e

A F N+ H N ™M

Q

N’ N N N N N N

N SSSS

S N N N

OO 0 0 O O

(4.84)

SSSSSSS g gSSSS g8y
O O O ¢ e e e = N e

s 8 0 7 T 333

] —— s~ A~~~

— o A = = O o 2
i A o +
S S e e e e 2
S S 8 o o o F m™ o © 10 F © F 11 o QO
O O O O O O © O O O O O ©
N N N N N’ N N N N e N N s l—l
T I IS BB BT
e R R e R R R R T R R N e N N s T -
— o o o o o O o o~ ,.ﬂ
L | 1 {1 1 | | | Y B 2,
© Mmoo ;oM NN N e om N om N
O O O © O O O © O O O O O O O O l_l
N N N N N N e e S e S N N S SN N
ST T I T T T 8 S BBBB8 I o
NN AN AN AN AN AN AN AN AN AN AN AN AN SN SN D
o SO 4 = = = = — 1_4|
| v | | v | Y | | R
<+ QN —~ M N = o~ - — M N —~ —~ N o~
O O O O O O O © O O O O O O © O
N N N N N N N N S N S e N N N N

3

T I I BB TSI I BT B3
t+H+++++ A+ S

+ eb3+batbs + eb2tbs+be

+ eb1+b3+b6 + €b1+b2+b4

+ eb1+b3+b4 + eb1+b2+b6

+ ebz+bs+b4+b6 + eb1+b4+b5+b6

+ €b1 +b2+b3+bs

\

/ O\ /

Ext(co=1) x
EXt(CO = O) X 9

=
g |z
S
+ |8
..MADV
T+
S e
i E
T S
%z
)
T+
—
=
Il
—~
)
)
N—r
—~
+~
]
=
SN—r
~
—

In fact, it is easy to see that the extrinsic probabilities log-ratio of each bit

4.4. ITERATIVE DECODING PERFORMANCE 103

C; is :

(ebioatbios | gbio2tbios | pbio1tbios)
+ ehiostbipatbios | chio2tbiostbios

4 ebiortbigstbios | pbioitbioztbios

4 ebiertbigatbiestbigatbios+bigs

LR (Ext)(c¢;) =1n > (4.85)

1+ ehiosTbigstbios + ehio2Tbipatbios
+ ehio1Tbigs+biga + ehio1Tbig2tbiss
+ ehio2Tbiestbigatbios + ehio1Tbigatbigs+bips

L+ ebi®1+bie§2+bi€93+bi€95
where @ is the addition modulon =7. O

We define f(i,b) as LR(Ext)(c;) = f(4,b), that is the function that com-
putes the extrinsic log-ratio of any bit ¢; from the log-ratios b = (by, - -, by)
in (4.83). Finally, we have :

LR(APP)(c;) = b; + f(4,b) (4.86)
4 ™\
LLR b LRExs
!
LRﬂ' LRAAPP
- J

Figure 4.16: SISO decoder using log-ratios

We now consider the inputs of the SISO decoder as random variables with
given probability density functions. As the all-zero codeword was transmitted
over the AWGN channel, the LLRs of the received samples can be considered
as iid random variables following a normal distribution Py :

Piir ~ N (—3 A) (4.87)

02’ o2

where o2 is the variance of the noise.

104 4. GENERALIZED LOwW DENSITY CODES

Let us assume that the a priori probabilities 7(c; = 1), j = 1,---,n
are iid variables. So are their log-ratio LR(7)(c;). Their pdf is denoted by
PrLr(r)- The independence assumption is justified in our case by the fact that
a priori’s were computed by former SISO decodings involving observations on
distinct bits (let us remember that the graph is infinite and without cycles).
We will discuss the identical distribution assumption later on.

Since the two inputs of the SISO decoder are iid, so are a(c;) and b;,
j=1,...,n. The pdf P, of b is the convolution product :

Py = PLLr * PLr(x) (4.88)

The analytical computation of Prgr(gxi)(;), the pdf of the extrinsic prob-
abilities given P, is unfortunately not simply tractable. Indeed, the terms
in the numerator and denominator of (4.83) ((4.85) for the example) that
define f(i,b) are clearly dependent, canceling any chance of simplification.
Moreover, the extrinsic probabilities Ext(c;) are dependent. That is also true
for the APPs. However, the expression (4.83) can be literally compacted if
we point out that the terms in the sums over j are independent.

Denoting by “X®*” the product of k¥ random variables X that are iid,
(4.83) can be rewritten :

> AL, @ exp (b)*“Y
LR(Ext)(c;) = In{ 0= (4.89)

where Azl,é denotes the number of codewords of Cy of weight ¢ and having
¢; = 1 and A, the number of codewords of weight £ and having ¢; = 0. We
introduced the symbol “®” (which should be read as Caution !) meaning
that the following terms are not independent, and thus the factorization was
written for the sake of compactness.

By looking at (4.85), we see that this expression depends on the real-
ization of n — 1 random variables b; of same law, but that the index ¢ has
no influence : we can drop the term “i®” from the indices of b, and just
consider n — 1 independent random variables bq,- - -, b,_; of law P,. This
property is due to the characteristics of the constituent code Cy, and is called
isotropy. Cyclic codes are proved to be isotropic by Battail [6] [9] thanks
to the polynomial description of linear block codes, and Boutros and Vialle

4.4. ITERATIVE DECODING PERFORMANCE 105

[27]. Consequently, for such codes, the extrinsic probabilities and the APPs
(which depend on another random variable by, thanks to (4.86)) are identi-
cally distributed for each coded bit.

In the infinite GLD codes, as at the first iteration the a prior: probabilities
are unknown and set to 0.5, and as we assumed that the a prior: probabilities
were iid, we just proved by recursion that for isotropic codes, the extrinsic
probabilities are identically distributed at each decoding iteration step. Even
if the extrinsic probabilities at the output of a SISO decoder are dependent,
since they become a priori’s for distinct SISO decoders at the next iteration
step (the graph has no cycle), the a priori probabilities are iid at the input
of each SISO decoder at any iteration step.

To complete this analysis, we need a practical way to compute Prrmx)
and Prrapp), the common pdf of the outputs of the decoder. In terms of
pdf (4.86) leads to :

Prrarp) = Py * Prr(Ext) (4.90)

as f(7,b) involves the n — 1 random variables b; independent from b;. We
compute PLr(ex) by a Monte-Carlo method : we choose independently n—1
values of b following the law (4.88), and calculate the associated n values of
LR(Ext)(c;) thanks to (4.83) (for large constituent codes, we use directly the
SISO decoder). We put these values into histograms that give us accurate
estimates of the law of the LR(Ext)(c;) when we iterate this process. If the
code is isotropic, we only need to compute one law, which is common for all
bits. This method is depicted in Figure 4.17.

Ve

-

PLir . PLR(Ext
® bt 7o) = o
Random choice Histogram
Pe
N
PLr(r) PLr(aPP)

Figure 4.17: Decoder output pdfs computation

106 4. GENERALIZED LOwW DENSITY CODES

4.4.2 APP propagation and performance of GLD code
with infinite length

In the previous section, we exhibit a method to compute the pdf of the APP
of a SISO decoder as a function of the pdfs of the inputs (channel observation
and a priori probabilities) pdfs. To this end, we assumed that the inputs were
iid. This is a valid assumption if we consider an infinite GLD code, i.e. an
infinite graph. We showed in this case that outputs are also iid for isotropic
codes. Our aim is to observe how the APP pdf changes with the decoding
iteration steps or, similarly, how the APP propagates in the graph, since an
iteration step can be seen as information propagation in the graph drawn at
Figure 4.18 (we limit our study to GLD codes with J = 2 levels). This graph
is constructed from the one depicted in Figure 4.3 but with infinite length.
We choose one bit ¢; and look at its neighborhood (Figure 4.18).

Let us compute the APP of the bit ¢; at iteration m, considering it belongs
to the upper code Cy. The involved a prior: probabilities of the other bits c;,
j # i of Cy (or equivalently from the bits that are below ¢; in the graph) are
denoted by 7™ (c;) and were computed at the previous iteration step m — 1.
The own a priori probability of ¢; comes from its lower code Cj SISO decoding
at iteration m — 1 and is denoted by 7™ (¢;). These a priori probabilities are
combined with the observations to give a; (and b;), j = 1,---,n as defined
in the previous section.

We can assign tasks to code and bit vertices in the graph of Figure 4.18
and see the iterative decoding as propagation in this graph. At iteration
step m the code vertex Cp computes the quantity Ext™(c;) given a™(c;),
j = 1,---,n (or equivalently b;) thanks to equation (4.83). The bit node
¢; computes its own APP given Ext™(¢;) coming up from Cy and its new
combined extrinsic information/observation a™**(c;) that it passes to Cj for
the next iteration step.

We continue to assume that the all-zero codeword was transmitted, and
start with unknown (0.5) a priori probabilities for each bit at the first iter-
ation. Since the graph is infinite (and thus without cycles), if we choose a
GLD code with isotropic constituents, we can evaluate at iteration m the pdf
of the common APP log-ratio P r(appm) and extrinsic information of all bits
using the method described in the previous section. The notion of isotropy
reveals its meaning here : the APP (and the extrinsic information) follows
the same law at a fixed iteration step anywhere in the graph.

4.4. ITERATIVE DECODING PERFORMANCE 107

[} Upper constituent code node
A Lower constituent code node
° Bit node

------ > Inputs of the decoder
------=> Qutputs of the decoder

a™! = Obs Ext™ ' oCi S — = APP™ = ¢gmExt™

iteration m

Figure 4.18: Neighborhood of the bit ¢; in the infinite graph

108 4. GENERALIZED LOwW DENSITY CODES

The tail of the pdf of the APP log-ratio gives us an estimate of the bit
error probability at iteration m :

Py (m) = /PLR(APPIH)(Z)dZ (4.91)
2=0

03—

iter 0.5

probability density function

APP value

Figure 4.19: APP pdf of the infinite GLD code with J = 2 and Hamming
(7,4, 3) constituent code for decoding iteration steps from 0.5 to 6 over the
AWGN channel at E,/Ny = 2.0dB (all-zero codeword transmitted).

Figure 4.19 shows how the APP pdf changes with the iteration steps for
a GLD code with J = 2 levels and Hamming (7, 4, 3) constituent codes over
the AWGN channel at E,/Ny = 2.0dB. Since the pdf shifts to the left while
decoding iteration proceeds, the bit error probability decreases. A bit error
probability estimate is also derived thanks to (4.91) and gives a bound on the
performance of perfect iterative decoding on an infinite graph. This bound is
more useful than the ones involving ML decoding as derived in Section 4.2.5
since it deals with the decoder practically used.

This result is compared with the results of simulating fixed length GLD
codes with same parameters and plotted in Figure 4.20. The interleavers
chosen for the fixed length GLD code are random without length-2 cycle in
the compact graph representation. When the interleaver length increases,
the results of simulation approach the performance of perfect iterative APP
propagation. Hence, it justifies the semi-analytical method used to compute

4.4.

ITERATIVE DECODING PERFORMANCE

109

10"
g Qurenn O Oeneen o
L D DI Geennn P
10°
2 e
3 O~
<
S .3
g 10
5
i A
= \9\
o AN
10"
e—o SNR=2 dB. Optimal Iterative Decoding.\Infinité Length (theoritical)
0--0SNR=2 dB. N=700 Simulation results
6-©SNR=2 dB. N=7000 Simulation results
-5| >—© SNR=2 dB. N=70000 Simulation results
10| o—oSNR=2.2 dB. Optimal Iterative Decoding.\Infinite Length\(theoritical)
<¢--©SNR=2.2 dB. N=700 Simulation results
¢=©SNR=2.2 dB. N=7000 Simulation results }
o—oSNR=2.2 dB. N=70000 Simulation results |
10°

0 1 2 3 4 5 6 7

Iteration Number

Figure 4.20: Performance of perfect iterative decoding of GLD code with
infinite length compared with simulation results for fixed length. The GLD
codes have J = 2 levels, and are constructed with Hamming (7,4, 3) con-
stituent codes.

110 4. GENERALIZED LOwW DENSITY CODES

the pdf of the extrinsic information. The influence of the interleaver choice
and its length on the iterative decoding is studied in the next Chapter.

The minimal signal-to-noise ratio that achieves zero error probability with
perfect iterative decoding can be easily found by decreasing the SNR until the
P (m) estimate no longer tends to zero for any iteration steps number m.
This value for the presented GLD code is E,/Ny = 1.26dB. The threshold
value for a GLD code based on (15,11,3) constituent codes is Ey/Ny =
0.83dB.

Furthermore, even if the code is not proved to be isotropic, e.g. extended
or shortened BCH codes, the presented method is applicable and leads to
valid results if the average of the different extrinsic information pdfs is taken
as the common a priori probability pdf for all bits at the input of the next
decoding stage. Generalization to GLD codes with more than J = 2 levels
is tractable by replacing the a priori pdf by the convolution of the J —1 a
priori pdfs. This method has also been used successfully in other contexts
such as parallel turbo codes [27] and iterative multi-user detection analysis
[28].

4.5 Simulation results

We conducted comparative simulations of GLD codes in the following con-
text :

e BPSK (or QPSK) modulation,

e AWGN channel,

e Short frame transmission : K =& 200 bits,
e Total Rate : R~ 1/2,

e Low-to-Moderate decoding complexity : typically no more than 64-
state trellises, and much less if possible,

e Bit Error Rate : around 107°.

4.5. SIMULATION RESULTS 111

These requirements could be those of a geostationnary satellite return link
suitable for interactivity.

Our first aim is to compare a GLD based solution with a product code
solution [84] [85] [86], in terms of performance, complexity (of coding and
decoding) and flexibility. We do not focus on suboptimal implementation of
the decoding algorithm, nor on optimization of the interleaver choice in this
section. We use for each solution a MAP SISO decoder on the constituent
codes, and pick, when needed, an interleaver at random.

Competing Codes
The above requirements almost induce the product choice. The constituent
code must have a rate of r ~ 1/\/5 ~ 0.7 and a length of n ~ 20. In fact,
the only two possible choices are :

e shortened versions of the (31,26, 3) Hamming code. 12 bits shortening
in both directions leads to a product code with the following parame-
ters : N = 361, K = 196, R = 0.54. This construction is depicted in
Figure 4.21 (the left numbers should be read). We denote this code by
CP! and its constituent codes by CJ™.

e shortened versions of the (32,26,4) extended Hamming code. 12 bits
shortening in both directions leads to a product code with the following
parameters : N = 400, K = 196, R = 0.49. This construction is
depicted in Figure 4.21(the right numbers should be read). We denote
this code by C¥? and its constituent codes by C{™.

