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Iterative Multiuser Joint Decoding: Unified
Framework and Asymptotic Analysis

Joseph Boutrgdviember, IEEEand Giuseppe Cairdlember, IEEE

Abstract—We present a framework for iterative multiuser joint  iterative IC-based approximations have been investigated, sev-
decoding of code-division multiple-access (CDMA) signals, based eral different algorithms have been proposed, and performance
on the factor-graph representation and on thesum-productalgo- has been evaluated mainly via computer simulation.

rithm. In this framework, known parallel and serial, hard and soft Thi tributes to th b t f K in t
interference cancellation algorithms are derived in a unified way. IS paper contributes 1o the above stream of work in two

The asymptotic performance of these algorithms in the limit of Ways. First, we provide a unified framework where a large class
large code block length can be rigorously analyzed by usindensity of previously proposed algorithms can be elegantly derived.
evolution We show that, for random spreading in thelarge-system Second, we provide an asymptotic performance analysis of
limit, density evolution is considerably simplified. Moreover, by jiarative IC decoding enabling the quantitative and qualitative

making a Gaussian approximation of the decoder soft output, we luati f t f hich simulati Id be iust
show that the behavior of iterative multiuser joint decoding is ap- €v&iuation of systems for which simuiation would be Jus

proximately characterized by the stable fixed points of a simple iImpossible.

one-dimensional nonlinear dynamical system. Our framework is based on the application of them-
Index Terms—bensity evolution, interference cancellation, iter- product algorithm [22] tp .t.he' factor-gr'a}ph representr?ltlon
ative decoding, multiuser detection (MUD). [22]-[25] of the a posteriorijoint probability mass function

(pmf) of the users information bits. The factor-graph for the
problem at hand has cycles if the number of users is larger
than one. Therefore, the resulting algorithms are intrinsically
M ULTIUSER detection (MUD) has been traditionally redterative. Depending on the algorithm execution scheduling
garded as an ensemble of techniques to detect uncodegl obtain classical parallel and serial iterative decoding as
data in a multiple-access waveform channel (see [1] and refgpecial cases. By making some simple approximations ddi the
ences therein). posterioripmf at the decoders output, we obtain in a direct way
More recently, research has been focused on the combinats@veral previously proposed iterative IC decoding algorithms,
and interaction of MUD and channel coding. From an informavhich were motivated mainly by heuristics.
tion-theoretic point of view, all points in the capacity region of Although formally similar, the algorithms derived from the
the Gaussian multiple-access channel are achievable by sucgggi-product algorithm differ by a fundamental detail with re-
sive single-user decoding and interference cancellation (IC) [8Rect to their heuristic counterparts: the estimated interference
[3]. In correlated waveform channels, such as code division m@it each iteration is a function of the decodexsrinsic pmf(in
tiple access (CDMA), the optimal successive IC decoder takegef, EXT)}! rather than of the decodeasposteriori pmf(a
on the structure of a decision-feedback minimum mean-squgesterioriprobability (APP)), as in [5], [7], [9], [12], [19]-[21].
error (MMSE) detector, where at each stage the already decoddds has two important consequences: from the performance
users are subtracted from the received signal [4]. viewpoint, we show that EXT-based iterative algorithms out-
Information-theoretic results hinge upon the existence perform their APP-based counterparts in terms of maximum
optimal (i.e., capacity-achieving) user codes. A different arithievable spectral efficiency at given target BER. From the
perhaps more practical approach to multiuser joint decodiagalysis viewpoint, EXT-based iterative algorithms can be rig-
considers a given class of finite-complexity channel codes aatbusly analyzed by the general technique knowrDassity
investigates the achievable spectral efficiency at given tardetolution(DE) [27], developed to analyze the performance of
bit-error rate (BER). The number of works in this directiorvarious families of random-like code ensembles under message-
is overwhelming. Without even trying to be exhaustive, wpassing decoding (see [28] and references therein).
refer to [5]-[21] and references therein. In these works, joint For the class of iterative multiuser IC decoders derived in this
maximume-likelihood (ML) decoding and some low-complexityaper and for a class of user channel codes having certain sym-
metry properties we prove a rigorous concentration result [27]

showing that, for large block length, the decoder BER perfor-
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constant [29]-[31]. Finally, we provide@aussian approxima- with respect to any usér. The receiver knows per-

tion [32]-[34] of the exact DE that yields accurate results arféctly the CDMA system parameterss, {vi, ..., vk},

allows the characterization of the decoder performance limigs 2 {6xn: k =1,...,K,n = 1,..., N}, and the user

in terms of the stable fixed points of a simple one—dimension@d)des{cb ..., Cx’}. In practice, the spreading sequenegs

nonlinear dynamical system. and the phase® are pseudorandomly generated according to
The paper is organized as follows. Section Il presents t8gme known algorithm and thg,’s are imposed by the power

system model. Section Ill deals with the factor-graph and tR@ntrol algorithm.

sum-product algorithm and derives iterative joint decoding The modulation signal setd;, have zero mean and unit av-
schemes. In Section III-C, we obtain low-complexity ICerage energy, i.e.,

decoders. Section IV is dedicated to the asymptotic analysis of 1
IC decoders. Numerical examples are presented in Section V —|~Ak| Z a=20
and in Section VI, we point out some recent results originated aCAx

by this work and some suggestions for further work. All proof'%md 1

are given in Appendix A, and Appendix B gives the details of — Z la]? = 1.

the calculation of the Gaussian approximation of DE for the [ Ar] a€A

important case of binary convolutional codes and quaternaryierefore, the average signal-to-noise ratio (SNR) of &ser

phase-shift keying (QPSK) modulation. given by
. Notation Definitions: For a matrix4, a*, a, andaifj denote A E [|si 2wk narnl?] ,
its 4th row, jth column, andé, j) element, respectively. For a SNRy = = Yrlsxl”. 3)

H 2
row or column vectow, v; denotes itgth componentl{£} de- B [|8'vnl?]

notes the indicator function of the evefit A (i, R) denotes ASSuming that an ideal Nyquist pulse with zero excess band-
the circularly symmetric complex multivariate Gaussian distridth [37] is used for modulating the chips, the system spectral

bution [35] with mean vector and covariance matriR. The efficiency in bits per second per hertz (bit/s/Hz) is given by [31]

symbol~ means “distributed as.” 1 &
== Ry, 4
P=7 ; 2 (4)
Il. SYNCHRONOUSCDMA SySTEM MODEL For an equal-rate system®{ = R forallusers), we get = a R,
We consider the “canonical” CDMA discrete-time synwherea = K /L is the number of “users per chip,” referred to
chronous system (see [1], [29], [31] and references there#n thechannel load29].
described by
y, = SW, 2, +v,, n=1...,N 1) [ll. JOINT DECODING. GRAPH REPRESENTATION AND

) ) ) _ ITERATIVE ALGORITHMS
wherey, € C¥ is the signal vector received at time,

v, ~ Nc(0, I) is the corresponding noise vectay, € C* velne . :
is the vector of transmitted user modulation symbols at tin{€3l: [25] of thea posteriorijoint pmf of the user information

n 8 = [81,...,8x] € CEXX is the spreading matrix bits. By applying thsum—produclz_llgorlf[hm to the resultlng
containing the user spreading sequences by columns, %%tor-graph,we o_btamacl_ass of |terat_|ve_ decoding alg_orlthms
W, = diag(wi n, ..., w.,) iS a matrix of complex ampli- approxma_tlng optimal maxmumposteno_rl(MAP)_decodlng.
tudes. The integer&’, L, and N denote the number of users," the particular case of parallel and sesahedulingwe ob-

the spreading factor(chips per symbol), and the code blockain the algorithms prqposed in sevgral works (gee,.fgr e.xample,
length (symbols per block), respectively. [71, [15_], [1_6], [20]_)_. Finally, py making some simplifications,

Users send independently encoded information. We assuffe derive in a unified and direct way well-known parallel and

that the user codewords are aligned in time. Hence, (1) c&ial iterative IC decoding algorithms [5], [8], [10], [12], [13],

scribes the channel during the transmission of one codewdrt’l; [19]-[21].
User codewords are interleaved before transmission. W&, let A, Factor-Graph Representation
andA; C C denote the code and the complex modulation signal
set of usek, respectively, and we let,.: F5** — AN denotethe ~ Throughout the paper, we use the proportionality symbol
encoding function foc;, (including interleaving). The coding in order to indicate that the quantity in the right-hand side (RHS)
rate isR;, = mz /N bits per symbol. We have is defined up to a multiplicative factor chosen in order to make
; e it a true probability density (or mass) function.
Co={zeChiz=g), VbeF"}. (2 | gy - (b 1y s b.m,) € F2" be the vector of in-
Since we put no restrictions on the encoding functi@nany formation bits of usek, and letY” = [y,, ..., yy] € CEXV
code over the complex signal sdf, can be expressed by (2). be the received signal anfl € CX*¥ the transmitted code
The user complex amplitudes are givenyy,, = \/%ej <~ array obtained by stacking by rows the transmitted codewords
where the 6 ,’s are random independent and idensz!, ..., z® (the transmitted symbol vectat, is the nth
tically distributed (i.i.d.) phases whose distribution igolumn of X). The multiuser channel with coding is fully de-

such that E[¢’»»] = 0. Phase randomization is arti- , _ : N .
ficiallv introd d by the t itt . d t k In actual CDMA implementations, phase randomization is common practice
ICially Introduced Dy the transmitiers In order 10 MaKse) |n our context, it is mathematically convenient for the analysis of Section

multiple access interferencéMAI) circularly symmetric Iv.

In this section we derive thfactor-graphrepresentation [22],
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O O Fig. 2. Factor-graph of a trellis-terminated trellis code of rate 1 bit/symbol and
block lengthV = 4. Black circles denotstate variablesnd the squares denote
thetrellis transition functiongsee [22]).

