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Introduction

0.1 Historical background

For more than 50 years, channel coding has been widely studied. The purpose
was to find digital communications systems that have a capacity and a performance
close to the limits found by Shannon for the transmission over the additive white
Gaussian noise (AWGN) channel [78] [79]. The researchers were mainly interested
by binary codes designed for a binary phase shift keying (BPSK) modulation.

In 1993, a coding scheme, known as turbo codes was presented by Berrou et al
[6]. For a bit rate equal to 1/2, a performance within 0.5 dB of the capacity limit
was achieved.

Turbo codes can be seen as a sub-class of a more general class of codes known
as compound codes. A compound code is constructed using simple constituent codes
that can be easily decoded using an iterative decoder instead of the largely complex
mazximum likelihood decoder.

Turbo codes are not the first compound codes that were proposed in the liter-
ature. Product codes based on block codes, were introduced by Elias [23]| in 1954.
In 1966, Forney [30] introduced concatenated codes in order to construct large block
codes by serially concatenating two or more small codes.

In addition, Gallager [35] introduced low density parity check (LDPC) codes in
1963, and presented an iterative probabilistic decoding algorithm. However, for
complexity reasons, the work of Gallager was neglected. LDPC codes regained sig-
nificant attention [56] [64] [55] after the apparition of turbo codes. The performance
limit of infinite length LDPC codes under iterative decoding was determined by esti-
mating the probability density function of the decoder output from its input density
[64]. This method is known as density evolution. Other sub-optimal methods like
the Gaussian approrimation method were established in different manners [86] [24]
[16] [74].

Based on these concepts, Chung, Forney, Richardson and Urbanke finally showed
that, under iterative decoding, LDPC codes can achieve the capacity of the AWGN
channel with a BPSK input [15]. Moreover, for block length N ~ 2! and for a bit
error probability greater than 10=5, LDPC codes that can perform better than the
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original turbo code were proposed by Richardson, Shokrollahi, and Urbanke [65].
This has been achieved by introducing an irregularity in the parity check matrix of
the LDPC code.

The main drawback of LDPC codes is in the relatively high complexity of the
encoder. Hence, the implementation of the encoder seems difficult in practice.

0.2 Objectives and methodology

The main objective in the thesis is the construction of capacity-approaching cod-
ing schemes for binary modulations with codes rates R < 1 bit/dimension and for
M-ary modulations with high code rates (R > 1 bits/dimension).

For a BPSK modulation transmitted over the AWGN channel, a coding scheme
based on parallel concatenated convolutional codes (PCCC), known as turbo codes,
is used. The performance of turbo codes is improved in order to achieve similar
and even better performance than LDPC codes. This is done, first, by implement-
ing symbol-based iterative decoding and, secondly by introducing an irregularity [32]
as for LDPC codes. The combination of these two methods will be of a great interest.

For M-ary modulations with high code rates, lattice codes, that can achieve the
capacity of the AWGN channel [93] are first considered. The performance of optimal
lattice codes are shown to be equal to the performance of optimal spherical codes
found by Shannon in 1959 [79]. However, due to complexity, methods for decoding
lattice codes with a large code length are still unknown. Therefore, another class
of coded modulations, known as multilevel coded modulations (MLC), was consid-
ered. As for lattices, MLC can achieve capacity. It can be used to represent a wide
range of coded modulations and also the constructions B though E of dense lattices
[17]. The main objective is to approach the capacity of the AWGN channel using a
multilevel coding scheme that has equal capacity at each level. The complexity of
the system is largely reduced since only one architecture of encoding and decoding
is sufficient. This concept may be interesting for the construction of a multilevel
unequal error protection (UEP) with multistage decoding.

0.3 Major contributions

The major contributions of this work appear in the following topics :

e The error probability of optimal lattice codes is derived for the additive white
Gaussian noise channel. It is shown that lattice codes can, not only achieve
capacity on the AWGN channel, but also achieve the performance of finite
length optimal spherical codes. A corresponding paper was published in SITA
99 conference [71].
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e Multilevel coded modulations based on asymmetric amplitude shift-keying
(ASK) and phase shift-keying (PSK) constellations are analyzed. It is shown
that, When block partitioning is applied to an asymmetric constellation, the ca-
pacity of the modulation transmitted over an AWGN channel can be attained
using constituent codes with equal signaling rates at each level. Moreover, the
asymmetric ASK may achieve a gain in performance and capacity. This can
be viewed as a shaping gain introduced by these constellations. The same pro-
cedure may be applied to quadrature amplitude modulations (QAM) viewed
as a concatenation of two one-dimensional ASK. For finite code length N,
performance is derived analytically by evaluating Gallager’s coding exponent.
Two papers on asymmetric constellations were published in RTST 2000 [72]
and ISIT 2001 [73| conferences.

e The problem of reaching the capacity of the AWGN channel with BPSK in-
put is solved using regular and irregular turbo codes. Both bit-based and
symbol-based iterative decoding are considered. For finite code length, the
performance of the rate-1/2 irregular turbo code are improved using symbol-
based iterative decoding. A paper on the asymptotic performance of regular
turbo codes with symbol-based iterative decoding was published in WCC 2001
conference [74]. The results on the performance of irregular turbo codes with
bit-based and symbol-based iterative decoding are to be published later.

e Finally, a multilevel coded modulation scheme, with a bit-interleaved coded
modulation at each level, is proposed for the multiple-input multiple-output
(MIMO) block fading channel. In the case of a 16-QAM, with 2 transmit and
2 receive antennas, this scheme achieves a significant gain over the Alamouti
scheme [1].

0.4 Summary

This thesis is divided into five chapters that are summarized as follows :

The basics of information theory are reviewed in chapter 1. The channel capacity
and the general random coding theorem are first analyzed. Gallager’s calculations
of the upper bound on the performance of optimal codes, found from the general
random coding theorem, are then described. This leads to a tight upper bound on
the performance of finite length optimal codes over the binary symmetric channel
(BSC). For the continuous-input continuous-output AWGN channel, the geometri-
cal approach, developed by Shannon in 1959 in order to determine a lower bound
on the performance of all spherical codes [79], is analyzed. For a code length N
greater than 100, this bound is too close to the upper one derived by Shannon in
the same paper using random coding techniques. This gives us the performance of
optimal spherical codes, i.e. best spherical codes, over the continuous AWGN chan-
nel. Finally, the main results regarding the capacity of lattice codes are reviewed
and the performance of optimal non spherical codes, in particular the performance
of optimal lattice codes, is established. This performance is compared to the one
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obtained in the case of optimal spherical codes.

In chapter 2, the principles and the basic results related to parallel turbo codes
and irregular turbo codes are described. Symbol-based iterative decoding is then an-
alyzed. This decoding technique is applied to a parallel turbo code constructed using
binary recursive systematic convolutional (RSC) code of rate 2/3. Both regular and
irregular turbo codes [32| are considered. For finite code length, the performance of
the irregular turbo code on a Gaussian channel with BPSK input is compared to
the one obtained for the best irregular LDPC codes found by Urbanke [65].

In chapter 3, the asymptotic performance of turbo and irregular turbo codes on
a Gaussian channel with BPSK modulation is studied. Both binary and quaternary
symbol-based iterative decoding are considered. The graphical representation of the
code is based on Tanner’s bipartite graphs [81]. The search for good code parame-
ters is first done using the Gaussian-approximation with error probability matching
(EPM-GA) [74], then exact thresholds are determined using density evolution [64].

In chapter 4, the main results found in the literature, especially by Huber et
al 198][45][26][99](27], regarding multilevel coded modulations are reviewed. We
mainly focus on the capacity, the rate design rules and the labeling strategies of
MLC. Then, asymmetric one-dimensional ASK and two-dimensional PSK constel-
lations, with equal capacity at each level, are developed. For finite code length, the
performance of the asymmetric constellations is evaluated using Gallager’s coding
exponents.

In chapter 5, the principles of multilevel coding are applied to a MIMO flat fad-
ing channel. We consider both ergodic flat fading Rayleigh channels and non-ergodic
block fading channels. The channel coefficients between each pair of transmit and
receive antenna are assumed to be statistically independent and known by the re-
ceiver. Two coding schemes based on bit-interleaved coded modulations [12] and
multilevel coding are proposed. The performances of these two systems are com-
pared with those obtained for an orthogonal design [84] like the Alamouti scheme [1].



Chapter 1

Performance of optimal codes

1.1 Introduction

The coding theorem, established by Shannon [78] in 1948, states that for signal-
ing rates R below the channel capacity C', information can be transmitted with an
arbitrary low error probability.

In fact, the word error probability P, of the best block code of length N is upper
bounded by

P, < e NEH (1.1)

where F(R) is the Gallager coding exponent [36] [37]. E(R) is positive if the code
rate R is less than the capacity C.

Gallager calculated E(R) for different channels like the Discrete Memoryless
Channel (DMC), the Binary Symmetric Channel (BSC) and the continuous additive
white Gaussian noise (AWGN) channel. The results found by Gallager, using ran-
dom coding techniques, can be used as an average performance estimation for the
ensemble of random codes when N is finite and R has a fixed valid value. They
allow us to say that there exists a code of length N and signaling rate R which has
an error probability that is as small as the ensemble-average error probability. The
performance of the best code, i.e. optimal code, cannot be determined since no valid
lower bound has been specified.

Instead of using random coding techniques, Shannon used a geometrical approach
to determine a lower bound [79] on the performance of all spherical codes transmit-
ted over a continuous AWGN channel. Some modifications and improvements of
his work have been done recently [22] [51]. Nevertheless, the expression derived by
Shannon for the lower bound Q(#) is still the simplest one. This function gives the
probability of moving outside a cone of half-angle #. Tts asymptotic expression is
very accurate: for a code length N greater than 100, it is too close to the exact
optimal performance. This is validated numerically by comparing Q(6) to the upper
bound derived by Shannon in the same paper [79], using random coding techniques.
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The general random coding theorem and the upper bounds on the performance
of optimal codes cannot be applied to structured codes such as lattice codes, because
these results are based on random coding techniques. Therefore, several papers in
the literature treated lattice codes. The main purpose of these studies is to show that
lattice codes can achieve the capacity of the additive white Gaussian noise channel
[19] |20] [53] [59] [62] [54]. The proof was recently refined by Urbanke & Rimoldi
[93]. These works also included a performance analysis of lattice codes. Further-
more, Tarokh et al [82| gave a new lower bound on the error probability of lattice
codes. They stated that the asymptotic behavior of the new bound, as the dimension
N of the code goes to infinity, coincides with Shannon limit for the Gaussian channel.

In this chapter, we review the results previously mentioned and we specially
show that lattice codes can perform as good as optimal spherical codes. We begin
in section 1.2 by defining channel models and their capacity. In section 1.3, we
study the general random coding theorem. The results of this section are applied
in section 1.4 to calculate an upper bound on the performance of optimal codes
transmitted over a Binary Symmetric Channel. A computation of the capacity of
some usual channels is then derived in section 1.5. In section 1.6, we determine
the performance of optimal spherical codes transmitted over the continuous AWGN
channel. A comparison with the performance over the BSC channel is made also.
We finally show in section 1.7 that optimal lattice codes can perform as good as
optimal spherical codes when N is sufficiently large.

1.2 Channel models and channel capacity

A communication channel is a system in which the outputs depend probabilis-
tically on its inputs. It is characterized by a probability transition matrix that
determines the conditional distribution of the output alphabet Y given the input
alphabet X. For y € Y and z € X the conditional probability is denoted by P(y|x)
(see figure 1.1).

Input X Channel Output 'y
= POK '

Figure 1.1: Channel model.

Several channel models can be defined, depending on whether the input and/or
the output are discrete and/or continuous. We first define these models and then
introduce the concept of channel capacity.

1.2.1 Channel models

a.) Discrete memoryless channels

A discrete memoryless channel (DMC) is characterized by a discrete input alpha-
bet X = {ai,...,ax,...,ag} where Q is the size of the input alphabet, a discrete out-
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put alphabet Y = {b,...,b;,...,bs}, and a set of conditional probabilities. We de-
note the given conditional probabilities by Pj, = P(bjlax) j =1,...,J;k=1,...,Q.
For y € Y and z € X the conditional probability is denoted by P(y|x). Each output
letter of the channel depends only on the corresponding input so that for an input

sequence of length N, denoted x = (21,9, ...,2y), the conditional probability of a
corresponding output sequence, denoted y = (y1,%s, - . -, yn), may be expressed as'
N
PN(Y‘X) = H P(yn‘xn) (1'2)
n=1

This is the memoryless condition of the definition.

In general, the conditional probabilities Pj;, = P(bj|a) that characterize a DMC
can be arranged in the matrix form P = [P};]. The matrix P is called the probability
transition matriz of the channel.

Definition 1.1 Symmetric channel

A channel is said to be symmetric if the rows (respectively the columns) of the chan-
nel transition matriz P are the permutations of the other rows (respectively the other
columns). A channel is said to be weakly symmetric if only every row of the tran-
sition matriz P(y|z) is a permutation of the other rows, and all the column sums

>, p(y|z) are equal.

The most common type of the symmetric DMC channel is the binary symmetric
channel (BSC) where X =Y = {0,1} and the conditional probabilities are of the
form (see figure 1.2)

P(1[0) = P(0[1) = p
P(0j0) = P(1]1) =1 —p

0 p 0

1-p
Figure 1.2: Binary symmetric channel.
We can generalize our definition of DMC to channels with alphabets that are not

discrete. A common example is the additive white Gaussian noise channel which we
define next.

L An input sequence of length N is denoted in bold face : x = (x1,Z2,...,ZN).
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b.) Discrete-input, continuous-output channel

Now, suppose that the input is discrete, i.e., z € X = {ay,...,ax,...,a0} and
the output is continuous, i.e., y € Y =] — 0o, +00[. This leads us to define a
memoryless channel that is caracterized by the discrete input x and the continuous
output ¥, and the set of conditional probability density functions

p(y|ak)7 k= 1a23"'3Q (13)

The most important channel of this type is the additive white Gaussian noise
channel (AWGN), for which y = z + n where n is a zero-mean Gaussian random

variable with variance o2.

n

X y

Figure 1.3: Discrete input, AWGN channel.

2

For a given x = ay, it follows that y is Gaussian with mean a; and variance o;.

That is,

1 _(y_a2k)2
p(ylak) = \/%0_ € 27n (14)
n

Memoryless again means that for any input sequence x of length N and any corre-
sponding output sequence y we have

N

pv(yx) = [ [ p(ynlan) (1.5)

n=1

c.) Continuous-input, continuous-output channel

Both the input and the output are continuous, i.e., x € X =| — 00, +o0| and
y € Y =| — 0o,+00[. The channel is defined by the probability density function
p(y|z). A special case of this channel is the continuous additive white Gaussian
noise channel for which y = x +n where n is a zero-mean Gaussian random variable
with variance o2.

1.2.2 Channel capacity

The channel capacity C is defined as the maximum of the average mutual in-
formation I(X;Y) where the maximization is over all possible input probability
distributions. That is,
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C=maxI(X;Y 1.6
nax 1(X; ) (16)

The average mutual information 7(X; Y) is the difference between the entropy H(X)
and the conditional entropy H(X|Y)

I(X;Y) = H(X) - HX|Y) (1.7)

Depending on the channel model, we have

e for a discrete memoryless channel:

C= maxZZP P(y|z) log(Z lii

e for a discrete-input, continuous-output channel:

C= maxZ/ p(y|z) log(z ((y|jr)(y|xl)>dy (1.9)

e for a continuous-input, continuous-output channel:

C= IIIJI(E;.X// p(y|) log( z,p(a?gzax’)dx’)dxdy (1.10)

Properties 1.1 :

)

(1.8)

ks
P (y\$)>

1. C>0
C < log(Q)
C <log(J)

I(X;Y) is a continuous function of p(x).

SANER SIS

I(X;Y) is a concave function of p(z)

Since I(X;Y) is a concave function over a closed convex set, a local maximum
is a global maximum. The maximum can be found using Lagrange multipliers or
using nonlinear optimization techniques like gradient search |18].The maximization
is done under the constraints that

P(z)>0and Y, P(z) =1, i.e., p(z) > 0 and [~ p(z)de = 1.
The unit of the channel capacity depends on the base of the logarithm. When

the logarithm is base 2 the unit is bits per channel use, also known as bits per di-
mension. For the natural logarithm (base e) the unit is nats per dimension.
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The major significance of the channel capacity formulas given above is that they
serve as upper limits on the transmission rate for reliable communication over a
noisy channel. The fundamental role that the channel capacity plays is given by the
channel coding theorem due to Shannon [78].

Theorem 1.1 Channel coding theorem

There exist channel codes that make it possible to achieve reliable communication,
with as small an error probability as desired, if the transmission rate R < C', where
C 1s the channel capacity. If R > C, it is not possible to make the error probability
approaches zero.

Before calculating the capacities of the channels defined previously, we are going
to study and evalate the reliability function known as the Gallager exponent. These
calculations prove the channel coding theorem, determine the capacity graphically
and determine a tied upper bound on the performance of optimal codes transmitted
over a BSC channel.

1.3 General random coding theorem

1.3.1 System model and notations

Figure 1.4 illustrates the block diagram of a basic digital communication system.

N
m
—» Encoder - » Channedl = Decoder —»

Figure 1.4: Block diagram of a basic digital communication system.

The channel encoder takes a message m of K @-ary information symbols and
maps it into a unique N symbols sequence x = (z1,Z9,...,zy) called a codeword.
For a specific value of m, x is denoted x,,. The total number of codewords is
M = QX the signaling rate? is R = %. The channel is assumed to be a discrete
memoryless one. Let X be the set of all sequences of length N that can be transmit-
ted over the given channel and Yy be the set of all sequences of length N that can be
received. Both Xy and Yy are finite sets. Let Py (y|x) (fory = (y1,¥2,-.-,yn) € Yn
and x € Xy) be the conditional probability of receiving sequence y given that x
was transmitted. The probability input distribution is denoted @y (x).

1.3.2 Maximum likelihood decoding

The goal of the decoder is to form a mapping from the vector y to a decision m
on the message transmitted. The most reasonable, as well as the most convenient,

2Tn this chapter, the unit of R is the same as for the capacity C, iti s in bits per dimension
when the logarithm is base 2, it is in nats per dimension for the natural logarithm.
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criterion for this decision is to minimize the error probability. This leads to a cri-
terion based on selecting the message corresponding to the maximum of the set of
probabilities { P(m|y)}. This decision criterion is called the mazimum a posteriori
probability (MAP) criterion:

m=m if P(mly)>Pmly) Vm'#m (1.11)
If m satisfies inequality (1.11) but equality holds for one or more values of m', we

may achieve the same error probability by choosing any of these m' as the decision. .