On the other side, we choose a 2-level GLD code. Indeed, J = 2 results
in GLD codes with the highest rate, and simplifies the decoder structure :
no particular schedule has to be implemented for passing the information
from one super-code to the other. Furthermore, GLD codes are proved to be
asymptotically good even if J = 2. Hence, we want a constituent code with
rate r ~ 3/4 to fulfill the requirement on the global code rate. Any code of
rate 3/4 is eligible to become constituent code of the GLD code. The longer
its length n, the shorter the repetition factor L = N/n will be. We choose the
shortest one with the desired rate, i.e. the Hamming (15, 11, 3) code, denoted
by CFFP. Tts rate is slightly lower than required, but still acceptable. The
parameters of the GLD code, denoted by C%“P are : N = 420, K = 196,

112 4. GENERALIZED LOwW DENSITY CODES

31/32

5/6

-

26
31/32

5/6

k=14
n = 19/20

Figure 4.21: (361,196) and (400, 196) Product Codes with respective con-
stituent code (19, 14, 3) (shortened (31,26, 3) Hamming code) and (20, 14, 4)
(shortened (32,26, 4) extended Hamming code). The white part represents
the information bits and the shaded part the parity bits. The hatched zone
represents the bits of respectively (31,26,3) and (32,26,4)? product code
that have been expurgated.

L = 28 and R = 0.47. The interleaver is chosen at random?, with the
only condition that no parallel edges link two code vertices in the compact
graph!®. The three compared codes have thus exactly the same dimension.
The length of CEP is 16% longer than the one of C*! and 5% longer than
the one of C2.

Compared complexity
In terms of decoding complexity, the advantage of the GLD code is clear.
A complete decoding iteration of CYLP (decoding of the upper super-code
followed by the decoding of the lower super code) involves the use of 2L = 56
forward-backward algorithms. A complete study of the complexity of the FB
for decoding block codes via their syndrome trellis is presented in Appendix
B. Roughly, the complexity is linearly related to the number of states in the
trellis. Since the trellis of C§*P has at most 2"~* = 16 states in its central

9Tn fact, we picked 10 interleavers at random, and we used the one which leads to the
best results

10We add this condition to have graphs with the same girth g = 4 for the three compared
codes. See next Chapter for details

4.5. SIMULATION RESULTS 113

part, the total complexity of a C5IP decoding iteration can be expressed as
2L2"~F = 896.

In comparison, a complete decoding iteration of CF'* (horizontal and ver-
tical codes decodings) involves the use of 2n = 38 FB decoders. Since the
trellis of CI’! has 2"~* = 32 states in its central part, the total complexity of
a C? decoding iteration is 2n2"~* = 1216. It is 1.35 times more complex than
the GLD code decoding. The same considerations applied to CF? lead to a,
complexity per complete decoding iteration of 2n2" % = 2560. It is almost 3
times more complex than the GLD code decoding. However, we have to wait
for the simulations and compare the convergence speeds before to draw any
conclusion.

Compared minimum Hamming distance
In terms of minimum Hamming distances, those of the two product codes
are known exactly : dgmin(CT') = dgmin(C§1)? = 9 and dymin(CF') =
dimin(CEY)? = 16. We do not know the Hamming distance of C¢“P. How-
ever, we computed the average weight distribution N(£) over all possible
interleaver choices (4.12), and using (4.64) we find an upper bound A on the
minimum Hamming distance of the average of GLD codes with same param-
eters as C¢IP : A = 16. On the other hand, we can use the asymptotical
average lower bound § on minimum Hamming distance of GLD codes (Table

4.5) which is § = 2.6.1072. Hence, we have :
10.92 = 6N < dgmin(CEEP) < A = 16 (4.92)

Consequently, we can say that, using a ML decoder, the average performance
of the codes that share the same parameters as C*? should be bounded
somewhere between the ones of CF' and CP2. However, the decoding is
iterative, and the interleaver of C“LP is fixed (and chosen with care), hence
we can expect some different conclusions.

Simulation results
Simulations were conducted for the three competing codes, within the fol-
lowing common context :

e F'B based soft-input soft-output decoding of the constituent codes,
e Up to 12 decoding iteration steps,

e SNR per bit from 0.6 to 3.4 dB, with a 0.2 dB step,

114 4. GENERALIZED LOwW DENSITY CODES

e Monte-Carlo estimation of the BER and FER, with at least 100 erro-
neous blocks.

The results are presented in the following figures. Figures 4.22 (respec-
tively Figures 4.23) show the performance (in terms of BER and FER) of C**
(respectively CP?) with respect to the number of decoding iterations. The
error rates reach stable values after the third or forth iteration. There is no

need to further iterate. As predicted, C¥? is more powerful that C*' and
achieves a BER below 2.107° at E,/N, = 3.4 dB.

Bit Error Probability

Frame Error Probability

[|o— 2.0dB
L | &= 3.0dB|
(3] 3.4 dB|
-5 | | | | | -3 | | | | |
07 2 4 6) 10 12 0% 2 4 6 8 10 12
Iteration number Iteration number

Figure 4.22: Simulation results of the C'! code : BER (left) and FER (right)
vs. iteration steps number for Eb/Ny from 0.6 to 3.4 dB with a 0.2 dB step.

The performance of C“LP are presented in Figures 4.24. The convergence

speed is slightly slower, as the performance still slowly increases even after
8 iteration steps. However, at E,/Ny = 3.4 dB, the BER is already be-
low 1.107° after the fifth step. Perfect iterative decoding performance (see
Section 4.4.1) are presented in the same figure.

Figures 4.25, 4.26 and 4.27 present the results of CF*, C¥? and C%LP in a
more classical form : error rates vs. Ey/Ny. The ML upper bounds are also
plotted for C¢*P. The fact that the simulation results are quite better than
these bounds is explained by the choice of a particular random interleaver
better than the average interleaver. Such a degree of freedom (to choose, or
construct, an interleaver that lead to a good minimum distance and that have
good iterative decoding properties) does not exist for product codes : their

4.5. SIMULATION RESULTS 115

10 5 10’
10'E E A N N
101
102 RN e T e 2 b NN ST
2z E 3 [
o [o
L T = N N S 107
2 R w C
R N\ 2|
o R L st e SR © e N N - N
I T S N RS P
1045 L
F N e T <] I N N
r 10°FE T T S
5| [0—o 0.6 dB | [| e—° 0.6 dB|
10°E 15 5 10d8 3 He—e 1.0dB {
£ |o— 2.0dB 1 | ¢— 2.0dB]
I | &= 3.0dB| B 2—A 3.0 dB| i
[|G- 3.4dB| 1 3] 3.4 dB
10°® T T | | | | | 10 | [| | | |
0 2 4 6 8 10 12 0 2 4 6 8 10 12
Iteration number Iteration number

Figure 4.23: Simulation results of the C? code : BER (left) and FER (right)
vs. iteration steps number for Eb/Ny from 0.6 to 3.4 dB with a 0.2 dB step.

10E 3 10
10 717 ---------
10 E
102 BN NS vo N T 2 [AN S e T
2 F oo oo o 0 R LA -
5 F T2k AW\ N e T e
g s
SRt a C S
a 10°g 5 N -
S S
] F o | NN Sa T
e N N N B 3 E|
R R A T § 10°F E
107 N TR T w F 3
Foo06dB Y - Fo— Bg T J
[e—= 1.0dB o—o 0.6 dB| -
10%e—20d8 Bggg T 10* [o—= 1.0d§ E
EAs30dB SHBg- 7 E | e— 2.0dB E
FG3—F34dB [| &2 3.0dB|
[o—o Perfect Iterative Decoding with infinite len d r|3f34dB 1
10,6 — - Perfect Iterative Decoding at 1.4, 1.6, 1.8 and 2.2 dB [b
E__ | | | | | | | | 3 =5 | | | | |
0 2 4 6 8 10 12 0% 2 4 6 8 10 12
Iteration number Iteration number

Figure 4.24: Simulation results of the C¢P code : BER (left) and FER
(right) wvs. iteration step number for Eb/N, from 0.6 to 3.4 dB with 0.2 dB
step.

116 4. GENERALIZED LOwW DENSITY CODES

graph is completely connected (see Figure 4.4), i.e. each constituent code
shares one bit with each code of the opposite part. Hence any interleaver
in a product code will only perform a permutation over the coded bits (the
edges of the graph) but will not influence the iterative decoding performance.
Here comes to the light one advantage of the GLD codes over the product
codes : the interleaver can be optimized in two directions, namely the highest
minimum Hamming distance, and the suitability to iterative decoding. This
last subject is examined in the next chapter.

0

10—

Bit Error Rate
Frame Error Rate

=—8 iteration #1
e—o iteration #2
&—% iteration #3

G— iteration #1
c—o iteration #2
L ©—% iteration #3
15 +—+ iteration #5 T L +—+ iteration #5

[3—£] iteration #1Q E L 3] iteration #1Q

1081 e b b e b b
0.8 12 1.6 2 24 2.8 3.2 3.6

103
0.8 1.2 1.6 2 24 2.8 3.2 3.6

Eb/NO (dB) Eb/NO (dB)

Figure 4.25: Simulation results of the C”! code : BER (left) and FER (right)
vs. Ey/Ny for decoding iteration steps number 1,2, 3,5, 10.

The last Figure (4.28) summarizes the comparison between the three
competing codes. At BER and FER of practical interest, the GLD code
outshines the two product codes. With the same number of iteration steps
(5), it leads to a performance (in BER and FER) that is better by 0.2 dB
than that of C¥2, which has a decoding complexity three times higher. This
gain reaches 0.4 dB if we consider the performance of the GLD code after 10
decoding iterations (decoding of this code is still 1.5 times simpler than the
one of C"?).

This simple case study allows us to overline the advantages of GLD codes
over block product codes for small length codes. They are less complex to
decode and achieve better performance. They have a supplementary freedom
degree, namely, the interleaver choice. They have also a higher flexibility :
different constituent codes and repetition factors lead to the same length

4.5. SIMULATION RESULTS 117

10’

E,J
Q = -4 °
w 10 E 3 L 4
24 E | ‘é
§ [1 & 162 -
u r 1 8 £ 1
o, 3 © r]
0E El L]
[[c—a iteration #1] r 1
c—o iteration #2 5
[©— iteration #3 1 10°F - - —
sl |+t iteration #5 | F |22 iteration #1]
10°F | 30 iteration #10 E [|90 iteration #2 b
E B E ©—% iteration #3]
F 4 F +—+ iteration #5 4
r 1 3—F] iteration #1Q
PTo g —— L b v b b b b Ty —— L b v b b b b
0.8 1.2 1.6 2 24 2.8 3.2 3.6 0.8 1.2 1.6 2 24 2.8 3.2 3.6
Eb/NO (dB) Eb/NO (dB)

Figure 4.26: Simulation results of the C2? code : BER (left) and FER (right)
vs. Ey/Ny for decoding iteration steps number 1,2, 3,5, 10.

10° — T H\‘y\ T T H‘E 10[7 T \W\hr\w\'\ur\ T H‘E
10 E 4 |
3 10’15* E
10°F E H :
E i & 2
Q r 1 S 10°F E
=1 o] x 10 E E
o r 1 8 £]
S 10° E ‘E F 1
= f 38 T 1
o = b o -3
L {4 L 10F 3
10"‘; i E .|
E| --- Union Bound 3 [| ---- Union Bound]
F| - Duman & Saheli Boun B L| — Tangential Shere Bound 1
[| — Tangential Shere Bou] G—8 iteration #1
| | =8 iteration #1 10“H o—o iteration #2 -
10 "F| e—o iteration #2 3 F| o— iteration #3 3
F| ©—% iteration #3 E| F |+ iteration #5 4
[|+ iteration #5 =| [| 3 iteration #10 1
L | O] iteration #10 4 r q
T —— L b v b e b By T —— L b v b b b By
0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 . 1.2 1.6 2 2.4 2.8 3.2 3.6
Eb/NO (dB) Eb/NO (dB)

Figure 4.27: Simulation results of the C“*P code : BER (left) and FER
(right) vs. FEy/Np for decoding iteration steps number 1,2, 3,5, 10.

118 4. GENERALIZED LOwW DENSITY CODES

0
1o§w w

L

10

|

s

10°

T
|

&

10

Error Rate

@@ BER : CP1iter. #5
B8 BER : CP2 iter. #5
©-© BER : GLD iter. #5
©—© BER : GLD iter. #1(
G—O FER : CP1liter #5
=—8 FER : CP2 iter #5
&-© FER : GLD iter. #5
©—© FER : GLD iter #10

T
|

S

10°

T
|

&

10

T
|

e e e e b L
1.2 16 2 2.4 2.8 3.2

=
o

od
©
w
o

Eb/NO (dB)

Figure 4.28: Compared performance of C*', CF? and C%LP.

and dimension, whereas these parameters almost completely fix the product
code. Furthermore iterative decoding works better for GLD code for two
main reasons :

— the interleaver acts on all the bits,

— choosing an appropriate interleaver, the number of independent decoding
iteration steps is higher.

The major drawback of GLD code arises when the code length becomes
too large. We did not find yet any efficient encoding procedure based only on
the constituent codes that does not need the construction of the generator
matrix of the code. This leads to high memory requirement and numerous
binary operations in the encoder part. One track to follow in order to alleviate
its task could be to consider the graphical representation of the GLD code.

119

Chapter 5

GLD interleavers based on
graphs™

Nul n’est besoin d’espérer pour entreprendre,
Ni de réussir pour persévérer.
Guillaume d’Orange, prince de Nassau

Our main aim in this chapter is to discuss different methods for designing
interleavers for 2-level GLD codes ! with constituent code length n, leading
to a compact bipartite biregular graph representation with prescribed girth
g. Since choosing an interleaver is equivalent to assigning the edges of the
compact graph depicted in Figure 4.3, we refer to the girth of an interleaver
suitable for GLD codes as the girth of its corresponding graph.

The first section is devoted to general relationships between girth and the
parameters of codes based on graphs and known results. The second section
presents an algorithmic design of random interleavers that guarantees a girth
g > 4. The third section focuses on two algebraic designs of interleavers with
girth ¢ = 6. We also describe a method for designing interleavers with
girth ¢ = 8. Simulation results using these interleavers are presented in the
last section, and the performance improvement gained by using higher girth
interleavers is discussed.

*Parts of this chapter have been presented at the Philips DSP’99 conference.
'Tn all this Chapter, “GLD code” should be read “2-level GLD code”.

120 5. GLD INTERLEAVERS BASED ON GRAPHS

5.1 Influence of graph and code parameters on
iterative decoding

Let us denote by G a connected n-regular graph with V' vertices and N edges.
The vertices represent the constituent codes all assumed to be identical to a
same code Cy, and the edges the bits. Hence, G represents a compound code
C whose V' constituent codes have length n and where each bit belongs to
J = 2 constituent codes. We do not yet require that the graph be bipartite.
This graph is depicted in Figure 5.1.