B. The Sum-Product Algorithm
Let b ; denote thgth information bit of usek:. The optimal

ql q2 q3 q4 MAP detection rule minimizing the average BER for each user
is given by
Fig. 1. An instance of the factor-graph for a multiuser coded CDMA system R )
with K = 3 users and block length’ = 4. by, j = arg max APP;, ;(b), forall k, ; (8)
Cl2

scribed by thea posterioripmf of {b*, ..., ™} givenY’, de- where APR ;(b) denotes the marginal APP of tif,;, given

noted byQ(b', ..., b™|Y).2 By using the fact that the vector

channel (1) is memoryless, that users codewords are indepen- Iy 1 K

dently generated and that the user information bits have uniform AP 5(b) = Z Q.. B7IY). ©)
a priori probability, we can write be 1=b

1; Computing the APP of the mformatlon bits by brute force has
b, B o H 4 (@ H pi(a, 8 ) complexity of the order of [1_, |Cx|. Even for smalli, this is
intractable for practical user code sizes. Also in the case where
all user codes are trellis codes, the complexity of joint decoding
pr(z, b) 2 Hz = ¢n(b)} (6) applied to the Cartesian-product trellis@f x - - - x Cy is pro-
hibitive in practice [6], [11].
A general method for approximating (9) consists of applying

where we define theode constraint functlons

and thechannel transition functions

qn(x) 2 exp (— ly,, — SWn:c|2) . (7) the sum-product algorithm [22] to the factor-graph. In the sum-
L i product algorithm, adjacent nodes in the factor-graph exchange
The factor-graph fof2(b™, ..., b™ [Y') is arepresentation of the «\yyegsages” in the form of real-valued functionsv I V and

factorization (5) V|aab|part|te gragh(V, F), where variables f € F are connected by the edge= (v, f), the messages
(b, ; andzy, ) are represented by “variable nodest V and  hassed along in either directions are functions of

functions (n andp,,) by “function nodes”f € F. Each nodef We letQy, .(a) and Py, ,.(a) denote the messages calculated
is connected to all nodedor which the corresponding variablesgt the nih-channel transition function nodeg, and at the
are arguments IOf the functioh Fig. 1 shows the factor-graphh-code constraint function node., respectively, and sent
for @b, ..., " |Y) for K = 3, N = 4, andmi = m» = g the variable node; ., wherea denotes a dummy variable
mg = 4. taking on values in the symbol alphahdj,. It is understood

Remark 1: Each code constraint function block can als§hat bothQx .(a) and P, »(a) are pmf defined overd,.. By
be represented as a factor-graph, depending on the célowing the general sum-product computation rules of [22],
structure. In particular, if codé, is a trellis code, turbo code We obtain the following.

[38], low-density parity check (LDPC) code (see [28] and . computation at the channel transition function nodes:

references therein), repeat—-accumulate (RA) code [39], etc., )

the subgraph formed by the variable nodgs,, ..., bk m,, K

T, 1, - -, Tk, N, @nd by the function nodg, can be expanded Qi n(a) Z exp | — yn_z 8;Wj n;

in well-known forms [22]. For example, if all codes in the eedyx XA j=1

factor-graph of Fig. 1 are trellis codes of rate 1 bit/symbol, the *

function node®, p2, andps in Fig. 1 can be replaced by the . H P; . (aj), fora € A,. (10)
corresponding factor subgraph given in Fig. 2. However, in <k

order to keep our treatment as general as possible, we shall not

expand further the factor-graph of Fig. 1. Computatlon at the code constraint function nodes:

L . A | . P for . (11
3Conditioning with respect t§W ,, ..., Wy} andS, which are known to iy Z H Qr, j(a;); ora€ A (11)
the receiver, is omitted for the sake of notational simplicity. acCr jFEn

an
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« Computation at the variable nodes ,,: since these nodes In our case, the simplest and most intuitive schedulings are
have degree, they act as relays, i.exx , sendQ »(a) parallelandserial In parallel scheduling, one iteration is given

to p,, and Py ,,(a) to g, by the sequence

« Computation at the variable nodis ;: since these nodes {tn:n=1,..., N}
have degreé, they just receive a message frgm This —{zpnk=1 ..., K n=1 ... N}
is given by ’ R T

—{p:k=1,..., K}
N —A{zx,nik=1,...,K,n=1,...,N}. (13)
@bkyj(b) 0 Z H Qi n(ay), forbeFs. (12) Inserial scheduling, users are considered in a given cyclic order

a=ai () n=1 (without loss of generality, we consider the natural ordeking
BT 1,2, ..., K). One iteration is given by the sequence
The information bit detection is obtained by using the {¢,:n=1,..., N}
aboveapproximatedAPP in (8). —{z1in=1,...,N}— {p}
Remark 2 (Extrinsic pmfs, Soft-In-Soft-Out (SISO) Decoding, —{z1n=1 ..., N} ={g.n=1,..., N}
and Optimal MUD): A fundamental characteristic of the sum- —{azanin=1,..., N} = {p}

product algorithm is that “ .a message sent from a node along
an adjacent edge cannot depend on the message previously re-
ceived along the same edd27]. As observed in [27], it is pre- :
cisely this restriction that enables the analysis of the iterative o o

decoder. We notice thady, ,(a) and Py .(a) defined in (10) —Agnin=1..., N} > {zgnn=1..., N}
and (11) fulfill the above requirement. —{px} = {ok,nin=1,..., N}. 14)

The quantity defined in (11) is the “extrinsic pmf’ (EXT)|n both cases, the algorithm is initialized by the uniform pmf
of the decoder [26], [38], [40]. The APP af; ., given Py n(a) = 1/| Ay foralla € Ay, k = 1,..., K andn =
the a priori marginal pmfs{Q ;j(a): j = 1,..., N} is 1 ... N.
given by xQx. »(a)Py »(a). The calculation of the EXT in
(11) is often referred to asoft-in soft-out(SISO) decoding C. Low-Complexity Approximations: IC Schemes

[26]. If the user codes admit a trellis representation (e.g.,\ye notice that (10) consists of computing thposterioripmf

they are trellis-terminated convolutional codes), the SIS k. » given the observatiog, , assuming that the interfering

computation (11) can be carried out by the forward—backwag?,mbomj’ .., j # k are statistically independent with marginal

Bahl-Cocke—-Jelinek—Raviv (BCJR) algorithm [41] with ”neabmij .(a). The exponential complexity of (10) is due to the

complexity Iny. - . . . ___fact that the symbols; ,, take on values in the discrete séf.

The quantity defined in (10) is the EXT for Verdu's optimalgy, aificially modifying the marginal pmfs of the interfering
symbol-by-symbol multiuser detector [1] wigtpriori marginal - gy mpols; several low-complexity algorithms can be derived in a
pmfs {P; »(a): j = 1,..., K}. Unfortunately, the CDMA unified way.
vector channel (1) has no particular structure enabling efﬁcientHard IC: By replacingP; (a) with its single mass point
evaluation of (10). Therefore, the computation of (10) has Corﬁbproximation 7
plexity of the order of[,—, |Ax], i.e., exponential ink . For
large K, the iterative sum-product algorithm is still too com- 2 (a) =1 {a — argmax P; (a/)} (15)
plex for practical implementations. O hr reA” "

Scheduling: It can be shown that the sum-product algorithrf10) reduces to
is able to compute exactly the marginals of the underlying mul- 9
tivariate function in a finite number of steps if the corresponding Qx,n(a) o< exp (_ﬂk:" |2k, n — al ) (16)
factor-graph is cycle-free (see [22], [24] and reference therei
It is apparent from direct inspection of Fig. 1 that our problem
yields a factor-graph with cycles unles = 1 or the users Br,n = il sil* (17)
codes are trivial (i.eCy = A} for all k). The consequences of
cycles are: 1) detection based on (12) is in general suboptingitd where
2) the result is sensitive to the order in which computation is car- 1 I -
ried out through the nodes (scheduling); 3) different scheduling ST P PR (%0 = ¥,n)
yields generally nonequivalent iterative algorithms. )

A scheduling is defined by a sequence of node subsets to"HEh
activated. Nodes in the same subset can be activated in any ar- T Z 8W; iy
bitrary order, as the value of their output messages does not de- ’ oy T
pend on the activation order within the subset. When a node,igqy
activated, all its output messages are calculated by using the cur- .
rent value of its input messages. Ty = AT K Ly, n(a)-

—{azpin=1,..., N}

(18)
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In the following, we refer to the subtraction of the MAI esti- SUMF-Based Soft ICIf, in addition to the above conditional
mate from the received signal followed by filtering (as in (18)§aussian assumptiog,, is assumed to be conditionally white
as “IC-MUD.” In the case of (18), the MAI estimatg, ,, is with the same MAJ-noise total power, the assumed conditional
formed by using the symbol-by-symbol hard decisions basedvariance matrix fog,, is

on the SISO decoders EXT pmfs, and the filter is the conven- 1 1 -

tional single-user matched filter (SUMF). Depending on the diag <z tr(k,n)y - ztr(zk,n)>

scheduling, we obtain the well-known serial and parallel hard ) ] ]

IC schemes. and (10) takes on again the form (16) with nominal SINR
The coefficient 3, , defined in (17) can be interpreted i |8k |?

as the nominal signal-to-interference-plus-noise ratio Prn = 1+% S 18P (26)

(SINR) at the output of the IC-MUD. In fact, by letting 37k

Zln = Tin + Ck,n, if all symbol-by-symbol hard decision and

were correct (i.e.r; » = x;,, for all j # k), then the variance Zhn = s (y, — Fr ) 27)

of the residual interference-plus-noise tegn, would be T g2 TR W TR

E(|C,n PNl = 1/Br, - with g, ,, given by (22). In this case, the IC-MUD outp ,, is

Linear MMSE (LMMSE)-Based Soft Iy replacing obtained by passing the same difference signal as in (24) through
P; n(a) with a complex circularly symmetric Gaussian probathe SUMF. Depending on the scheduling, we refer to this algo-

bility density function (pdf) with the same mean and varianaghm as the SUMF-based serial or parallel soft IC scheme.
9], given b
. 0 Y Remark 3 (Using APPs Instead of EXT3it several papers

Py, (@) = Ne (i, &j,n) (19) (e.g. [5], (81, [10], [12], [13], [17], [19]-{21], [42], [43])t;, »
in (20) is calculated from the APP at the SISO output instead of
where the EXTP; ,.(a), thus violating the basic principle of the sum-
S ' product algorithm. As a consequence, the residual interference
Tjn = Z aPj n(a) . i
ach; plus noise at the IC-MUD outpwl., » = 21 » — %, » (Where
o zk n 1S given by (18), (24) or (27)), is biased conditionally on
Ejon = Z la — 2 n|” Py n(a) (20) 24, i.e., E[Ch.n|2r,n] # 0. Moreover, it can be shown that
acCA; the conditional biaseduceghe useful signal componentin .,
the MAI can be treated as a Gaussian vector with covariangg], [45].
matrix A consequence of this bias effect is that the APP-based IC
. algorithms cannot be analyzed by simply trackingthdance
Yion = Z 8885 0 (21)  of the residual MAI plus noise through the decoder iterations,
J#k as done inin [5], [46], [47]. As a matter of fact, the “variance”
and mean analysis applied to APP-based algorithms yields too optimistic
results. O
Yen = Z 8 Wj, T, n- (22) Remark 4 (Relation With Uncoded Iterative 1C-MUDAX
el large number of recent works proposed and analyzed itera-

ditionally jointly Gaussian givers, — a, and (10) corre- references therein). In particular, witmear feedbackthese
sponds to the marginalization of a multivariate Gaussian p@gorithms can be seen as matrix-polynomial approximations

After some algebra, (10) can be put in the form (16) with non®f linear multiuser detectors (decorrelator and LMMSE [1])
inal SINR while, with nonlinear feedback, they can be seen as low-com-
L plexity approximations of the optimal multiuser detector [1]
Br,n = Yiss X sk (23) obtained via theExpectation MaximizatiofEM) or the Sub-
space Alternating Generalized ESAGE) approaches [55].

and with Finally, both linear and nonlinear feedback iterative IC-MUD
w;ﬁ,n Sl ifl ( . ) (24) with parallel or serial scheduling can be derived in a unified

B © TR Yn = ¥pn) - way as the iterative solution of a constrained ML detection

. . . . problem [52].