Using Bayes rule, the posterior probabilities may be expressed as

P(m).P(y|m)
P(y)

where P(y|m) is the conditional probability distribution of the observed vector given
m, and P(m) is the a priori probability of the message m being transmitted.

P(mly) = (1.12)

Some simplification occurs in the MAP criterion when the M messages have equal
a priori probabilities, i.e., P(m) = 1/M for all M. Furthermore, we note that the
denominator in (1.12) is independent from the transmitted message. Consequently,
the decision rule based on finding the message that maximizes P(m|y) is equivalent
to finding the signal that maximizes P(y|m). The decision criterion based on the
maximum of P(y|m) over the M messages is called the mazimum likelihood (ML)
criterion. We observe that a detector based on the MAP criterion and one that is
based on the ML criterion make the same decisions as long as the a priori probabil-
ities P(m) are all equal.

In the following we assume equally probable messages and thus maximum likeli-
hood decoding is optimum.

1.3.3 Upper bounds on error probability

Having established the optimum decoder to minimize error probability, we now
wish to determine its performance as a function of the signal set.
a.) Union bound and Bhattacharyya bound

Let Y,, be the set of all sequences y decoded as m and Y, be the complement
of Y,,. The probability of decoding error when x,, is transmitted is equal to

Pen = P(y € Y |%Xm) = Z P (¥ |Xm) (1.13)

yeYy

The complement of the decision region can be written as
YE = {y :In Py (y|Xm) > In Py (y|xm) for some m' # m}

= U {y :In Py (y|Xm) > In PN(lem)}

m'#m
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= | Yom (1.14)

m'#m

where Y,y is the decision region for x,,» when only two codewords x,, and X, are
considered. Using (1.14) in (1.13), we find

Pe, = P{ye U Ymm"xm}

m'#m

< Z P{y € Ymm"xm}

m'#m

= ) P(m—m) (1.15)

m'#m

where P,(m — m') denotes the pairwise error probability when x,, is sent and X
is the only alternative. The bound of (1.15) is called a union bound. The inequality
becomes an equality only in the case where M = 2.

Further calculations can be made by upper bounding P.(m — m’). In fact,

P.(m —m') = Prob{y € Ymm/|xm}
= Z PN(Y‘xm)

yEYmml

= > F)Pu(ylxm) (1.16)

where we define the function f(y) as

1 Zf y € Ymm’
fy)= (1.17)

0 otherwise

We can now upper bound P,(m — m') by upper bounding the function f(y):

Py (y|xnv)

IO <\ By (y )

(1.18)

We can establish the validity of this bound by noting that the right-hand side of
(1.18) is always non-negative, thereby satisfying the inequality when f(y) = 0.
When f(y) = 1 the inequality is also satisfied since y is inside Y,,,» and therefore
the numerator is greater than the denominator.

Using equation (1.16) and replacing f(y) by its bound, we obtain

P.(m —m') <Y /Py(y[Xe) Pr(y/Xm) (1.19)

Yy
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This expression is called the Bhattacharyya bound. Combining the union bound

(1.15) with the Bhattacharyya bound we obtain a new expression for the union
bound

Pem S Z Z \/PN(Y|Xm')PN(Y|Xm) (120)

y m'#m

The union bound diverges when the signal-to-noise ratio is less than the limit
fixed by the cut-off rate denoted by Ry, i.e., when Ry < R < C [97] |63]. In this
case, the only valid upper bound is Gallager’s bound.

b.) Gallager’s bound

When the union bound fails to give useful results, a more refined technique give
an improved bound which is tight over a significantly wider range. Returning to the
original general expression (1.13), we begin by defining the set A,

A = {y 53 [%r > 1} For A> 0. (1.21)

m'#m

which contains the set Y,5. In fact, if y € V¢ then

Py (y|%m)

Py (y|Xm)
since maximum likelihood decoding was applied. Therefore, since \ is positive, rais-
ing the fraction to the A power keeps it greater than or equal to 1. Finally, summing
over all m' # m will include the m’ for which (1.22) holds, in addition to other non
negative terms. Hence y € /N\m and Y,¢ C ]\m.

> 1 (1.22)

Now, since the terms in (1.13) are always non-negative, by enlarging the domain of
summation (replacing Y,¢ by A,,) we obtain the bound

Pan < 3 Pu(ylm) = 3 0(3)-Pr (/) (1.23)
where
1 ifye A
o(y) = (1.24)

0 otherwise

Furthermore, we have

Py(yixm) ]
Z[Nyim] VyeYy, Vp>0andVA>0  (1.25)
Py (y[%xm)

o(y) < [

m'#m

Substituting this bound in (1.23) yields to
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P, < ZPN(y|xm)17)‘p[ Z PN(y|xm:))‘]p Vp>0and A>0 (1.26)

y m'£m
Since A and p are arbitrary positive numbers, we may choose A = ﬁ and thus
obtain
p
Pe <> Pr(y|xum) ™ [ > PN(Y\xmf)ﬁ] Vp>0 (1.27)
y m'#m

This bound, known as Gallager’s bound [97], is more powerful than the union
bound (1.20), since the latter is the special case of this bound obtained by setting

p =1

1.3.4 The general random coding theorem

Equation (1.27) yields a bound to P,,, for a particular set of codewords. Aside
from certain special cases, this bound is too complicated to be used if the number
of codewords is large. The exit from this impasse was clearly indicated by Shannon
[78], who first employed the central technique of information theory now referred to
as random coding. The basis of this technique is very simple: given that the cal-
culation of the error probabilities for a particular set of M codewords of dimension
N is not feasible, consider instead the average error probability over the ensemble
of all possible sets of M codewords with dimensionality N. A tight upper bound
on this average over the entire ensemble turns to be amazingly simple to calculate.
Obviously at least on signal set must have an error probability which is not greater
than the ensemble average; hence the ensemble average is an upper bound on the
error probability for the optimal code i.e. best code.

If P,,(x1,X2,...,%xM) is the error probability for the mth message with a given
signal set, the average error probability for the mth message over the ensemble of
all possible signal sets is

Pom =) ... Qn(x1)Qn(x2) ... Qn(xm) Pem (X1, X2, ..., XMm) V'm0

(1.28)
Replacing P, (X1,X2,...,xMm) by its Gallager upper bound (1.27) and changing
the order of the summations, we obtain as the upper bound on the ensemble error
probability when message 1 is sent

P, < Z Z QN(XI)-PN(Y|X1)$-

y X1

{ZZ e ZQN(XZ)QN(Xs) QN (%)

X2 X3 XM

zmy\xmfﬁ] } (1.29)
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Equation (1.29) is valid for all p > 0. Note that we considered the case m =1, only
to simplify notations. To proceed further, we must restrict the arbitrary parameter
p to lie in the unit interval 0 < p < 1. Then, limiting attention to the term in braces
(1.29) and defining

M
fr(x1, X2, xm) = Z Py (¥ [ %) T+ Vp>0 (1.30)

m' =2

fn is a convex [ function when 0 < p < 1. Thus we can apply the Jensen inequality
defined in Lemma 1.1.

Lemma 1.1 Jensen inequality

Let f(x) be a convex () real-valued function defined on the real line. Let z be a
random vartable with finite expectation. Then, for all probability density functions
p(z) de x:

E[f(z)] < f(Elz])

For convez | functions, the inequality is reversed.

We have then

D) Qn(xa) . Qu ) [ (x1, %2, . xm)) <

[Z e ZQN(Xz) - Qn(xm).- fr (X1, X2, ..., XM) ’ (1.31)

Next, using the definition of fy(x1,X2,...,Xm), we can evaluate the right side of
(1.31) exactly to be

[Z ) --ZQN(XZ) QN (xMm)-fy(x1,Xa, ... ,XM)Y

X2

p

= :Z...ZQN(Xz)...QN(XM), Z PN(y|xml)ﬁ

= [ 3 Q) Py ) o]

Sl =
m/=2 X

= [ =) Y Qxx)Pylyix) ]’ (1:32)

where the last step follows from the fact that each vector x, is summed over the

same space Xy. Consequently, P,; is upper bounded by
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Py <(M-1) ZZQN x1) Py (y|x1) 1+”[ZQN )Py Y‘X)””r (1.33)
and

Po< (M Z [ZQN )Puyhom| (1.34)

Now if, for any m # 1, we were to interchange the indices 1 and m throughout
the above derivation from (1.29) on, we would arrive to the same bound which is
consequently independent of m. We obtain finally the following upper bound on the
ensemble average error probability when any message m is sent

Pom < (M Z[ZQN )P (y[x) VO<p<Lim=1.2...,M

(1.35)
This bound is valid for any discrete (Q-ary) input and discrete or continuous out-
put channel, provided in the latter case we replace the summation over Yy by an
N-dimensional integral and take Py(y|x) to be a density function.

We shall now assume that the channel is memoryless (DMC channel), i.e.,

Py(yp) = [ [ P(nlen)

for all x € Xy and y € Yy and all N. Now we restrict the class of ensemble of
codes under consideration to those in which each letter of each codeword is chosen
independently of all other letters

then, we have for a memoryless channel

Pon < (M — 1) Z Z[Z ZHPzn yn|xn)l}1+p (1.36)

rny n=1

Py < (M —1) HZ[ZPmn yn|xn)$}1+” (1.37)

n=1 yn

Trivially over-bounding M —1 by M and since the term in the product is independent
of n, we obtain

B, < MP[Z [ZP P(y|z) }HP}N (1.38)
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We may express this equation alternatively in terms of the signaling rate per dimen-
sion R = In(M)/N nats per dimension (M = eV¥)

Pon < exp(pNR).exp (NIn(}_[Y_ P@)P(yle)™5]"4))  (1.39)

We can simplify the notation in (1.39) somewhat by observing that X is the set
of input letters, which is denoted a,, ..., ax ..., ag, where @) is the size of the channel
input alphabet. Also, Y is the set of output letters, denoted by,...,b;...,b;, where
J is the size of the output alphabet. Now let P;; denote the channel transition
probability P(b;|ax) and let P(ay) = Py denote the probability with which letter ay
is chosen in the code ensemble. Substituting this notation in (1.39) we get

7 Q .
Pu < exp (—N[ ~pR-Y (M Pk.a,ﬁ_ﬂ)lﬂ’}) (1.40)
i=1 k=1

Since the right-hand side of (1.40) is independent of m, it is a bound on the
ensemble probability of decoding error and is independent of the probabilities with
which the codewords are used. Since at least one code in the ensemble must have
an error probability as small as the average, we have proved the following theorem,
known as the general random coding theorem:

Theorem 1.2 General random coding theorem

Consider a discrete memoryless channel with an input alphabet of Q) symbols, a1, ..., aq,
an output alphabet of J symbols, by, ..., by, and transition probabilities Py, = P(b;|ay).
For any code length N, any number of codewords M = eNE, and any probability dis-
tribution on the use of the codewords, there exists a code for which the probability of
decoding error is bounded by

P, < exp (—N[—,OR + E()(P, P)]) (1'41)
J Q L
Eo(p,P) = —an(Z PP )tr (1.42)

where 0 < p <1, and P = (P, P,,..., Py).
We get the tightest bound on P, by minimizing over p and P. This gives us the

trivial corollary:

corollary 1.1
Under the same conditions as theorem 2, there exists a code for which

P, < e NF(R) (1.43)

E(R) = max|~pR + Eo(p, P) (1.44)
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The function E(R) is the reliability function, known as the Gallager coding expo-
nent. Except for small values of R, corollary 1.1 provides the tightest known general
bound on error probability for the discrete memoryless channel. Note that Gallager
[37] calculated E(R) for a continuous AWGN channel and signaling rate R close to
capacity. As stated by Gallager, this exponent rate is the same as the exponent rate
derived by Shannon [79]. However Shannon’s coefficients are considerably tighter.
Shannon’s calculations are reviewed in section 1.6.3.

We discuss the properties of F(R) in the next section.

1.3.5 Properties of the reliability function E(R)

The maximization of (1.44) over p and P depends on the behavior of the func-
tion Ey(p,P). Theorem 1.3 describes Ey(p, P) as a function of p, and theorem 1.4
describes E(R) and proves the channel coding theorem.

Theorem 1.3
Consider a channel with QQ inputs, J outputs, and transition probabilities

P, 1<k<@Q; 1<i<J

Let P = (P, P, ..., Py) be a probability vector on the channel inputs, and as-
sume that the average mutual information

9 Py
ZZPkRk (111 7. ) (1.45)

1s nonzero. Then

Fo(p,P)=0 for p=0 (1.46)
Eo(p,P) >0  for p>0 (1.47)
OBo(pP) _ o tor p>0 (1.48)
op
aE"gZ’ P) =) (1.49)
GQEggg’P) <0 (1.50)

Using this theorem, we can easily perform the maximization of (1.44) over p for
a given P. Define

E(R) = max|[—pR+ Ey(p, P)] (1.51)

0<p<l
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Setting the partial derivative of the bracketed part of (1.51) equal to 0, we get

(1.52)

From (1.50), if some p in the range 0 < p < 1 satisfies (1.52) then that p must
maximize (1.51). Furthermore, from (1.50) %/’)”P) is a non-increasing function of
p, so that a solution to (1.52) exists if R lies in the range

8E0(p:I)
U A < R<IP 1.
o9 p:1_R_ ( ) ( 53)

In this range, it is most convenient to use (1.52) to relate E(R,P) and R paramet-
rically as a function of p. This gives us

OEy(p, P
B(R.P) = Eo(p,P) - p 2 E) (1.54)
Eo(p, P
R:%’;’) 0<p<1 (1.55)

For R < 8E°8(£ : )|p_ 1, the parametric equations (1.54) and (1.55) are not valid. In
this case, the function —pR + Fy(p, P) increases with p in the range 0 < p < 1, and
therefore the maximum occurs at p = 1. Thus

al;IO (pa P)

E(R,P)=FEy(1,P)— R for R< 9p -

(1.56)

These results are used, in the next section, to determine the performance of
optimal codes transmitted over a binary symmetric channel.

Theorem 1.4
For every discrete memoryless channel, the function E(R) is positive, continuous,
and convez | for all the rates R in the range 0 < R < C. Thus the error probability

bound P, < exp(—NE(R)) is an exponentially decreasing function of the code length
N for0< R<C.

1.4 Performance of optimal codes over the BSC chan-
nel

The transition probabilities of a binary symmetric channel are Py = Py = p,
and P;; = Py, = 1—p. Clearly, the input probability vector that maximizes Fq(p, P)
isP=P, = % For this choice of P,

Eo(p,p) = —an(ZP P”“*")Hp
=1 =

= pln2—(1+p)ln [pl/(1+p) +(1— p)l/(H”)] (1.57)
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We now differentiate (1.57) and evaluate the parametric expressions for exponent
and rate, (1.54) and (1.55). We obtain®

R=In2-H(p,) (1.58)

1 —
E(R,P)=p,n22 +(1-p,)In . Po (1.59)
p —p

where
H(p,) = —p,Inp, — (1 — p,) In(1 — p,)

p!/(1+0)
Po = L) (1= p) /o)

These equations are valid for 0 < p < 1, or for

VP
an—H[m] <R<C (1.60)

For rates below this, we have (1.56), which becomes

E(R,P)=In2-2In(y/p++/1—p)— R (1.61)

For low rates, the exponent E (R, P) does not yield a tight bound on error prob-
ability. The exponent is so large at low rates that previously negligible effects such
as assigning the same codeword to two messages suddenly become important. Us-
ing expurgation techniques, Gallager 36| determined a tighter reliability function
E(R,P):

In4
R+ DW = 1In2— H(5) (1.62)

0 1

where the parameter § is related to p by 2 = [4p(1 — p)]'/*. Equations (1.62)

and (1.63) are valid for 6 > Hi"j%. Note that equations (1.62) and (1.63) are

not of great interest since for practical signal-to-noise ratios, i.e. practical error
probabilities, the rate R is not too low and thus, (1.62) and (1.63) cannot be used.

(1.63)

For large N, 1%4 goes to zero. Thus, using equation (1.62), § approaches mei”, where

dmin is the Gilbert-Varshamov bound [35] on minimum distance of a binary code.

Figures 1.5 and 1.6 show the upper bound on the word error probability of opti-
mal codes transmitted on the BSC, as a function of the average signal-to-noise ratio
per bit % in dB.
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Figure 1.5: Upper bound on the performance of optimal codes transmitted over the
BSC channel, R = £ bit/dimension.
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Figure 1.6: Upper bound on the performance of optimal codes transmitted over the
BSC channel, R = 2 bit/dimension.
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For the practical signal-to-noise ratios of figures 1.5 and 1.6, i.e. P, > 1078,
the rate R verifies equation (1.60). Therefore, the upper bound on the word error
probability was calculated using equations (1.58) and (1.59). The probability p, is

determined using equation (1.58), while the error probability p is equal to Q( %’j”)
when a BPSK modulation is used.

1.5 Channel capacity computation

In this section, we calculate the capacity of channels like the continuous AWGN
channel, the binary symmetric channel and the discrete-input AWGN channel.

1.5.1 Calculation of the capacity of the continuous-input AWGN
channel

For a continuous AWGN channel, the output is y = £+ n where n is a zero-mean
Gaussian random variable with variance o2.

n

X y

Figure 1.7: Continuous input, AWGN channel.

The maximum of 7(X;Y") over the input probability density function ¢(z) is obtained
when the input z is a zero-mean random variable [18]

1 _ a?
x) = e 2%
p(x) o

where o2 is the variance of the input x. Further calculations derived in (A.1) show
that the capacity of the continuous AWGN channel is equal to

1 o2
C= 5 log, (1 + 0—2) (1.64)

Now let P = 02 = 2RE; be the signal power per dimension where R is the
signaling rate in bits per dimension and Fj is the average energy per information bit.
Let 02 = Ny be the noise variance per dimension. In this case, y = x+b corresponds
to the base-band equivalent model of a pass-band transmission Z(t) = S(t) + N(t)
where N(t) is a white Gaussian noise of power density 2. We obtain

1 2RE,
C= 3 log, (1 + N, ) (1.65)

3R is in nats/dimension



1.5 Channel capacity computation 23

To compute C' as a function of the average signal-to-noise ratio per bit %, we must
replace R by C' and thus solve

1 2CE,
=21 1+ 1.
C 5 og2( : ) (1.66)

This is done using the fixed point algorithm. The results are sketched in figure 1.8.
The capacity is equal to zero for ﬁ—g equal to -1.6 dB.