We denote by ¢ the girth of the graph G, defined as the length of its
shortest cycle, by d the diameter of the graph G, defined as the greatest
distance between any two vertices, by d gy, the minimum Hamming distance
of the constituent codes and by Dy, the minimum Hamming distance of
C. Let us just recall that every bipartite graph has an even girth (see e.g.
[24]).

Assuming a general decoding of the code C involving iterative decodings
of the constituent codes and APP propagation (see Section 4.4.2),

e |g/2] corresponds to the mazimum number of independent decoding
iteration steps

e the diameter corresponds to the minimum number of decoding iteration
steps such that all the observations are passed to every bit APP.

The girth and diameter of any graph are linked by the following basic relation
[34] :
g<2d+1 (5.1)

Graphs satisfying the equality would lead to codes which could be decoded
using a perfect iterative decoding : it would not suffer from cycles and de-
pendencies. Indeed, all the observations will transit to all the bits in at most
d iteration steps, following a single path in the graph. However, this equality
is rarely met?.

2Furthermore, we are interested in bipartite graphs, which have an even girth, and
hence can not meet the equality.

5.1. INFLUENCE OF GRAPH AND CODE PARAMETERS ON ITERATIVE
DECODING 121

Figure 5.1: Graph G with n = 6. The constituent code vertices are repre-
sented by squares, and the coded bits lie on the edges.

level : E Constituent code vertex

® Bit vertex

1=0

Figure 5.2: Dependency graph of a compound code with graph G, n = 4.

level :
eve level :

?

1+ 1
Figure 5.3: Girth configurations. 7 is the highest level without cycle in the

dependency graph. The left figure represents an even girth configuration,
and the right figure an odd one.

122 5. GLD INTERLEAVERS BASED ON GRAPHS

5.1.1 Girth, code length and minimum distance

Figure 5.2 represents the graph G where we selected an arbitrary vertex v,
and where we ordered the other vertices by levels : each vertex at level 7 is at
a distance i from v. This dependency graph has no cycles at levels i < |g/2].
The number V(i) of vertices per level and N (i), the number of edges (or bits)
between level i — 1 and ¢ are easily counted : V(0) =1 and

V(i)=N@) =n(n—-1)"", 1<i<|g/2] (5.2)

Two cases have to be considered, depending on g being even or odd.

g even : the first cycles in the dependency graph occur at level i = g/2
see Figure 5.3, left). Hence, we have the following inequalities :
g

(n— 1)“’/2_1

Vi(g/2) > = = (n— 19" (5.3)

N(g/2) > n(n—1)*" (5.4)

and for g > 4 the total number of constituent codes and bits in the graph is
lower bounded by :

e (n— 1)9/271 -1 2-1
Ve Y Vel)) 2 1 n—————+(n-1)"""=V(ng) (55)
1=0 -
9/2 (n—1)?% -1

Ne>Y N, (i) >n

=1

— (5.6)

g odd : the first cycles in the dependency graph occur below the level
i=1(9—1)/2, (see Figure 5.3, right). Hence, the general formula (5.2) stands
for V, ((¢ — 1)/2), and we have :

(n o 1)(9—1)/2

Nollg+1)/2) > =

(5.7)

We obtain this inequality by considering that all the edges (and consequently
the bits) beyond level i = (g—1)/2 connect two distinct vertices of this level.
Thus, for g > 3 we have :

(9-1)/2 _ 12z _4
V,> 3 V(@) > P k)

1=0

p— =V(n,g) (5.8)

5.1. INFLUENCE OF GRAPH AND CODE PARAMETERS ON ITERATIVE

DECODING 123
(g+1)/2 (9-1)/2
. n(n—1) —2
N, > N@E) > n (5.9)
gi 2(n—2)

These results have first been published by Tutte [100]. He proved that if
an n-regular graph of girth g matches the equality V = V(n, g), its diameter
d verifies (5.1) with equality if g is even, and it is bipartite and have a
diameter® d = ¢/2 is g is even. The next section presents some graphs
reaching or approaching these bounds.

The dependency graph (Figure 5.2) can also be used to analyze the link
between the girth and the minimum Hamming distance of the compound
code. Let us assume that two codewords of C differ in a bit b represented
by an edge connected to a particular constituent code vertex v, and let us
construct the dependency graph whose root vertex is v. The two codewords
must differ in at least dgmi, edges (or bits) at the first level in the depen-
dency graph. The minimum distance of the constituent codes at level 1
ensures us that descending to the next level, the codewords differ along at
least dymin(dymin — 1) edges among the n(n — 1) edges, and so on. Hence,
the method used to enumerate the edges (leading to (5.6) and(5.9)) is appli-
cable to enumerate the different edges between two codewords by replacing
n with dgm,. Lower bounds on the minimum Hamming distance of C can
be derived :

qyel2
Dymin > dem% g even (5.10)
. 1ye-D/2
Ditmin > dpimin Sminlffimin 2 g 0dd (5.11)

These bounds have been expressed in a more general case, when the bit
vertices are connected to more than two constituent code vertices (i.e. when
the code has more than J = 2 levels) by Tanner [97]. They are relatively
weak as compared with the ones derived using the weight enumerator func-
tion of the constituent codes (Figure 4.11). Indeed, N and Dy, are both
expressed as exponential functions of the girth, and hence do not provide any
asymptotical information on the normalized Hamming distance.

Codes based on graphs (Tanner graphs, see Figure 4.2) have been investi-
gated by several authors. Recently, Sipser and Spielman [95| used expander
graphs and their algebraic properties [2] to explicitly construct a class of com-

3this is the best distance value a graph with even girth can achieve.

124 5. GLD INTERLEAVERS BASED ON GRAPHS

pound codes that are asymptotically good, and provided simple sequential
and parallel hard decoding algorithms.

From the above considerations, compound codes based on graphs that
would achieve the best performance with our iterative soft-input soft-output
decoding algorithm have to be constructed from a graph of degree n which

1. has a large girth, so as to provide both a large minimum Hamming
distance and a large number of independent decoding iteration steps,

2. has a small diameter, to ensure quick iterative decoding,

3. has a small number of vertices, thus yielding a short code,

4. is bipartite, to easily schedule the iterative process.

These constraints are dependent. A graph verifying the third condition
(meaning that* V = V(n, g)) will also verify the first and second, and also
the fourth if ¢ is even. Such a graph is called a (n, g)-graph.

However, (n, g)-graphs are few and when an (n, g)-graph does not exist,
the n-regular graph of girth g with the fewest possible number of vertices is
called a (n, g)-cage. A lot of work to find the (n, g)-graphs and (n, g)-cages
have been carried through in the 60’s and 70’s, as it was of great interest for
the telephone networks. A brief survey of these graphs is presented in the
next section.

Furthermore, our approach to maximize the girth may not be the valid
one. It may be more clever to look at the whole cycles distribution rather
than only at the shortest cycle (The same argument applied to the distance
distribution is used by Battail [10] to illuminate the astonishing performance
of turbo codes). The cycle distribution of our constructed interleavers is
computed in Section 5.5.

4this equality is called the Moore bound by some authors for all g, even though Moore
graphs have an odd girth

5.1. INFLUENCE OF GRAPH AND CODE PARAMETERS ON ITERATIVE
DECODING 125

5.1.2 A brief survey of known (n,g)-graphs and (n,g)-
cages

For g =3 and g = 4, there exist (n,3)- and (n,4)-graphs for any degree n.
The (n, 3)-graph is the complete graph with V' (n,3) = n+1 vertices, and the
(n,4)-graph is the complete bipartite graph with V'(n,4) = 2n vertices (also
called the generalized digon). The latter case corresponds to the conventional
product code. Figure 5.4 shows simple examples of these cases.

Figure 5.4: Classical (4, 3)-graph (left) and (3,4)-graph (right).

The g =5 case has been first studied by Hoffman and Singleton [56].
They proved that (n,5)-graphs exist only for n = 2,3, 7 and possibly n = 57.
The existence of the latter is enigmatic and not yet proved, to our knowledge.
The (2,5) graph is the David star, the (3, 5)-graph is the Petersen graph and
the (7,5)-graph is called the Hoffman-Singleton graph.

The g =6,8,12 (n, g)-graphs are known to exist only when n — 1 is a
prime power [19]. They are respectively generalized triangles, quadrangles
and hexagons of order n — 1. (n,6)-graphs are the point/line graphs of
projective planes, whose constructions are explained in Section 5.3. The
g = 8 case is described in Section 5.4.

There are no other (n, g)-graphs, as stated by Biggs [24]. The knowledge
of (n, g)-cages is also limited. For small values of degrees and girths, results
are known and accurate (because the graphs are as small as to enable exhaus-
tive search). For example the (7,6)-cage has 90 vertices, as V(7,6) = 86. It
is not a bipartite graph. In comparison, Section 5.3 presents the construction
of a bipartite graph of degree n = 7 and girth g = 6 that has 96 vertices.
Cages hunters like Royle [91] maintain state-of-the-art tables of known cages.

126 5. GLD INTERLEAVERS BASED ON GRAPHS

5.2 Random interleavers with girth g > 4

The first attempt to introduce graph-theoretical considerations in the con-
struction of random interleavers suitable for GLD codes uses the same ap-
proach as Gallager ([47] Appendix C). He presented a construction procedure
that guarantees no closed path of prescribed length (i.e. the equivalent of
cycles) in the parity check matrix of LDPC codes.

Figure 5.5: n-clumped random matching of size N

We first construct a random matching over N vertices. Any pseudo-
random design method of classical interleaver can be used for this purpose,
especially those developed for turbo codes. The N vertices in each part of
the random matching are grouped in L clumps of n bits.

For each clump C}*, ¢ = 1,---, L in the left part, we look at its n edges.
We denote by Z(C}) the set of right vertices connected to Cy. If two (or
more) elements of Z(C}*) belong to the same right clump C?, we permute the
edges connected to these elements with others belonging to Z(C}), i > i,
such that Z(C}*) no longer includes two vertices belonging to the same right

5.3. INTERLEAVERS WITH GIRTH 6 127

clump.

If (especially for the last clump C}*) we can not find such a permutation,
we pick another random matching and try again.

In the third step, we compact the random matching, that is, we consider
each clump as a single vertex. This gives birth to a random regular bipartite
graph of degree n that has no cycles of length two. Its girth is thus greater
than, or equal to, 4.

A special case of this construction is the Generalized Row-Column Inter-
leaver. Let n be the length of the constituent code Cy and N = Ln the length
of the compound code C. We construct a matching over IV vertices indexed
(in the two parts) from i = 0 to s = N — 1 thanks to the incidence relation :
1Xn

v
This means that the vertex i in the left part is connected to the vertex Z(7)
in the right part.

Z(i) = (¢ x n) modulo N + | (5.12)

This matching is compacted to a bipartite regular graph of degree n that
has a girth of 4. If N = n?, the graph is the completely connected bipartite
graph, that is the graphical representation of a block product code with
the trivial row-column interleaver. It is the (n,4)-graph with 2N vertices
presented in the previous section.

The matching and the bipartite graph of a generalized row-column inter-
leaver with parameters N = 12 and n = 3 are depicted in Figure 5.6.

5.3 Interleavers with girth 6

Our aim in this section is to build bipartite biregular graphs with a girth
g = 6. An obvious construction would be to extend the edges permutations
of a random matching previously described to eliminate cycles of length 4.
However, this is a complex task from the algorithmic point of view, and an
inelegant and brute force approach. We choose instead to investigate graphs
with strong algebraic structure.

The result on (n, 6)-graphs stated in Section 5.1.1 is the basis of our first

128 5. GLD INTERLEAVERS BASED ON GRAPHS

3n

(00e) (090 (000 (99060

(o690 (0066¢) (vno6¢) (000

Figure 5.6: Matching and bipartite graph of the generalized row-column
interleaver with N = 12 and n = 3.

construction. However, (n,6)-graphs exist only if n — 1 is a prime power.
Our second algebraic construction leads to graphs of degree n where n is a
prime power.

5.3.1 Interleavers from projective geometry PG(2,q)

The use of the point/line incidence graph of the projective plane PG(2,q)
(which is the (¢+1, 6)-graph) as the underlying structure of compound codes
was first introduced by Tanner [97].

A projective geometry consists of a finite set P of points together with a
finite set L of subsets of P called lines. We denote by p a point of P and by
[a line of £. We say that p lies on [and [passes through p if p € [. Some
axioms have to be verified :

5.3. INTERLEAVERS WITH GIRTH 6 129

1. there is a single line passing through any two distinct points
2. every line contains at least three points

3. if two distinct lines [and m have a common point p and letting ¢, r € [
and s,t € m then the lines defined by (g,t) and (r,s) also have a
common point

4. for any point p, there is at least two lines not containing p

5. for any line [, there are at least two points not lying on /.

The interested reader can refer to Dembowski [33] for further details and
properties of the projective geometries.

The projective geometry PG(m, ¢) is obtained from a finite field GF(qg).
The points of P are taken to be the equivalence classes of the nonzero m + 1-
tuples (ag, a1, -, an,) of GF(q)™"! for the equivalence relation of propor-
tionality ~ :

(a0aa'1:"'aa'm) ~ (bOabla"'abm)
< 3JN € GF(q)": (ag, a1, -, am) = (Abg, Aby, -+, Aby,) (5.13)

The five axioms hold for this construction. The dimension of PG(m,q) is
clearly m. Since there are ¢™*! nonzero (m + 1)-tuples and since any equiv-
alence class has ¢ — 1 elements, the number of points in PG(m, q) is :

qm+1

g—1

|P| = (5.14)
The line [= (pq) through two distinct points p = (ag, a4, -, a,) and ¢ =
(bo, by, - - -, by,) consists of the points :

()\ao + ,ub(),)\&1 + /Lb1, Ty,)\am + ,ubm) (515)

where A and p are elements of GF(g) which are not both zero. Since there
are ¢> — 1 possible choices for (), 1) and since any point of [appears ¢ — 1
times in (5.15), the number of points per line is ¢ + 1.

Without entering into the details, it can be shown that, by introducing
the definition of subspaces of PG(m, ¢), the lines are subspaces of dimension
1, and are PG(1, ¢). Hence, the number of PG(1, ¢) contained in a PG(m, q)

130 5. GLD INTERLEAVERS BASED ON GRAPHS

is the number of lines in the geometry and combinatorial considerations show

it is equal to :
m+1 1) (qm _ 1)

(> =1(@-1)
We deduce from (5.14)and (5.16) that the number of lines on which a point
lies is (¢™ —1)/(¢ — 1).

)=l (5.16)

The point/line incidence graph of PG(m,q) is defined as the bipartite
graph whose first part contains the points and the second one contains the
lines of the geometry. An edge connects a point vertex to a line vertex if the
point lies on the line. The degree of the point vertices is hence (¢™—1)/(g—1)
and the degree of the line vertices is ¢ + 1. This graph is depicted in Figure
5.7.

g1

qm+1_1

(Ijl
points

(g™t -1)(g™-1)
(¢®-1)(g-1)

lines

Figure 5.7: PG(m, q) bipartite graph representation

This graph does not present any cycle of length 2 by construction, and
axiom 1 guarantee that there is no cycle of length 4 (if such a cycle would
exit, two distinct points would lie on two distinct lines).