In this case, the IC-MUD outpu,  is obtained by subtracting Itis natural to ask whether the iterative multiuser IC decoding

from y, the MAI estimatey, ,, formed by using the soft . S
symbol-by-symbol estimates (20) based on the SISO decod%l orithms presented in this paper are related to IC-MUD algo-

EXT pmfs, and the filter is theaominalunbiased linear MMSE E.hmlsr]:reu;}g?g:td geDSM.f; chI%sir;c;]oalTOat;hse Iﬁgtsoergtv\:g?:rl]azges
(LMMSE) filter defined by the vector of filter coefficients 9. 1 rev » despit VIOUS € gies,
) of algorithms are qualitatively very different. In fact, the factor-
hi = u}”‘" 3 ;n 8. (25) graph for an uncoded system is obtained by removing the code
Prn constraint function nodes from the graph of Fig. 1. The resulting

Depending on the scheduling, we refer to this algorithm as theaph is aforest i.e., a collection of mutually disconnected
LMMSE-based serial or parallel soft IC scheme. treesT,, = {1, ny . Tk, n, Gn), fOrn = 1, ..., N. The

Zk,on =
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sum-product algorithm applied to each tfEgyields a noniter- which can be approximated by
ative algorithm which (essentially) coincides with the optimal .
symbol-by-symbol multiuser detector. Therefore, no estimated N 1 o 9
MAI signal can be iteratively produced by the sum-product al- Elgk, n] > 1~ N Z [,
gorithm applied to the uncoded case. =t

In conclusions, we claim that while iterative MUD for un-and can be easily computed from thth SISO decoder output.
coded CDMA finds its natural explanation in the frameworkn this way, the LMMSE filter (25) must be recalculated for
of iterative solution of linear systems of equations [44], [51fvery user and every iteration, but its is constant for all symbol
of multistage Wiener filtering [50], [53], [54], and of iterativeintervals. This heuristic simplification of LMMSE-based algo-
solution of (constrained) ML estimation problems [52], [55]rithms is referred to asnconditional LMMSEn [56], since the
the natural framework for iterative multiuser IC decoding is theesulting filter can be interpreted as the solution of the uncondi-
factor-graph and sum-product algorithm approach, as illustratisehal unbiased MMSE problem

in this paper. O )
. H -
Remark 5 (An Alternative Interpretation of the LMMSE- 1Ly, E kan — bk (Y — Ui n) } (30)
Based IC Algorithms):In [12], [20], [21], the LMMSE-based ) =
parallel and serial schemes are derived fronccaditional subjectto A spwy,, =1

MMSE argument. Namelyz ., in (24) is obtained as the
conditional LMMSE estimate of; ,, given that the symbols
xj » for j # k are distributed according t®; ,,(a). Indeed,
assuming tha{ P; ,.(a): j # k} are statistically independent
of x1 , and of the noise,,, . » has the structure of a Wiener
MMSE linear estimator fok; ,, with observationy,,, where
the observation mean value

Yr,n = EYH L) nla): 5 # k] (28)
is subtracted from the observation and the difference is filtered IV. ASYMPTOTIC PERFORMANCEANALYSIS FOR M -PSK

by hx ., given in (25), solution of the conditional unbiased TRELLIS CODES
MMSE problem

under the assumption th@®; ,.(a): j # k} are statistically
independent of;, ,, and ofr,,, which holds asymptotically for

— Q.

For practically relevant system size (sayjin{ K, L} > 10),
the LMMSE-based algorithm previously derived is prohibi-
tively complex, while its unconditional LMMSE approximation
is easily implementable. O

In this section, we provide a rigorous BER analysis (asymp-
. ~ totically for large block lengthV) of the iterative multiuser IC
v E|foen - b, - B rge block ler . .
— [ Tk, @, = 9.) decoders derived in Section IlI-C in the special case where the
(P n(a): j # k) (29) user codes are derived from the same trellis code bid?SK.
45, n 8T : Our analysis is based on the DE method, introduced in [27] to
subjectto A" spwy , = 1. study LDPC codes on binary-input symmetric-output memo-

For finite IV, this interpretation is not exact, since messagé4€ss channels, and in [57] for LDPC codes on binary-input
{P;. n(a): j # k} are statisticallgependendn z;, ,, and onw,, time-invariant intersysmbol interference (I1SI) Gaussian chan-

and neither (22) is obtained from (28) nor (25) is the solutigh€!S With finite memory.

of (29). However, under certain assumptiofig; (a): j # &} e main principle underlying DE is that, a — oo, the
are asymptotically statistically independentugf , and of,, pdf of the messages generated by the iterative decoder after any

for N — oo, and the above “conditional MMSE” interpretationf'XEd number of iterationg concentratesaround the expected

holds (see Remark 8 in Section V). pdf resulting from a random cycle-free graph. Furthermore, we

Interestingly, if the APPs instead of EXTs are fed back frorﬁhOW that for random spreading sequences and in the limit for

the SISO decoders (as in [12], [20], [21]) the above interpret@9e K andL, with fixed channel load(/L = «, DE for par-
tion is never exact, even in the limit for largé and random allel scheduling is greatly simplified and, for this case, we pro-

interleaving, since the APP far; ,, depends o, , which con- vide an acgurate and computationally very effici@dussian
tainsz;, ,, andw,,, no matter hO\;V large is. ) 0 approximation(GA) of the exact DE (GA-DE).

2

Remark 6 (Implementation Issuesfhe nominal LMMSE A Assumptions and Definitions
filter (25) must be recalculated for every user, every de-
coder iteration, and every symbol interval. Therefore, the
LMMSE-based algorithms are much more complex than it
SUMF-based (or hard-decision based) algorithms. As
alternative, the LMMSE filters can be calculated adaptively,
proposed in [14], [42]. Another approach for Iow-complexit);a
implementation of the LMMSE-based algorithms is propos
in [56], where the terng,, ; in (20) is replaced by its ensemble
average

User Codes and Phase Randomizatiofe assume that all
er codeg’;, are derived by the same “basic” code and
ffer only by the interleaver, that is randomly and indepen-
Sently chosen with uniform probability in the set of all permu-
tions of{1, ..., N}.C is a block code obtained by trellis ter-
ination of a time-invariant trellis code with code symbols
(encoder outputs) per trellis section. We assumedliat geo-
metrically uniform code [58] over th&/-PSK signal setd,, 2
{e2mm/M: =0, ..., M — 1} with M > 2, obtained from
Elé n]=1- E[|§:k7n|2] a linear trellis code over the ring,, via the natural mapping
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p: Zyy — Apg such that(m) = e/27/M  Furthermore, we
assume that the phase randomization sequences

edge, el]

IC-MUD,n=1
O={0 k=1 ...,K n=1,...,N}

have i.i.d. elements uniformly distributed ¢8rm/M: m =
0, ..., M — 1}. We need the following.

Trellis window,k=2 Trellis window k=3

Definition 1: The additive-noise memoryless changel=
z + v is said to bedy,-invariant if p,,. () = p.(2) for any
a€ Ay <>

It follows immediately that, for a fixed sequence of
phases {#,,} known to the receiver with elements in
{2rm/M: m = 0,...,M — 1}, the statistics of the
SISO EXT pmfs{P,(a): n = 1, ..., N} given thate € C is
transmitted over thed,,-invariant additive-noise memoryless i
channely,, = ¢/*~z,, + v,, does not depend of¢,,}. Hence,
without loss of generality, in &;-invariant channel we can
always assume that the all-one codeword belongs to thetodeig. 3. An instance of the oriented neighborhadd’) in a computation

SISO DecodersThe messagé’. ,(a) at the output of the flowgraph with X' = 3 users and trellis window widthl” = 1.
kth SISO decoder is computed by the “windowed” BCJR al-
gorithm [59], i.e., by the forward—backward recursion [41] agC-MUD node has an input edge coming from a trellis window
plied to a window including¥ trellis sections to the right and of the kth user SISO decoder.

W trellis sections to the left of the trellis section containing the ThetypeT (VL)) of N, is defined as theestrictionof the
coded symbol transmitted, after interleaving, at tim& The transmitted codewordX onto the suppor‘S(N,gézl), ie.,

forward and backward recursions on each window are initialized ’

by uniform probabilities of the trellis states. It is well known 7 (N;EZZL) = {371‘,1': (i,7) €S (N;EZZL)} (31)
that, asiW increases, the windowed BCJR algorithm CONVergesa have
to the performance of the full BCJR algorithm [59]. e _ 1

Computation Flowgraph and Oriented Neighborhoods: n(¢) 2 ‘T (NISZZ])‘ =(K—-1)~———
From the factor-graph, we deriveeamputation flowgrapleon- ’ K-1 ]
taining only the nodes where computation actually takes plad@iereX = (K —1)((2W +1)s — 1). In the example of Fig. 3,
the IC-MUD nodes and the SISO decoder nodes (correspondiig haven:(1) = 10 and
to the nodesy,, andp; in the original factor-graph _of Fig.1). g (N1(11)) —{(2,1), (3, 1), (1, 3), (3, 3), (1, 7), (3, 7),
Moreover, the SISO decoder nodes are expanded into (generally ’
overlapping) windows o2W + 1 trellis sections each, corre- (1,4),(2,4), (1,5), (2, 5)}
sponding to the computation carried out by the windowed BCIRy (Nflf) ={w2,1, #3,1, ¥1,3, T3,3, T1,7, 3,7, T1,4,
algorithm. We need the following definition.