[N
o
T
I

C in bits/dimension
p o
T T
Il Il

0.5 B

-2 0 2 4 10 12 14 16

6 8
Eb/NO in dB

Figure 1.8: Capacity of the continuous AWGN channel as a function of the average
signal-to-noise ratio per bit ﬁ—’(’] in dB.

1.5.2 Calculation of the capacity of the binary symmetric
channel

For the BSC channel, with transition probabilities P(1]|0) = P(0|1) = p, the aver-

age mutual information is maximized when the input probabilities P(0) = P(1) = 3.

C in bits/dimension

03 O‘A 0‘5 0‘6 07 o.
Error probability, p

Figure 1.9: Capacity of the BSC as a function of the error probability p.
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Thus, the capacity of the BSC is

C =p.logyp+ (1 —p)logy(1 — p) =1 — Hy(p) (1.67)

where Hy(p) is the binary entropy function.

A plot of C' versus p is illustrated in figure 1.9. Note that for p = 0, the capacity

is 1 bit/dimension. On the other hand, for p = %, the mutual information between

the channel input and output is zero. Hence the channel capacity is zero.

For a BPSK modulation p = Q(,/ 2RE”) where £ is the average signal-to-noise

ratio per bit. To calculate C' as a function of 1]:3[—’3 we choose R = C and then use the
fixed point algorithm. Results are shown in figure 1.10

C in bits/dimension
=] =]
> (4]
T T

o
w
T

E, /N _in dB

1
4
b 0

Figure 1.10: Capacity of a BSC channel as a function of the average signal-to-noise
ratio per bit ﬁ—g in dB.

1.5.3 Calculation of the capacity of the discrete-input AWGN
channel

For a Q-ary discrete-input continuous-output channel, the capacity is equal to
(see equation (1.9))

0= mxy” | Pyl s (s Fiommmn) ™

The maximum is achieved by a uniform distribution on the input [18]
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1
P(:r):é VzeX={a,as,...,a0}

We obtain

i/ (y|ag) log( p(ylax) )dy (1.68)

Q Zk' 1p(y|ak’)

where

1 (y—a;)z
p(ylax) = el (1.69)

We can compute C' numerically using equation (1.68) and replacing p(y|ax) by
its expression. For example, for @Q-ary ASK modulations, the capacity C calcu-
lated as a function of £ ~o, is shown in figure 1.11. Note that in this case, X =

{il;j::%;...;j:(Q—l)} B, = =L and 02 = N,.

—— AWGN, continuous input -
35 P b
+- AWGN, 2ASK input e
-
*~ AWGN, 4ASK input o7
3r ~ i

x= AWGN, 8ASK input

C in bits/dimension
N P
T T

=
o
T

0.5

I I I
8 10 12 14

in dB

6
EN,

Figure 1.11: Capacity of the discrete, ASK input, AWGN channel as a function of
the average signal-to-noise ratio per bit ]];3,—'(’) in dB.

We revien in the next section the calculation of the performance of an optimal
spherical code derived bu Shannon [79] for the AWGN channel.
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1.6 Performance of optimal spherical codes over the
AWGN channel

For continuous Gaussian channels, Shannon developed lower and upper bounds
on the error probability of optimal spherical codes [79]. For such codes, each code-
word lies on the surface of a sphere of radius v/ /NP where P is the signal power
per dimension. The upper bound was found using random coding techniques. On
the other hand, Shannon used a geometrical approach to determine the lower bound
[79]. Some modifications and improvements of his work have been done recently
[22] [51]. Nevertheless, the expression derived by Shannon for the lower bound Q(f)
is still the simplest one. This function gives the probability of moving outside a
cone of half-angle 6. Its asymptotic expression is very accurate for a code length N
greater than 100. This has been validated numerically by comparing Q(f) to the
upper bound derived by Shannon in the same paper [79].

In this section, we review these calculations and we show numerically that lower
and upper bounds are close together for signaling rates near channel capacity, ¢.e.,
practical signal-to-noise ratios.

1.6.1 System model and notations

Let us make a geometrical representation of the code set in the N-dimensional
real space RY. We assume that the M = 2V% codewords are equally probable,
and uniformly distributed on the N-dimensional sphere Sph(o, N) centered at the
origin o, with radius vV NP. The signal power per dimension is P = 2RE} , R is the
signaling rate in bits per dimension and Ej is the average energy per information bit.

The codeword x = (z1,...,%g,...,2y) is transmitted over an additive white
Gaussian noise (AWGN) channel
Yk = Tk + N

where n; is a real Gaussian noise with zero mean and variance Nj.

The optimal performance of this code transmitted over the AWGN channel is
bounded as follows [79]

Q(6)
Q(6,)

where @Q(f) is the probability for a point x at distance v NP from origin, being
moved outside a circular cone of half-angle # with vertex at the origin o and axis ox.

01
Q(6:) < Pooge(N, R, P) < Q(8)) — / 1Q () (1.70)

The function () is the solid angle of a cone of half-angle 6, or equivalently the
area of a unit N-sphere cut out by the cone. The angle 6; is chosen such that the
solid angle (6;) is equal to 55 (7) where Qu () is equal to the surface of the
unit /N-dimensional sphere.
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Figure 1.12: Geometrical representation in the N-dimensional space.

1.6.2 Calculation of the lower bound

Figure 1.12 shows the codeword x surrounded by a circular cone C'(x) delimited
by an (N — 1)-dimensional sphere (circle) Sph(o, N —1) and a pyramid V (x) drawn
in an hexagonal form. V(x) is the Voronoi region associated to the codeword x, i.e.
the decision region of x when maximum likelihood (ML) decoding is applied. The
circle Sph(o, N — 1) is the intersection of the sphere Sph(o, N) and a hyper-plane
denoted by H. The radius p; = pi(6;) of the circle is chosen such as the solid
angle (6;) of the pyramid V(x) is equal to that of the cone C(x) delimited by
Sph(o, N — 1). Note that

Q6)) = —=—Qn () (1.71)

INR
The codewords are supposed to be uniformly distributed and equally probable.
By symmetry, the average word error probability P, is equal to the conditional
error probability P.(x) when x is transmitted. P,(x) is thus the probability for the
received signal to be moved by the Gaussian noise outside the pyramid V (x).

The Gaussian noise probability density p, is a decreasing function of the Eu-
clidean distance d. It can be easily shown that

Opn / Opn
v > R V4 1.72

Let Q(6;) be the probability for a codeword on the axis of a cone of solid angle
2(61) being moved outside this cone. We have

Q) =1 /C( | g@dv (1.73)

We thus obtain the following lower bound for the word error probability
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Q(el) S Peopt (174)

The relation R = R(6;) and the expression of Q(f) have been developed by
C.E. Shannon [79]. The solid angle ©(#) is computed by summing elementary ring
surfaces dQ2(¢) = Qn_1(m)sinV 2pdg -

-1

N1 0
(N = D = / sin™~2 pdop (1.75)

"=

where I'(%) is the Gamma Euler function. Using equation (1.71), we get

pvn_ V(Y

= 5 (1.76)
F(g) o sin®¥ 2 pdo
Asymptotically, when N >> 1, equation (1.76) becomes
oNR \/27TN‘SiIII\[01.C0801 (1.77)
sin” 6
The lower bound () can be computed from its derivative
.
Q) = [ -dQ@) + Q) (1.78)
01

2No
This term can be neglected since it has a minor influence on Q(6,).

Notice that Q(%) = Lerfc(,/&XL2), where er fc is the complementary error function.

Finally, the function Q(6;) can asymptotically be approximated by

e*NEL(al)
Q(6) = (1.79)
VN7TA/1+ G2 sinb.(4 /N% sin? §; — cos 6,)
where
P 1 /P
=__ _ = .si 1.
EL(91) 2NO B NOG COS 91 ln(G Sin (91) ( 80)

[\ [~ cos ) + 4 / — cos2 0, + 4} (1.81)
Ny

The cone half-angle 6; is computed by solving equation (1.77) for a fixed space
dimension N and a fixed rate R. Different approximations of Q(f) were investigated.
Also some exact calculations were derived [22] [51]. We found numerically that
exact formulas [22] [51] and the asymptotic expression of equation (1.79) coincide
for N > 100. Equations (1.77), (1.79), (1.80) and (1.81) are used latter to evaluate
Q(6;) numerically.
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1.6.3 Calculation of the upper bound

The upper bound of P, was found by Shannon using an argument based on
random codes.

Consider the ensemble of codes obtained by placing M points randomly on the
surface of a sphere of radius vV NP. More precisely, each point is placed indepen-
dently of all others with probability measure proportional to surface area or, equiv-
alently, to solid angle.

The average error probability P, of for all codewords, was calculated by Shannon.
He found

p=— /H; {1 - %}M—l} dQ(0) (1.82)

Since this is an average of P, over all codes, there must exist a particular code in the
ensemble with verifies P,,,; < P,. Further calculations derived by Shannon showed
that

PN, R, P) < Q(0)) — / 1 %d@(@) (1.83)

As for the lower bound, we can asymptotically approximate the upper bound by

cost — 4 /N%G sin? 6, e—NEL(61)
1- .
2cosf; — 4 /N%G sin?f; | VNn/1+ G2.sinb;. (,/N% sin? f; — cos 01)

(1.84)
This result is valid for 68; < 6., 0 < 6. < w/2, where 6. is the unique root of

2cosf — ‘/N%G sin? @, for any fixed Nio > 0. The rate that corresponds to the criti-

cal value 6 = 0. is denoted by R..

For 0; > 6., i.e. for rates R < R, the previous upper bound does not hold. The
asymptotic expression in this case is

1
cos B, sin® 6. \/N7r[1 +G(6,)] 821::952(00)

e~ NEL(0e)=H] (1.85)

For practical signal-to-noise ratios, the rate R is close to the capacity C (R, <<
R < C). Thus the asymptotic expression of equation (1.85) is not of great interest.

1.6.4 Performance of optimal spherical codes

For 0, < 6., the two asymptotes differ only by the factor
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cost; — ,/ L Gsin?6
200801 ,/ Gsm201

which is independent of N. This factor increases as #; increases from the value 6,
corresponding to channel capacity, to the critical value 6., corresponding to the crit-
ical rate for which the denominator vanishes. Over this range the factor increases
from 1 to co. In other words, for large N, P,,,: is determined within a factor. Fur-
thermore, the percentage uncertainty due to this factor is smaller at rates closer to
channel capacity, approaching zero as the rate approaches capacity.

Slepian [80] checked this result for large N(> 100). We also did the same nu-
merical verification (see figures 1.13 and 1.14) using the approximations of the lower
and upper bounds given by Shannon (equations (1.79) and (1.84)).

This implies that for practical average signal-to-noise ratio per blt & and reasonable
error probability values P, > 1078, 1.e. rates near channel capac1ty, we have

Ey

Proopt(N, R, P) = P,y (N R,
" No

> ~ Q(6,) (1.86)
The result of equation (1.86) is very interesting. The performance of optimal

spherical codes are equal to the lower bound @(6;) which can be evaluated numeri-
cally using equations (1.77), (1.79), (1.80) and (1.81).
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Figure 1.13: Lower and upper bound on the performance of optimal spherical codes,
R = 2 bits/dimension.
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Figure 1.14: Lower and upper bound on the performance of optimal spherical codes,
R = 3 bits/dimension.

1.6.5 Comparison with the performance of optimal codes trans-
mitted over a Binary Symmetric Channel

Numerical calculations derived in the last section showed that for practical signal-
to-noise ratios the upper bound derived by Shannon using random coding techniques
is approximately equal to the lower bound and consequently equal to the performance
of optimal codes transmitted over the continuous AWGN channel.

The same random coding techniques were also used by Gallager to derive the
general random coding theorem and then to calculate an upper bound on the perfor-
mance of optimal codes transmitted over a Binary Symmetric Channel (see sections
1.3 and 1.4). Therefore, we may also approximate their performance by their upper
bound calculated in section 1.4. This approximation is more accurate for large val-
ues of code length N.

Figures 1.15 and 1.16 show a comparison between the performance over the
AWGN and the BSC channels for code rates equal to 1/2 and 2/3 bits per dimension.
For N = 27, and for both code rates, the degradation in the performance of the
BSC channel is almost equal to the one we have for the capacity ( ~ 2dB). This also
validates the upper bound as a good approximation of the performance of optimal
codes over both AWGN and BSC channels.



32 Performance of optimal codes
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Figure 1.15: Performance of optimal codes transmitted over the continuous AWGN
channel and the BSC channel, R =  bit/dimension.
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Figure 1.16: Performance of optimal codes transmitted over the continuous AWGN
channel and the BSC channel, R = 2 bit/dimension.
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1.7 Performance of lattice codes

The proof of the channel coding theorem and the calculations of the upper bound
on the performance of optimal codes are based on a random coding argument and,
hence, codes that achieves capacity and the performance of optimal codes may ex-
hibit little or no structure making them not suitable for practical applications. Thus,
it is of great interest to investigate the maximum reliable transmission rates and the
best performance achieved by structured codes like lattice codes.

Lattice codes consist of the intersection of a lattice A (or a translate of a lattice)
with a bounded shaping region 7', which is typically a ball centered at the origin.
To take full advantage of the underlying lattice structure, we would like to neglect
the effects of the bounding region T and simply decode to the nearest lattice point,
whether or not this point lies in 7. Such decoder is referred to as lattice decoder.
The optimum decoding procedure on the other hand is minimum distance decoding
which maps the received point into the closest lattice point inside 7.

The main prior work on information-theoretic limits of lattice codes are two pa-
pers by De Buda [19], [20]. In his first paper [19], De Buda considered spherically
shaped lattice codes with lattice decoding and showed that arbitrarily small error
probability can be achieved at all rates below 1/2log,(P/N) bits per dimension,
where P and N are the signal power and noise variance, respectively. He also gave
an exponential error bound that is only close to Shannon’s bound for large signal-
to-noise ratios.

In his second paper [20], De Buda seemed to have proved that lattice codes
can even achieve the full channel capacity 1/2log,(P/N), and that there exists lat-
tice codes which satisfy Shannon’s upper bound within the factor 4. For technical
reasons, he considered thick-shell shaping region 7" rather than spherical shaping.
Moreover, he assumed minimum distance decoding rather than lattice decoding.
However, an error in |20] was reported by Linder et al |[53]. They were able to fix
the problem, by replacing de Buda’s thick shells with thin shells. Consequently,
the corresponding codes lost most of their lattice structure and rather resembled to
random spherical codes.

Magalhaés and Battail [59] also studied lattice codes and derived error exponents.
In fact, they seemed to have proved that, even with lattice decoding, the full capacity
1/2log,(1+ P/N) is achievable. However, a mistake in the proof (the lattice points
inside a (P + N)-sphere are tacitly assumed to have average power P) invalidated
their argument.

Poltyrev [62] considered unbounded constellations and lattices, for which he gave
a Gallager-type exponential random coding bound. He also proved that 1/2log,(P/N)
is achievable.

Finally, Urbanke and Rimoldi [93] were able to prove that lattice codes with a
bounding region 7" equal to a ball achieve the capacity 1/2log,(1 + P/N) of a con-
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tinuous AWGN channel when minimum distance decoding is used. (The proof, that
1/2log,(P/N) is the capacity of lattice codes under lattice decoding is still missing).

Note that all these authors based their lattice results on the following version
of the Minkowski-Hlawka theorem [70]. This theorem states that for any Riemann
integrable function f : R — IR of bounded support and any positive €, there
exists a lattice A in IR"Y with fundamental volume 1 such that

Zf(x)</ f(z)dx + €

TEA RY

De Buda stated that, for lattices, the Minkowski-Hlawka theorem can replace the
usual random coding arguments. However, all known proofs of the theorem are ob-
tained from averaging over a large, usually infinite, class of lattices. In this sense,
the Minkowski-Hlawka theorem is random coding and may be regarded as a pry-
Shannon result in information theory. Loeliger [54] used this theorem to determine
averaging bounds for lattice codes.

In the next sections, we show that lattice codes can, not only achieve capacity
on the AWGN channel but also perform as good as finite length Shannon’s optimal
spherical codes when the length is sufficiently large.

1.7.1 Lower bound

Let T be the N-dimensional ball of radius /NP, and volume V = Vy(v/NP,,)",
where P, is the peak power per dimension and Vy is the volume of a unit sphere.

Consider a lattice A € R" with a fundamental region P; and a point s inside P;.

The M = 2VE codewords of a lattice code C(A,T) are the points of the translated
lattice A + s that belong to 7" [93]

CAT)=(A+s)NT (1.87)

Let P$ (N, R, Z—’g) be the word error probability of this code. To each codeword

add a further coordinate such that in the N+1-dimensional space, the resulting point

lies exactly on the N + 1-dimensional sphere surface. If the first N coordinates of

a point have values 1, z9,...,zy with Zfil z? < NP, the added coordinate will
have the value

N
Tnp1 = | (N+1)Pp =) a? (1.88)
i=1
This gives a new spherical code of the type described in section 2, i.e. M = 2VE
words of length N + 1 at signal-to-noise ratio %. The error probability of the initial
code is at least as great as that of the new one, since the added coordinate can only
improve the decoding process

Py,
P! < PG, (N, R, ) (1.89)
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where PZ is the word error probability of the new spherical code of length N + 1.
By comparing the new code to the optimal spherical code of length N + 1, we derive
the following inequality

IN

€

NR P,

Py | N+1, ———, —
Pt ( TN N0>

In large dimensions, P,y (N, R, Z—Tg) ~ Poopr(N+1, fov—fl, Z—T;) Thus, we can write
when N > 1

P,
Pi<PS, (N, R, E) (1.90)

P\ < c P,
Peopt (Na R, FO) ~ Peopt (Na Ra FO) (191)

1.7.2 Upper bound
Define P (N, R, %) as the word error probability of the best non-spherical

eopt
code bounded by the ball 7. This code is not necessarily a lattice code. Clearly,
since the points lie inside the sphere of radius //N.P,, and not at its surface like for
optimal spherical codes, this will relax the condition on the code. So the performance

is improved in the latter case and we have

ns P’m Pm
Peopt (N’ Ra E) S Peopt <N; R, FO) (192)

This result cannot be directly applied to lattice codes because we cannot check that
the best non-spherical code is a lattice code. As described below, the Urbanke &
Rimoldi upper bound [93] on lattice codes shows that for high dimensions, the per-
formance of a lattice code is bounded by that of an optimal spherical code similar
to equation (1.92).

In fact, let 7" be the N-dimensional sphere of radius vV NP' (P' < P,,) and vol-
ume V' = Vy(VNP")V | as illustrated in figure 1.17.

Figure 1.17: Sphere T, T, spherical shell T2.