However, this graph has not the form of the compact graph of a GLD
code, since it is not biregular, and the numbers of vertices in the two parts

are not equal.

If we take m = 3, PG(3,q) is called a generalized triangle and has the

5.3. INTERLEAVERS WITH GIRTH 6 131

following properties : the number of lines is equal to the number of points :

¢’ —1
|7’|=|£|=q_1 =¢ +q+1 (5.17)

and the number of points per line is equal to the number of lines on which
lies each point, that is ¢ + 1. As previously stated, the point/line incidence
graph is the (¢ + 1, 6)-graph. It is depicted for m = 2 in Figure 5.8.

Figure 5.8: PG(2,2) graphical representation. Square vertices on the upper
circle represent the points of P, triangle vertices on the lower circle represent
the lines of £. An edge between a point vertex and a line vertex means that
the point lies on the line.

The point vertices are labelled by their coordinates. As any line sub-
space PG(1,q) is now a hyperplane of PG(2, ¢), it consists of those points
(ag, a1, - - -, am) which satisfy the following linear equation :

)\an =+)\10,1 +)\20,2 =0 (518)

where the \’s are elements of GF(g). Hence, the points and the line subspaces
are dual, and lines can be labelled by their coordinates (A, A1, A2). This
allows us to efficiently construct these geometries, even for large values of q.

132 5. GLD INTERLEAVERS BASED ON GRAPHS

Hence, from any projective geometry PG(2, ¢), and any constituent code
of length n = ¢ + 1, it is possible to construct the GLD code of total length
N=(¢?+q+1)(g+1) =n®—n? +n, whose compact graph has a girth of
6. This code is optimal as regards its code length.

5.3.2 Interleavers from Cayley graphs

The graphs presented in the previous section exist only if their degree is a
prime power plus one. We present a second construction of biregular bipartite
interleaver where the degree is a prime power.

Schellwat [94] presented Cayley graphs built from dihedral groups. His
aim was to construct graphs of degree n where each vertex has a large number
of distinct neighbors. The last property is closely related to the expansion
factor c of the graph. The situation is unusual : most random graphs of fized
degree n are good expanders, but testing whether a particular one has a good
expansion factor is a complex task. However, Alon [2]| highlighted the link
between the expansion factor of a graph and its spectrum®, more precisely
the value of its second highest eigenvalue u. Roughly speaking, the smaller
i, the higher ¢. However, when the length N goes to infinity, the lowest
value p of any family of n-regular graphs is lower bounded by a function of
n . Some graph families (called Ramanujan graphs, constructed in [75] and
|71]) exhibit the remarkable property that p is upper bounded. Moreover,
these graphs have also a girth that is lower bounded by :

9(N) = (4/3 + o(1)) log,_,(N) (5.19)

which is astonishingly close to the asymptotic upper bound version of (5.5)
and (5.8) :
g(N) < (24 0(1))log, (V) (5.20)

Relaxing the fixed degree condition, Schellwatt constructed a graph fam-
ily with better spectrum properties than Ramanujan graphs. However, he
did not investigate the girth of these graphs. As we will show, they have a
girth of 6.

Since many readers of the digital communications community (includ-
ing the author...) are not too familiar with the graph theory and discrete

Sthe spectrum of the graph is the set of eigenvalues of its adjacency matrix.

5.3. INTERLEAVERS WITH GIRTH 6 133

mathematics, we do not use nor dihedral groups neither Cayley graphs prop-
erties to explain this construction. Indeed, it can be presented only with
considerations on Galois fields.

We construct bipartite biregular graphs of degree n = ¢ with ¢*>—1 vertices
in each part, where ¢ is a prime power. It is particularly interesting with
n=17,11,13,16, ... because the first presented construction is not applicable,
and the “smallest” graphs are either not bipartite or unknown.

Let ¢ = p™, where p is prime, and construct GF(q) as GF(q) = GF(p)[z]/p(z)
where p(z) is a prime polynomial of degree m over GF(p). Let Q = ¢, and
construct GF(Q) = GF(q)[z]/q(x) thanks to ¢(z), a primitive polynomial
of degree 2 over GF(q). ¢q(z) can be written as ¢(z) = 2? + r.x + s, with
(r,s) € GF(¢)%. Let a be a prime element of GF(Q). « is then a root of

q(z).
We define S as :
S={a+a;a; € GF(q),i € [1,---,q]} (5.21)

We have |S| = g. We also define the mapping f as :

;i { GF(@\ {0} — (GF(Q)\ {0})* (5.2

r — Sz

f is the mapping that links any non-zero element of GF(Q) to the set of its
product with each element of S. If we label each of the () — 1 nodes of the
two parts of the graph by an element z of GF(Q)\ {0}, f(x) defines the set of
lower nodes connected to the upper node x. Thus, f defines a bipartite graph
of degree ¢ on the upper part (because the elements of Sz are all distinct).

Let us prove that all the nodes in the lower part are also connected to ¢
distinct nodes in the upper part. Let y € GF(Q) \ {0} represent the label of
a lower node. Like any element of GF(Q), y can be projected on the (1,)
basis :

Y = ay.0c+ by (5.23)

Let us show that for each a; € GF(q), there is a single z; € GF(Q) \ {0} such
that : y = (¢ + @;) .z;. As z; can be expressed as z; = a,,.« + by, it leads to
the system :

(@; —7r).ay, + by, = ay
{ —5.0, + a;.by, = by (5.24)

134 5. GLD INTERLEAVERS BASED ON GRAPHS

whose determinant is a? — r.a; + s = ¢(—a;). But —a; belongs to GF(¢) and
thus can not be a root of ¢(x). So (5.24) has a single solution which gives z;
as a function of a;.O

Let us now prove that such a graph has no cycle of length 4. Such a cycle
would correspond to Figure 5.9.

Figure 5.9: Cycle of length 4

There would exist aq, as, by, be, belonging to GF(¢) and all distinct, such
that :
y=(a+a1).x d y'=(a+ ag).x
y=(a+ by).2' an y'=(a+ by).2'
This would lead to (a; + by — as — by).cc + aq1.bs — by.az = 0. But « can not
satisfy this equation of degree 1 over GF(g). Hence, we would have :

al.bzzbl.az
.2
{ a; + b2:b1 + as (5 5)

Two cases may occur. First, if one element among (ai,as, b, bs) is zero,
(5.25) can not be verified. Else, we would have :

bl .09
by

+by=b+a, — by(%-l)zag—bg
2

that is by = by which is also impossible. Hence, the graph has no cycle of
length 4, and its girth is at least 6. O

Using this graph construction, and any constituent code of length n = ¢,
we build a GLD code of total length N = (¢*> — 1)¢ = n® — n, and girth 6.
For n = 7, the graph has N 4es(7,6) = 96 nodes. In comparison, the (7,6)-
cage is not bipartite and has 90 nodes. Recently, Guinand and Lodge [50]

5.4. INTERLEAVERS WITH GIRTH & 135

presented Tanner graphs also constructed with bipartite biregular graphs.
They use connected components of graphs based on D(m,q) [40] (which
come from the point/line incidence graph of structures which are in some
sense analogues of generalized m-gons) where they remove some lines and
points. With the same parameters (¢ = 6, n = 7), it leads to a bipartite
graph with 98 vertices. Our construction is hence slightly better.

5.4 Interleavers with girth 8

The (n, 8)-graphs are also bipartite biregular, when n — 1 is a prime power.
These generalized quadrangles can be used to build GLD codes. We briefly
describe here a method to construct conventional generalized quadrangles [99]
[32] [33].

The first step consists in building the projective geometry PG(4, ¢). This
task is more difficult than building PG(2, ¢) since the point- and line sub-
spaces are no longer dual. (5.18) no longer holds. First, we have to enumerate
all the (¢° — 1)/(¢ — 1) points, and then to explicitly enumerate each line as
a set of points related to (5.15).

As depicted in Figure 5.7, the point/line incidence graph of PG(4,q) is
not biregular. We consider the nonsingular quadric :

Q4,9 : X+Xi1Xo+X3X4=0 (5.26)

where X; is the i-th coordinate of PG(4,¢). The following result holds : the
points of the projective geometry whose coordinates satisfy (5.26) together

with the lines formed with these points lead to a point/line incidence graph
which :

is bipartite (by definition),

has (¢> + 1)(g¢ + 1) points,

has (¢ + 1)(g + 1) lines,

is biregular of degree q + 1,

has a girth of g = 8.

136 5. GLD INTERLEAVERS BASED ON GRAPHS

Hence, this graph, used with constituent codes of length n = ¢ + 1 leads
to a GLD code

e with 2(¢?> +1)(¢ + 1) = 2n(n? — 2n + 2) = V(n, 8) constituent codes,

e of length N = n* — 2n3.

However, since GLD codes are attractive for small lengths, this construc-
tion seems less useful : even with the shortest Hamming code (n = 7), it
leads to a GLD code of length N = 1715 which is already quite large.

5.5 Simulation results

To illustrate the algebraic graph constructions we presented, and to validate
the benefits we can expect from them, we proceed to two comparisons be-
tween GLD codes of same length and constituent codes. We also present an
algorithmic method to estimate the number of cycles in a GLD graph, and
try to link the simulation results with this cycle analysis.

5.5.1 Performance results

The first comparison involves the (7,4, 3) Hamming code as constituent code
Co. We build the GLD code based on the interleaver derived from the Cayley
graph of parameters p =7, m =1, ¢ =7, Q = 49. Hence, the GLD code
has a total length N = 336 and dimension K = 51. It is compared with
two GLD codes of same length NV and constituent code Cy, but built with a
generalized row-column interleaver (girth 4) and a pseudo-random interleaver
that guarantees a girth of 4.

The second comparison uses the (12,8, 3) shortened Hamming code Cj
as constituent code. The GLD code is constructed thanks to PG(2,11) such
that n = ¢+1. Its total length is N = 1596 and its dimension is K’ = 549. It
is also compared with two GLD codes of girth 4 with respectively row-column
and pseudo-random interleavers.

5.5. SIMULATION RESULTS 137

We simulated these codes with a BPSK modulation over an AWGN chan-
nel, using the same protocol as in Section 4.5. Figures 5.10 and 5.11 present
the BER wvs. the decoding iterations number for these codes.

10

& g=4, Row-Column
O—© g=4, Random
3£ 9=6

=
O\
N

Bit Error Probability

10

10°

Iteration Number

Figure 5.10: GLD codes based on Cq : (n =7,k = 4, dpin = 3) for E,/Ny =
3.8dB

We observe that the row-column interleaver exhibits a very poor perfor-
mance in both cases, even when compared with another interleaver of same
girth. Interleavers with a girth ¢ = 6 perform better than conventional
pseudo-random interleavers and lead to a gain in terms of iterative conver-
gence between 3 and 6 iteration steps for C'y at practical E,/Ny values.

5.5.2 Estimation of the cycles distribution

Our aim in this section is to enumerate the cycles® that are present in any
interleaver suitable for GLD codes, and more specifically to estimate their
length distribution. To achieve this task, we construct the dependency graphs
for all bit vertices of the graphical representation (see Figure 4.2) of a GLD
code.

6we want to count the simple cycles : each vertex appears at most once in a cycle.

138 5. GLD INTERLEAVERS BASED ON GRAPHS

Bit Error Probability
=
o

©--0 1.8 dB Row-Column \ 2
&-+92.0 dB Row—Column|
©—2.2 dB Row-Column|
o0 1.8 dB Random g=4
-5/ -©2.0 dB Random g=4|
6—62.2 dB Random g=4|
o--01.8 dB PG(2,11) g
=-82.0 dB PG(2,11) g=
. 5—a2.2 dB PG(2,11) g=

0 1 2 3 4 5 6 7 8 9 10 11 12

<))

Iteration Number

Figure 5.11: GLD codes based on C'y : (n = 12,k = 8, dypin, = 3) for different
E, /Ny values

The dependency graph of a bit vertex ¢; is constructed similarly to the
dependency graph of a code vertex (Figure 5.2), but starting from the vertex
¢; at the top level. Each vertex (bits and codes) is plotted at most once in
the graph.

For all of the N dependency graphs, we count the cycles that include the
top-level bit node and their length. To do this, we look at each bit vertex
that is a “leaf” (i.e. no constituent code vertex is connected under it). Let j
be the level where it appears. If there are two completely distinct paths that
connect this “leaf” bit vertex to the top-level bit vertex, we count a cycle of
length [= 2j.

After this step, we have counted k times each cycle that involves k bit
vertices (i.e. of length k). Even if this process is theoretically simple, it
becomes tricky to implement. Let us take two simple examples that highlight
the difficulties. The two codes have N = 9 bits and 6 constituent codes of
length 3. The first one is built with a row-column interleaver and the second
one with a random interleaver. They are presented in Figure 5.12.

All the dependency graphs of the first code are similar, and one of them
(for the bit vertex 1) is depicted in Figure 5.13. It has 4 cycles of length 4,

5.5. SIMULATION RESULTS 139

Figure 5.12: n = 3, N = 9 row-column (left) and random (right) interleavers.

namely (1,0, 3,4,1), (1,2,5,4,1), (1,0,6,7,1) and (1,2,8,7,1). Since each of
them includes the top-level bit vertex, they are all counted. Hence, the total
number of counted cycles has the simple distribution : 9 x 4 = 36 cycles of
length 4. Since each cycle is counted 4 times (its length), the total number
of cycles in the graph is : 36/4 = 9 cycles of length 4.

Figure 5.13: Dependency graph of the bit node 1 for the n = 3, N = 9
row-column GLD code.

One of the dependency graphs (for the bit vertex 0) of the second code is
similar to the one depicted in Figure 5.13, but two other types of graphs also
exist. They are presented in Figure 5.14. In the dependency graph of the bit
vertex 1, cycles involving the constituent code 2 have not to be taken into
account, since there are no leaves at the last level. On the other side, there
are two cycles that include the bit vertex 5 : (1,0,5,3,1) and (1,0,5,4,1).

140 5. GLD INTERLEAVERS BASED ON GRAPHS

1 I
5

0/

Figure 5.14: Dependency graphs of the bit vertices 1 (left) and 3 (right) for
the n =3, N =9 Random GLD code.

These are the only cycles to be counted for the dependency graph of the bit
vertex 1. Hence, when a cycle forks one or several times, it has to be properly
counted.

The dependency graph of the bit vertex 3 presents one cycle of length
2: (3,4,3), one cycle of length 4 : (3,5,0,1,3) and two cycles of length 6 :
(3,5,6,7,2,1,3) and (3,5,6,8,2,1,3).