IC-MUD,;n=3 IC-MUD,n=7 IC-MUDn=4 IC-MUD,n=5

(32)

2,4, T1,5, L2, o}

Definition 2: Consider the oriented edgk_ ,, between the .
th IC-MUD node and théth SISO decoder mode in the corm- Random Graphs Ensemblé\e consider the ensemble of all

. ; . 0 - computation flowgraphs$G, ©) defined by the edge connec-
putation flowgraph. Theriented neighborhood, , of & tions in the system factor-gragh(which, in its turn, is defined

is defined as the collection of all paths of leng@thstarting at by the random interleavers) and by the random phase sequences

thenth IC-MUD node and not containing,  [27]° 4 ©, while the spreading sequenc&sand the basic codé are
For example, Fig. 3 shows an instance/df”), with £ = fixed.

m = ¢ = 1in a computation flowgraph withk' = 3 users,  The messagé,)ﬁ)n(a) sent over edgéx, », is a function of

s = 1 symbols per trellis section, and decoder trellis windowie IC-MUD output variable!”, = . ,, +¢\“)., where the su-

of width W = 1. The edges in/\/,gé) are oriented according perscript(¢) indicates the decoder iteration. The empirical

n

to the computation message flow. In particular, each IC-MURwlative distribution functiogcdf) of C,E[)n for a given instance

node has< — 1 inputedges and oéneutputedge- of (G, ®) and of the channel noi¥ = [v4, ..., vx], and for

The neighborhoodupportS(N,i ZL) is defined as the collec- given transmitted codeword$ = [z, ..., zy], is defined by
tion of all (user= k, time = n) index pairs such that theth L X

7 A
FEVEX) 2L Y 1{Re{¢,} S Ref2).

4Because of trellis termination, the computation window is truncated to the n=1
left ., to the right) bols in trelli iohs. .., W WN/s — ¢
57 geli? to t\7£|)9 t) for symbols in trellis sectiohs. .., W (resp.,N/s Im{ ,E)n} < Im{z}}. (33)

SWe defi ighborhood llecti f paths, and not b h. . 7 . .
e define a neighborhood as a collection of paths, and not as a su graﬁ%eﬂxedz €C, F,gé’A)(z|X) is a function of(G, ©, N) and

Then, a neighborhood can contain repeated nodes and edges. In general, wi )
the term “collection” to denote a multiset, where elements might be repeate@f X. Hence, for randoniG, @, N) (defined over a common
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probability space)F,gé’ N)(z|X) is a random variable taking on  Proposition 1: For allk = 1, ..., K and for anye > 0,
values in[0, 1]. there exists:; > 0 independent ofV and# such that, ifN >

We define also the (nonrandom) cdf 2¢1 /€, then
Fg)(zp() 2 F [1 {Re{ ’Eé’)n} < Re{z}, Pr (‘Féé’ N)(z|X) - Fgf)(z) > 6) <2e72 N (36)
Im{ ,Ez)n} < Im{z}H X, /\/,EZZL is cycle-fre% (34) Proof: See Appendix A. O

o . ) Remark 8: An immediate consequence of Proposition 1 is
where expectation is with respect(@, ©, N). Itis evidentby ot the EXT messages from SISO decodiets & sent to the

symmetry thai" (X ) does not depend on nth IC-MUD node are asymptotically statistically independent
of x3, , and of the noise,,. In fact, in a cycle-free neighbor-

B. Concentration and Density Evolution hood these EXT messages depend only on the noise and sym-
The results of this section show that, forevéry 1, ..., K bols corresponding to IC-MUD nodes that are children of the
and a given finite/, asN — oo the random empirical cdf nth IC-MUD node. Because of the cycle-freeness, these nodes

F{“™(2X) converges almost surely to the nonrandom c@rrespond to time indexgsz 7. ¢
F{7(2|X) and that the latter does not depend &n It fol- From Proposition 1 and the first Borel-Cantelli lemma [60,

lows that the limit for large block length of the residual interp 53] since: is arbitrary we get thaF,Eé’ M2X) - Ff)(z)
ference cdf for usek at decoder iteratiofican be computed by no|gs almost surely. Hence, fof — oo, the residual inter-

propagating the expected “densities” of the messages throyghence variables contributing to same trellis window of the
a cycle-free random neighborhood. The corresponding densiiso decoder of any usérat iteration/ is almost surely i.i.d.,
propagation algorithm is referred to as DE [27]. We need thep I(f)(z)_ It follows that the BER of usek at iteration? is the

following preliminary results, proved in Appendix A. same as it were transmitted over a memoryless time-invariant
Lemma 1: For givenk, n, £, and the ensemble of randomadditive-noise channel with noise Cﬁfg)(z) Since the BER
computation flow graphs defined in Section IV-A is a continuous functional of the noise cdf, we conclude that the
BER for any usek after? decoder iterations can be calculated
Pr (N’Ef) is not Cyc|e_fre§ <4 (35) from F \")(z). The iterative computation df {*(z) is obtained
o <N

by the following DE algorithm.

L ; . <0 .
wherec; depends o, K, W, ands, but it is independent V. Be?sny Evolution: We let f () be the pdf corresponding
O to Fé )(z). Because of the phase randomization and since the
_ . ) noise is circularly symmetric, it is easy to see that the residual
Lemma 2: Let C be a geometrically uniform code ovely, interference variabl{,g)n . F?f)(z) is Ay -invariant. Let

as defined in Section IV-A and consider the transmissiod of _ ) . 0 iy
over a memorylesst;-invariant channel with noise pgf,(z). 9% (2]z) be thehpdfr?f the symbol esumaﬁé‘in Col,nd't'f]ned
Let {P.(a): a € Ay be thenth output message produced®” #x.» = &, atthetth DE iteration. Lemma 2 implies that

by the SISO decoder (11) when the transmitted codewaid is
the channel observation 6 = & + v, and the corresponding
input messages afe);(a) = p,(y; —a), j =1, ..., N}. Let gy eypioiting this symmetry, only the evaluation of the condi-
&, = b, forsomeb € Ay; and fp, 1z(p1, - ... pam), be the pdf (¢

" tional pdfg ;' (#|x = 1) is actually required and, without loss of
of the output messag@’,(a): a € Ay }. Then, foranyt” € € ganerality, DE can be run by assuming that the all-one codeword
with &/, = ¥/, there exists a permutationof {1, ..., M} that

; is transmitted by all users. For the sake of notational simplicity,
depends only oh and¥’ such that we indicateg ,(f)(ZIx — 1) simply byggf)(z).
IC-MUD and SISO decoding define the (random) mappings

7.0(212") = 50 (x(a)"2)x).

ez (o1, - pm) = fr,12(Pr1)s -5 Pr(any) O

Corollary 1: Given that/\/,gle is cycle-free and
{1 g #nt = Ten (38)

respectively, where, because of what was said earlier, it is un-
derstood that:;, ,, = 1 is the transmitted symbol, and where
randomness comes from the pha®eand the channel nois¥.

We define the pdf mappingé. = Fr.({g;: j # k}) and
Corollary 2: For the ensemble of computation flowgraphgx = G (fx) corresponding to (37) and to (38), respectively,
and channel nois¢(G, ©®, N)} and for a user basic code under the assumption of statistically independent inputs. This
in the class defined in Section IV-A{"(2|X) = F{?(z), means that, if

independent oX . O

¢ ¢
X = TN = G

is a Markov chain, i.e.c,g)n is independent ofX given the
neighborhood type. O

{ijn:5 # kY~ [ 95(2)

Then, our main concentration result is as follows. ok
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then(y, . ~ fu = Fu({g;: j # k}), andif form = 1,...,Landk = 1, ..., K are i.i.d. complex
) circularly symmetric random variables witB[v,, ] = 0,
{G g2 # 0}~ ][ falz) Ellvm 1]?] = 1, andE[[vm 1|4 < oo, and we letk — oo
gFn with L = K/, for fixed channel loadx. The DE limiting

thenzy , ~ gx = Ge(fx). pdfs (provided that they exist), depend on the basic dbde

The estimated modulation symbols are initialized asn the user amplitude§,/~,} and on the spreading matrix
#0 =0, yieldingg” = &, wheres denotes a Dirac distri- S. Hence, for randon$ the limiting users’ BER is a random
bution centered at zero. DE for parallel scheduling can be corariable. We shall show that, in the large-system regime, the
cisely expressed as follows. L}ﬁl) = Fi({g; = & j # k}) BER performance of each user converges almost surely to a

fork=1,..., K.Then, fort =2, 3, ..., let deterministic quantity. Moreover, the resulting DE is much
—w D). simpler than the general DE for giveéhand finite K, L.
fr =% ({gj (fj )1 J# k}) ; k=1,..., K. An importantcaveatshould be made about the order of the
(39) limits with respect taV and K. In fact, Proposition 1 holds for
Similarly, DE for serial scheduling is given by finite K.7” Then, our results are valid if we létst N — oo and
- <. e then X' — oo, and notvice versaln practice, this means that
fi =% ({gﬂ' (fj ) J < k}v {gj=6j> k}) ’ a random CDMA system with finitéV and K performs with
k=1, ..., K highprobability very close to the limit provided in this section if

_ N > K. Fortunately, this is a realistic assumption for practical
and, forl = 2, 3, ..., by CDMA systems [36].
FO—rm (16 (795 <kl L (FE V)5 > k), In this subsection and in the rest of the paper we focus on
» * ({ ’ ( ! ) } { ’ ( ! ) }) parallel IC algorithms only, since in the limit for infinit& it is
k=1..., K. (40) not clear how to compute the serial DE. The following result and

By inspection of (39) and (40) we see thd, : k = 1, ..., K} its corollary characterize the large-system limit of the iterative
is a fixed point of the parallel DE, i.e., it satisfies multiuser IC decoders with parallel scheduling.
fr = Fel{G;(f): 5 £ kD), for all k& Proposition 2: Assume that, for alt, the user squared signal

amplitudes satisfy;. € [0, Vmasx] for some finitey,,.» indepen-

ifand only if itis a fixed point of the serial DE. Therefore, seriajjent of i, and that the empirical cdf of the,’s, defined by
and parallel scheduling have (almost surelyas— o) the X

same set of fixed points. IK = 2, the two schedulings yield GO Ky — 1 L < 42
identical DE and, therefore, yield the same BER. Eor> 2, it (v) = K Z e <t (42)
is difficult to say if they converge to the same stable fixed point .
for any choice of the system parameters. co(g)verges weakly [60, Ch. 5] to a glven_(nonrandom) cdf
The DE algorithms (39) and (40) are easily implementﬁ(@h) asK — co. Then, ask, L — oo with K/L = o,

by Monte Carlo simulation of the empirical histograms corl + (#) converges aimost surely to the Gaussian distribution

_ 1
responding to the pdfg f)(z) andygf)(z). The BER after a (0, 55) where, for hard IC and SUMF-based soft-IC,

given number of iterations can be measured from the outgtif’ is given by
of the SISO decoder, as in standard Monte Carlo simulation. (O 1

k=1

A faster approximated method for BER evaluation consists of 1 + aF [U(é—l)] (43)
making the Gaussian approximation ) , .
, where the cdf of/(¥) is defined by the limit
FO N o (0 %
[/ (z) = Ne <0, E U k,n }) . (41) G(z)(u) — lim 1 EB: 14 ‘xk _© ‘2 <) (s
K—oo K " kon| =

Let BER = ¢,(SNR) be the BER versus SNR function for k=1

the basic cod€ in additive white Gaussian noise (AWGN). (that exists and is independent ©f and, for LMMSE-based
Then, thekth user BER at iteratiod can be approximated assoft-IC, () is given by the unique nonnegative solution of

BEREf) ~ eb(l/E[|C,Ef)n|2]). In the next section, we shall see 1
that this approximation holds exactly for random CDMA in the n= oD (45)
limit for large K and L. I+ ak [W}
C. Large-System Limit and Gaussian Approximation where the cdf of/(“) is defined by the limit
In this subsection, we consider the large-system limit per- ) 1 - 0 |?
formance of the iterative IC decoders for random CDMA & (%) = m e Z Lywe (1= ‘xkn Sup (46)
[29]-[31]. We assume that the spreading sequences are ran- . o k=1
domly generated with elements, . = + vy, 1, Wherev,, i (that exists and is independentof.
Proof: See Appendix A. O

6The functione; (SNR) can be either obtained by simulation or by standard
union bound [37], or by a combination of both. For example, for low SNR, 7In general, concentration [27] requires that the maximum degree in the
we can use simulation and for high SNR, where simulation would be too timendom graph representing the message-passing decoder is finite, while the
consuming and union bound is tight, we can use the union bound. size of the graph grows to infinity.
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Corollary 3: Under the assumptions of Proposition 2, DEvhere E,[-] denotes expectation with respect io ~
with parallel scheduling converges almost surely to a stabd-(0, 1/1:(¢)), and where we used the fact that, for a given
fixed point (which exists almost surely), uniquely identified bynodulation alphabeti;, E,[|1 — Z|?] in (52) depends only
the |imitn*é1imé_)oo 7, wheren(®) is given in Proposition 2. on the SNRy(¢), which is a one-to-one function of the SER

Proof: See Appendix A. O ; therefore, the functiof (¢) 2 E,[|1 — z|?] is well defined.