Define T = T — T" with volume V2 = V — V'and define the two lattice codes
C'(A,T") = (A+s)NT" and CA(A,T?) = (A + s) NTA, that are sub-codes of
C(A,T). Let M' = 2NE and M2 = 2NR® be the cardinalities of these codes. A
suboptimal decoder satisfies the following inequality [93]
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PC

eopt

P, M’ A
N,R,=*) <—+P° 1.93
( ? ,NO) — M + e ( )
where PC% is the word error probability of the lattice code C2(A,T2). De Buda
[20] upper bounded P* by

Pl

PC" <4.P.,, (N R%, ) (1.94)
" Ny

The above bound has a factor of 4 when compared to the lower bound (1.91) for

large values of N. To eliminate this factor, we can apply the upper bound of [93]

using our notations:

L v P\ 2./NPy(N — )z (NP)? N
C MY g N A S / N 2d
P€Opt (N R NO) _4V+Peopt( 7R 7N0 92— NRAVAF(N ) ; (Sln.’L‘) X
(1.95)
It is easy to show that (1.95) simplifies to
P PI VI V/
c m A
Peopt (N,R, N()) SPeopt (N;R N0)+4V+2 NP NVA (196)

Choose P’ too close to P,,. Asymptotically, as N — +o0, %’ — 0, N*/2 % Ve — 0,
R®» — R. Then

P, P,
Pecopt <N7 R: M) S Peopt <N; R, F()) (197)

This result is the same as the one we had for optimal non spherical codes (equation
(1.92)). Combining (1.91) and (1.97), we find

PS (N, R, %’;‘) ~ Propt <N, R, %‘) (N >>1) (1.98)
Numerical results showed that for finite values of N, the gap between the lower
bound (1.90) and the upper bound (1.96) is very small (see figure 1.18). The result
expressed in equation (1.98) says that an optimal lattice code performs as good as
an optimal spherical code when the space dimension is large enough. As illustrated
in figure 1.18, the signal-to-noise ratio difference is less than 0.25 dB for N = 2048.

1.7.3 Performance of optimal lattice codes as a function of
SNR

To derive the word error probability as a function of the average signal-to-noise
ratio per bit ﬁ—g, we have to find the relation between E, and the peak power per

dimension FP,,.

e First, we calculate the average energy E;* per information bit of a lattice code

C(A,T) where T has a cubic shape, T = [—A;+A]", and a volume
Vol(C®*) = (2A)N = Vy(v/NP,)". The cube boundary is given by
1
A2 = NP, “}%/Vy (1.99)

4
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Let EJ* = NRE" be the average energy per point. E;* can be calculated
using the continuous approximation [82| [28] valid for large values of N and R

1 dx
P 2 [—A,+A]N H || VOZ(CCU)

1 /// 9 9 o \dridzsy .. . dxy
= = Ity + ...+
2 xe[—A,+A]N( S v) (24)N

By evaluating N simple integrals we find ES* = ¥4%. Thus

ECU A2 1
Ev=_"t =" = ___NP, "RV, 1.100
b " NR  6R 24R N ( )

e Secondly, since a spherical N-dimensional constellation has a shaping gain [28]

[17] equal to
N +2
()= — X2 (1.101)
12 x "R/T(N/2+1)
and since Vy = %, we get
Egv N 1 P,
Ey=—" ~ (1.102)

T30 T N+22R" ™7 2R

Equation (1.102) is identical to the one we had for codes with equal power
points (P = 2RE},).

We conclude finally that the word error probability of an optimal lattice code trans-
mitted over an additive white Gaussian noise channel with average bit to noise ratio
%, is asymptotically equal to

E E
Peco’pt <Na Ra ﬁﬁ) = Peopt (N, R, —b> =~ Q(01) (1103)

1.7.4 Numerical results

Figures 1.18 and 1.19 show the lower and the upper bounds of optimal lattice
codes of rate 1 bit/dimension and 1.5 bits/dimension respectively, as a function of the
average signal-to-noise ratio per bit ]]f,—'(’) in dB. The lower bound Q(#) is calculated
using equations (1.77), (1.79), (1.80) and (1.81). Curves are plotted for N = 28
N = 2" and N = 2. The small gap between the two bounds shows that for
N > 2048, we can approximate the performance of optimal lattice codes by their

lower bound like in equation (1.103).
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Figure 1.18: Lower and upper bounds on the performance of optimal lattice codes,
R =1 bit/dimension.
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Figure 1.19: Lower and upper bounds on the performance of optimal lattice codes,
R = 1.5 bits/dimension.
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1.8 Conclusion

In this chapter, the main results regarding the capacity and the performance
of optimal codes are reviewed for both continuous additive white Gaussian noise
channel and binary symmetric channel. These results determine the best achievable
performance. Digital communications systems with performance close to these limits
must be found. As proved in this chapter, this may be done using structured codes
like lattice codes since these codes can not only achieve capacity but also perform as
good as optimal spherical codes. The main problem with lattice codes is decoding.
The sphere decoding technique [17] can be used with lattice codes that have a large
code length N. Several work was done to find a sub-optimal decoding technique
for large values of N [49] [11]. However, these results are not sufficient to validate
lattice codes for the use in a transmission over the AWGN channel.

In the next two chapters, the capacity of the AWGN with BPSK input is ap-
proached using turbo codes and irregular turbo codes. For high code rates, chapter
4 describes a class of coded modulations, known as multilevel coded modulations,
that can achieve capacity.
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Chapter 2

Turbo codes and irregular turbo
codes

2.1 Introduction

In 1993, a coding scheme known as Turbo Codes (TC) was presented by Berrou,
Glavieux and Thitimajshima [6]. Turbo codes can be seen as a sub-class of a more
general class of codes known as compound codes. A compound code is constructed
using simple constituent codes that can be easily decoded. Turbo codes are not the
first compound codes that were proposed in the literature.

Product codes based on block codes, were introduced by Elias [23] in 1954. Prod-
uct codes are based on the concatenation of at least two linear codes. If we consider
two codes C;(N1, K1,d;) and Cy(Ny, Ky, dy), the product code parameters are the
product of the elementary code parameters N;, K;, d;; ¢ = 1,2 that respectively
stand for the block length, the information bits length and the minimum Hamming
distance of code C;. The product code is represented by a matrix obtained by en-
coding K, rows of K; information bits by code C7, then encoding the N; columns of
the matrix by code C5. Each of the Ny rows of the coded matrix is a codeword C
as each of the N; columns is a codeword of C'y. The minimum Hamming distance of
the product code is equal to d = d; X ds.

In 1966, Forney [30] introduced concatenated codes in order to construct large
block codes by serially concatenating two or more small codes.

In 1963, Gallager |35] introduced the low density parity check (LDPC) codes and
presented an iterative probabilistic decoding algorithm. However, for complexity
reasons, the work of Gallager was neglected till the introduction of turbo codes.
Since then, LDPC were largely studied [56] [64] [55]. These studies showed that the
capacity of the AWGN channel with BPSK input can be reached using LDPC codes
and iterative decoding [15]. Moreover, for block length N ~ 27 and for a bit error
probability greater than 1075, LDPC codes that can perform better than the original
turbo code of Berrou et. al. [6] were found [65]. This was done by introducing a
kind of irregularity in the parity check matrix of the LDPC.
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The main disadvantage of LDPC codes is in the complexity of the encoder.
Therefore, we focus our study on the parallel concatenated convolutional codes (PCCC)
known as turbo codes. This scheme consists of two constituent systematic convolu-
tional encoders linked by an interleaver. The information bits at the input of the
first encoder are scrambled by the interleaver before entering the second encoder.
Performance close to the limits of chapter 1 was found using an iterative decoding
technique based on soft-input soft-output (SISO) decoding of the constituent codes.

We improve the performance of turbo codes first by implementing symbol-based
iterative decoding, and secondly by introducing an irregularity [32| as for LDPC
codes. The application of symbol-based iterative decoding to an irregular turbo
code leads to very interesting results.

The principles and the basic results related to parallel turbo codes are studied in
section 2.2. We specifically review the turbo encoder, the iterative turbo decoding
and the basic results and design criteria related to parallel turbo codes. Numerical
results on the performance of parallel turbo codes are presented and compared to
those we have for optimal spherical codes (cf. chapter 1). In section 2.3, we introduce
symbol-based iterative decoding. This decoding techniques is applied to a parallel
turbo code constructed using binary recursive systematic convolutional (RSC) code
of rate 2/3. The performance of this turbo coding scheme is determined numerically
by Monte Carlo simulation. In section 2.4, we study irregular turbo codes. Finally,
symbol-based iterative decoding of an irregular turbo code is done. The performance
of this system is determined and compared to the one we have for the best irregular
LDPC codes found by Urbanke [65].

2.2 Principles and basic results related to turbo codes

We focus our study only on parallel concatenated convolutional codes known as
turbo codes. We review in this section the basic principles, results and design criteria
found in the literature regarding this concatenation scheme. We begin with the turbo
encoder.

2.2.1 Turbo encoder

Figure 2.1 shows the encoder of a rate-1/3 parallel turbo code C obtained from
the concatenation of two constituent rate-1/2 recursive systematic convolutional
(RSC) codes. The information bits at the input of the first encoder are fed to an
interleaver before entering the second encoder. The trellis of each constituent code
starts and ends at the zero-state. This is done by terminating the trellis using at
most L. — 1 transitions, where L. is the constraint length of the RSC code. There-
fore, the turbo code can be viewed as a linear block code of dimension .

The information bits are transmitted just once. If all the parity bits are trans-
mitted, the total code rate of the turbo code will be equal to 1/3. This is the first
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turbo coding scheme that was first proposed by Berrou et. al.|6].

11
Information bits RSC Encoder 1
P1
12
|
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr 12
RSC Encoder 2
12 P2
Figure 2.1: Encoder of a rate-1/3 parallel turbo code.
11 - 11
921 923
] A
M N 4,69 P1
911 99 913

Figure 2.2: RSC constituent code. Octal generators ¢ = (7,5) ie. ¢ =
(911 912 g13] = [1 1 1] and g2 = [g21 922 g23] = [1 0 1]. L. = 3.

In general, we can construct turbo codes with more than 2 constituent codes.
Now, for two constituents RSC codes Cj(n; = k; + 1,k;, L), i = 1,2 of rates
R; = k;/n; and constraint length L;, the termination of the trellis needs at most 7;
transitions

L —1
T, = 2.1
=1 (2.)

the total rate of the turbo code is equal to
R\R
R= e — (2.2)
Ry + Ry — R Ry + M2
For R; = R, and if we neglect the trellis endings, we get
R

R L (2.3)

T 2R,
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We can change the total code rate R by puncturing the parity bits available at
the outputs of the two constituent codes. For example, to get a code rate R = 1/2
we can just puncture the previous code using the following puncturing matrix (at
each coding step, one of the two parity bits is deleted)

P:((l) ?) (2.4)

A few more parity bits must be punctured if we take in account the trellis endings.

2.2.2 Iterative decoding of turbo codes

A maximum likelihood decoder, as described in chapter 1, cannot be applied to a
turbo code. This is due to the complexity of ML decoding. Turbo codes are decoded
by an iterative decoding technique known as turbo decoding. Its universal version
is called the sum product algorithm. At each iteration, the constituent codes are
decoded using a so called Soft Input - Soft Output (SISO) decoder. To understand
how turbo decoding works, we first consider the SISO decoding of a convolutional
constituent code.

a) SISO decoding of a convolutional constituent code

Let C'(N, K) denotes the linear binary constituent code with rate R. If C'is a
block code then it has length N and dimension K. If C is a finite length binary
convolutional code, we neglect the starting and terminating phases in the trellis and
we consider C' as a (N, K) linear block code.

Let ¢ = (e1,¢,...,¢n) be a codeword and y = (y1,¥2,-..,Yyn) be the vector of
received real symbols at the decoder input. The a posteriori probability (APP)
associated to a coded bit ¢;, j =1... N, is defined as

APP(e) = Pleiy) = 3 Plos.cly) = 3 PY 080 o

ceC ceC

The joint probability P(c;,c) is null if the 5 bit of ¢ is not equal to ¢;. Assuming
that channel observations and a prior: probabilities are independent, we obtain

APP(c)) x 3 plyloP(e) = 37 [ plueleon(co) (2.6)

c€Cle; ceClc; £=1

where 7(c;) is the a priori information regarding the bit ¢;. The sum in the above
equation is performed for a fixed value of ¢;. Thus, the APP can be factorized into
3 terms

APP(cj) o p(y;le;) x w(c;) x Ext(c;) (2.7)

Ext(c;) is the novelty on the bit computed by SISO decoding, usually called eztrinsic
information. It is defined by
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Ext(c;) o Z H p(ye|ce)m(co) (2.8)

cEC|ej £=1,6#]

Figure 2.3 represents the block diagram of a SISO decoder. The inputs are the
likelihoods p(y;|c;),7 = 1,..., N and the K or N a priori informations 7(c;). The
outputs of the SISO are the K or N APPs and Extrinsic informations.

observations (@) aposteriorn
APP(¢) |-
. C . (]
apriori DECODER Extrinsic
W(Cj) Ext(c;) information

Figure 2.3: SISO decoder.

These formulas are theoretical. In order to evaluate them, we can implement
the BCJR algorithm [2] also known by the Forward-Backward algorithm. Other
sub-optimal techniques can also be implemented [42] [67] [68].

b) Iterative turbo decoding

Figure 2.4 shows the iterative turbo decoder. Two SISO decoders are imple-
mented, one for each constituent code.

We begin by evaluating the likelihoods p(y;l¢;),7 = 1,...,N. If ¢; is an infor-
mation bit, p(y;|c;) is fed to the first decoder and to the second via an interleaver.
This is the same interleaver used in encoding. If ¢; is a parity bit, p(y,|c;) is fed
to one of the two decoders depending on whether c; is a parity bit of C; or Cy. If
puncturing was performed on parity bits, the corresponding likelihoods is fixed to
1/2.

At the first decoding iteration, the a priori input of the first decoder is also fixed
to 1/2. Then, at each decoding iteration, we begin by decoding the constituent code
C1, the extrinsic output of this decoder is fed through the interleaver to the second
decoder. This extrinsic information is considered as an a priori information which
will boost the SISO decoder in his evaluation of the APPs of the information bits.
The new extrinsic information is fed through an inverse interleaver to the a priori
input of the first encoder.

This procedure can be repeated as many times as needed. After a specific number
of iterations, the last APP values, of decoder 1 or 2, are used to decide upon the
information bits!

LAPP(c;) represents APP(c; =1). APP(c; = 0) is just equal to 1 — APP(c; = 1).
J J J j
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N
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observations (P2) § 1
observations (P1) - : - APP
»| 0bs e APP|... . »| Obs e
DECODER 1 DECODER 2
"l apriori Extr - | "l apriori Extr
R
Figure 2.4: Interative decoder of a turbo code.
¢ =1 = APP(cj) > 0.5 (2.9)

Although iterative turbo decoding is a sub-optimal technique that is used instead
of ML decoding, the performance in term of bit error probability goes to ML decoding
when the signal-to-noise ratio is large. This is not true for the word error probability,

since the SISO decoder only minimizes the bit error probability.

2.2.3 Basic results and design criteria

Turbo codes were widely studied by the researchers in order to understand how
they can achieve remarkable coding gains and to find new design criteria. In this
section, we summarize the main results and design criteria proposed for the parallel
concatenation scheme. Most of these design criteria were found from the analytical
performance of turbo codes based on the union bound on the average bit error

probability of ML decoding [3] [4].

e Under ML decoding, a parallel turbo code exhibits an interleaving gain of 1/N
[3] and a serial turbo code has an interleaving gain proportional to 1/N(@+1)/2

[5], where d; is the minimum distance of the outer code.

e [terative decoding approaches the ML performance bound for increasing num-
ber of iterations. Therefore, iterative decoding is an efficient and an affordable
complexity means to decode most of the compound codes where maximum-

likelihood algorithm is not feasible.
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e Sub-optimal decoding algorithms can be used instead of the Forward-Backward
algorithm in order to reduce the complexity of the system [42] [67] [68].

e The loss in rate due to trellis ending can be avoided by the use of specific RSC
codes and tail-biting. This is only significant for small block length N.

e To achieve an interleaving gain equal to 1/N, the convolution constituent codes
of a parallel turbo code must be recursive. In fact, non-recursive convolutional
codes don’t exhibit any interleaving gain [4].

e The minimum distance dg,.. of the code is less important than the interleav-
ing gain. Nevertheless, the asymptotic performance depends on dg.. For
small minimum distance, an error floor appears in the curve of the bit error
probability.

e To maximize d¢,.., a primitive feedback polynomial must be chosen for the
RSC code. dy¢ also depends on the choice of the interleaver.

e The graphical representation of compound codes is a good method in order to
check the efficiency of the interleaver [81] [33] [47]. Short cycles in the graph
reduce the performance of the compound code.

e The convergence analysis of iterative decoding is difficult for finite block length.
For infinite block length, we can assume that the graph is cycle free. The
thresholds in terms of signal-to-noise ratio, on the convergence of iterative
decoding, can be determined using the density evolution [64] or the Gaussian
approximation with error probability matching (EPM-GA) [74]. We study
these two methods in the next chapter and show that performance within 0.03
dB from capacity can be achieved using an irregular turbo code decoded with a
symbol-based iterative decoder. Symbol-based iterative decoding and irregular
turbo codes are defined in the next sections.

2.2.4 Numerical results

Figure 2.5 shows the bit error probability of a rate-1/2 parallel turbo code over
the AWGN channel as a function of the average signal-to-noise ratio per bit Ej/Ng
in dB. A BPSK modulation was used. The turbo encoder has two identical con-
stituent codes with octal generator (37,21) and a randomly chosen interleaver of
length K = 65536, which means that the code length of the code is equal to
N = 2% 65536 = 2'7. We executed 20 decoding iterations. We can obviously
see the error floor due to the the small minimum Hamming distance of the code.

In order to validate the good performance of this code, we can determine the
E, /Ny that achieves a bit error probability equal to 107 and compare it to the ca-
pacity limit of a binary input AWGN channel, which is equal to E,/N, = 0.187 dB.

Another comparison may be done with the performance of optimal spherical
codes derived in the previous chapter. We just need to convert the word error
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probability of these optimal codes into a bit error probability. For binary optimal
codes, we can simply use this equation

d. .

P~ p 2.10

) = O (2.10)

where P, is the word error probability calculated in chapter 1, P, is the bit error

probability, N the code length of the code and d,,;, is the Gilbert-Varshamov bound

on minimum distance for a binary code. Gallager (cf. chapter 1, equation (1.60))
showed that for large values of N we have

HQ(d]’:;”) =1-R (2.11)

where R is the the rate of the binary code in bits/dimension and Hj(.) is the binary
entropy function. For 0 < me“’ < %, we have

dmin

N H,'(1-R) (2.12)

Table 2.1 shows some values of me"” as a function of the total code rate R.