We can summarize the cycle count for the second code as in Table 5.1
(please, do not read the bracketed numbers by now).

Here the second difficulty appears : the counted number of cycles of length
6 is not a multiple of 6. Hence, we forgot counting some cycles. By looking
carefully to the dependency graph of the bit vertex 1 again, we see that we did
not take into account the “hidden” cycles (1,3,5,6,7,2,1), (1,3,5,6,8,2,1),
(1,4,5,6,7,2,1) and (1,4,5,6,8,2,1). One of them is represented by dotted
line in Figure 5.14. Taking them into account (they are bracketed in the last
table), we find the correct following results : the graph has 4/2 = 2 cycles of
length 2, 16/4 = 4 cycles of length 4 and 24/6 = 4 cycles of length 6.

The “hidden” cycles are not only difficult to see, it is also difficult to find
them algorithmically. Hence, we decide not to count them. We obtain a

5.5. SIMULATION RESULTS 141

top-level bit | type of length 2 length 4 length 6
of the DG | the DG | cycle number | cycle number | cycle number
0 0 0 4 0
1 1 0 2 0 [4]
2 1 0 2 0 [4]
3 3 1 1 2
4 3 1 1 2
5 1 0 2 0 [4]
6 1 0 2 0 [4]
7 3 1 1 2
8 3 1 1 2
counted cycles 4 16 8 [24]
number of cycles 2 4 1.33 [4]

Table 5.1: Cycle count for the n = 3, N = 9 GLD code with random
interleaver.

lower bound on the number of cycles in the graph as follows : let 7,4, (1)
be the maximum number of cycles of length [counted over all the depen-
dency graphs. Let s(I) be the sum of the cycles of length [counted in each
dependency graph. The number n(l) of cycles of length [verifies :

n(l) < max {nmm(l), H—ﬂ } (5.27)

We used this method to compare the cycle distribution of the GLD codes
based on the (12,8, 3) shortened Hamming code presented in Section 5.5.1.
The results are plotted in Figure 5.15.

As already known, the PG(2,11) interleaver has only cycles of length 6.
The random interleaver has cycles of length from 4 to 8. The row-column
interleaver behavior is completely different. It has much more cycles, and
they extend to much higher length values.

We can conclude from these results that the row-column interleaver is
not a good choice : we have to iterate much more (26/2 = 13 steps) so as
to make the whole information available everywhere in the graph, and this
information is highly correlated since the number of cycles is large.

These results also proved that an algebraic interleaver of girth 6 leads to

142 5. GLD INTERLEAVERS BASED ON GRAPHS

10°— N

8 - ;]
E‘ 106 I '
(8] I
5 L I

o] | / ! |

Qo E / ']

S E y ! 3

> - f : E

=z r i |]

4| / ']

10 ' x—x Generalized Row Column interleaver (g=4)
¢ |m—m PG(2,11) interleaver

L EOfo Random interleaver (g=4) |

10° ;
| N R N R SR RN B R

0 2 4 6 8 10 12 14 16 18 20 22 24 26
Cyclelength

Figure 5.15: Cycle distributions of GLD codes based on the (12,8, 3) short-
ened Hamming code.

5.5. SIMULATION RESULTS 143

better performance than a random interleaver of girth 4. Indeed, it has less
cycles, and they occur later. Since, for this code length, the PG(2,11) is the
only interleaver with a girth of 6 (apart from an edge permutation), there
is no randomly chosen interleaver with girth 6. Hence, in this case, random
choice of the interleaver is not the best solution and a strong structured
construction leads to better results.

144 5. GLD INTERLEAVERS BASED ON GRAPHS

145

Conclusions and Perspectives

Conclusions

In this thesis, we built new tools to understand and evaluate iterative SISO
decoding of different compound codes (Turbo, LDPC and GLD codes). De-
pendency graphs are useful to conceptually understand the iterative decoding
and to derive new design criteria for interleavers specifically adapted to this
decoding. They illuminate the influence of cycles, and predict that bits in-
volved in short length cycles are less protected.

APP propagation is a fruitful way to estimate the performance of com-
pound codes under iterative decoding. Even if it assumes a cycle free graph,
and so an infinite interleaver, it gives complementary information with re-
spect to the classical maximum likelihood decoding performance.

Combining the results of Gallager on LDPC codes and those of Tanner
on graph codes, we built the GLD class of compound codes and described an
effective iterative decoding scheme. We proved that these codes are asymp-
totically good with only two levels. In this case, the new a priori information
arriving at the input of any supercode decoder only contains the interleaved
extrinsic information of the other supercode decoder. In the case of LDPC
codes, the new a prior: information is the product of j — 1 extrinsic informa-
tion. Therefore, the GLD decoding schedule is efficient and simple, and par-
allel decoding implementation can reduce the latency. GLD codes are both
a generalization of, and an attractive alternative to product codes, thanks to
their higher flexibility in term of code length as shown in the comparative
simulations that we conducted.

We finally constructed new interleavers for GLD codes that present good

146 CONCLUSIONS AND PERSPECTIVES

properties in terms of iterative decoding. They are based on algebraic graphs
and perform better (their iterative decoding speed is higher) than random
interleavers for small code length.

Perspectives

Further investigations need to be carried out. A best characterization of the
window size used in the dependency graphs of turbo codes would be of great
interest.

Another point that has not been studied is the encoding algorithm of
GLD codes. We currently systematize the parity check matrix to produce
the associated generator matrix. Even if the systematization is done offline
once and that the encoding complexity is not too high for small block length,
this method is a drawback of GLD codes compared to other compound codes
for medium length. An efficient encoding process taking into account the
graphical representation of the GLD may be found, to avoid the explicit
construction of the generator matrix. This task could be easier for GLD
codes based on deterministic algebraic interleavers. Some research has been
already done in this direction for LDPC codes by Spielman [96] and Luby et.
al. [70].

The promising approach of deterministic algebraic interleavers for small
length may be extended to other compound codes, such as turbo codes. In
the latter case, the exploitation of the graph structure is not straightforward
since it is less natural than the graphical representation of GLD codes.

147

Appendix A

First cycle distribution of
dependency graphs constructed
from row-column interleavers

Among the parameters influencing the performance of turbo coding schemes,
the choice of the interleaver of fixed length N is important. We theoretically
show that independently of its size, the row-column deterministic interleaver
achieves always poor performance. The criterion involved in this study is
related to the construction of the dependency graphs of the turbo codes (see
Chapter 2), more precisely to the height (number of levels) where the first
collisions occur.

We show that all the row column interleavers involved in a turbo coding
scheme lead to dependency graphs of same first cycle level, that is 3.

A.1 Row-column interleaver definition

The row-column interleavers are characterized by two parameters (k,n), re-
spectively their number of rows and columns. Their total length is N = kn.
We assume £ > 1 and n > 1, to rule the trivial identity interleaver out.
The input data is written row-by-row into a £ X n matrix, and then copied
column-by-column as the output.

A. FIRST CYCLE DISTRIBUTION OF DEPENDENCY GRAPHS
148 CONSTRUCTED FROM ROW-COLUMN INTERLEAVERS

There is an kn-periodic arithmetic relationship between the data input-
and output order. Let d; be the input of the interleaver at time i (i €
[0, kn—1]). If we don’t take into account the delay, this data outputs at time
j(i), such that

i = j(i) = (imodn) x k + H (A1)

The corresponding de-interleaver is the (n, k) interleaver. Hence, we have
the following formula

j= i) = Gmod k) x n+ | 2], (A2)

We easily check that i(j(z)) = 1.

0 1 —--= | n-1
n n+l|—=---—=|2n—-1
(k—1)n — - = kn—-1

input order of the data in the interleaver

0 k' - ((n=1)k)

1 (k+1)

3 + +

T !
(k=1 | (2k—=1)|---| (kn—1)

output order of the data from the interleaver

A.2 Graphical properties of row-column inter-
leavers

Any interleaver can be graphically seen as a deterministic matching between
two chains whose vertices represent respectively the input- and output data
of the interleaver.

A.2. GRAPHICAL PROPERTIES OF ROW-COLUMN INTERLEAVERS 149

0 1 2 3 4 5 6 7 8 9 10 11
? ® ®

Figure A.1: Graph of the (3,4) interleaver.

An example is given at Figure (A.1), where we can easily check the rela-
tionships (A.1) and (A.2).

We discuss two important results on row-column interleaver graphs.

Theorem A.2.1 Fach vertexr in the input chain has at least one neighbor
such that the corresponding vertices in the output chain are at a distance of

k.

Proof A.2.1 Let 7 and 7 + 1 be the indices of two adjacent vertices in the
input chain (Vi € [0,k x n — 2]). We distinguish two cases.

e 1°case:i#uxn—1,VYu €[l k— 1], hence we have

l’ = i_|—_1 . . - .
. M {"J = [j@+1) =56 =k
(t+1modn) = (imodn)+1
e 2°case:i=uxn—1,Vu € [l,k—1]. Then the preceding equality is
no longer true. Although the exact value of |j(i + 1) — j(¢)| could be
calculated, we don’t need it.

Each vertex of index (3 has two neighbors of indices v and y, except for the
ends (case follows). One at most of the two couples of adjacent vertices («,)

A. FIRST CYCLE DISTRIBUTION OF DEPENDENCY GRAPHS
150 CONSTRUCTED FROM ROW-COLUMN INTERLEAVERS

and (03,7) can correspond to the 2° case, otherwise we would have n = 1,
which is impossible. Hence, taking the (one of the) couple(s) corresponding
to the 1° case, the result is straightforward.

Let’s now look at the ends. Both for (0,1) and for (kn — 2, kn — 1), there
is no u € [1,k — 1] such that these couples can be written as (un — 1,un).
Hence, the ends correspond to the 1° case, and the claimed result holds for
any couple of adjacent vertices. O

Theorem A.2.2 Fach couple of vertices at a distance k in the output chain
has a corresponding couple of vertices in the input chain which are adjacent.

Proof A.2.2 Let j and j+ k (Vj € [0,k(n — 1) + 1]) be the indices of two
vertices at a distance of k£ in the output chain. Due to (A.2) we have

i(j+k) = (j+kmodk) xn+ {‘%J

- (jmodk)xn+w+1

and thus
li(j+k)—i(f)]=1

Let’s consider any (k,n) row-column interleaver, and the dependency
graph of any of its vertices of the input chain, say that of index a. Due
to Theorem (2.1) this vertex has at least one neighbor of index § such that
their corresponding vertices thru the interleaver (of indexes v and J), i.e., in
the output chain are at a distance of k. Their level is 2 in the dependency
graph.

Let’s examine their respective neighbors (of index y—1 and § —1, or y+1
and § + 1; at the ends, only one couple exists). They too are at a distance
of k. Due to Theorem (2.2), their corresponding nodes thru the interleaver
are adjacent, at level 3 in the dependency graph. Thus, there is a collision
at this level, as shown in Figure (A.2).

A.2. GRAPHICAL PROPERTIES OF ROW-COLUMN INTERLEAVERS 151

Figure A.2: First collision in the dependency Graph at level 3

We have shown that all the row-column interleavers involved in a turbo
coding scheme lead to dependency graphs where the height of first collision is
the same, namely 3.

A. FIRST CYCLE DISTRIBUTION OF DEPENDENCY GRAPHS
152 CONSTRUCTED FROM ROW-COLUMN INTERLEAVERS

153

Appendix B

The forward-backward algorithm™*

The forward-backward (FB) algorithm [3] computes the a posteriori proba-
bilities associated with the states and transitions of a Markov source whose
outputs are observed through a memoryless channel. Hence, it is not stricto
sensu a decoding algorithm : it does not give decisions on the states or
transitions of the Markov source.

We used it in our work as a soft-input soft-output (SISO) decoder for
convolutional and linear block codes.

The Viterbi algorithm [42] used on convolutional codes is a maximum
likelihood (ML) decoder that minimizes the word error probability. Its soft-
output version (SOVA) [8] [51] gives decisions together with reliability infor-
mation on the bits, without any guaranteed optimality. The FB algorithm is
optimal in the sense of ML : the decisions that are taken from the a posteri-
ort probabilities it gives minimize the symbol error probability, not the word
error probability. Hence, the decoded symbols can correspond to a path that
is not in the trellis.

The FB algorithm is first presented on a general Markov source, and its
applications to convolutional and linear block codes are explained in a second
step. Complexity issues are finally discussed in the case of SISO decoding of
linear block codes.

*This appendix is the English translation of a part of a lesson I taught to ENST
students.

154 B. THE FORWARD-BACKWARD ALGORITHM

B.1 Markov source Model

B.2 Markov source model

Let us recall some properties of a finite-state discrete Markov source. It is
characterized a each instant ¢ by its state S; =m, m € {0,---, M — 1} and
its output X;. M is called the number of states and X is an element of X,
its alphabet. The cardinality of X is finite.

The transitions between states are characterized by their probabilities :
PI‘Obt (St = m|St_1 =ma, St_g =TMa," ", St_,, = m,,) . (Bl)

where v is the memory of the Markov source. These probabilities may be
time-variant.

The outputs are also characterized by their probabilities :
PI'Obt (Xt = X|St =1m, St—l =m, St_g = Mo, -, St—u = m,,) . (BZ)

where X € X. Thus, these probabilities only depend on the current state
and the past v state transitions.

We limit our study to Markov sources with memory v = 1, which involves
no restriction of generality for a discrete source. In this case, the transitions
can be characterized by a matrix P, called the state transition matrix, of
size M x M, where :

P = p, (i|5) = Prob, (S; = i|S;—1 = j). (B.3)
Similarly, the source outputs are characterized by the probabilities :

PI'Obt (Xt = X‘St =m, St—l = m') (B4)

B.3 Discrete memoryless channel model

A discrete memoryless channel (DMC) has the following property : Let X}
denote a stream of ¢ symbols belonging to X', the channel input alphabet,

B.4. THE FORWARD-BACKWARD ALGORITHM 155

and let Y be the stream of the corresponding output symbols (called the
observations), belonging to), the channel output alphabet. Knowing the
transition probabilities R;(y|z) of the channel, for x € X and y € Y, we can
write :

Prob (¥/1x{) = TT & (%)) (85)

=1

where VI = {Yy,--- Y7}

B.4 The Forward-Backward Algorithm

B.5 Forward-backward algorithm

Let us consider an M-state Markov source of memory 1. Without loss of
generality, we consider it as time-invariant s.e. :

Prob; (S; = m|S;_1 =m') = p(S; = m|S;_1 =m') (B.6)
PI'Obt (Xt = X|St =1m, St,1 = m') =4q (Xt = X|St =m, St,1 = m') (B?)

at any instant ¢.

The output symbols X; of this Markov source are the inputs of a DMC
channel, and their corresponding outputs are Y;. Let us assume that at
times t = 0 and ¢t = 7', the state of the source is known, namely : Sy = 0
and ST =0.