From Proposition 2 it follows that the Gaussian approxim%—ﬁ:ﬂsggggéz'ir:g:a(:il\?e) \;voeﬁ?kétzzlgggge(f,:;DE recursion for the

tion (41) of the SISO decoder input holds exactly in the largé-
system limit. Next, we propose a Gaussian approximation of the O = 1 (53)
SISO decod(e)mutput[32]—[34], which makes the iterative com- T+a [V (es (ynD)) dGO(v)
utation ofp©) very simple. The resulting Gaussian approxima-.., . .. .
lzon of the?)E alggrithnﬁwill be referret?to as the G,f—pDE. with initial condition® = 0. . . -
Let ¢ = ¢,(SNR) denote the symbol error rate (SER) versus, F~o.r the LMMSE-ba;ed algorithm, notice tha? the statistics
SNR function for the basic codeover AWGN#& when decision of Z is completely defined by the parameterDefine the cdf

. ) . H(ule) = Pr(1 — |%|? < u). Then, from (45), the GA-DE re-
are made according to the EXT-based hard detection rule cursion for the LMMSE-based iterative soft IC decoder is given

Zj,n = arg max Pj n(a). (47) by »© solution of
The SER of usek at iteration? — 1 is given by 1

T a TS i 4H (ues (70 D)) dGO()

= (€-1) 48 1+~yun
€= ¢g : .
(’VW ) (48) (54)

For hard IC we can write

o initialized again byn® = 0. Despite its apparent complica-
E [|xk,n - xk,n| ]

tion, the recursion (54) is easily computable in several cases of

=2-2Re {E[xz,nikm]} interest (see the example in Appendix B).
F M-1 Recursions (50), (53), and (54), completely characterize, up
~ 2 <1 —(l =9 =35 Rﬁ{ > 6]27”"/M}> to the approximations in (49) and in (51), the behavior of the
m=1 hard IC, the SUMF-based soft IC, and the LMMSE-based soft

M (49) ICiterative multiuser decoders in terms of one-dimensional dy-

M-1 namical systems with state variabjé). In brief, these dynam-
where we assumed that, if a symbol is in error, any other symb@d| systems can be written as

appears with uniform probability/(M — 1), and we used the

= 2e¢

fact thaty Mt ¢i2em/M — _1for M > 2.Byusing (49)and 79 =V (Y, o, GO)), £=1,2,... (55)
m=1 y g
(48) in (43) we obtain the recursion
1 with 7(®) = 0, and where thenapping functionl’ depends on

0 — . . ;
m= 14 20 M J;)oo e (W(é_l)) 4G () (50) the particular algorithm considered and on the system parame-

-1 ters: the channel load and the cdf of the users’ SNRE?) ().
initialized by n® = 0. By replicating the proof of Corollary 3, it is immediate to see
For soft IC, we assume that the SISO decoder outpgiat the iterated map (55) with initial condition® = 0 con-
messaged’; (a) are produced by a virtual uncoded AWGNverges always to a limi§* € [0, 1]. As shown in Section V, for
channely = xy ,, + v, whose SNR is such that the SER withmost choices of the system paramefgrss a good approxima-

symbol-by-symbol detection is equaldgiven in (48)? Denote tjon of the limit»* of the exact DE.
by 1(e) the SNR of such virtual channel and, without loss of
generality, assume that, , = 1 is the transmitted symbol.

Then, the GA of the SISO output yields the estimated symbol V. RESULTS
R e—n(O)lr+1—al? In this section, we present some numerical examples in order
= Z a S RO (51) toillustrate the main theoretical results of this work. All results
a€Au ¢ are based on binary convolutional codes (CCs), with bit-inter-

a’ €A

leaving, Gray mapping [37], and QPSK modulation. We focus
on this case since it is very important in CDMA applications
E [|21n — &1,a7] = B, [|1 - 7] a V() (52) [36]and t[he computation of the GA-DE is 'partipularly sim_ple.

The details of the DE-GA calculation are given in Appendix B.

8As for the BER functiore; (SNR), also the functior, (SNR) can be obtained Thel Mapping and Its Fixed PointsFig. 4 shows the func-
by th bination of simulation (for low SNR) and union bound (for high. . .
SY\IR)(.% combination of simulation (for low ) and union bound (for |glhon \11(77, a, G© (7)) defined in (55) for the LMMSE-based
9The GA proposed here is based on matching the SER at the decoder outp@ft 1C decoder, different values of the channel laadnd
and differs from the GA proposed in [32], [33], that matches the conditionglqual-power users, i_eG(O) (ry) = 1{7 > ’70}- The user

- . Py (1 . . . . .
mean valueof the EXT log-likelihood ratioly, .. = log 25 given hasic code is the binary CC of rat¢2 with octal generators

#,.» = +1 and from the GA proposed in [34], that matches the mutugls 7y (see [37]), briefly denoted in the following by “CC
information I(L »; zx,.). These two GA's methods can be applied to

binary antipodal signaling, and are widely used in the analysis and design(g‘fv 7). l_Jsers have all the sam&}, /N, equal to 6 dB, cor-
random-like codes under iterative message-passing decoding. responding toy, = 3.9811. Fora = 1.0, 1.4, 1.8, and 2.2,

From the above approximation, we can write
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Fig. 4. ¥ mapping function for the GA-DE of LMMSE-based soft IC decoding, with GC7), QPSK modulation, equal power users wiflh/N; = 6 dB,
anda = 1.0, 1.4, 1.8, 2.2, and2.6.

the equation; = U(n, a, G°(y)) has only one solution each simulated frame. The empirical SINR for ukeat itera-
7" = 1, corresponding to the unique (stable) fixed point dion ¢ is evaluated as

the GA-DE. Sincen* is very close tol, we expect that all 5 1

. : - SINR;” = .
users achieve near-single-user BER after a sufficiently large k R 2
number of decoder iterations. On the contrary,doe 2.6, the N 2—31 2k T Tk

equationn = U(n, a, G©(v)) has three solutions (given by
the intersections of the curv&(r;, a, G(¥(v)) with the first The exact DE and the GA-DE trajectories o) versus the
quadrant diagonall = 7). In this case, the limif* is given by number of iterationg for the infinite-dimensional system are
the smallest solution, which s 0.14. Hence, we expect that shown for comparison.

for o« = 2.6 all users perform very far from the single-user BER Two observations should be pointed out here. 1) The GA-DE

(the SINR penalty in decibels with respect to the single-usafd exact DE trajectories agree very well foe= 1.8 and2.6,
SNR is given byl0log,,(77*) ~ — 8.53 dB). i.e., fora far from the threshold. On the contrary, fory = 2.2

We notice that the iterative multiuser decoder has a threshdfi@t is close to the threshotdthe two trajectories converge to
behavior with respect to the channel loagi.e., there exist a hearly the same fixed point but in a different number of itera-
valuew such that, for allv < @ near-single-user performancetions. In particular, the GA-DE is slightly optimistic in terms of
is achieved by all users, while for all > @, the degradation the number of iterations needed to converge. 2) The behavior of
with respect to the single-user performance is very large for #ie random finite-dimensional system is very well predicted by
users. The valug corresponds to fold bifurcation[61] of the the infinite-dimensional DE, and quite accurately predicted (at
dynamical system defined by (55), i.e., it is the value belolgastin terms of the limiting fixed point) by the GA-DE.
which the second stable fixed point disappears. Fig. 6 shows the GA-DE mapping functidnfor CC (5, 7),

The fixed-point analysis is confirmed by Fig. 5, showing §dual-power users with;, /No = 6 dB,« = 1.8, and LMMSE,
snapshot simulation of a random finite-dimensional system wigl/MF, and hard IC iterative multiuser decoders. The threshold
L = 60, N = 2000, and the same user basic code, modul#eada characterizing the decoder fold bifurcation depends on
tion, andE, /N, of the infinite-dimensional system of Fig. 4,the decoder algorithm. In the example of Fig. 6, we observe that
but where the user spreading sequences and interleavers aretfghL MMSE-based decoder is below its threshold load while
domly generated at each frame. A total of 10 frames (each c8te hard-IC and SUMF-based soft IC decoders are above their
responding to a block of lengtN coded QPSK symbols) werethreshold load.
generated. The scattered points in Fig. 5 show the minimum and-inally, Fig. 7 shows the GA-DE mapping functidnfor the
maximum empirical SINRY, ratio over the user population, for LMMSE-based decoder for a system with € 7) basic code,
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Fig. 5. Evolution ofp‘® versus the number of iterations for LMMSE-based soft IC decoding, with( G), QPSK modulation, equal power users with
E,/No = 6 dB, andx = 1.8, 2.2, and2.6. Solid lines with triangles and squares denote the GA-DE and the exact DE trajectories, respectively, and lozenges
denote simulation snapshots of a finite-dimensional system with spreading faeta80 and block lengthV = 2000.
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Fig. 6. ¥ mapping function for the GA-DE of different IC decoders, with CT 7), QPSK modulation, equal power users wih/N, = 6 dB, andx = 1.8.
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Fig. 7. ¥ mapping function for the GA-DE of LMMSE-based soft IC decoding, with GC7), QPSK modulation, block-fading with averagg /N, = 6 dB,
anda = 1.0, 1.4, 1.8, 2.2, and2.6.