R Zp
1/3| 0.1739
1/2 | 0.1100
2/3 | 0.0615

Table 2.1: Gilbert-Varshamov bound on dm% as a function of the code rate R.

The bit error probability is sketched in figure 2.5. For P, = 107°, the turbo
code is at 0.55 dB from the performance of a binary optimal code that has the same
length N = 27, For P, < 107°, the degradation is more important due to the error
floor. Moreover, a P, = 1075 can be obtained for the same signal-to-noise ratio by
a binary optimal code with a code length almost equal to N = 3100. However, it is
important to mention that the optimal code is transmitted over a continuous input
AWGN channel. A degradation in its performance will occur if BPSK is considered.
In this case, the E,/N, that achieves a bit error probability equal to 107> will be
greater than 0.187 dB which is the capacity limit. That is the reason why the real
degradation in performance of the turbo code is less than 0.48 dB.

For a code length equal to 2%, the degradation in performance between the turbo
code and the optimal binary code is more important (see figure 2.6). This can be
explained by the fact that the gain achieved by turbo code depends on the length
of the interleaver.

In the next two sections, we improve the performance of turbo codes first, by
applying symbol-based iterative decoding, and second, using irreqular turbo codes.
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Figure 2.5: Bit error probability of turbo codes and optimal codes. R = 1/2.
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2.3 Symbol-based iterative decoding

Let us consider concatenated codes based on binary convolutional constituent
codes of rate k/k + 1, converted into block codes with finite length and dimension.
To improve the performance of iterative decoding, the graph cycles are reduced by
grouping bit nodes into symbol nodes, i.e. m bits of a trellis transition are combined
into a () = 2™-ary symbol.

2.3.1 Construction

Let C denote a linear binary convolutional code with rate R = k/n, converted
into an (N, K) linear block code. Let ¢ = (c1,¢2,...,¢j...cn) be a codeword
and y = (y1,¥s,--.,yn) be the real received vector available at the decoder in-
put. When m coded bits ¢; are combined into one Q = 2™-ary symbol S; =
(Cmjem+1s Cmjem+2, - -+ Cmj)s § = 1,2,...,n = N/m, the vector of received values is
rewritten y = (Y;,,Y,,,...Y,,, ..., Y;,) where Y, = (Ymj mt1, Ymjmi2s - - Ymoj)-

For example, we consider a turbo code (parallel concatenation) based on two
RSC codes of rate 2/3. The final turbo code rate is R = 1/2. In this case, only the
information bits are grouped into quaternary symbols. Each couple of information
bits belonging to the same trellis transition are combined into one quaternary sym-
bol. There is no need to do the same to parity bits. In fact, the extrinsic information
propagates in the graph of the code which contains only bit or symbol information
nodes, and subcode nodes. Consequently, each trellis branch includes one quater-
nary information symbol and one parity bit. At the encoder, the interleaving is done
on a symbol-by-symbol basis.

An equivalent construction of quaternary turbo codes is possible for rate-1/n
constituent codes. This can be done by merging two consecutive transitions in the
trellis of the convolutional constituent code [10].

Note that we are not dealing with non-binary codes [7]. The turbo code is
binary (we just used a symbol by symbol interleaver), but the decoding is done on
quaternary information symbols and parity bits.

2.3.2 APP evaluation
The APP associated to a symbol S; is defined by
where the new extrinsic information is
Ext(S;)) = ) H p(Ys,|Se)m(Se) (2.14)
ceC|S; £=1,4#]

The SISO decoder can be implemented using the forward-backward algorithm as
for the binary case. The only difference, when quaternary symbols are considered,
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is in the number of inputs and the number of APPs and extrinsic informations that
must be evaluated for each symbol.

In the binary case, we have for example two APPs, one for ¢; = 0 and a second
one for ¢; = 1. These two APPs verify APP(c; = 0) + APP(c; = 1) = 1. The
same is true for p(y;|c;), m(c;) and Ext(c;). Therefore, for each bit, the length of
the inputs and the outputs of the SISO decoder is equal to one. For example, we
just need the APP for ¢; =1 as in equation (2.9).

For quaternary symbols, we have S; = (cgj_1, c2;). Four APPs must be defined
(APP(S; = (0,0)), APP(S; = (0,1)), APP(S; = (1,0)) and APP(S; = (1,1)))
and the length of the inputs and the outputs of the SISO decoder is equal to three.
In order to make a decision on the bits ¢;, we determine APP(c; = 1) using the
following equation

APP(S, = (1,0)) + APP(S, = (1,1) if j=2p—1
APP(c; =1) = (2.15)
APP(S, = (0,1)) + APP(S, = (1,1) if j =2p

In other hand, if we use a BPSK modulation to transmit the coded bits, the
likelihoods P(Yj;|S;) must be calculated using P(y2;_1]czj—1) and P(yaj|co;). For
example, we have

P(yzj-1]caj—1 = 0).P(yajlca; = 0)
> ico Xoimo P(y2j-1lczj—1 = 1).P(yajlca; = 1)

where the normalization was done in order to get a sum of likelihoods equal to 1.

P(Y,,1S; = (0,0)) = (2.16)

2.3.3 Numerical results

We consider a rate-1/2 turbo code constructed using rate-2/3 RSC constituent
codes. The octal generators are g = (37,21,27) and the code length is equal to
N = 27, For code length N = 2!, we consider a turbo code that has a better
minimum distance in order to get an error floor at a bit error probability smaller
than 107 (octal generators g = (31,27,37)). Both bit-based and symbol-based
iterative decoding are applied. Figures 2.7 and 2.8 show the bit error probability
as a function of the average signal-to-noise ratio per bit E,/Ny.The gain in signal-
to-noise ratio achieved by symbol-based iterative decoding over bit-based iterative
decoding is almost equal to 0.13 dB for both N = 27 and N = 2. However,
when compared to the punctured rate-1/2 turbo code constructed using rate-1/2
constituent codes, the gain is smaller especially for N = 27 where the achieved
gain is equal to 0.05 dB. For N = 2!, and a rate-2/3 constituent code with octal
generators g = (25,37,35), a bit error probability equal to 10~* is achieved at
Ey/Ny = 0.51 dB, when symbol-based iterative decoding is done; This is at 0.31 dB
of the capacity limit. However, the error floor appears at P, > 1075.
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2.4 Irregular turbo codes

Recent work on irregular LDPC codes has shown that by making the codeword
bits participate in varying numbers of parity check equations, significant coding gain
can be reached [55] [65]. For code length equal to N = 10°, Richardson et al [65]
found irregular LDPC codes that perform better than the original rate-1/2 turbo
code which we described in section 2.2.4. For a bit error probability equal to 102,
the coding gain achieved by irregular LDPC is equal to 0.16 dB. Frey et al [32]
[34] introduced irregularity to turbo codes in order to achieve better performance.
Very interesting results were found for code rates equal to R = 1/3 and R = 1/2.
However, for R = 1/2 and a code length equal to N = 2'7 an error floor appeared
at a bit error probability greater than 107

In this section, we combine irreqular turbo codes with symbol-based iterative
decoding in order to achieve better performance and to lower the level of the error
floor. Using this method, we were able to perform as good as, and even better
than LDPC codes at a bit error probability equal to 10~ and a code length N =
105. We begin by reviewing the basics of irregular turbo codes then we design
and simulate our new irregular turbo coding scheme that implement symbol-based
iterative decoding.

2.4.1 TIrregular turbo encoding

Let us consider a regular turbo code C(N, K) as defined in section 2.2.1. K
is the information bits length and N is the code length. Each information bit is
used twice while encoding; first, by the constituent code C; and second by C5 after
interleaving. Now if we add an interleaver at the input of the first encoder we get
a similar coding scheme that has the same performance. This new coding scheme
can be implemented differently using a (2,1) binary repetition code, an interleaver
"T" of length 2K at the output of the repetition code and one RSC constituent code
(see figure 2.9). Only the K information bits and the N — K parity bits of the RSC
code are transmitted by the encoder.

K info. bits
K
Infol;mation N-K
its .. it hi
parity bits
.| Repetition - | = RSC Encoder

(2. 1)

Figure 2.9: A similar encoding scheme for turbo codes.
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The degree of an information bit is equal to the number of repetitions done to
the bit. In this case, all the information bits have the same degree d = 2. Notice
that the performance of this regular turbo code is identical to the one we get using
the standard turbo encoder of figure 2.1 when the interleaver length is sufficiently
high.

Now to construct an irregular turbo code, we just need to divide the K infor-
mation bits into classes where each class has a specific degree d. If f; € [0, 1] is the
fraction of bits of degree d, the average information bits degree is

dmam

dow= ) d.fa (2.17)

d=dmin

The minimum degree d,,;, verifies d,,;, > 2. The maximum degree is d,,.,. The
irregular turbo encoder can be implemented as in figure 2.10.

K info. bits
Repetition
(Gins D)
K
|b nfo. N-K
its " K1 K1 parity bits
Re(%enlt; on - | RSC Encoder

K'folnax Repetition
(G D)

Figure 2.10: Encoding scheme of an irregular turbo.

The RSC constituent code can be considered as a linear block code C;(Ny, K7).
Let R; be the code rate of this code. The number of bits at the input of the
constituent code is K; = K.d,, and the number of parity bitsis N;—K; = Kl(R%—l)-
R, is related to the total code rate R of the irregular turbo code and the average
degree of information bits by

Ay = 2 (2.18)
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In fact, the number of parity bits for the irregular code is equal to the one we
have for the constituent code

1 1

Example

Let us examine the construction of a rate-1/2 irregular turbo code. We consider
a degree profile where only d = 2 and d = 10 have none zero fractions. The fractions
are fo = 0.9 and f;p = 0.1. Thus, the average degree of the information bits is equal
to dgy, = 2.8. From equation (2.17), we get that the code rate of the constituent
code is equal to R; = 0.7368. R; is greater than R since d,, > 1. Moreover, if the
average degree is increased, the rate of the constituent code must also be increased.

For K = 50000 and N = 100000 we have K; = K.d,, = 140000 and N1 =
190000. If, the constituent code is a rate-1/2 RSC code, then 90000 parity bits must
be punctured in order to get R; = 0.7368. This is 64.3% of the total parity bits.
The minimum distance of the code significantly decreases and an error floor may
appear at relatively high bit error probability. When a rate-2/3 RSC code is used,
20000 parity bits, i.e. 18.2% of the total parity bits must be punctured. This may
lower the error floor due to small minimum distance.

Remark

To define the irregular turbo code, we specified the degree profile of the informa-
tion bits and not the degree profile of coded bits as in the papers of Frey et al [32]
[34] (the degree of parity bits is equal to one). The two definitions are similar. For a
degree profile on coded bits, the rate-1/2 irregular turbo code analyzed in the previ-
ous example will have non zero fractions for d = 1, d = 2 and d = 10. The fractions
will be f; = 0.5, fo = 0.45 and f3 = 0.05. the average degree of coded bits is equal
to dgp, = 1.9. We get the same code rate for the constituent code (R; = 0.7368)
using the following equation

_R-1
R —1

o (2.19)

2.4.2 Decoding irregular turbo codes

Figure 2.11 shows a block diagram of the decoder. One SISO decoder is needed,
since there is only one RSC constituent code. The coded bits of the irregular turbo
code are denoted ¢;, j =1,...,N.

Let cj;, ¢ = 0,...,d; — 1 be the d; repetitions of the coded bits, where d; is
the degree of the coded bit ¢; (For the parity bits, we have d; = 1). In this case,
the N; coded bits of the RSC code are the Ny bitsc¢j, j=1,...,N;4=0,...,d;—1.
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N likelihoods

p(yjle;) | Likelihoods | N: o) APP(c;)
repetition - PUYjlCii S50
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K ext. info. compuitation ;Ext(cji)

Figure 2.11: Iterative decoder of an Irregular turbo code.

The inputs of the SISO decoder are the N likelihoods p(y;lc;i), 7=1,...,N, i =
0,...,d; — 1 and the K; a priori informations m(c;;) of the input bits. The outputs
of the SISO decoder are the N; or K; APPs and the K, extrinsic informations on
the input bits of the constituent code.

We begin by evaluating the likelihoods p(y;lc;),7 = 1,...,N at the channel
output. A repetition is applied to these likelihoods in order to determine the Ny
likelihoods p(y,|cji) of the constituent code. This operation is represented by the
block "Likelihoods repetition" in figure 2.11. If ¢; is one of the K information bits,
then a search is made in order to get the degree d; and the positions of the repeti-
tions ¢j;, ¢+ =0,...,d; — 1 after interleaving was done. Then the likelihoods of the
repetitions are fixed to p(y;|c;). No repetition is needed for the N — K = N; — K,
likelihoods of the parity bits, since the degree of a parity is equal to one.

At the first decoding iteration, the a priori information on the K; input bits
of the constituent code are fixed to 1/2. Then, at each decoding iteration, SISO
decoding is applied.

The K, extrinsic informations at the output of the SISO decoder must be treated
by the "Extrinsic computation" block in order to get the new K; extrinsic informa-
tions regarding the bits c¢;;. In fact each of these bits has a degree d;. Therefore,
the total Extrinsic information is the product® of the d; — 1 extrinsic informations
of the bits cj;, | # 1.

/i —1
Eﬂ?t(Cji): H E.Tt(le) (220)
1=0,l#1%

2The extrinsics on coded bits ¢; must be normalized in order to get Ezt(c; = 0) + Ext(c; =
1) = 1. This is note necessary if we use log ratios instead as in chapter 3.
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The total APP of an information bit ¢; = ¢ is equal to

APP(cj) x p(yjle;) x m(cj) x Ext(cjo) (2.21)

After a specific number of iterations, decision is done using the APP values of the
information bits obtained from equation (2.21). The number of iterations needed
for convergence is significantly greater than the one we have for regular turbo codes.
An explanation to this phenomena can be found by analyzing the convergence of
iterative decoding of turbo codes and irregular turbo codes. This is discussed in the
next chapter.

2.4.3 Selecting the degree profile

The search for good degree profiles is very complex in practice, due to the large
number of parameters that must be optimized. For example, for d,,;, = 2 the
number of degrees and fractions of a profile is equal to 2(dq; — 1). However, we
just have 2 equations

dmaw

dow =Y d.fy (2.22)
d=2

dmaac

> fa=1 (2.23)

Therefore, we do as in [34]. We just choose two non zero fractions. One for degree
2, which is the degree of information bits of a regular turbo code. The second one
is d, > 2. The fractions of bits of degree d, is denoted f.. This is the fractions
of "elite" bits which will increase the performance of the iterative decoder. The
convergence for these bits is reached first. For the remaining iterations, they can be
considered as "Pilot" bits [89]. Equations (2.22) and (2.23) become

1

2f2 + defe = dav = }1%— (2.24)

=—1
fot+fe=1 (2.25)

For a fixed rate R, the number of parameters is 4: d., f., fo and the rate R;
of the constituent. The optimization of these parameters can be done using the
density evolution or the Gaussian approximation with error probability matching
(EPM-GA) if the interleaver has a very large or infinite length (cf. chapter 3). For
finite length, this must be done by Monte Carlo simulation of the bit error proba-
bility.

We begin by fixing the degree d, of "elite" bits and varying the fraction f.. For
a particular value of f., Ry and f, are determined using equations (2.24) and (2.25).
The fraction that achieves the best performance is denoted f.qp:. Now, for a fixed
fraction fo = feopt, we change the degree d. in order to determine deop;.
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This profile is not the best, since we did not optimize over all the combinations
(de, fe). Furthermore, better performance may be attained using a profile with more
than two non zero fractions.

As an example, we consider a rate-1/2 irregular turbo code constructed us-
ing a rate-2/3 RSC constituent code. The octal generators of the RSC codes are
g = (37,21,27). Symbol-based iterative decoding is applied, which means that the
interleaving is done on a symbol-by-symbol basis. The code length of the code is
equal to N'7. The average signal-to-noise ratio per bit is fixed to 0.4 dB. Using the
method described previously, we find feopr = 0.1 and deope = 10 (see figures 2.12 and
2.13).

j "prof\‘leife" J——

Pb

0.001

0.0001 L L L L L L L L L
0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065 0.07

fe

Figure 2.12: Fraction f, of degree d, = 10. Ey/Ny = 0.4 dB.
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Figure 2.13: Degree of "elite" bits for a fraction f, = 0.1. E,/Ny = 0.4 dB.

2.4.4 Performance

Figure 2.14 shows the performance of the rate-1/2 irregular turbo code analyzed
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in the previous section (R, = 2/3; g= (37,21,27); N = 2'7). We did 100 decoding
iterations. The code is at 0.23 dB from capacity at a bit error probability equal
to 1075. The error floor in the performance of the rate-1/2 irregular turbo code
proposed by Frey and MacKay [34] is lowered significantly. It appears at a bit error
probability equal to 6 x 107° instead of 4 x 10~*. This is mainly due to the use of
a rate-2/3 instead of a rate-1/2 RSC constituent code. For a bit error probability
greater than 2 x 10, the gain achieved by our system is very small. Now, when
compared to the standard turbo code proposed by Berrou et al [6], the gain achieved
in signal-to noise ratio is equal to 0.24 dB at a bit error probability equal to 10°.

In figure 2.15, we compare our rate-1/2 irregular code to the best LDPC codes
found by Richardson, Shokrollahi and Urbanke [65]. For a code length N equal
to 10%, the gain achieved by the irregular turbo code is equal to 0.1 dB for a bit
error probability equal to 107°. For N = 10, the two systems perform almost equaly.