The aim of the FB algorithm is to compute the following a posteriori
probabilities (APP) :

Prob (S, = m|V{") (B.8)
Prob (St =m;S;_1 = m'\YlT) (B.9)

at any time ¢. These are the state and state transition probabilities, respec-
tively, given all the available observations.

Let us define :
At (m) = Prob (St = m; YlT) (B.10)

156 B. THE FORWARD-BACKWARD ALGORITHM

and
oy (m,m') = Prob (St =m;S;_1 =m; YIT) (B.11)

We have \; (m) o« Prob (St = m\YlT) and oy (m, m') o< Prob (St =m;S;_1 = m’|Y1T).
Hence, we will calculate A; and o; instead of the quantities (B.8) and (B.9).

B.5.1 Definition of the quantities «, § and v

Let us define :

oy (m) = Prob (St =m; Ylt) , (B.12)
B (m) = Prob (Y;L\St = m)) (B.13)

and :
v (m,m') = Prob (S; = m; Y;|S;_1 = m/') (B.14)

We will derive expressions of \; and o; as functions of «, # and y. We
have :

lm) = Prob (5, = s) Prob (V2,15 = s)
= Prob (S, = m; ¥7) Prob (Y/1,]S, = m)
= o (m) G (m) (B.15)

since the “future” outputs of a Markov source do not depend on the previous
outputs. As the outputs of the channel depend directly on the outputs of
the source, this property is also true for them.

Using the same property, we have:

or(m,m') = Prob (S, =m;S,_1 =m';Y{) Prob (Y1,|S, = m; S, = m'; YY)
= Prob (St =m;S;_1 =m'; Yf) Prob (Ygrl\St = m)
= Prob (St,l =m/; Yf_l) Prob (St =m; Y;|S; 1 = m'; Yf‘l) X
Prob (1@£1|St = m)
= Prob (St—l =m'; Yf_l) Prob (S; = m; Y3|S;_1 = m') x
Prob (Y/,|S, = m)
= a1 (m') 7 (m, m’) By (m) (B.16)

B.5. FORWARD-BACKWARD ALGORITHM 157

We can give a “visual” interpretation of this last equation : « represents the
joint probability of the previous observations and the starting state of the
transition, represents the probability of the future observation given the
ending state of the transition, and 7 represents the transition metric.

Si1 Sy
[] [}
a_1(m') o
R .
y(m,m m
¢ Bi(m)
[] []

Figure B.1: Interpretation of the expression of o

We now have to compute the quantities o, # and ~.
B.5.2 Recursive computation of «

a;(m) = Prob (St =m; Yf)

M—1
= > Prob (St =m; S =m'; Yf)
m’'=0
M-1
=) Prob (St—l =m'; Ylt_l) Prob (St =m;Yy|S;_1 =m; Yf_l)
m’=0
M—1
= > Prob (St,l =m'; Yf’l) Prob (S; = m; V3| S, 1 = m)

m'=0

= ; a1 (m') e (m, m’) (B.17)

Hence, the as can be computed recursively if the s are known. This recursion
is the “forward” part of the algorithm.

158 B. THE FORWARD-BACKWARD ALGORITHM

B.5.3 Recursive computation of

B (m) = Prob <Y£1|St = m)

M—1
= Y Prob (St+1 =m'; Y18 = m)
m’'=0

M-1
= > Prob(Si1 = m';Yi44|S; = m) Prob (YgQ\St =m;Spy1 = m'; Yt+1)
m'=0
M—1
= > Prob (Sy1 = m'; Yiy|S = m) Prob (Y[5[Si1 = m')

m’'=0
M-1

= Z Br1 (M) yega (M, m) (B.18)
m/=0

As the as, the Os are computed recursively, but in the opposite direction.
This is the “backward” part of the algorithm.

B.5.4 Expression of v

In the “forward” and “backward” parts, it is necessary to know the values of
v to achieve the recursions. This computation does not strictly belong to
the algorithm, since is the probability of an observation given a transition.
The channel and the source characteristics are involved. Assuming a discrete
memoryless channel, we have :

v (m,m') = Prob(S; =m;Y;|S;_1 =m')
= Prob (S; =m|S; 1 = m') Prob (V}|S; =m; S, 1 =m')
= Y Prob (S, =m|S;-1 = m') Prob (X, = X;Y}|S, = m; S,-1 = m/)
Xex
= Z Prob (S; = m|S;—1 = m') Prob (X; = X|S; =m; S;_1 =m') X
Xex
Prob (Y2|Xt = X, St =m; St—l = m')
= Y Prob(S; =m|S;_1 = m') Prob (X; = X|S; = m; S;-1 = m') X
Xex
Prob (Y;|X;)
= D p(mm)q(X|m,m') R(¥;|X;) (B.19)

Xex

where p, ¢ and R are defined by (B.6), (B.7) and (B.5), respectively.

B.5. FORWARD-BACKWARD ALGORITHM 159

We can now compute all the variables of the FB algorithm, using (B.19),
(B.17), (B.18), (B.15) and (B.16).

B.5.5 Initialization

The two recursive relations (B.17) and (B.18) need an initialization of the
first (respectively, the last) term. We use the assumption on the states of the
Markov source at the initial and final instants. We have S; = 0 and Sr = 0.
This implies :

oy (0 :1’
040(7(7“320, vme{l,...,M—1} (B.20)
and : 50
T (0) =1,
{ﬂT(m)=O, Vme{l,...,M -1} (B.21)

B.5.6 Summary of the FB algorithm

The forward-backward algorithm needs the a priori knowledge of the Markov
source :

e p(m|m'), the transition probability,

e ¢ (X|m,m’), the output probability.
It also needs the transition probabilities of the channel :
e R(Y|X)

The observations at the channel output Y/I are inputs to the algorithm. Its
aim is to compute the a posterior: probabilities :

e of the states Prob (St = m|Y1T),

e of the state transitions Prob (St =m;S;_1 =m/ |Y1T).

160 B. THE FORWARD-BACKWARD ALGORITHM

It proceeds in several steps :

1. initialization : the as and fs are initialized using (B.20) and (B.21).
2. computation of the vs : they are computed using (B.19).

3. forward recursion : the as are computed using (B.17). If the obser-
vations arrive in a sequential order, the last two steps don’t induce any
latency.

4. backward recursion : the s are computed using (B.18). This com-
putation can only begin when the last observation is available.

5. computation of the a posteriori probabilities : (B.15) and (B.16)
are used.

In a practical implementation of this algorithm, normalizing all probabili-
ties is necessary. The block diagram of the forward-backward algorithm is
presented in Figure B.2

RYIX)| Am)
o F-B .
p(m|m’) T a(m,m’)
q(X[m, m')

Figure B.2: Forward-backward algorithm block diagram

B.6 Application of the FB algorithm to the SISO
decoding of convolutional codes

A binary convolutional encoder of rate k/n can be seen as a Markov source
of memory 1 and 2%¥(“~1) states, where L is the constraint length of the code.

B.6. APPLICATION OF THE FB ALGORITHM TO THE SISO DECODING
OF CONVOLUTIONAL CODES 161

Furthermore, the outputs of an encoder are deterministic functions of the
transitions. Hence, the output probabilities

¢ (X|m,m') = Proby (X; = X|S; =m, Sy 1 =m/) (B.22)

are Kronecker §-functions of X, whose value is 1 if X is the output associated
with the state transition (m',m), else 0. X, is a binary vector of length n,
corresponding to the output of the encoder at time ¢.

We use the forward-backward algorithm only to compute the a posterior:
state transition probabilities o;(m, m'). Indeed, these transitions are related
to the encoder input. Hence, it is possible to get the a posterior: probabilities
on the encoder input, i.e. the information bits.

Here again, we restrict our study to time-invariant convolutional codes.
Let us denote by U; = {u%, cee uf} the inputs of the encoder at time ¢ and

X; = {z},---,z} its outputs at the same time. The decoder has access to
Y, ={y},---,y"},t =1,---, T, which are the outputs of the DMC associated

Our aim is to compute the a posteriori probabilities on the encoder input :

APP (u}) = Prob (uf|y") Vie{l,---,k}, Vte{l,---,T} (B.23)

But the encoder operation results in a deterministic relation between the
inputs and the state transitions. Let 7! be the set of state transitions for
which the ¢-th bit is v and let 7" be one of them. We have :

APP (uf5 = u) => o= > o(mm) (B.24)

TeT} m' m/ui=u

Hence, SISO decoding of a convolutional code can be performed using the
FB algorithm, followed by a summation over the correct a posteriori state
transition probabilities to find the APP of the bits.

Using (B.16) and (B.19), we have :

APP (ui = u) = Y a1 (m) D p(m|m')q(X|m,m') R (V3| X;) B (m)

m!',m/ut=u Xex

= Y p(mm') a1 (M) R(Y|X (m',m)) B (m) (B.25)

m’',m/ut=u

162 B. THE FORWARD-BACKWARD ALGORITHM

The last equality is found considering the fact that ¢ (X|m,m') is a Kro-
necker d-function of X : either X corresponds to the only output of the
code associated with the (m',m) transition, and thus ¢ (X |m,m’) = 1, ei-
ther ¢ (X|m,m') = 0. Hence, we denote by X (m',m) the outputs of the
encoder associated with the (m/, m) transition. The simplified version of the
v formula follows :

v (m,m') = py (m|m') R (V3| X (m/,m)) (B.26)

The term p; (m|m’) corresponds to an a priori knowledge that the decoder
can have on the transitions.

B.6.1 Simple SISO decoder for convolutional codes based
on the forward-backward algorithm

In the case where a single convolutional code is decoded, there is no a prior:
information on the transitions if the encoder input is iid. Then, p; (m|m') is
a constant, initialized to 27* for all the permitted transitions (m',m). The
block diagram of such a SISO decoder is presented in Figure B.3.

e N
- metric R PR A —,
o O e 2
T APP(u)
code structure

AN J/

Figure B.3: SISO decoder for an isolated convolutional code

B.6.2 SISO decoder for convolutional codes based on
the forward-backward algorithm suitable for iter-
ative decoding

In the context of iterative SISO decoding, a prior: probabilities on each
information bits 7 (u!) are known. If we assume that these probabilities are

B.6. APPLICATION OF THE FB ALGORITHM TO THE SISO DECODING
OF CONVOLUTIONAL CODES 163

independent, the a priori probabilities of the transitions are related to the a
priori probabilities of the information bits according to :

p; (mm') =

||E?r

(ut = u'(m/ m)) (B.27)
where u’(m/, m) is the value of the i-th bit of the (m', m) transition.

The APP of the information bits are computed just as in the previous
case, that is, using (B.25). We now have to extract the extrinsic probability
of each bit u? from its APP. The extrinsic probability is defined as the novelty
in the APP that comes from the decoder. The APP can be rewritten :

k
| [(uf = (m',m))
T _ = ! r=1

k

I (u,’; =’ (m/, m))

= (ut = u) > o (o B (m

= XﬁR@mem

The last equality holds because the a priori term 7 (u! = u) is common to
all the products in the sum.

Two cases have to be distinguished whether the convolutional code is
systematic or not.

Non systematic convolutional code

Since the information bits are not directly present as decoder outputs, and
thus are not observable, the only available information concerning the bit
u! at the decoder input is its a priori information. Hence, its extrinsic
probability is :

f[T (u@’ = u? (m/, m))
Ext (uf: = u) = Y a1 (m) Wi . _ B (m)
m'm/ui=u X _H R (yi\yj (m/, m))

= D ’Yt(m m')y (m) =) 0~§(m,m')

m',m/ut=u m',m/ut=u

)

164 B. THE FORWARD-BACKWARD ALGORITHM

where ~;(m, m') is just ;(m, m’') where the term depending on the bit u} has
been taken off. Hence, the extrinsic information can be seen as the output
of a modified FB algorithm, where steps 1 to 4 described in Section B.5.6
are unchanged, and where two different metrics ;(m,m') and 7} (m, m') are
used at step 5 to compute respectively the a posteriori state transition prob-
abilities o;(m, m') and the extrinsic state transition probabilities o} (m, m')
for all information bits lying on the transitions.

Systematic convolutional code

The output of the convolutional encoder at any time ¢ is :
X = {utl, o Ul el k} (B.28)
where the u’s are information bits and the z’s parity bits. Thus, we have :

R(¥IX) = [R (471l HR(£]ad) (5.29)

=1

Defining :
k k -
Yim,m') =[] = (t—u m',m))HR(yt\u mm)H (S 2 (m! m))
v i =
(B.30)
and : . ~
ot(m, m') = ay_1 (m') i (m, m)3; (m) (B.31)

%(m, m') is the metric of the transition (m', m) where informations concern-
ing the bit u! available at the decoder input (namely its a prior: probability
and its observation) have been taken off. Hence, its extrinsic probability is :

Ext (ué = u) = > ot (m,m') (B.32)
m' ,m/ut=u
The same modified FB algorithm with two metrics as stated for the non
systematic convolutional code is thus used to compute the APP and extrinsic
probabilities of the information bits.

With both types of SISO decoder, it is also possible to compute these
probabilities for the coded bits, by summing the corresponding state transi-
tion probabilities. This is specially useful in the iterative (turbo) decoding
of serial concatenated convolutional codes where the outer code is often non
systematic.

B.7. APPLICATION OF THE FB ALGORITHM TO THE SISO DECODING
OF A LINEAR BLOCK CODES 165

B.6.3 Initial and final states initialization

Another point to sketch out is that the FB algorithm needs that the starting
and ending states of the encoder are given. Knowing the initial state of
the encoder is not a problem since the all-zero state is, in general, forced as
the encoder initial state. However, the decoder has no special information
available regarding its final state. Three solutions can be used :

e initialization of 3 to 1/M : no information concerning the final state is
provided to the decoder : Hence, all the final states have same proba-
bility.

e addition of tail bits at the end of the information bit stream, in such a
way that the final state of the encoder is forced to zero. This solution
has been widely used in the turbo codes context, even if it slightly
decreases the rate of the code, considered as a block code. In this case,
the initialization of the s follows (B.21).

e “tail-biting” solution : particular convolutional codes can be designed
such that the encoder assumes again the initial state when the encoding
is completed. Therefore, the decoding trellis can be seen as circular,
and an FB algorithm with unknown initial and final states is used on
a length greater than 7. This method has also been applied to parallel
turbo codes [23].

B.7 Application of the FB algorithm to the SISO
decoding of a linear block codes

The forward-backward algorithm can be used as a SISO decoder for any
code that has a trellis representation. So are the linear block codes. The
trellis representation of linear block codes is a wide topic (see [101]). Trellis
design procedures for both the syndrome and coset trellises together with
construction of codes with optimum bit position reordering leading to smaller
trellises are studied in [101], [59] and [66]. Immediate construction based on
the polynomial description of linear block codes is presented in [6], [9], [4]
and [5].