for an unequal-power system where the users SNRis distribute@ (5, 7), equal-power users wittF,/No = 6 dB was
according to a truncated exponential pdf, with correspondisgnulated with EXT-based and APP-based feedback. Fig. 8
cdf given by shows the simulated SINR{ ratio (defined as in Fig. 5) for
the two decoders, versus the number of iterations. We notice
0, <0 that the EXT-based decoder convergesito ~ 1, and its
GOy =¢ 2= 0< 7 < Yo behavior agrees very well with the GA-DE trajectory, while
the APP-based decoder does not improve its performance with
iterations. Fig. 9 shows the corresponding evolution of the
(in this example we chosg,.x = 40 andx such thatE, /N, ~conditional residual interference bias for the signal in-phase
averaged over all users is equal to 6 dB). This case is repg@mponent, defined b)E[Re{C,Ef),,,}IRe{xk,n} > 0]. We
sentative of a block-fading channel where the channel gain fagtice that the EXT-based system converges rapidly to zero
each user is constant over the whole codeword duration ($@as for all users, while the APP-based system gets trapped into
[31]) and where the fading gain cdf is given I6°(v). Sup- an oscillatory behavior. Notice also that, for the APP-based
pose that the fading of each user is governed by an ergo@icoder, the bias averaged over all users is negative, i.e., on the
process [62]. Then, the average BER of each user can be e@erage it reduces the useful signal component.
uated as BER= E[e; (y7*)], where expectation is with respect System Spectral EfficiencyiVe can use the GA-DE asale
toy ~ G(®(~) given above, and wherg(-) is the BER versus of thumbfor a quick evaluation of the spectral efficiency achiev-
SNR function characteristic of the basic user code. able with given codes and iterative multiuser IC decoders. Spec-
We notice that, with such unequal power distribution, the itetal efficiency is calculated as follows. We fix the target BER
ative decoder behavior is quite different from the correspondiitg be achieved by all users and we compiitg/ Ny necessary
equal-power case of Fig. 4. In fact, here the unique decoder fixédachieve the target BER in the single-user case. If the target
point decreases smoothly as the load increases, and no foldB&R is sufficiently small, because of the threshold behavior il-
furcation appears for the considered range of channeldoad lustrated above, it can be achieved only if the decoder works
EXT Versus APP Feedback, and the Bias Effdot;:Re- below threshold. Then, the resulting spectral efficiency is given
mark 3 of Section Ill-C we anticipated that feeding back MAbY p = @R, wherex is the threshold load for the value 5% /No
estimates obtained from the APPs rather than from the E)obtained andz is the coding rate.
of SISO decoders makes residual interference conditionallyFor example, Fig. 10 shows the spectral efficiency for target
biased and degrades the decoder performance. Figs. 8 arBER equal tol0~° achieved by the optimal CCs of ratg2
illustrate this fact for the SUMF-based decoder. A randomiith 4, 8, 16, 32, and 64 states [37], with Gray-mapped QPSK
finite-dimensional system witth = 60, N = 2000, « = 1.4, modulation and different iterative IC decoding algorithms, for

17 ,7 > ,Ymax
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Fig.8. Evolution ofp“} versus the number of iterations for SUMF-based soft IC decoding, wittsCC), QPSK modulation, equal power users with/ N, =
6 dB, anda = 1.4. The solid line with triangles denotes the GA-DE trajectory. Lozenges and circles denote simulation snapshots with EXT-based and APP-based
IC, respectively, of a finite-dimensional system with spreading fatter 60 and block lengthV = 2000.
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Fig. 9. Evolution of the residual interference conditional bias versus the number of iterations for SUMF-based soft IC decoding, (With \CQPSK
modulation, equal power users wiffi,/Ng = 6 dB, anda = 1.4. Lozenges and circles denote simulation snapshots with EXT-based and APP-based IC,
respectively, of a finite-dimensional system with spreading fattes 60 and block lengthV = 2000. Solid lines represent the trajectories of the bias mean
values (averaged over the users).
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Fig. 10. Spectral efficiency of iterative IC decoders with equal power users and CCs af 2ateith 4, 8, 16, 32, and 64 states and QPSK modulation. The
different code/decoder pairs are represented by points i0EpgN,, p) plane. The number of trellis states increases from right to left (i.e., the rightmost point
corresponds to the four-state code and the leftmost point to the 64-state code). Solid, dashed, and dotted lines represent the achievdlliesppaf&l@MA

with optimal Gaussian random codes and joint decoding, linear MMSE front-end followed by single-user decoding, and SUMF followed by singtedinggr dec
respectively.

equal-power users. The different code/decoder pairs are reftens out that this problem is a linear program that can be solved
sented by points in theF, /Ny, p) plane. The number of trellis very efficiently. In [56] and [63], it is also shown that a nonuni-
states increases from right to left (i.e., the rightmost point cdierm user SNR distribution is the key to achieve large spec-
responds to the four-state code and the leftmost point to thal efficiencies with iterative multiuser decoding. These results
64-state code). Larger spectral efficiency is achieved by simre in agreement with the conjectures made in [9], [10], based
pler codes, at the price of a larger requitBgl/ N, to achieve on information-theoretic arguments. Intuitively, the nonuniform
the target BER. SNR distribution shapes the multiaccess capacity region such
For the sake of comparison, the spectral efficiency witthat the transmitted rat& -tuple is close to a vertex (i.e., to a

random spreading in a large-system regime achieved by linsarccessively decodable point [2], [3]).

detectors (SUMF and LMMSE) with single-user decoding and In [64], an improved iterative IC decoder based on widely
by the optimal joint decoder with ideal Gaussian random codksear filtering is proposed. Namely, it is recognized that the

is also shown (adapted from [30]). residual interferencgf)n conditioned with respect to the phases
{6k, } and EXT message@P;f;l): Jj # k} is not circularly
VI. CONCLUDING REMARKS symmetric. Therefore, a widely linear filter (see [65] and ref-

erences therein) instead of the complex LMMSE filter (25) can

We would like to conclude by pointing out some recent rébe used in the IC-MUD nodes, providing better residual inter-
sults originated by this work and some suggestions for futuference mitigation.
research. The framework developed in this paper can be extended to

The GA-DE analysis proposed in this paper was recently usetre general CDMA models, involving asynchronous transmis-
to study the performance of iterative IC decoding with LDPGion and multipath propagation. From the analysis point of view,
codesin[63]. We expect that, by following in the footsteps of thBE may be extended by using the results of [57] to handle asyn-
concentration result provided here, a rigorous concentration oewronism and frequency-selective channels in the finite-dimen-
sult and the corresponding DE can be proved for several classiemal case, and the results of [66] and [67] of to handle asyn-
of user codes, and for systems where users make use of differrbnism and frequency-selective channels in the large-system
codes with possibly different coding rates. limit.

By using the GA-DE, the optimization of achievable spectral Finally, iterative multiuser decoding can be naturally coupled
efficiency with respect to the SNR distributiéi® (+) is solved  with iterative channel estimation in the case of unknown user
for binary CCs and QPSK modulation in [56]. Interestingly, ithannels. First steps in this direction are reported in [46], [68],
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[69]. A rigorous concentration result and the corresponding Dihere H,, is the subgroup of all matriceE € G having
analysis of iterative joint data detection and channel estimatiep ,, = 1, and U™ is any matrix inGG havinguﬁif)n = a. We

is still missing, and it represents an interesting area of reseanghive the coset decompositidh = |J

APPENDIX A
PrOOFs

A.1 Proof of Lemma 1
The neighborhood/\/,gle is cycle-free if and only if no

U“H,, and for

X aCAnr
all a € Ay, we can write

C@ = {z=UYUL:U € H,}

for some coset leaddf® € G. N
Let P/ (a) be thenth SISO output message wheéh= U 1

_is the transmitted codeword, witl}, ,, = ¥/ for somel’ € Ay,.

IC-MUD node appears more than once in its node collectiofije have

The total number of IC-MUD nodes s = % where
K = (K - 1((2W + 1)s — 1) was already introduced in

(32). We enumerate the IC-MUD nodesMSfZl from top to

bottom and, inside each layer, from left to right (see Fig. 3),

and define the sequence of nested neighborh(z)éﬁ%[i], for
i =1,..., msuch that/\/,gle[i] contains all IC-MUD nodes
from 1 to ¢, and the edges connected to them. TW;S[ZL [1]
is obviously cycle-free, and/, ,EZZL [m] = N,SZZL

The eventst; = {N,gle[z‘] is cycle-freé are nested, i.e.,
Em € Em_1 € -+ C &1 Hencel?

m

Ep = U {&né&s}

=2

and, since th&;'s are nested, the events in the above union afe

disjoint. Therefore, we have

Pr(€,)=> Pr(&né&y)
=2

<> Pr(&lEin)
=2
Kz s 1
i=2

g
2N

;n(m -1

5N (56)
where we have used the fact that, for a given set of disti
IC-MUD nodes of sizel — 1, the probability that a new ran
domly selected node out of thé possible nodes belongs to th
setis(¢ — 1)/N. This concludes the proof.

A.2 Proof of Lemma 2

HOEI I | P URR/ARITS

UeH, j#n

(a) A
£ 3 v (i,
UcH, j#n

uj, j)

%’() Z H ”

UcH, j#n

¢y 1In

UCH, j#n
P, (a) (58)

where (a) follows from the definition of.A,-invariance of
(z), (b) follows from the obvious relation
1
el
valid for any nonzeroc € C, (¢) follows by letting
ff(ff/)*U(“) = U'“) and by noticing that, sincéff/)* € G,
then alsolU(*" € G and the coseU(“,)Hn generates the
subcodeC,(,,“,), and(d) follows from (57), after noticing that
v 2 iy ;(4; ;)"v; andy; are identically distributed.

We have shown thafP) (a): a € Ay} is distributed as a
permuted version of P, (a): a € Ay}, where the permutation
71 a — o is the cyclic shift defined by’ = b(#)*a. This

Vi, 5 — (05 5)

7 ~
Vit — Uy um’)

Per(2) pu(c™t2)

nc&qncludes the proof.

eA.3 Proofs of Corollaries 1 and 2

Corollary 1 follows from Lemma 2 and from the fact that
the residual interference at the output of any IC-MUD node in
a cycle-free neighborhood i4 ,,-invariant, since the Gaussian

Without loss of generality, we assume that the all-one s@oise is circularly-symmetric and the complex amplitudes

quencd is a codeword. Any geometrically uniform codever
Apr as defined in Section IV-B can be written 8s= {z €
CVN:z = U1, U € G}, whereG is a group of diagonaV x N
matrices with diagonal elements ; € Ay.

Letz = U1 be the transmitted codeword, such that, = b

have i.i.d. phase# ; uniformly distributed o 2wm /M: m =
0, ..., M—1}. Therefore, multiplying the residual interference
term by anya € A, does not change its pdf.