For reference, we sketche the performance of the rate-1/3 irregular turbo code
proposed by Frey and MacKay [34] (see figure 2.16). Performance is compared with
the rate-1/3 standard turbo code of the Consultative Committee for Space Data Sys-
tems (CCSDS). The octal generators are g = (31,33). K = 8920 and N = 26760.
The degree profile of information bits is d, = 12 and f, = 0.11. The gain achieved
by the irregular code is equal to 0.2 dB at a bit error probability equal to 107°.

o=Irr. TC‘, &/mbol—baséd decoding
x=Irr. TC, Bit~based decoding
*~ Reg. TC, Bit-based decoding

0.2 0.3 0.4 0.6 0.7 0.8

05
Eb/NO in dB

Figure 2.14: Bit error probability of regular and irregular turbo codes. R = 1/2.
N =2'7,



60 Turbo codes and irregular turbo codes

T T
= Irreguilar Turbo Code
== Irregular LDPC

10” I I I I I I
0 0.2 0.4 0.6 0.8 1 12 1.4

Eb/N0 in dB

Figure 2.15: Bit error probability of irregular turbo codes with symbol-based itera-
tive decoding compared to LDPC codes. R =1/2. N = 10* and 10°.
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Figure 2.16: Bit error probability of the rate-1/3, K = 8920, N = 26760, CCSDS
turbo code compared to the irregular turbo code with the same parameters.
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2.5 Conclusion

In this chapter, we reviewed the basics of regular and irregular turbo codes.
We introduced symbol-based iterative decoding in order to achieve better perfor-
mance. The Rate-1/2 irregular turbo codes bases based on a rate-1/2 RSC con-
stituent code suffered from error floor, which appears at a bit error probability
greater than 2 x 10~* for a code length equal to 2'7. This is due to the large number
of punctured parity bits which reduces the minimum distance of the irregular turbo
code. We lowered the error floor using a rate-2/3 RSC constituent code with octal
generators g = (37,21,27). Symbol-based iterative decoding was done in order to
achieve better performance. A bit error probability equal to 1075 was achieved at
a signal-to-noise ratio equal to 0.42 dB. This is at 0.23 dB from the capacity of the
binary input AWGN channel. Moreover, for a bit error probability equal to 102,
the performance was better than the best known LDPC codes even for very large
values of N. In any case, for small values of N, a regular turbo code can achieve
better performance than LDPC.

Now, we just need to find if regular and irregular turbo codes can achieve capacity
as for LDPC codes. Hence, we study their asymptotic performance in the next
chapter.
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Chapter 3

Asymptotic performance of turbo
codes

3.1 Introduction

The graph representation of error-correcting codes [81][47] is a powerful tool to
study the behavior of an iterative decoder when applied to any compound code with
an interleaver of infinite size. Iterative decoder is also known as the message pass-
ing algorithm or probabilistic decoder [35] [81] and its universal version is called the
sum-product algorithm [48].

Recently, Richardson and Urbanke [64] presented a method for determining the
performance limits of Gallager low-density parity check codes under iterative de-
coding. The performance limit of such infinite length code under iterative decoding
provides the minimal signal-to-noise ratio for which the bit error probability van-
ishes when the number of iterations goes to infinity. The key idea is to estimate
the probability density function of the decoder output from its input density. This
approach is known as density evolution. Huge work was done in this field" [55] [65]
[66]. Boutros et al [95] introduced the property called isotropy which controls the
number of distinct distributions propagating in the graph of the compound code.
Other authors proved that large random graphs can be cycle-free. This allows the
calculation of precise convergence thresholds. The parameters of the code can be
optimized in order to reduce these thresholds. Using this approach, Urbanke et al
|15] found irregular low-density parity check codes with performance at 0.0045 dB
from the Shannon limit.

To speed up the search for good code parameters we can use a sub-optimal
method that leads to quite accurate results. This is the Gaussian approxrimation
method which was defined in very different ways [86] [24] [16] [74]. A Gaussian ap-
proximation based on extrinsic information transfer functions was first introduced
by Ten Brink [86]. Using this method, he recently designed a rate-1/2 serial concate-
nated code with a repetition code and an eight-state rate-one code that is within 0.1

lrefer to the special issue on codes on graphs and iterative algorithms, IEEE transactions on
Information theory, Vol. 47, No 2, February 2001
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dB of the Shannon limit [88]. Gamal and Hammos introduced a similar Gaussian-
approximation based on signal-to-noise ratio matching (SNRM-GA) [24]. Boutros
et al |74] introduced the Gaussian-approximation with error probability matching
(EPM-GA) which is of great interest for analyzing the convergence of the iterative
decoder.

In this chapter, we study the asymptotic performance of turbo and irregular
turbo codes on a Gaussian channel with BPSK modulation. We consider both bi-
nary and quaternary symbol-based iterative decoding. The graphical representation
of the code is based on Tanner’s bipartite graphs [81]. The search for good code
parameters are first done using the Gaussian-approximation with error probability
matching. Results are refined and exact thresholds are determined using density
evolution. For example, for a rate-1/2 irregular turbo code with a binary recursive
convolutional constituent code of rate 2/3 and octal generators g = (37,21,27), a
threshold within 0.03dB of Shannon limit is found. Quaternary symbol-based iter-
ative decoding is done.

The system model is described in section 3.2. In section 3.3, we review the
isotropy property introduced by Boutros et al [95]. In section 3.4 , we define the
partial a posteriori probability and describe the way to evaluate the log-ratios (LR)
for a given constituent code C. We consider both binary and ()-ary symbols. Section
3.5 focuses on the graph representation of iterative decoding and the associated APP
density propagation. The performance limit is determined by estimating the proba-
bility density function of the decoder output via a propagation formula established
under isotropy conditions [95]. In section 3.6, we define the transfer function of a
subcode node that assumes a Gaussian distributed a priori information. Finally, nu-
merical results on the asymptotic performance of regular and irregular turbo codes
are shown in section 3.7.

3.2 System model

The system model is identical to the one defined in the previous chapter. The
turbo code is considered as a linear block code C'(N, K); a codeword is denoted by
¢ = (c1,¢a,...,cy) and the channel output is represented by y = (y1,¥2,-- -, Yn)-

For symbol-based iterative decoding, we have the same notations as in section
2.3 of chapter 2. We also assume that

e the interleaver size is infinite and the graph representation of the turbo code
is free from cycles.

e the all zero codeword is transmitted over an additive white Gaussian noise
(AWGN) channel using a binary phase shift keying (BPSK) modulation

yy=—1+n; j=1,...,N (3.1)
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where n; is the zero-mean random variable with variance 0 = Ny. The average
energy per coded bit is E, = 1/2 and the average energy per information bit
is £, = E./R.

We begin by a review of the isotropy property as defined by Boutros et al [95].
This property simplifies the analyze of the density propagation in the graph of
compound codes.

3.3 Isotropy property

Definition 3.1 Conditional Weight Enumerator

The two conditional weight enumerator polynomials associated to a bit ¢, for j =

1...N, are A)(x) = >, A%a" and Aj(z) = Y, Ajx’, where the integers AY; and

AjlZ are the number of codewords mn C’ of Hamming weight ¢ such that ¢; = 0 and
= 1 respectively.

From Definition 1, it is obvious that A}(z) + Aj(x) = A(x), where the latter is the
complete weight enumerator polynomial [58]. It is sometimes useful to introduce the
indeterminate y associated to the number of zero bits, e.g. A)(x,y) = >, Az'y" .

Equation (2.6) combined to definition 1 allows us to write the total a posteriori
probability as in Result 1, where the special notation ® represents the sum or the
product of two identically distributed random variables X and Y. The sum X 4+ Y
is written as ® and the product X.Y as X®2,

Result 3.1 APP and Conditional Weight
The input random variables p(y,|c¢)m(c,;) are identically distributed. Then,

APP(c ZA ®[p(yiler = Dr(er = 1] [p(y]er = 0)m(er = 0)]*" " (3.2)

The complementary probability APP(c; = 0) has a similar expression. From equa-
tion 3.2, we deduce that the probability density function of APP(c; = 1) and the
input distributions of the a priori and the observation are linked via a transformation
defined by Aj(z,y), or equivalently, the set of coefficients {A};}. In the special case
where A;(x) is independent of the position j, Aj(z) = A'(z) and AY(z) = A%(x),
all the bits of the constituent code hold the same APP distribution, i.e., all bits are
equally protected by the information propagation in the graph. This is the isotropic

property.

Definition 3.2 Isotropic Code

The constituent code C' s called isotropic if the probability distribution of the a
posteriort information is independent of the bit position. Otherwise, C is said to be
anisotropic.
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The definition above assumes that the channel observations are independent and
identically distributed. The same assumption is made for the a priori probabili-
ties. The degree of anisotropy d,(C) is the number of distinct APP distributions,
1 < d,(C) < N. Clearly, d,(C) = 1 if C is isotropic. The determination of the
anisotropy degree is very important for the performance analysis of an iterative de-
coder. Of course, this analysis can be considerably simplified if d,(C) = 1, where
we need to examine the evolution of only one type of probability distribution.

Example 3.1

The (7,4,3) binary Hamming code is isotropic. Indeed, the conditional weight enu-
merator expression is independent from the bit position. A%(z) = 1+ 423 + 3z* and
Al(z) = 323 + 42* + 27, Tt is very easy to check that the extended code (8,4,4) is
still isotropic with conditional weight enumerators 1 + 7z* and 7z* + 27.

Example 3.2

The (9,3,3) binary cyclic code generated by the polynomial 2% + 23 + 1 is isotropic.
The conditional weight enumerators are A%(z) = 1+ 2z® + z° and A'(z) = 23 +
22°% + 2°.

The extended code (10,3,4) is anisotropic with d, = 2. The weight enumerator A°(z)
of the parity bit added by the extension is 1 + 32°, whereas the 9 remaining bits
have the conditional weight distribution 1 + 2z* + 2°.

Result 3.2 cyclic block codes
A cyclic code C' is isotropic.

Proof. Consider two bits ¢; and ¢, at positions j and £ > j. The coefficient Agi is
the number of weight ¢ codewords in C satisfying ¢; = 0. Since C is cyclic, a cyclic
shift of £ — j bits converts any codeword with ¢; = 0 to another codeword of equal
weight with ¢, = 0. We deduce that A}, = Ay for all j and £. QED.

Lemma 3.1 extension of an isotropic code
The extension of an isotropic code s isotropic iff the conditional weight enumerator
of the initial code satisfies A} = AY_; for all even 1.

Proof. The isotropic C'(N, K) code is extended to a Ce(N + 1, K) code by adding a
zero sum parity check bit cy, ;. Let A(z) = A%(z) + Al(z) be the complete weight
enumerator of C. Let A.(z) = A%x) + Al(z) be the complete weight enumerator
of C.. We have to prove that A%(x) is independent from the bit position j. First,
consider 1 < j < N. Then A%z) =", ., A2 + >, .y AV2" . Tt is obvious that
both terms in A%(x) do not depend on j because the initial code C' is isotropic.
Now, consider the parity check bit ¢y 1. The associated conditional weight enu-
merator is AY(z) = Y, Loon AT =2 coen A0+ D", Lo Az’ This polynomial is
equal to the previous one iff A} = A? | for all even weights 7. QED.
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Result 3.3 extended primitive BCH codes
Any extended (N + 1, K) binary primitive BCH code is isotropic.

Proof. Let C(N, K) be a binary BCH code with primitive length. As a linear cyclic
code, C is isotropic. Consider a codeword c(z) = 31" ¢zt € C of even Hamming
weight 7. By definition of the BCH construction, the generator polynomial of C
contains a primitive factor, i.e., ¢(a) = 0 where « is a primitive element of the finite
field GF(N + 1). Let us focus on the conditional weight enumerator of the first
bit ¢y. Take c(z) of even weight i having ¢y = 1. Thus, there exist ¢ — 1 integers
U, 0y, ..., 4y such that 1 +aft + ...+ a1 = 0. This codeword is easily converted
into i — 1 distinct codewords of weight 7 — 1 with ¢y = 0 by writing 1 + o = af
j =1...2—1. The inverse operation is similar, it toggles ¢y and transforms a weight
i—1 codeword into i —1 distinct codewords of weight 7. This implies that A} = A ;.
According to lemma 1, the extended BCH code C,(n + 1, k) is isotropic. QED.

I.
)

Result 3.4 convolutional codes

The study of the isotropic property of convolutional codes is less formal. For an
infinite length convolutional code of rate R = K/N, the coded bit at a fixed position
j, j =1...N, has the same a posteriori distribution on all trellis branches. This is
due to the branchwise cyclic structure of the convolutional code. Two bits belonging
to the same trellis transition may not have the same APP distribution. We conclude
that the anisotropy degree of a convolutional code is upper bounded by N.

Result 3.5 turbo codes

In the special case of parallel concatenated convolutional (Turbo) codes, the con-
stituent codes are linked via their information bits only. This guarantees the isotropy
of the APP propagation in the whole turbo code. However, an irregular turbo code
is anisotropic. The degree of anisotropy d,(C) is equal to the number of non-zero
fractions. For example, if we have non-zero fractions for degrees equal to d = 2 and
d = 10, two APP distributions must be evaluated.

3.4 Partial APP and log-ratios evaluation

The a posteriori probability APP(c;) of a coded bit ¢; is the product of the chan-
nel observation p(y;|c;), the a priori probability 7(c;) and the extrinsic information
Ext(c;). A useful parameter for the study of density propagation is the partial APP
which is the product of the channel observation and the a priori probability

Alces) = p(ysle;) x m(cy) (3.3)
Instead of dealing directly with APP properties, it is convenient to use the following
log-ratios (LR) in order to avoid the evaluation of the proportionality coefficient:

e Received log-likelihood ratio

. . p(yj‘Cj =1) -2
Bo(j) = LLRy(j) = log—2 L ——= = —Zy, 3.4
0(4) 0(4) T ile, = 0) ~ NV (3.4)
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e Extrinsic log-likelihood ratio

, Exty(c; =1)
tLLR,,(j) = log—-""2 < :
extLL Ry, (j) % Bt (e, = 0) (3.5)
e Partial a posteriori log-likelihood ratio
, Apn(c; =1)
B(j) = log 5= (3.6)
m(c; = 0)
e Total a posteriori log-likelihood ratio
APP,,(c; =1
LLR,,(j) m(¢; ) = Bn(j) + extLLR,,(j) (3.7)

=9 PP (e; = 0)

In the case of symbol-based-iterative decoding, the logarithmic ratios are gath-
ered into vectors of () — 1 components:

Received LR : LRo(j) = (LRL(j), ..., LR4(j),... LRE™'(j))

[ ]
. p(Yy,[S; = 9)
LRY(j) =log ~siPi = 19 Q-1 3.8
e Extrinsic LR : extLR(j) = (extLR'(j),...,extLRI(j),...extLR71(5))
_ Ezt(S; = q)
LRI(j) =log 22\ =9 o 19 .. Q-1 .
catL () =log TS =0, =120 39)
e Partial APP LR : B(j) = (B'(4),...,B(j),...BY1(j))
: A(Sj = q)
Bi(j) = log "1 —= =1,2,... -1 3.10
(4) %45 =0y (T b2@ (3.10)

Total a posteriori LR : LR(j) = B(j) + extLR(j)

LRI(j) = = BY(j)+estLR(j), ¢=1,2,...,Q—1 (3.11)

3.5 Log-ration density propagation

Let us describe the information propagation in the graphical model of the con-
catenated code. The decoding iteration is denoted by m. The degree of a bit or
symbol node is designated by d. The degree of a subcode node is equal to n. In the
binary case, n is equal to the length N of the constituent code. The latter is assumed
to be isotropic (all the symbols have the same degree d as for a regular turbo code).
Consequently, the a posteriori information is independent of the bit position j.
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Figure 3.1 shows the local neighborhood of a bit or a symbol in a cycle-free graph.
Two different types of codes, based on a bipartite Tanner graph, are illustrated
[81][47]. A (3,6) low-density parity check code [35]|56] tree structure is first de-
picted. The bit nodes have degree 3 and the subcode nodes have degree 6. The local
constraint in the subcode node is defined by the single parity check code (6,5,2).
The total rate of the (3,6)-LDPC code is 1/2. The second tree show the graphical
structure of a Turbo code based on two identical RSC codes with octal generators
g = (25,37,35). The local constraint is defined by a window of size W inside the
subcode trellis. The turbo code rate is 1/2. Each symbol node represents the two
information bits of a branch in the encoder trellis.

subcode
RSC 2/3

(3,6) LDPC Turbo code

Figure 3.1: Propagation tree of concatenated codes.

Different propagation schedules are possible [47]. In a flooding schedule, all sub-
code nodes in the graph operate independently from each other and the decoding
iteration is undefined. In the sequel, we assume that information propagates up-
wards in the graph. One decoding iteration includes two levels in the propagation
tree. The first level contains subcode nodes and the second one contains only sym-
bol nodes, i.e., one iteration is equivalent to a round trip in the bipartite graphical
representation. Let us now study the information evaluated by subcode and symbol
nodes.

a) Subcode node

According to equation (2.14), one subcode node computes an extrinsic informa-
tion from its n — 1 inputs (see figure 3.1). If the local constraint of the code is equal
to W, then W — 1 inputs are considered.
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Ext,, 4 ( Z H (Y, 1Se)Tm—1(Sk) (3.12)

c€C|S; £=1,t#]

where 7,—1(S¢) is the a priori probability of symbol S; at iteration m — 1. We
obviously considered that the the channel observations and the a priori informations
are independent. The observations are independent since the transmission is done
over a discrete memoryless channel. The independence of the a priori probability is
due to the infinite size of the interleaver which insures that the graph is cycle free.

b) Symbol node

The partial a posteriori probability evaluated by a symbol node S; in the graph
at iteration m is given by

Am(SJ) = p(Ytsj|cj)7Tm(Sj) (313)

where the a priori probability m,,(S;) is the product of d — 1 independent extrinsic
informations supplied by the other d—1 subcode neighbors at the previous iteration.

d
An(S;) =p(Vy;le)) [ Extm 1(S))e (3.14)
L=1,0#]
Ext,,_1(S;)e is one of the d extrinsic informations evaluated by the subcode nodes
at iteration m — 1.

The a posteriori probability APP,,(S;) is the combination of the two opposite
information streams on the same edge

APPm(SJ) = Am(Sj)E.’Etm(Sj) (315)

Strictly speaking, the total APP is the product of d extrinsic informations and

the initial channel observation.

Let B (j) denotes the vector of partial log-ratios at iteration m, where BZ (j) is
equal to

Bl =log =1 L. =1,2,...,Q -1 3.16
m(J) 84S =0 ° Q (3.16)
For m = 0 the partial APP log-ratio is equal to the received log-ratio
. . p(Ys;|S; = q)
’ ’ p(Yy;|S; = 0)

The extrinsic log-ratio extLR,,(j) is computed by a subcode node from the partial
a posteriori log-ratios By, (¢), £ # j. From [95], we have

Eatn(S;=a) _ ) >y Al ® lexp(BE, (5))]1%
S,

Extp,(

extLRY (j) = log —0) S 1,40 ® exp(Bh(4))]®"

3 q:1,2aaQ_1

(3.18)
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Af; and Aj; are the coefficients of the conditional weight enumerators, and ® repre-
sents the sum or the product of two id random variables.