166 B. THE FORWARD-BACKWARD ALGORITHM

The simpler trellis representation of a linear block code Cy is its syn-
drome trellis, which is easily constructed from its parity-check matrix H,.
We present this construction for the (7,4,3) Hamming code whose matrix
HO is :

Chp Ci Cp C3 Cs Cy Cg
s 1 0 1 1 1 0 0
Ho=1g 11100 1 0 (B.33)
s 01 1 1 0 0 1
Any codeword ¢ = {cg, -, cg} satisfies :
6
s ={so, 51,82} = Y_¢;hi = {0,0,0} (B.34)
i=0

where h; is the i-th row of Hy. The syndrome trellis is based on the partial
syndromes, that is :

. Rk
§] = {S‘g)as-{’sé} :Zczhf]: 17"'17 (B35)
i=0
and s° = {0,0,0} by definition. For any codeword, we obviously have s” =
s ={0,0,0}.

The syndrome trellis is defined as follows :
— its 2% states are labelled with the partial syndromes values
— its length is n and each transition represents a coded bit value
— hence, the number of transitions per node is at most 2
— the nodes represent the values that the partial syndromes can take for all
codewords
— since s = 0 and s" = s = 0 for all codewords, the trellis starts and ends
at the zero state
— a path in the trellis represents a codeword. Hence, there is 2% paths
— horizontal transitions represent coded bits with value 0
— oblique transitions represent coded bits with value 1
The syndrome trellis of the (7,4,3) Hamming code is represented in Figure
B.4.

This trellis representation is not always the smallest one (in terms of
number of states and total number of nodes) especially for codes of rate
lower than 1/2. Reordering the bits, and using other equivalent parity-check
matrix can lead to smaller trellises. However for the constituent codes used
in GLD codes, we use this trellis, as the constituent code rate r has to be
greater than 1/2 by construction.

B.7. APPLICATION OF THE FB ALGORITHM TO THE SISO DECODING
OF A LINEAR BLOCK CODES 167

$0S8182 (g C1 Co C3 Cq Cs Cg
000

100

010 W’ '
110

001
101

011

111

.

X L LY SR LR L L L

Figure B.4: Syndrome trellis of the (7,4, 3) Hamming code.

The use of the FB algorithm on this trellis as a SISO decoder of C; is
straightforward and simple :

e the metric y,(m,m'), t =0,---,n — 1 of any transition (m',m) is just
the product of the a priori probability 7(c;) of the coded bit ¢; lying
on the transition with its likelihood R(y:|ct).

e the APP of ¢; is computed as for convolutional codes : it is the sum
of all the o;(m, m’) for which the transition (m’, m) corresponds to the
bit value :

APP(¢;) =) oi(m,m) (B.36)

m!ym/ct

e since the informations related to ¢; that are known at the decoder
input are its a priori probability and its observation, i.e. 7, (m,m')
where (m',m) is the transition corresponding to the bit, the extrinsic

168 B. THE FORWARD-BACKWARD ALGORITHM

probability of ¢; is :

Ext(c;) = > a(m')p(m) (B.37)

m/;m/ct

B.8 Complexity analysis of the SISO decoder
of linear block codes based on the FB al-
gorithm

In this section, we give an estimate of the complexity of the FB algorithm
used as a SISO decoder for linear block codes in terms of memory usage,
floating point additions and product.

The general model of the syndrome trellis used to evaluate the complexity
is the following. It is divided in three parts : the opening part, the middle
part and the closing part. The opening and closing part are symmetrical.
The length of the opening and closing parts is n — k£ and the length of the
middle part is 2k — n. The number of nodes at time ¢ in the opening part
is 2!. The number of nodes in the middle part is 2**. The number of
right transitions per node is 2 in the opening and middle part. The number
of left transitions per node is 2 in the middle and closing part. This model
overestimates the number of nodes since optimization of the trellis is possible,
but is valid and useful to perform a general analysis of complexity. It is
presented in Figure B.5.

We perform the analysis assuming that a straight implementation of the
FB algorithm is used: it deals with probabilities (not LR values). We don’t
estimate the cost of the normalization, which corresponds to compute both
APP(¢; = 1) and APP(c; = 0) since it can be avoided by using the LR
implementation.

computation of s

Each transition metric «y(m’,m) is the product of the observation of the
corresponding bit with its a prior: probability. The observations have to be
computed for every algorithm, and depend on the channel. Hence, we don’t

B.8. COMPLEXITY ANALYSIS OF THE SISO DECODER OF LINEAR
BLOCK CODES BASED ON THE FB ALGORITHM 169

2n—k

Figure B.5: General trellis model for a (n, k) linear block code.

take it into account. Thus, computing each v needs 1 product. There are
only 2 values of v (y(¢; = 1) and y(¢; = 0)) at each time t = 1,---,n that
have to be computed since the metrics share them.

v cost : 2n products.

computation of the as

The three parts of the trellis have to be distinguished in the computation of
the as. The formula used is (B.17).

e opening part : with our assumption on the trellis structure each state
node is connected to only one previous state node. Hence, there is
only one term (and no summation) in (B.17). The total number of
products needed for the computation of all the as in the opening part
is 27 k*1 — 3. The correcting negative term is due to side effects at
the beginning of the trellis : the first « is initialized to 1, and thus the
following ones are just 7s.

e middle part : Following (B.17), 2 products and 1 summation are needed
for each a. As there is 2"% x (2k — n) nodes, the computation of this
part involves 2" ¥*1x (2k—n) products and 2" * x (2k—n) summations.

e closing part : the number of operation per « is the same as in the

170 B. THE FORWARD-BACKWARD ALGORITHM

middle part, but the total number of nodes (and of as) in this part is
2n—k 1.

a cost : 2"+ x (2k —n+2) — 5 products and 2" x (2k —n+1) —2
summations.

computation of the (s

Due to symmetry, the computation load for computing the (s is the same as
for the as.

computation of the extrinsic probabilities

We just compute Ext(c;, = 1) for ¢ =1,---,n. Following (B.37) one product
has to be computed per term in the summation. Hence, we need to evaluate
the number of transitions corresponding to ¢; = 1 for the three parts of the
trellis.

e opening part :there are 2"~% — 1 transitions corresponding to ¢; = 1 in
this part, thus 2% — 1 products and 2" ¥ —n 4+ k — 1 summations are
needed.

e middle part : there are 2k — n extrinsic values to compute, and each
involves 2"7* transitions. Hence it corresponds to 2" % x (2k — n)
products and (2% — 1) x (2k — n) summations.

e closing part : the computation load is the same as for the opening part
due to symmetry.

extrinsic probabilities cost : 2"* x (2k — n + 2) — 2 products and
2% x (2k — n +2) — n — 2 summations.

B.8. COMPLEXITY ANALYSIS OF THE SISO DECODER OF LINEAR
BLOCK CODES BASED ON THE FB ALGORITHM

171

computation of the APPs

Using (B.36) the computation of an APP value involves the same number of
summations as for the extrinsic probability and twice the number of products.

summary

The previous results are summarized in Table B.1. In a first approximation,
and as intuitively predictable, the complexity is proportional to the maximum
number of states of the trellis, 2"*.

Products number

Summations number

s computation
as computation
(s computation
Extrinsic computation
APP computation

2n
2”_k+1(2k -n+2)-5
2""““(2/6 -n+2)-5
2" k(2k —n+2)—2
20 kL (2k —n+2) —4

0
2 k(2k —n+1)—2
2" k(2k —n+1) -2
2 k(2% —n+2)—n—2
2 k(2% —n+2)—n—2

Intermediate 5x 2" K2k —n + 2) 2"k (6k — 3n + 4)
Iteration +2n — 12 -n—06

Final 6 x 2" %(2k —n + 2) 2"k (6k — 3n +4)
Iteration +2n — 14 —-n—2=6

Table B.1: Complexity of the FB algorithm as a SISO decoder for a linear

block code (n, k)

172 B. THE FORWARD-BACKWARD ALGORITHM

173

Appendix C

Publications

Iterative decoding convergence analysis :
— J. Boutros and O. Pothier : Convergence analysis of turbo decoding, Pro-
ceedings of the 5-th Canadian Workshop on Information Theory (CWIT’97),
Toronto, June ‘3-6, 1997, pp. 25-28
— J. Boutros and O. Pothier : Convergence analysis of turbo decoding, Sub-
mitted to IEEE Transactions on Information Theory.

GLD codes :
— O. Pothier, L. Brunel and J. Boutros : A Low Complexity FEC Scheme
Based on the Intersection of Interleaved block Codes, Proceedings of the Ve-
hicular Technology Conference (VIC’99), Vancouver, June 1999.
— J. Boutros, O. Pothier and G. Zémor : Generalized Low Density (Tan-
ner) Codes, Proceedings of the International Conference on Communication
(ICC’99), Houston, July 1999.
— J. Boutros, O. Pothier and S. Vialle : An asymptotical good family of
Generalized Low Density codes, in preparation for IEEE Transactions on
Information Theory.

Algebraic interleavers construction :
— O. Pothier : Algebraic Interleavers for Codes on Graphs, Second Philips
conference on Digital Signal Processing, Veldoven, November 1999.

174 C. PUBLICATIONS

175

Bibliography

[1] M. Abramowitz & I. Stegun : Handbook of mathematical functions,
Dover Publications Inc, New York, ninth printing, 1972, p. 257.

[2] N. Alon : FEigenvalues and expanders, Combinatorica 6, 2, pp. 83-96,
1986

[3] L. R. Bahl, J. Cocke, F. Jelinek, J. Raviv : Optimal decoding of linear
codes for minimizing symbol error rate, IEEE Trans. on Information
Theory, vol. 20, pp. 284-287, March 1974.

[4] G. Battail, M.C. Decouvelaere : Décodage par répliques, Annales des
Télécommunications, vol. 31 , no. 11-12, pp. 387-404.

[5] G. Battail, M.C. Decouvelaere, P. Godlewski : Replication decoding,
IEEE Trans. on Information Theory, vol. IT-25, pp. 332-345, May 1979.

[6] G. Battail : Description polynomiale des codes en blocs linéaires, An-
nales des Télécommunications, vol. 38 , no. 1-2, pp. 3-15.

[7] G. Battail, J. Fang : Décodage pondéré optimal des codes linéaires en
blocs. II.— Analyse et résultats de simulation, Annales des Télécommu-
nications, vol. 41, no. 11-12, nov.-dec. 1986, pp. 1-25.

[8] G. Battail : Pondération des symboles décodés par I'algorithme de
Viterbi, Annales des Télécommunications, vol. 42, no. 1-2, Janvier-
Fevrier. 1987, pp. 1-8.

[9] G. Battail : Polynomial description of linear block codes and its appli-
cation to soft-input, soft-output decoding, Annales des Télécommuni-
cations, vol. 54, no. 3-4, mars-avril 1999, pp. 148-165.

176

BIBLIOGRAPHY

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

G. Battail : A Conceptual Framework for Understanding Turbo codes,
International Symposium on Turbo Codes, pp. 55-62, Brest, September
1997.

G. Battail : Théorie de I'information, Masson, Paris, 1997

C. M. Bender & S A. Orszag : Advanced Mathematical Methods
for Scientists and Engineers, McGraw-Hill Book Company, New York,
1978, pp. 218ft.

S. Benedetto, E. Biglieri, V. Castellani : Digital Transmission Theory,
Prentice-Hall, Englewood Cliffs, New Jersey, 1987.

S. Benedetto, G. Montorsi: Unveiling turbo-codes: some results on par-
allel concatenated coding schemes, IEEE Trans. on Information Theory,
vol. 42, no. 2, pp. 409-429, March 1996.

S. Benedetto, G. Montorsi: Design of parallel concatenated convolu-
tional codes, IEEE Trans. on Communication, vol. 44, no. 5, pp. 591-
600, May 1996.

S. Benedetto, G. Montorsi, D. Divsalar, F. Pollara : Serial concatena-
tion of interleaved codes: Performance analysis, design and iterative
decoding, TDA Progress Report 42-126, JPL, April-June 1996.

S. Benedetto, G. Montorsi : Serial concatenation of block and convo-
lutional codes, Electronic Letters, Vol. 32, pp. 887-888, 1996.

S. Benedetto, G. Montorsi : Iterative Decoding of serially concatena-
tion convolutional codes, Electronic Letters, Vol. 32, pp. 1186-1188,
1996.

C. T. Benson : Minimal Regular graphs of Girths eight and twelve,
Canad. Journal Math., vol. 18, pp. 1091-1094, 1966.

E .R. Berlekamp : The technology of error-correcting codes, Proc.
IEEE, vol. 68, no. 8, May 1980, pp. 564-593.

E. R. Berlekamp : Algebraic Coding Theory, Aegean Park Press, Re-
vised 1984 Edition.

C. Berrou, A. Glavieux, P. Thitimajshima : Near Shannon limit error-
correcting coding and decoding : turbo-codes, Proceedings of ICC’93,
Genéve, pp. 1064-1070, May 1993.

BIBLIOGRAPHY 177

[23] C. Berrou, C. Douillard, M. Jézéquel : Multiple parallel concatenation
of circular recursive systematic convolutional (CRSC) codes, Annales
des Télécommunications, vol. 54, no. 3-4, mars-avril 1999, pp. 166-172.

[24] N. Biggs :Algebraic Graph Theory, Cambridge Tracts in Mathematics,
Cambrigre University Press, 1974.

[25] J. Boutros, O. Pothier : Convergence analysis of turbo decoding, Cana-
dian Workshop on Information Theory, Toronto, June 1997.

[26] J. Boutros, O. Pothier, G. Zémor : Generalized Low Density (Tanner)
Codes Proceedings of 1CC’99, Vancouver, June 6-10, 1999.

[27] J. Boutros, S. Vialle : Performance Limits of Concatenated Codes with
Iterative Decoding, submitted to ISIT’2000, Sorrento, Italy.

[28] L. Brunel : Algorithmes de décodage de canal pour I’accés multiple &
étalement de spectre. Ph. D. Dissertation, ENST, Nov. 99.

[29] C. Brutel, J. Boutros : Serial Concatenation of Interleaved Convolu-
tional Codes and M-ary Continuous Phase Modulations, Annales des
Télécommunications, vol. 5, no. 3-4, mars-avril 1999, pp. 235-242.

[30] C. Cardinal, D. Haccoun, F. Gagnon, and N. Batani : Turbo Decoding
Using Convolutional Self Doubly Orthogonal Codes, Proceeedings of
ICC’99, Vancouver, June 6-10, 1999.

|31] D. Chase : A class of algorithms for decoding block codes with channel
measurements information, IEEE Trans. on Information Theory, Vol.
IT 18, Jan. 1972, pp. 170-182.