Consider a trellis window; of theith SISO decoder in the
neighborhood\/,ﬁ%, connected to thgth IC-MUD node, and let

for someb € Ay, and lety = & + v be the channel output. Let &' be theith user transmitted codeword. From Lemma 2 we have

C,([‘) denote the subcode of all codewortls C having symbol

that the distribution of the EXT message produced by the trellis

a in positionn. Thenth output message produced by the Sis#indow T’ for symbolz; ; is the same for all codewords that

decoder is given by

Pa(@)oc Y 1 polys —x5)

sect i%n

; (a)
x> Jlw (Vj R uj,juj,j)

UcH,, j#n

(67)

10The complement of an eveftis denoted byf.

coincide withz® in the jth position. As a consequence, the sta-
tistics of residual interference at the output of title IC-MUD
node depends only on the symbols labeling its input edges.
By definition, the collection of such symbols is the neighbor-
hood typeT(N,SfZl). Sincec,g)n is a function of the messages

propagated through the neighborhood, we concludeg";fﬁ};ltis
independent ofX givenT(/\/,SfZl) =1t.
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Corollary 2 is proved by iterating expectation. In the folspect to the channel noid¥, conditioned on the transmitted
lowing, all expectations an)d probabilities are conditioned wittodewordsX . From (60) we have
respect to the event thAl’ is cycle-free. We do not write it 6, N) —©
explicitly for the sake of notatlonal simplicity, as it is obvious Pr (‘Fk (21X) = F37(2)| 2 6)

from the context. We have <Pr (‘F;Eé N)(Z|X) B F(g,Af)(z|X)‘ > 6/2>
FO¢1x) pr (| FEM 1x) - FO 61
k:E[E[E[l{Re{(é)}<Re{z} +Pr ([P - FO) 2 ¢2). 6D
honf = ’ We show that fofV > 2¢; /¢, wheree; is the constant appearing
Im{ lsé)n} < Iln{z}} t, X, 6} } ‘ X} in Lemma 1, the second term in the RHS of (61) is equal to zero.
@ ’ In fact, letA = Pr(A}\) is cycle-freg, then
YE[E[E |1 {Re ¢} < Refz}, o
’ FEMex)
Im{ éz)n} < Im{z}} t, @”t”X} , L X
_ = (6
Y g5 [F P01 04| X] = 2 P [H{Reldh ) s et
b Z F )‘X] i {67} < w2} | X]
@ g [1 {Re{ © }<Re{z}, Im{ © }<Im{7}}‘ X}
E £ M%&’N F(é) ()1, ©) ‘ ] = )\F 1{Re{ (‘[) } < Re{z},
9
o s ety oo M) s i somered
+(1-XNF [1 {Re{ ,if)l} < Re{z},

where (a) follows from the fact that, by Corollary 1 and by ©
the general fact thaE[E[Z| X, Y]|X] = E[E[Z|Y]|X] for the Im{ : } = Im{Z}H
Markov chainX — Y — Z, (b) follows from defining X, N is not cycle-fre% (62)
Fgf)(zlt, 6) 2E [ {Re{ © } < Re{z}, where(a) follows from symmetry. Since the indicator function

is <1, by using Lemma 1 and recalling that, by definition
Im{ ,Eé’)n} < Im{z}} t 6} =h Y g g y

FO%) =E [1 {Re{ ,5”1} < Re{z},
(c) follows from the fact tha® is uniformly distributed over ’
all possible phase sequencés) follows from the fact that for Im{ C,Ef)l} < Imf Z}}‘ s N ) is cycle- fre%
everyt = {x; ;} there exist® = {6, ;} suchthatr; ;e/%5 =
1, therefore, after summing over all possi®ethe result is in-

which is independent oKX by Corollary 2, we have that, for

dependent of. Finally, (e) follows from the fact that the argu- all X
X SN L ) N o c
ment in the expectation is deterministic and independeiX .of Fi )(z|X) SFé )(z) + Nl
A.4  Proof of Proposition 1 . . B F?f M (21X) ZF;(CZ)(Z) (1 _ ch) (63)
The proof of the concentration result stated in Propositon1
follows closely the proofs given in [27], [57]. We include thevhich implies
main steps here for the sake of completeness. = (6, N) = (0)
Fix ¢ > 0. For random variabled, B, C € R we have ‘Fk (2 X) = 117 (2)] < e /N
Pr(|A — B| > ¢) Then, by choosingV > 2¢; /¢ we have
(a) (7N _T0 _
< Pr(|A-C|+|C- B2 9 Pr ([ Velx) - TG 2 er2) =0

< Pr{|A—-C| > ¢/2}U{|C — B| > ¢/2}) For the first term in the RHS of (61), faX fixed, we form
(b) an edges-phases-and-noise revealing Doob’s martingale on
< Pr({[A = Cl > ¢/2}) + Pr({|C - B[ > ¢/2}) (60) he joint probability spacd(G, ®, N)} and apply Azuma’s
inequality (see [27] and references therein). For a given
G, we order its edges such that tlih edge in the list, for
i=0,..., KN—1, corresponds té; ,, with j = [{]moa x +1

F,(f’N)(z|X) — E[F,EZ’N)(z|X)|X] andn = [i/K| + 1. Then, we expose the edges @fone

by one, in the above order, and in the subseg@érteps we

where expectation is with respect the random computatioredpose the phase randomization ve@pand the noise vectors
flowgraph ensembl¢(G, ©}) of block lengthN and with re- »,, corresponding to theth IC-MUD node, forn =1, ..., N.

where(a) follows from the triangular inequality an@) from
the union bound. We define
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We define a sequence of equivalence relatigas} inducing where S is random, with statistics defined in Section IV-C,
a sequence of nested partition§ 6§, ©, N)} into equivalence v ~ N¢(0, I) where the symbolsr;, are independent,
classes as follows(¢’, ®', N') =; (G, ©, N) if they coin- with mean zero, and covariand8[zz] = I, and where
cide for the firsti steps of the above edges-phases-and-no#é = diag(y/71, ..., v/7x ). Assume that they’s are uni-
revealing procedure. Then, for every fixede C andk € formly upper-bounded by a constant... independent of
{1, ..., K}, the Doob’s martingale is defined by K, and, asK — oo, the empirical cdf of they,’s converges
weakly to a given cdfF(v).

]\T . . . . .
D; =S E[1{Re{¢, Y<Re{z}, Tm{¢, }<Im{z}}| X, Then, askK, L — oo with fixed ratio«, the conditional dis-
Z [ (G nJ sRetz), i} <Imi }H tribution of the residual interference plus noise giveiat the

n=1
(G, 0, N) = (G, O, N)] (64) output of thekth user SUMF_ and LMMSE filtgrs conve_rges_al-_
most surely to a complex circularly symmetric Gaussian distri-
fori =0, 1,..., NK+ N,where(, . isthe residual interfer- bution independent of and the SINR at the filter output con-
ence at edgé; ,, of the graph(¢’, 6/, N'), after/ steps of the verges almost surely to the nonrandom quantity, wherer; is
iterative IC decoder. Clearly given by
1 —= (€, N) 1
—Do=F " (2|X) =
. +afy vdG(y)
1 Dniin = F,gé’ N)(Z|X). for the SUMF and by the unique nonnegative solution of the
N equation
Since every edge participates in at mogt/) neighborhoods 1
of depth 24, the difference|D; 1 — D;| can be uniformly n= 1 ST
bounded by a constantthat depends ok, ¥, s and/, but it ol g dG0)
is independent oN .11 Hence, Azuma’s inequality yields for the LMMSE filter. 0
iNcC 2
o —SZ(VVTLW At step/ = 1 of the DE recursion, the symbol estimaﬁe&%)n
Pr(|Dnk+n — Do| 2 Ne/2) < 2e vz are all equal to zero. Then, because of the assumptions of Propo-
which yields sition 2, we find that the Large-System Lemma directly applies

) ) by letting G(v) = G©(~). Now, suppose that Proposition 2
Pr (‘F,ﬁé’m(d}() — Fgf’]\‘)(zlx)‘ > 6/2) < 2e72N holds for step? — 1. If Proposition 2 holds for iteratio# as-
suming that it holds for iteratiod — 1, the proof follows by
. This concludes the proof. induction.

In order to show that Proposition 2 holds at stejt is suf-
ficient to show that the empirical cdf of the interfering residual
Recall that we take the limits with respect to the block lengtdymbol instantaneous conditional varian@g&(f;l) converges

N and to the number of useds” and spreading factal by weakly to a nonrandom cdf“—(u). For M-PSK, we have
letting first N — oc and thenk, L. — oc, with fixed ratio (see (20))
K/L = «. Since for all finiteK, L, the block lengthV grows
without bounds, by Proposition 1 the iterative multiuser IC de- gl(f;l) — Z ‘a _ j;f;l)
coder afte¥ iterations is completely characterized by the DE of a€Au 7
Section IV-B, i.e., by the expected cdfs of the messages prop-
agated through a randomly generated cycle-free neighborhddie empirical cdf okaﬁ,if;”
N,fél Hence, we can prove Proposition 2 by induction on the
DE iterations. (=1, Ky, A 1 _ ‘~(fl)‘2> }
For the sake of brevity, we show Proposition 2 for the case og () = K kz_l ! {% <1 Thn sup. (69)
LMMSE-based algorithms (the cases of SUMF-based soft IC o _ o
and hard-IC follow the same lines). The main results from ttféence, the proof is complete if we show that the limit in (46)
analysis of random CDMA in the large system limit, which will0lds for stepf — 1.
be used to prove Proposition 2, are summarized in the followingSince Proposition 2 is assumed true at dteql, the input of
result [29]-[31], [70]. eachkth SISO decoder at step— 1 is of the formz = = + ¢,
. where¢ ~ N¢(0, 1/ (=), Moreover, since the neighbor-
'Large-System LemmaConsider a-user CDMA system hood is cycle-free, the interferencen all inputs contributing
with spreading factof defined by to the same trellis window of the windowed BCJR decoder is
y=SWz+v an i.i.d. sequence. Finally, sin¢as rotationally invariant (and
hence alsod,,-invariant), by Lemma 2 we incur no loss of gen-
UAfter noticing thatg, , is a function of the variables appearing in the neigherality by assumingy, , = 1.

borhood,r\",f"zl, and that the maximum number of neighborhoods containing a |n order to prove convergence ﬂ(é—l,ls’)(u) we need

given edge;. ., is finite and independent d¥ , the explicit evaluation of is a .
straightforward exercise. We skip the details for the sake of brevity, since th@/ treat the SISO decoder as a mapping between (random)

are totally analogous to [27]. messages, and consider the associated mapping between the

with Co = W

A.5 Proof of Proposition 2
2 2
P @ =1 |35

is given by

K
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messages distributions. LBtbe the space of all pmfs ovety;. For simplicity, we assume that the user amplitudes can take
Then, a SISO decoder can be seen as a sequence of mapmngslues in a discrete and finite set of valles 7, < --- <
Yn = Ymax, fOr SOMe integern, and let

My:Px---xP — P, n=1...,N (66) i
, 6h = G(O) (Wh) - hI_n G(O) (7)