By combining equations (3.16), (3.17) and (3.18) and omitting the symbol position
j, thanks to the isotropy property, we get the density propagation formula that
describes the propagation of the partial APP LR

g Z?:l A;? X [exp(B;lnl)]®z‘—1] .
Z?:_OI A ® [exp(B],_,)]®* ’

BL =B+ (d—1)®|lo =1,2,...,Q -1 (3.19)

This formula explains how the outgoing probability distribution of By, is linked to
the incoming distribution of By,_1. Indeed, the probability density function of By,
is equal to the convolution of the received LR density with d — 1 identical densities
related to the distribution of B,_1

B =LRo+ (d—1)® extLRum_1 (3.20)

Furthermore, the total a posteriori distribution is equal to the convolution of the
Bm density and the new extrinsic extLR,, density since

LR, = Bum + extLRuy,. (3.21)

As an example, figures 3.2 and 3.3 show the density propagation of the extrinsic
information and the total APP. For large number of iterations, the probability den-
sity function of the extrinsic information can be approximated by a Gaussian. This
is also true for the total APP even for small values of m.

-40 -30 -20 10 20

Figure 3.2: Probability density of extLR,,. @ = 2. m = 5, 10, 20, 30, 40, 50
iterations.

The performance limit of the soft-input soft-output iterative decoder when ap-
plied to a compound code is given by the minimal achievable SNR, ¢.e., the minimal
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Figure 3.3: Probability density of LR,,. @Q = 2. m = 5, 10, 20, 30, 40, 50
iterations.

value of the signal-to-noise ratio Ej/Ny for which the symbol error probability at it-
eration m, Pe,,, tends to 0 when m goes to infinity. Pe,, can be calculated using the
probability density function of LRy, denoted by py,(z1,...,%4...2g-1). Assuming
that the all zero codeword is transmitted, we get

400
Pe,, = / Pm(T1, .. &g Tg1).dxy ... dTy. .. dTg_ (3.22)
0

Hence, the threshold value of E,/Ny defining the limit of iterative decoding can
be determined using equation (3.25), where the distribution py,(z1,...,24...2g-1)
is the convolution of the densities of B, and extLR,,. At each iteration, these two
densities can be evaluated by Monte Carlo simulation.

Figure 3.4 show the number of iterations needed to achieve a symbol error prob-
ability P, < 107° as a function of the average signal-to-noise ratio per bit Ej/N,
in dB. A rate-1/2 turbo code, constructed using two rate-2/3 RSC codes with octal
generators g = (37,21,27) is considered. Symbol-based iterative decoding is done.
The threshold on the convergence of the iterative decoder is equal to 0.42dB. Notice
that in practice, a P, < 107° can be regarded as equal to zero.

c) Density propagation in the case of an irregular turbo code

We have previously considered that the code is isotropic. All the symbols have the
same degree d. For an irregular turbo code with a degree profile f;, d =2, ..., dpnas,
different LR densities must be evaluated. From equations (3.20) and (3.21), we get

Bim=LRo+ (d— 1) ®@extLRm_1  d=2,...,dmas (3.23)
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Figure 3.4: Number of iterations needed to achieve P, < 107°. Rate-1/2 turbo code
constructed using two rate-2/3 RSC codes with octal generators g = (37, 21, 27)

LRdm = Bdm + extLRm d= 2, ey dmaw- (324)
where Bgm, and LRgy, are the partial and total APP LRs of the symbols of degree d.

The symbol error probability at iteration m is equal to

dmam

+00
Pe,, = Z fd./o Pam (21, .. Tq. .. Tg_1).dxy ... dxg. .. dTgo 4 (3.25)
d=2

In the next section, the threshold value of E,/Nj is determined by calculating
the transfer functions of both symbol nodes and subcode nodes.

3.6 The transfer Function Method

The transfer function gives a qualitative overview of the information propagation.
It consists in predicting the behavior of the iterative decoding by observing the prop-
agation at the symbol nodes and subcode nodes. Different methods were discussed
in the literature |86] [24]; however, we just describe the transfer function method
based on a Gaussian approzimation with error probability matching (EPM-GA) [74].

As it is shown on the graphical representation in figure 3.1, one decoding iteration
is composed of a subcode level processing, and afterwards of a symbol node level
processing. Consequently, different error probabilities propagate through the graph,
depending whether it is a symbol level or a subcode level. The transfer function of
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a symbol node (respectively of a subcode node) gives the relation existing between
the error probability at the input and the output of a symbol node (respectively of
a subcode node).

Subcode node : Peyy = H(Pey,)
Symbol node : Pey, = G(Pey,)

Pey, Subcode Pe,y
A " | Transfer Function

Partial APP Partial APP

B Symbol B 1]
Pe,y, Transfer Function Pe;,

Figure 3.5: Transfer function Method

Notice that the output error probability of a symbol node (respectively of a
subcode node) is the input error probability of the subcode node (respectively of
a symbol node). To understand the behavior of an iterative decoder, the transfer
functions of the symbol and subcode nodes are drawn on the same diagram. The
error probability propagates through iterations according to figure 3.6. A steady
state is reached at the fixed point defined by

H(Pe) = G™'(Pe). (3.26)

If Pe is not equal to 0, the iterative decoder does not produce the right code-
word. The largest noise variance Ny, such as the fixed point Pe is equal to 0 (as
in figure 3.6), defines the performance limit of a turbo code under iterative decoding.

In order to evaluate these transfer functions, we first use the result on the joint
convergence of the total and the partial APP LR over the AWGN channel [95]. This
result is of a great interest since it is the partial APP LR that propagates through
the graph of the code.

3.6.1 Joint convergence of total and partial LLR

The all zero codeword is transmitted. For the AWGN channel, the two following
statements are equivalent

e Ve > 0,3 myg such that Vm > mgy, P(LLR,, > 0) < €.

e Ve > 0,3 myg such that Vm > my, P(B,, > 0) <e.
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0.3

SUBCODE —+—
inverse SYMBOL --->---

o 0.05 0.1 0.15 0.2 0.25
Pe(in)

Figure 3.6: Transfer functions H and G~!. Quaternary turbo code constructed using
two rate-2/3 RSC codes with octal generators g = (31,27,37). Eb/N0 = 0.65 dB.

The proof of the above result is done using classical probabilistic arguments [96] (cf.
Appendix A). We conclude that the true bit error probability Pe,, tends to zero
iff the partial error probability computed from the distribution of B,, also tends to
zero when m increases’. Hence, the threshold value of E,/N, defining the limit of
iterative decoding can be determined from the transfer functions of a symbol node
and a bit node based on the partial error probability.

Furthermore, an approximation must be made in order to evaluate the partial
error probabilities at the input and the output of the symbol and the subcode node.

3.6.2 Gaussian approximation

Let us consider a turbo code based on d identical isotropic constituent codes.
The codeword ¢ = (0,0,...,0) is transmitted over the AWGN channel using a
BPSK modulation. The real additive channel noise is Gaussian with zero mean and
variance Ny. Hence, the received real values y; at the channel output are Gaussian
random variables with mean —1 and variance Ny. From equation (3.4), we get that
the received log-likelihood ratios LRy(j) are Gaussian random variables with mean

2 . 4
No and variance ;-

Without loss of generality, we consider the case of quaternary symbols {00, 01, 10,11}
(Q = 4). Due to the independence of the channel observations p(y;|c;), LRy(j) =

2For symbol-based iterative decoding, B, > 0 is equivalent to BY, >0, Vg =1,...,Q
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log % and LR%(j) = log % related respectively to the symbols 01 and
10, are independent Gaussian variables with mean —Nlo and variance Nio. LR3(j) =
1 p(Y:gj|Sj:3)
08 p(¥;,15;=0)
Gaussian variable. We assume in the sequel that a priori informations on symbols

have Gaussian distributions at the input and the output of the SISO decoder. The

can thus be written as the sum of LR}(j) and LR2(j) and is also a

mean and the variance of these variables are respectively equal to —m and
m, where Ny(apriori) is the parameter associated to the a priori distribution.

This assumption is all the more satisfied as the number of iterations m increases (see
figure 3.2).

a) Transfer function of a subcode node

At the input of the subcode node, the error probability is defined by

Pe,(subcode node) = Prob (B' >0 or B> > 0 or B > 0)
= 1-Prob(B'<0,B8°<0,B <0)

The partial APP LRs B?, i = 1,2, 3, are the sum of the channel observations and
(d—1) a priori informations which are assumed to be Gaussian. Therefore, the partial
APP LRs are also presumed to be Gaussian random variables, but they are not
independent. Their mean is m = E[B] and their covariance matrix is I' = [E[B.B]],
where E| ] is the mathematical expectation, and B! is the partial APP LR of the
symbol centered around its mean value. From the probability density of B

1 1 _ t
p(B) = ———exp <—— (B—m)T ! (B —m) ) (3.27)
Var v/ det(T) 2
we get the input error probability
Pe;,(subcode node) =1 — / p(B)dB'dB*dB? (3.28)
B1<0,B2<0,B3<0

The integral in equation (3.28) is very difficult to evaluate. It is necessary to intro-
duce some assumptions concerning the LRs independence?.

The partial APP LR B! of the first symbol 01 and the partial APP LR B2 of the
second symbol 10 are assumed to be independent, as for LR} and LR2. Notice that
the mean and the variance of B' and B? are equal to

2 2(d-—1)
1= = - = 3.29
mst = ms No  Ny(apriori) (3.29)
4 4d—1
Op1 = Oz = ( ) (3.30)

Ny + No(apriori)

3In the binary case, there’s only one variable. The exact value of the integral can be determined
without introducing any assumption.
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The partial APP of the third symbol, 11, can subsequently be written as the sum
of two independent Gaussian variables, i.e., B®> = B! + B2. The error probability
(3.28) is simplified by

Pe;,(subcode node) = 1 — Prob(B* < 0)Prob(B? < 0)

_ 1 1 (d—1)
= 1= (1 B §erfc (\/2]\70 * 2N0(apriori)>>

N 1 (d—1)
r erfe (\/QNO + 2N0(ap7“iori)> (3:31)

where erfc is the error function.

2

At the subcode output, the error probability is given by

Pegyi(subcode node) = / p(B)dB (3.32)

B1>0 Or B2>0 Or B3>0

where the distribution of B is derived by SISO decoding (Monte-Carlo simulation).

b) Transfer function of a symbol node

The d — 1 partial APP LRs at the input of each symbol node are defined in
the same way as the sum of two independent Gaussian variables, i.e., the channel

observation with mean —-2 and variance Nio, and an a priori information. As for

No
the subcode transfer function, we assume that the partial APP LRs B! and B? at

the symbol input are independent Gaussian variables with mean —Nlo — m
aun((il v?u"iance ot m. The resulting error probability at the input of a symbol
node is

1 1
ein(symbol node) ~ erfc (\/2]\70 + 2N0(apmom)> (3.33)

The symbol node computes the new partial APP LR, by summing the channel
observation with the d — 1 independent a priori informations provided by the other

codes. The output partial APP LRs, B! and B?, are Gaussian with mean —-2 —

No
% and variance Nio + %. The corresponding error probability at the

output of the symbol node can be written as

1 d—1
Pe.. bol node) 2 erf - 3.34
e t(Sym ol no e) eric (\/QNO + QNO(apMO”)> ( )

3.6.3 Transfer function of a regular turbo code

Let us consider a regular turbo code obtained from the parallel concatenation
of two RSC constituent codes. All the information symbols have the same degree
d = 2. For quaternary symbol-based iterative decoding, we have
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1 1
Pe;,(symbol node) = Pe,,; (symbol node) = erfc <\/ 5N, + N, (apriori))
(3.35)
Pean(subcode node)  erfe | || —— 4+ —— (3.36)
ein(subcode node) = erfc Ny 2No(apriond) .
Peg,i(subcode node) = / p(B)dB (3.37)
B1>0 Or B2>0 Or B3>0
SUDRBIP-RBEE —— " SUDRBEP-RBEE" —
go. 15 :gTO 15
3 g
00 0.05 Oll:)e(l n) 0.15 0.2 00 0.05 Ull:)e(l n) 0.15 0.2
a. 0.7 dB. b. 0.47 dB.
" SHDRBBP-ABEE" —
E 0.15
E 0.1
00’ 0.05 Olpe(l n) 0.15 0.2
c. 0.3 dB.

Figure 3.7: Transfer functions H and G~!. Quaternary turbo code. Octal generators

g =(37,21,27).

In the case of bit based iterative decoding, similar results can be determined. The
exact value of the subcode node input probability can be evaluated using equation

(3.31). We get
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1 1 1
P in = — f ; " .
ein(subcode node) perfc (\/2N0 + 2N0(apmom)> (3.38)
Pe,yi(subcode node) = / p(B)dB (3.39)
B>0

Pe;,(bit node) = Peyy(bit node) = %erfc (\/2]1\[0 + 2N0(a;rz'ori)> (3.40)
Figure 3.7 shows the transfer functions H and G~ of a rate -1/2 turbo code
obtained from the parallel concatenation of two rate-2/3 RSC codes with octal gen-
erators g = (37,21, 27). Symbol-based iterative decoding is applied. For an average
signal-to-noise ratio per bit Ey/Ny = 0.7 dB (see figure 3.7.a.), the fixed point is
equal to zero. In fact, 0.7 dB is largely greater than the threshold of the code, which
is a little smaller than 0.47 dB (see figure 3.7.b.). For E,/N, = 0.3 dB, there is
an intersection between the two curves. The fixed point is Pe # 0; therefore no
convergence can be reached.

3.6.4 Transfer function of an irregular turbo code

Let us consider an irregular turbo code with degree profile f;, d = 2,..., dnas-
Symbol-based iterative decoding is done. The input error probability of a symbol
node is identical to the one we have for an isotropic code. The input or the output
error probability of a subcode node and the output error probability of a symbol
node are defined by

dmam

Pe= Y fs.Pe" (3.41)

d=2

where Pe? is the corresponding input or output error probability. From equation
(3.31), (3.32), (3.33) and (3.34), we get

d
mazx 1 (d — 1)
Pe;, (subcode node) ~ erf oT 342
ein(subcode node) dz:; fa-erfc (\/QNO + QNO(apmom)> (3.42)
dmax
Peui(subcode node) = ) fd-/ p(Ba)dBa (3.43)
o B.>0 Or B2>0 Or B3>0

1 1
ein(symbol node) ~ erfc (\/2]\70 + QNO(apmom)> (34

d
mazxr 1 d _ 1
Pe,, bol node) ~ E .erf — A4
€out(symbol node) — Jaerfc (\/2]\70 " 2No(ap7'wm)> (345)
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where B, is the vector of the partial LRs of the symbols of degree d. Similar results
can be found when bit-based iterative decoding is applied.

As for turbo codes, in figure 3.8, we represent the transfer functions H and G!
of a rate-1/2 irregular turbo code constructed using two rate-2/3 RSC codes with
octal generators g = (37,21,27). The degree profile of the quaternary information
symbols is fo = 0.905 and fio = 0.095.

v T e e — " T e e —
s 5
O 0.15 O 0.15
& &
0 0.05 0,|13e( | n) 0.15 0.2 0 0.05 0.|13e( | n) 0.15 0.2
a. 0.5 dB. b. 0.28 dB.

B "SUpRBIP_ABEE"

0.25

0.05

Olpe(l n) 0.15
c. 0.19 dB.

Figure 3.8: Transfer functions H and G~'. Quaternary irregular turbo code. Octal
generators g = (37,21, 27).

If we compare the transfer functions of the regular and the irregular turbo codes
represented in figures 3.7 and 3.8, we conclude that the number of iterations needed
by a turbo code to achieve convergence is significantly smaller than the one we have
for an irregular turbo code. In fact, for the regular turbo code, once we get out of
the critical zone (0.15 < Pe(in) < 0.2), convergence is fast. For the irregular turbo
code, the two curves are almost parallel. This explains why we did 100 decoding
iterations for the finite length irregular turbo studied in the previous chapter instead
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of 20 iterations as for the regular turbo code.

Nevertheless, the advantage of irregular turbo codes is that better performance
can be reached for both finite and infinite code length.

To validate the transfer function method under the simplified independence as-
sumptions, promising numerical results are shown in the next section. The results
are compared to the exact estimates obtained using the APP propagation of section
3.5.

3.7 Numerical results

First, let us consider a turbo code built from the parallel concatenation of two

recursive systematic convolutional codes of rate 2/3. The turbo code rate is equal
to 1/2. The minimal signal-to-noise ratio that achieves the capacity of the AWGN
channel with BPSK input is f,—g = 0.187 dB. The degree of symbol nodes is d =
2. Computer simulations using the forward-backward algorithm [2] showed that a
window size W = 32 x v + 1, which is 16 times the code memory around the central
symbol, is sufficient to take into account the local constraint of the convolutional
code.
Table 3.1 shows the minimal signal-to-noise ratio achievable by an iterative decoder?
and an infinite length interleaver, determined using first, the density propagation
formula and second, the transfer function method. Different octal generators are
considered for both bit nodes based turbo code and symbol nodes based turbo code.
We also consider the standard rate-1/2 turbo code proposed by Berrou (two RSC
codes with octal generators g = (37,21)).

| Turbo Code || Binary | Quaternary |
Generators || Exact APP || Exact APP | EPM-Gaussian
in octal propagation || propagation | approximation
(31, 21, 37) 0.64 0.48 0.51
(37, 21, 27) 0.60 0.42 0.46
(25, 37, 35) 0.55 0.31 0.40
(37, 21) 0.5 - -

Table 3.1: Minimal Ej,/N, in dB, achievable by an iterative decoder. Rate-1/2 turbo
code.

We conclude from these results that the approximate values of the minimal signal-
to-noise ratio determined using the transfer function method are close to the exact
ones determined using the density propagation formula. This validates the Gaus-
sian approximation introduced in section 3.6. Moreover, symbol-based turbo codes

4The bit error probability goes to zero for signal-to-noise ratios higher than the values specified
in tables 3.1, 3.2 and 3.3
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perform better than bit-based turbo codes. For octal generators g = (25,37, 35),
the minimum signal-to-noise ratio achievable using quaternary symbols and itera-
tive decoding is equal to 0.31 dB which is 0.13 dB from the capacity of the AWGN
channel with a BPSK modulation.

Better performance is reached by introducing an irregularity. For example, we
consider the rate-1/2 irregular turbo code with octal genarators (37, 21, 27). Symbol-
based iterative decoding is applied. Results are presented in table 3.2 for different
degree profiles with two non zero fractions. The minimum signal-to-noise ratio is
equal to 0.21 dB which is within 0.03 dB of the capacity. Notice, that the optimal
degree profile (fo = 0.915, fi; = 0.085), obtained using the Gaussian approximation
is different from the optimal degree profile found using the exact APP propagation
(fo = 0.905, fip = 0.095). However the parameters of the corresponding degree
profiles are too close. Therefore, we can first search for a good degree profile using
the Gaussian approximation, then find the best one using exact APP propagation.