[32] F. De Clerck, J. A. Thas and H. Van Maldeghem : Gen-
eralized Polygons and Semipartial Goemetries, FEuler Insti-
tute for Discrete Mathematics and its Applications (EIDMA)
minicourse, Eindhoven 22-26 April 1996. Available online at
http://cage.rug.ac.be/~fdc/eidma.ps

[33] P. Dembowski : Finite Geometries, Springer Verlag, New York, 1968.

[34] E. Diestel : Graph Theory, Graduate Texts in Mathematics, Springer-
Verlag, 1997.

[35] D. Divsalar, S. Dolinar, R.J. McEliece, F. Pollara : Transfer function
bounds on the performance of turbo codes, TDA Progress Report 42-
122, JPL, April-June 1995.

178 BIBLIOGRAPHY

[36] S. Dolinar and D. Divsalar : Weight Distributions for Turbo
Codes Using Random and Nonrandom Permutations, TDQ
Progress Report 42-122, JPL, August 1995. Available online at
http://tmo. jpl.nasa.org/tmo/progress_report/42-122/title.htm

[37] T. M. Duman, and M. Salehi : New Performance Bounds for Turbo
Codes, IEEE Trans. on Communications, vol. 46, No. 6, June 1998,
pp. 717-723.

[38] P. Elias : Error-free coding, IRE Trans. on Information Theory, pp. 29-
37, 1954.

[39] K. Engdahl and K. S. Zigangirov : On Low-Density Parity-Check Con-
volutional Codes, Proceedings of WCCC’99, Paris, pp. 379-392, Jan-
uary 1999.

[40] Z. Fiiredi, F. Lazebnik, A. Seress, V. A. Ustimenko and A. J. Woldar :
Graphs of Prescribed Girth and Bi-degree, Journal of Combinatorial
Theory, Series B 64, pp. 228-239, 1995.

[41] G. D. Forney : Concatenated Codes, Cambridge, MIT press, 1966.

[42] G. D. Forney: The Viterbi algorithm, Proceedings of the IEEE, vol.
61, no. 3, pp. 268-278, March 1973.

[43] M. P. C. Fossorier, S. Lin :Soft-Input Soft-Output Decoding of Lin-
ear Block Codes Based on Ordered Statistics, Proceedings of GLOB-
COM’98, pp. 2828-2833.

[44] B. J. Frey and F. R. Kschischang : Probability propagation and itera-
tive decoding, Allerton Conference, October 1996.

[45] B. J. Frey : Pseudo-Random Codes Based on Bayesian Networks,
Proceedings of the 5th Canadian Workshop on Information Theory
(CWIT), pp. 15-18, Toronto, june 3-6, 1997.

[46] R. G. Gallager : Low-Density Parity-Check Codes, IRE Trans. on In-
formation Theory, January 1962, pp. 21-28.

[47] R. G. Gallager : Low-density parity-check codes, MIT Press, 1963. Also
available online at http://justice.mit.edu/people/pubs/ldpc.ps

[48] R. G. Gallager: Information Theory and Reliable Communication,
John Wiley & Sons, 1968.

BIBLIOGRAPHY 179

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

A. Glavieux, C. Laot, and J. Labat : Turbo equalization over a fre-
quency selective channel, International Symposium on Turbo Codes,
pp- 96-102, Brest, September 1997.

P. S. Guinand and J. Lodge : Tanner Type Codes Arrising from Large
Girth Graphs, Proceedings of the 5th Canadian Workshop on Informa-
tion Theory, pp. 5-7, Toronto, June 1997.

J. Hagenauer, P. Hoeher: A Viterbi algorithm with soft-decision out-
puts and its applications, Proceedings of GLOBECOM’89, Dallas,
Texas, pp. 47.1.1-47.1.7, November 1989.

J. Hagenauer, E. Offer, L. Papke: Iterative decoding of binary block
and convolutional codes, IEEE Trans. on Information Theory, vol. 42,
no. 2, March 1996, pp. 429-445.

C. R. P. Hartmann and L. D. Rudolph : An Optimum Symbol-by-
Symbol Decoding Rule for Linear Codes, IEEE Trans. on Information
Theory, vol. IT-22, no. 5, Sept. 1976, pp. 514-517.

H. Herzberg and G. Poltyrev :The Error Probability of M-ary PSK
Block Coded Modulation Schemes, IEEE Trans. on Communications,
vol. 44, no. 4, April 1996, pp. 427-433.

P. Hoeher : New iterative (“turbo”) decoding algorithms, International
Symposium on Turbo Codes, pp. 63-70, Brest, September 1997.

A. J. Hoffman and R. R. Singleton : On Moore Graphs with Diameter
2 and 3, IBM Journal Res. Develop., vol. 4, pp. 497-504, November
1960.

J. Hokfelt and T. Maseng : On the convergence rate of
iterative decoding, Proceedings of GLOBECOM’98, Syd-
ney, Australia, November 1998. Also available online at
http://www.tde.lth.se/jht/pdfs/ct04pl.pdf

J. Hokfelt, Ove Edfors, and T. Maseng : Turbo codes : correlated
extringic information and its inpact on iterative decoding convergence,
Proceedings of VIT'C’99, Houston, 18-21 May, 1999.

B. Honary, G. Markarian : Trellis Decoding of Block Codes : A Prac-
tical Approach, Kluwer International Series in Engineering and Com-
puter Science, Secs 391, June 1997.

180

BIBLIOGRAPHY

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

N. Kahale and R. Urbanke : On the Minimum Distance of Parallel
and Serially Concatenated Codes, submitted to Trans. on Information
Theory, 1999.

F. R. Kschischang and B. Frey :Iterative Decoding of compound Codes
by Probability in Graphical Models, IEEE Journal on Selected Area in
Communications (JSAC), Vol. 16, No. 2, February 1998, pp. 219-230.

L. H. Charles Lee: Convolutional coding, fundamentals and applica-
tions, Artech House, 1997.

M. Lentmaier and K. S. Zigangirov : On Generalized Low-Density
Parity-Check Codes Based on Hamming Component Codes, IEEE
Communication Letters, Vol. 3, No. 8, August 1999, p. 248ff.

Y. Li, B. Vucetic, Y. Sato: Optimum Soft-Output Detection for Chan-
nels with Intersymbol Interference, IEEE Trans. on Information The-
ory, vol. 41, no. 3, May 1995.

S. Lin, D. J. Costello : Error Control Coding: Fundamentals and ap-
plications, Englewood Cliffs, NJ, Prentice-Hall, 1983.

S. Lin (Editor) : Trellises and Trellis-Based Decoding Algorithms for
Linear Block Codes, Kluwer International Series in Engineering and
Computer Science, Secs 443, March 1998.

J. H. Lodge, P. Hoeher, and J. Hagenauer : The decoding of multidi-
mensional codes using separable MAP “filters”, Proceedings of the 16th
Biennial Symp. Comm., Kingston, Canada, May 1992, pp. 343-346.

J. H. Lodge, R. Young, P. Hoeher, and J. Hagenauer : Separable MAP
“filters”for the decoding of product and concatenated codes, Proceed-
ings of ICC’93, Genéve, pp. 1064-1070, May 1993, pp. 1740-1745.

M. Luby, M. Mitzenmacher, M. A. Shokrollahi, D .A. Spiel-
man Improved Low-Density Parity-Check Codes Us-
ing Irregular Graphs and Belief Propagation, Proceedings
of the International Symposium on Information Theory
(ISIT°98), p. 117, August 16-21, 1998. Also available online at
http://www.icsi.berkeley.edu/ luby/PAPERS/belerr.ps

M. Luby, M. Mitzenmacher, M. A. Shokrollahi, D .A. Spiel-
man : Analysis of Low Density Codes and Improved De-
signs Using Irregular Graphs, Proceedings of the 30th

BIBLIOGRAPHY 181

ACM STOC, May 23-26 1998. Also available online at
http://www.icsi.berkeley.edu/ luby/PAPERS/anaerr.ps

|71] A. Lubotsky, R. Philips, and P. Sarnack : Ramanujan Graphs, COM-
BINATORICA, vol. 8(3), pp. 261-277, 1988.

[72] D. J. C. MacKay, S. T. Wilson, M. C. Davey Comparison of Con-
structions of Irregular Gallager Codes, To appear in IEEE Trans. on
Communications, Submitted July 1998.

[73] D. J. C MacKay : Good Error-Correcting Codes based on Very Sparse
Matrices, IEEE Trans. on Information Theory, 1999. Also available
online at http://wol.ra.phy.cam.ac.uk/mackay/mncN.ps.gz.

[74] F.J. MacWilliams, N.J.A. Sloane: The theory of error-correcting codes,
North-Holland, Englewood Cliffs, eightth impression, 1993.

[75] G. A. Margulis : Explicit group-theoritical constructions of combinato-
rial schemes and their application to design of expanders and concen-
trators, Problemy Peredachi Informatsii, vol. 24(1), pp. 51-60, 1988.

[76] R. J. McEliece, D. J. C. MacKay, and J.-F. Cheng : Turbo decoding as
an instance of Pearl’s “belief propagation” algorithm, IEEE Journal on
Selected Areas in Communications (JSAC) Vol. 16, No. 2, pp.140-152,
February 1998

[77] K. R. Narayanan and G. L. Stiiber :A serial Concatenation Approach
to Iterative Demodulation and Decoding, IEEE Trans. on Communi-
cations, Vol. 47, No. 7, pp. 956-961, July 1999.

[78| J. Pearl :Fusion, propagation, and structuring in belief networks, Artif.
Intell., Vol. 29, pp. 241-288, 1986.

[79] W. W. Peterson and E. J. Weldon : Error-Correcting Codes, M.I.T.
Press, Second edition, 1972.

[80] L.C. Perez, J. Seghers, D.J. Costello : A distance spectrum interpreta-
tion of turbo codes, IEEE Trans. on Information Theory, vol. 42, no.
6, pp. 1698-1709, November 1996.

[81] G. Poltyrev : Bounds on the Decoding Error Probability of Binary
Linear Codes Via their Spectra, IEEE Trans. on Information Theory,
vol. 40, no. 4, July 1994, pp. 1284-1292.

182 BIBLIOGRAPHY

[82] O. Pothier, L. Brunel, J. Boutros : A low complexity FEC scheme
based on the intersection of interleaved block codes, Proceedings of
VTC’99, Houston, 18-21 May, 1999.

|83] J.G. Proakis: Digital Communications, New York, McGraw Hill, 3rd
edition, 1995.

[84] R.Pyndiah, A. Glavieux, A. Picart, and S. Jacq : Near Optimum prod-
uct codes, Proceedings of GLOBECOM’94, San Francisco, pp. 339-
343,Nov. 1994.

[85] R. Pyndiah : Iterative Decoding of Product Codes : Block Turbo
Codes, International Symposium on Turbo Codes, pp. 71-79, Brest,
September 1997.

[86] R. Pyndiah : Near optimum decoding of product codes : block turbo
codes, IEEE Transactions on Communications, vol. 46, no. 8, Au-
gust 1998.

[87] T. Richardson, R. Urbanke : The capacity of low-density parity check
codes by probability propagation in graphical models, Bell Labs report,
submitted to IEEE Trans. on Information Theory. Available online at
http://http://lcavwww.epfl.ch/ ruediger/papers/capldpcc.ps

[88] T. Richardson, A. Shokrollahi and R. Urbanke : Design of Prov-
ably Good Low-Density Parity Check Codes, submitted to IEEE
Trans. on Information Theory. Available online at texttthttp://cm.bell-
labs.com/cm/ms/who/tjr/papers/degree.ps

[89] P. Robertson, E. Villebrun, and P. Hoeher : A comparison of op-
timal and sub-obtimal MAP decoding algorithms operating in the
log-domain, Proceedings of ICC’95, Seattle, Washington, June 1995,
pp- 1009-1013.

[90] P. Robertson, P. Hoeher, and E. Villebrun : Optimal and Sub-Optimal
a Posteriori Algorithms Suitable for Turbo Decoding, European Trans.
on Telecommunications, vol. 8, no. 2, March-April 1997, pp. 119-125.

[91] G. Royle : Cages of higher valency. Available online at
http://www.cs.uwa.edu.au/ gordon/cages/allcages.html

[92] I. Sason and S. Shamai (Shitz) : Bounds in the error probability of ML
decoding fo block and turbo-block codes, Annales des Télécommunica-
tions, vol. 5, no. 3-4, mars-avril 1999, pp. 183-200.

BIBLIOGRAPHY 183

[93] I. Sason and S. Shamai (Shitz) : Improved Upper Bounds on the
ML Decoding Error probability of Parallel and Serial Concatenated
Turbo Codes via their Ensemble Distance Spectrum, submitted to
IEEE Trans. on Information Theory, march 1999.

[94] H. Schellwat : Highly Expanding Graphs Obtained from Dihedral
Groups, DIMACS Series in Discrete Mathematics and Theoritical Com-
puter Science, vol. 10, pp. 117-123, 1993.

|95] M. Sipser and D. Spielman : Expander Codes, IEEE Trans. on Infor-
mation Theory, Vol. 42, no 6, pp. 1710-1722, November 1996.

[96] D. Spielman : Linear-time encodable and decodable error-correcting
codes,, IEEE Trans. on Information Theory, Vol. 42, November 1996.

[97] R. M. Tanner : A recursive approach to low complexity codes, IEEE
Trans. on Information Theory, Vol. IT-27, September 1981.

[98] S. Ten Brink : Convergence of iterative decoding, Electronic Letters,
Vol. 35, No. 10, May 1999, pp. 806-808.

[99] J. A. Thas and G. Lunardon : Finite Generalized Quadran-
gles, Intensive Course on Galois Geometry and Generalized Poly-
gons, 15-25 April 1998, University of Ghent. Available online at
http://cage.rug.ac.be/ fdc/intensivecourse/fgq.ps.

[100] W. T. Tutte : Connectivity in graphs, University Press, Toronto, 1966.

[101] A. Vardy : Trellis Structure of Codes, in Handbookof Coding The-
ory, Ed. V. Pless, W. Cary Huffman and R. Brualdi, Elsevier Science
Publishers, Amsterdam.

[102] S. Vialle, J. Boutros : A Gallager-Tanner construction based on con-
volutional codes, Proceedings of WCC’99, pp. 393-404, Paris, January
1999.

[103] A. J. Viterbi, J. K. Omura : Principles of digital communications and
coding, McGraw-Hill, 1979.

[104] A. J. Viterbi, A. M. Viterbi, J. Nicolas, N. T. Sindhushayan : Pre-
spectives on interleaved concatenated codes with iterative soft-output
decoding, International Symposium on Turbo Codes, Brest, September
1997.

184 BIBLIOGRAPHY

[105] N. Wiberg, H. A. Loeliger and R. Kétter : Codes and iterative decoding
on general graphs, European Trans. on Telecom., Vol. 6, Sept/Oct 1995.

[106] N. Wiberg : Codes and Decoding on General Graphs, Ph.D. Thesis,
Link6pings University, 1996.