N times Y1

forn =1, ..., N. For the exact sum-product SISO decodebe the limiting fraction of users transmitted with squared
M,(Q1, ..., Qn) = P, is given by (11). However, (66) is complex amplitudey,,, for » = 1, ..., m.22 Consider the
more general, allowing for approximated implementations df symbols transmitted at time, for an arbitrary choice of
the exact SISO decoder. For example, the windowed BC3RE {1, ..., N}. LetK,, .. denote the subset of such symbols
decoder takes the form (66), where the mappihgsact on a transmitted with signal squared amplitugg and appearing
sliding window of the input message sequenh€g, ..., Qy) in positionr of their branch label in the corresponding trellis
centered on symbal and comprisin@W + 1 trellis sections. section of the basic code Then, we can write

A pmfin P can be seen as a re#éd-dimensional vectop
lying in the simplex defined by, p; = 1,p € RY. For a
given transmitted codeword, the SISO decoder input and output 1 o= < B NN
messages are random vectorsinWe denote byF the space ~ K Z Z Z 1 {’Vh <1 - ‘xin )‘ ) < “} (68)
of all joint cdfs overP. When the SISO decoder input is pro-

duced by a memoryless time-invariant channel, the input mes- ) (-1 .
The soft symbol estimates, "~ for all k € K, are i.i.d.,

sageg1, ..., Q) form an independent sequence condition-, ; i
ally on the transmitted codeword. We define the message &ffce they are produced by the same SISO decoder mapping
mapping associated to the SISO decoder as with identically distributed input (recall that the unisotropy de-
gree ofC is at mosts).
) B From the strong law of large numbers [60], the fraction of
My M -7 n=1..N (67) user symbols:y ., belonging to subset;, , converges almost
N times surely tody, /s, since for a random selection of the neighborhood

/\/,5[21 a symbol transmitted at timeoccupies position <r < s

G(é—l, K)(U,)

h=1r=1kcKy, »

such that if in its trellis branch label with equal probability. Hence, the fol-
N lowing limit holds almost surely:
(Qr, ..., Qn) ~ lille(qz) G (y)
. 1 m El B ~([71) 2

thenP, ~ F!(p) = M, (Fi, ..., Fx). = lim - > 1 {’Vh <1 - ‘xkn ‘ s u

We have the following definition [71]. h=1r=1 kel

N . . . = K 1

Definition (Unisotropy Degree):Consider a geometrically = lim » > | I]( | = >

uniform codeC over A, and (without loss of generality) as- [ e Ko kCKp.

sume that the all-ones sequence is a codeword. Consider the _ (-1 |?
transmission of the all-ones codeword over a complex circularly 1 {’Yh <1 - ‘% ‘ ) < u}
symmetric AWGN channel. The unisotropy degtkef C with

respect to the SISO decoder givenfayl,,: n =1, ..., N}is = on Z Pr <7h <1 - \a?fn”f) <ulke IC;Ly,,>
defined as the number of distinct output message cdfs generated -, % =1 ’
by the associated mappingdt,:n =1, ..., N}. O m
. . . . . . = Z 6hHh (U') (69)
When( is a trellis code with trellis termination and the SISO

h=1
decoder is the windowed BCJR algorithm, the unisotropy de-

gree is finite for anyV. In fact, trellis termination affects a finite where we define the cdf

number (say2m) of trellis sections+#. at the beginning angh s )

at the end of the block), therefore, only a finite numpef + g, () = 1 > pr <7h <1 - ‘jgﬁl)‘ ) <u
W) of output messages are affected by the asymmetry due to s 4 ’

trellis termination. For all the remainingax{N — 2s(m + )

W), 0} messages, the SISO decoder behaves as if the trellf§s concludes the proof. ' o
were infinite, and due to the fact that the trellis is time-invariant Notice that the fact that the basic cad@asfinite unisotropy

with s symbols per trellis section, the SISO decoder can prgegree is crucial. In fact, if the number of different output mes-
duce at most distinct cdfs. By lettingV — oo, the fraction Sage distributions generated by the SISO decoder grows linearly
2s(m + W) /N of symbols affected by trellis termination van-With the block lengthV, the convergence (69) is not ensured any
ishes. Hence, in the limit for larg® we get that the unisotropy '0nger.

degree ofC with respect to the windowed BCJR decoder is izrne extension to a continuous limiting distributiGH®(w) is a straight-
upper-bounded by. forward but tedious exercise, and follows from standard continuity arguments.

ke ICh, 1‘) .
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A.6 Proof of Corollary 3 system limit, the residual interference at the input of the SISO
Define the mapping function () such that): 7(¢=1 — 5(® decoder of usek at iteration/ is complex Gaussian, with iden-

coincides with (43) or with (45), depending on the IC a|got_ically distributed/ and ¢ components, with mean zero and

) ’ o
rithm considered. All DE fixed points must satisfy the equa€’-component variance/(2.7'), Wheren( ), is given by
tion 4 (n) = 7 for somen € [0, 1]. By inspection, we have Proposition 2 (the proof of these facts is a straightforward exer-

that the mapping)(-), defined on the domaif®, 1], is contin- cise by following the proofs of Proposition 1 and 2)_.

uous and has rande, m], with m < 1. Hence, the equation The SISO decoders produce output messages in the form of
1(n) = n has at least one solution 6, 1]. Moreover, we have EXT 0g-likelihood ratios

thatt)(0) > 0. Thereforep* = min{n € [0, 1]: ¥(n) = n}is L1 Py (+1)

a stable fixed point and the iterated magpvith initial condition k,n =108 P o (—1)

79 = 0 converges to the limity*. From Proposition 2, it fol- ’

lows that the DE recursion with initial conditioff® = 0 has for the coded binary symbols (not for the modulated QPSK sym-

limit bols!). From now on, we drop the user and time indexes as there
is no risk of confusion. Let,(SNR) denote the SER versus SNR
lim 77 (2) = Ne(0, 1/(wn) function ofC transmitted with Gray mapping and QPSK modu-
£—o0 lation over AWGN, were decision about the coded symbisl
forallk =1, ..., K, that is uniquely identified by*. made according to the rule
Z = sign (L,)- (71)
APPENDIX B
QPSK WTH GRAY MAPPING AND BIT INTERLEAVING (['a; is a short-hand notation to indicate the EXT |Og-|ike|ih00d

ratio relative to a certain coded symho) As in Section IV-C,
we want to approximate(®’ defined in Proposition 2 directly
in terms of the SER at iteratich— 1, that for a user received at
SNR levely is given bye = ¢, (yp~1).

_ _ 1 We denote by: andb the I and@ binary antipodal symbols
pless e2) = (1= 2e1) +5(1 = 2¢2))/ V2. relative to a Gray-mapped QPSK symbol, andibgndb their
In CDMA applications, the case of binary convolutional codeSstimate produced by the SISO decoder. For the hard-IC decoder
Gray-mapped onto QPSK is particularly important [36]. 149) becomes
this appendix, we provide the details of the calculation of the
DE-GA used to generate the results of Section V. E

The QPSK signal sep = {i% + %} is naturally matched
to the binary fieldF, via the Gray mapping:: F2 x Fo — Q
such that

a—d)+i(b—b)

1 2
‘E( ]:2—(1—€)+€:46.

The Gray-mapped QPSK does not fit directly the theory de- V2 (72)
veloped forA/-PSK and linear trellis codes over the ridg,, Hence, (50) reduces to
since the additive group df> x F» is not isomorphic to the '
cyclic group of orderd. However, the results of Section IV 77(e) _ 1 (73)

can be extended to this case by considering binary convolu-
tional codes withbit interleaving[72]. Namely, we shall as- = )
sume that each user codg is obtained by concatenating theMitialized by = 0. o _

same “basic” binary convolutional codewith a randomly and ~_ FOr SOft IC, by using (20) with binary antipodal symbols, we
independently selected bit interleaver, and that the QPSK méiain the soft estimates of teand@? symbols as

ulation with Gray mapping is applied to the resulting bit-inter- & = tanh(L, /2), b = tanh(£,/2).

leaved binary sequence. Finally, phase randomization is applied

independently on the real and imaginary parts of the modulateguation (52) reduces to

1+ 4« fooo Yeg (rm(é—l)) dG©) (’7)

symbols, so that the resulting CDMA channel model is given by ) 2
E ‘i(a—a)+”—(b—é)
1
- (1) (@ V2 V2
Yy = 5 54 (2P0, +2@b,) +v,  (70)

= E [(1 - tanh(£,))*|a = +1]

wherea,,, b, € {£1}* contain the in-phase/f and quadra- B

ture @) components of the transmitted symbold, = B (14 ¢%e)?

diag(@’ ) V’”"), is areal d'agonal r.natrl.x of amphtudes,AS in (51), we make a Gaussian approximation of the SISO

gnd ®. ' B v are _d|agonal matrices with dlagon_al e_lemem&ecoder output and let [32], [33]

in {£1}, representing thd and @@ phase randomization se-

quences. We shall refer to the model (70) as the “I&Q” channel. Ly ~N(u, 2u) (75)
With bit-interleaving, thd and@ components of the residual _ . .

interference contributing to the input messages to any trelflr%r(;c 1; +i’ V\élef’“‘ |s\c/ho_s2en tohrgraetch the SER. By using (75)

window in a cycle-free neighborhoo&’,ﬁfi}/ are independent. ! we get = Q(v/n/2), w

The concentration result of Section IV-B extends immediately a [T

to the I1&Q channel, and it is easy to show that, in the large- Q) = - 2T

a= +1} . (74)

_ .2
e > % dy
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which yields [71

=) 22(Q74)’ (76) g

Hence, (74) gives the function
[0l

A 4

[10]
where, from (75) and (76), the log-likelihood pdf is given by

/ 1A= w(0)|? (11]
h()\|€)é;e— o

4
7 p(e) 2]

The functionV (¢) in (77) can be used in the GA-DE recursion
(53) for the SUMF-based decoder.

(78)

13
For the LMMSE-based decoder, we have e
~ 12
a J 1 y [14]
1—-|—+>=| == (1-|tanh(£,/2
V2 V2 2 ( | tanh(Lq/2)] )
1 ) [15]
+ 5 (1 - |tanh(£b/2)| ) [16]
2 Lo 2 Ly
== @9
(14 ¢efa)2 T (1 +eke)2 [17]

Then, after a change of variable and some algebra, the inner
integral (with respect ta) in (54) can be written as [18]

// 4y(1+e)?
(I 2(L+e )2+ 2y (M (1 )™ (1+e )2)

[19]

(20]

where (80) is obtained by using repeatedly the identity
h(Ale)e™ = h(—=\|e), a symmetry condition of log-likeli- 1]
hood ratios that holds for any binary-input symmetric-output
memoryless channel [73]. (22]
Integrals (77) and (80) can be easily and accurately computed
by using Gauss—Hermite quadratures, and make DE-GA coni23]
putationally much simpler than exact DE. [24]
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