Degree Exact APP | EPM-Gaussian
profile propagation | approximation
f2=0.901, fo =0.099 0.24 0.34
f2 = 0.905, fio = 0.095 0.21 0.3
fo =0.915, fi1 = 0.085 0.22 0.27

Table 3.2: Minimal E,/N, in dB, achievable by a symbol-based iterative decoder.
Rate-1/2 turbo code. Rate-2/3 RSC code with octal generators g = (37,21, 27).

Finally, we consider a rate-1/3 irregular turbo code built from the parallel con-
catenation of two RSC codes of rate 1/2. The octal generators are g = (37,21).
The minimal signal-to-noise ratio that achieves the capacity of the AWGN channel
with BPSK input is % = —0.495 dB. We first search for the best degree profiles
with two non zero fractions. The two best profiles contains "elite" bits with degree
equal to 8 and 9 (see table 3.3). Then, we use the two best "elite" bits to construct
an irregular turbo code with a degree profile that contains three non zero fractions.
The best performance are found for fractions fo = 0.888, fg = 0.06 and fo = 0.052.

Degree Exact APP
profile propagation
fo=1 -0.13
fo=10.861, f =0.139 -0.35
fo=10.884, fg =0.116 -0.44
f2=10.891, fo =0.109 -0.41
fa = 0.905, fio = 0.095 -0.39
fo =0.888, fs =0.060, fo = 0.052 -0.47

Table 3.3: Minimal E,/N, in dB, achievable by a bit-based iterative decoder. Rate-
1/2 turbo code. Rate-1/2 RSC code with octal generators g = (37,21).
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The thershold is equal to —0.47 dB. This is within 0.03 dB of the capacity.

3.8 Conclusions

We studied in this chapter the asymptotic performance of turbo and irregular
turbo codes using the log-density propagation method and the the transfer func-
tion method based on the Gaussian approximation with error probability matching

(EPM-GA).

The transfer function method leads to accurate results. It can be used to speed
up the search for good degree profiles. On the other hand, this method can be used
to analyze the convergence of iterative decoding. From the transfer functions of
regular and irregular turbo codes, we concluded that the convergence of iterative
decoding is slower for an irregular turbo code.

The exact thresholds on the performance of an infinite length turbo or irregular
turbo code under iterative decoding were determined using the log-density propa-
gation method. For both, the rate-1/3 irregular turbo code with bit-based iterative
decoding and the rate-1/2 irregular turbo code with symbol-based iterative decod-
ing, the threshold is within 0.03 dB of the Shannon limit of the discret input AWGN
channel with maximum-likelihood decoding.

Notice that, for the rate-1/2 irregular turbo code with symbol-based iterative de-
coding, we just considered a degree profile with only two non-zero fractions. Smaller
thresholds can probably be reached using a larger degree profile. This is not neces-
sary since that the 0.03 dB value can be considered as almost equal to zero.

Finally, we conclude from these results that, under iterative decoding, irregular
turbo codes can achieve capacity of the BPSK-input AWGN channel as for irregular
LDPC codes.

In the next chapter, we study multilevel coded modulations which can be used
to approach the capacity of a M-ary disctrete input AWGN channel (M > 2)at high
code rates.
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Asymptotic performance of turbo codes




Chapter 4

Multilevel coded modulations

4.1 Introduction

The performance improvement, in the case of binary codes, is achieved by ex-
panding the bandwidth of the transmitted signal by an amount equal to the recip-
rocal of the code rate.

However, efficient digital communication systems have to be both power and
bandwidth efficient, especially in the case of bandwidth-constrained channels. For
such channels, the digital communication system is designed using M-ary modula-
tions that have signaling rates R > 1 bit/dimension. Coding and modulation are
combined. We get the so called coded modulations.

The most powerful applicable coded modulations systems are the well known
Trellis Coded Modulations (TCM) that were first described by Ungerboeck in 1982
[90] (see also [91] and [92]), and Multilevel Coded Modulations (MLC) introduced by
Imai and Hirakawa [46].

The common idea to these two methods, is to optimize the code in Euclidean
space rather than dealing with Hamming distance. This is done by successively
binary partitioning the signal set A = {a1,as,...,ap} of a M-ary modulation
(M = 2%) using Ungerboeck’s set partitioning rule. After L levels of partition-
ing, each signal point will be mapped by a binary vector x = (zp,25_1,.-.,%1).
Ungerboeck’s approach, that is based on maximizing the minimum intra-subset Eu-
clidean distance, is the most set partitioning strategy used in practice.

The difference between TCM and MLC is in coding. In a TCM system, the
least significant bits of x are encoded using one convolutional code and the most
significant bits remain uncoded. On the other hand, in an MLC system each bit x;
of the signal point is individually protected by an individual binary code E;.

Compared to Ungerboeck’s TCM, the MLC approach has the advantage of pro-
viding flexible transmission rates since the latter becomes independent of the di-
mensionality of the signal constellation. Furthermore, any code like block codes,
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convolutional codes, turbo codes, etc, can be used as a component code.

However, MLC suffers of two major disadvantages that explain why MLC is not
of great interest in practice. First, the performance is severely degraded due to high
error rates at lower levels. Secondly, an MLC system is more complex than a TCM
based-one.

In this chapter, we review the main results found in the literature, especially
by Huber et al [98][45][26][99][27], regarding multilevel coding. We mainly focus on
the capacity, the design rules and the labeling strategies of MLC. Then, asymmet-
ric one-dimensional ASK and two-dimensional PSK constellations are studied. The
main purpose of these studies is to determine, for the additive white Gaussian noise
channel (AWGN), a multilevel coding scheme that has equal capacity at each level
i. Therefore, applying the capacity design rule, the individual rates at each level be-
come equal. Complexity of the system is largely reduced since only one architecture
of encoding and decoding is sufficient.

The system model of an MLC scheme is introduced in section 4.2. The proof that
MLC, combined to multistage decoding (MSD), can achieve the capacity is reviewed
in section 4.3. In section 4.4 we determine the capacity region, i.e. the region
corresponding to the rates that can be used to achieve capacity. The different rate
design rules like the balanced distance rule, the capacity design rule, and the coding
exponent design rule, are investigated in section 4.5. In section 4.6, we study the
different labeling strategies of some practical interest like block partitioning strategy
and the Gray labeling strategy. In these sections, We based our study on the case
of a M = 2-ary ASK modulation (specially 8-ASK). To explain why all this study
is based on a one-dimensional ASK, the dimensionality of the constituent signal
constellation is reviewed in section 4.7. For this one-dimensional modulation, an
asymmetric constellation with equal capacity at each level is introduced in section
4.8. The case of MLC systems based on asymmetric PSK constellations, which is
of great interest in practice, is studied in section 4.9. Finally, section 4.10 resume
the results of some Monte Carlo simulations obtained using MLC schemes based on
ASK and PSK modulations.

4.2 System model

Let us consider a D-dimensional modulation with M = 2% signal points taken
from the signal set A = {ay, as, ..., ayn}. The multilevel encoder is shown in figure
4.1. Each bit z; € {0,1} of the binary address vector x = (Zr, 11, -, Zi,---,Z1)
is independently protected. bfx is then used to select a point from the constellation.

The code rate of each individual encoder is equal to R; = % where N is the
length of the multilevel code. The total rate of the multilevel scheme is equal to
R =X where K = ! | K;. Thus, a block of K information bits is encoded into N
address vectors x. Each of those vectors is used to select a signal point a from the

constellation. The bijective mapping a = M (x) is done using Ungerboeck’s parti-
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—*1 Encoder EL
K Information : : .
bits | | 5 Mapping |——o0 a
K1 bits X1
1/= . Encoder Eq

Figure 4.1: Multilevel encoding scheme.

tioning.

For example, Ungerboeck’s partitioning of the one-dimensional 8-ASK modula-
tion is illustrated in figure 4.2.

8-ASK constellation

-7 -5 -3 -1+1 +3 45 +7

« i:o/ W
A0 A(D)
5 -1

W—k

R +3  +7
X2= / \ . X2 / \‘\22 1
A(00) A(10) A(01) A(11)

A(OOO) A(100)  A(010) A(110) A(001) A(101)  A(011) A(111)

Figure 4.2: Ungerboeck’s partitioning of an 8-ASK signal constellation.

At each level of partitioning, points of the constellation are divided into 2 sub-
sets. The partitioning is done in a way to maximize the intra-subset minimum
Euclidean distance. Each subset at partioning level ¢ is uniquely labeled by the vec-
tor (x;,xi_1,...,x1). The corresponding subset is denoted A(z;, z;_1,...,21). After
L levels of partitioning, each subset will contain one signal point labelled by the
VeCtor X = (L, L 1,y Tiy-vn, T1)-

In the case of a M = 2L-ary ASK modulation (D = 1), this partitioning can be
represented by the following equation
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L-1
1
a=M(x)=2""1[2x, - 1)+ Zai.(in —1)] where o; = oL (4.1)
i=1

Thus, the MLC encoder can be viewed as the sum of L independent binary
modulations (see figure 4.3).

K bits 2x.~1
™| Encoder E|_ K><\
K Information ‘ ‘ \T/ _ ‘
bits : 1 1 2L 1 @—O
K1 bits 2x1-1 /><\

Encoder Eq \T/
1

Figure 4.3: 8-ASK, MLC encoder.

Applying the chain rule of mutual information [37], the transmission of the vec-
tor x over the physical channel can be separated into L equivalent channels, one for
the transmission of each bit z;,i =1,2,..., L (see figure 4.4).

The input and the output of the physical channel are respectively represented
by the random variables X and Y. The inputs of the equivalent channels are repre-
sented by the L binary random variables Xy, Xo|Xy,..., X1[(X1,...,X1—1), while
the outputs are represented by the same random variable Y. From the chain rule of
mutual information, we get

IY; X)=1(Y; X1, Xo,..., X1) = I(V; X0)+I(YV; Xo| X1)+. . . +I(Y; XL\(XI,X(Q, . ) . X11))
4.2

Therefore, a suboptimal decoding technique, known as multistage decoding (see

figure 4.5), can be used. The constituent codes E;, at each level 4, are successively

decoded. We begin by decoding the level 1. Then, at each level 7, decoder D; uses

the decided bits Z;, j = 1,...,7—1, of lower levels in order to compute his metric and

determine the decided bits ;. As long as error-free decisions #; = z; are generated

by the decoder D;, MSD can be interpreted as an implementation of the chain rule.

In order to achieve better performance, interleaving between the levels, forward-
ing of reliability information from lower to higher levels using soft-output decoding
algorithms, and especially iterative MSD have been proposed [100]. Simulation re-
sults show (cf. section 4.10) that the performance of MSD is almost equal to the
one we get using iterative MSD. This can be explained by the fact that MLC com-
bined to MSD achieves the capacity of the modulation transmitted over the physical
channel (cf. section 4.3) and that this performance is only slightly inferior from the
one we have for an optimum maximum likelihood decoder. We should also note that
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Figure 4.4: Equivalent channels of an 8-ASK modulation (Ungerboeck’s partition-

ing).
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Figure 4.5: Multistage decoding of an MLC scheme.
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the use of interleaving between levels increases the delay of data and the codeword
length. Using such long component codes in direct way would yield a quite better
performance.

4.3 Capacity of multilevel coding

Let C;, 1 =1,2,..., L be the capacities of the L equivalent channels of a M = 2%-
ary multilevel coding modulation system. C; is the maximum of the average mutual
information I(X;|(Xy,...,X;_1),Y) where the maximization is done over all possible
input probability distributions

C; = max I(X;|(X1,...,X; 1);Y) (4.3)

P(z)
As mentioned in chapter 1, in the case of discrete input channels, the maximum

is achieved by a uniform distributed input [18|. Furthermore, from the chain rule of
mutual information, we have

I(Xz‘(Xl, e 7Xz'—1); Y) = I(Xz, e ,XL‘(Xl, ey Xz'—l); Y)—I(XZ‘_H, e ,XL|(X1, e 7Xz)7 Y)
(4.4)

Since the subsets at one partitioning level may not be congruent, the both mutual

informations I(XZ, e ,XL|(X1, Ce 7Xz'—1); Y) and I(XH—I; e ,XL|(X1, e ,X,), Y)

are calculated by averaging over all possible combinations of (x1,...,z;_1) and

(21, ...,x;) respectively :

I(XZ, R ,XL‘(Xla e ,Xifl);Y) = E:cl,...,wi_l{I(Xia .. .,XL|($1, .. ,$Z,1),Y)}
(4.5)

-I(Xi—l—l, PN ,XL|(X1, cee ,XZ), Y) = Ezm,...,wi{-l(Xi—Ha . .,XL|(:U1, cee ,.TZ),Y)} (46)

Replacing equations (4.5) and (4.6) in (4.3) and (4.4), we get

Ci = Ezl,...,$¢_1{I(Xi7 ceey XL|(.’E1, Ce. ,.Z'Z'_l); Y)}_Ezl,...,a:i{l(Xi—i-l; Ce. ,XL|($1, e ,.T,), Y)}
(4.7)
Finally, it is easy to show [98] [45] [26] that the capacity C of an M = 2'-ary
multilevel coding modulation system is equal to the sum of the capacities C; of the
equivalent channels 7, (i=1,...,L)

cC=>C (4.8)

The capacity C' can be approached via multilevel encoding and multistage de-
coding, if and only if the individual rates R; are chosen to be equal to the capacities
of the equivalent channels, i.e. R; = C;.
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For example, for an 8-ASK scheme (a € {£1;+3; £5;£7}) transmitted over an
AWGN channel, the capacity C as well as the capacities C1, Cy, C3 of the 3 equivalent
channels, when Ungerboeck’s partitioning is applied, are shown in figure 4.6.
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Figure 4.6: Capacity C of the 8-ASK modulation (AWGN channel) and capacities
C1, Cy and Cj5 of the equivalent channels as a function of f,—; in dB. Ungerboeck’s
partitioning is applied.

From these results we can conclude that:

1.

As for lattice codes (see chapter 1), capacity can be approached via structured
multilevel codes.

. Sub-optimum multistage decoding can achieve the capacity if the rates R; are

equal to Cj.

For any digital communication system based on an M = 2l-ary modulation,
the capacity of the channel can be achieved using MLC that employs binary
codes, and MSD. However, for finite block length N, non-binary codes may
have some advantages in performance or complexity [69] [101]. In sections 4.8
and 4.9, we reduce the complexity of the MLC system by using asymmetric
constellations.

There is no restriction on the particular labeling of signal points. Thus, Unger-
boeck’s partitioning is not essential to approach the capacity. Nevertheless,
for finite code length, Ungerboeck’s partitioning strategy turns out to lead the
highest performance among MLC schemes with different partitioning strate-
gies (cf. section 4.6). On the other hand, alternative partitioning strategies
may be favorable for some other practical purposes as discussed also in section
4.6.
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4.4 Capacity regions

L-level coded modulations may be interpreted as a special multiple access prob-
lem, 7.e. L binary output sequences accessing a common channel. For example,
figure 4.7 shows a 2-level MLC system accessed by 2 users: one at each level.

X2

User 2 — ™ Encoder Ep

X1

User 1 —=1 Encoder Eq

Figure 4.7: Multiple access using MLC.

The rates of the 2 levels are respectively R; and R,. These rates are restricted
by the following conditions:

1. Total rate R = R; + R, cannot exceed the capacity of the common channel

Ry + Ry, < I((X1,X5);Y) (4.9)

2. Rate for one user cannot exceed the capacity of the corresponding equivalent
channel provided that the message of the other one is known at the receiver
side

The two conditions of equations (4.9) and (4.10) form a polygon in the rate plane
(see figure 4.8). Points "A" and "B" correspond to the chain rule equation (4.2) for
both possible expansions and thus, the capacity is achievable even by a sub-optimum
MSD. Note that, point "B" simply corresponds to an exchange of inputs X; and X5,
i.e. when X is first decoded. This is due to a different mapping strategy known as
block partitioning (see section 4.6).

In [98], Huber et al proved that MLC schemes with rate design corresponding
to the points on the straight line connecting points "A" and "B" can achieve the
capacity of the multilevel coding scheme if mazimum likelihood decoding (MLD) is
applied instead of MSD. As a result, the complexity of the system is largely increased.
This problem can be avoided when a proper rate design is applied (as for points "A"
and "B"). Moreover, using the same arguments, these results can be extended to
the case of L-level MLC schemes.

Mapping Common channel Decoder I
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Figure 4.8: Asymmetric 8-PSK constellation

4.5 Rate design rules

A key element in the design of multilevel codes is the assignment of the code
rates R; of the L individual encoders C;, i = 1,..., L. In this section, we review the
different rate design rules that can be used to determine these codes rates. We begin
by investigating the balanced distance rule which was traditionally used to construct
coded modulations schemes like multilevel codes [9].

4.5.1 Balanced distance rule

Let (N, K;, ;) denote the parameters of the code C;, ¢ = 1,..., L where §; is
the minimum Hamming distance of the code. Let d; be the minimum intra-subset
Euclidean distance over all subsets at partitioning level ;. We assume that d; was
maximized by applying Ungerboeck’s partitioning.

A lower bound on the minimum Euclidean distance dg_. between codewords in
signal space is derived by (see e.g. [77])

min

i, ;, > min(d;.6;), i=1,...,L (4.11)

Therefore, in order to maximize dg,, , the constituent codes C;, (e.g. the code
rates R;), must be selected in a way that the products d?.d; are equal for all levels.

d?.5; = constant, i=1,...,L. (4.12)

This is the balanced distance rule that was initially proposed for the design of
multilevel codes [46] and the design of lattice codes (constructions B through E pre-
sented in [17]).

For an Ungerboeck partitioned 8-ASK constellation, the intra-subset minimum
Euclidean distances are d; = 2, do = 4 and d3 = 8. From (4.12), we get that the
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normalized minimum Hamming distances of the constituent codes with length N
must satisfy

o1 02

2. — =4

N N

For large code length N and for linear binary block codes with minimum Ham-

ming distances which meet the Gilbert-Varshamov bound, the rates R; and the

minimum Hamming distances d; are related by [35]

)
= SQ.N?’ = constant. (4.13)

R; =1 — Hy(;/N) bits/dimension (4.14)

where Hy(z) is the binary entropy function. For Cte = 0.26, the total rate R is
equal to 2.5 bits/dimension and the rate distribution is R; = 0.66, Ry = 0.88 and
R; = 0.96.

This method suffers of two major disadvantages :

e First, the balanced distance rule does not take into account the multiple rep-
resentations of binary symbols which cause an enormous multiplication of pos-
sible error events especially at lower levels. The error probability at the first
level significantly increases. These errors propagate through higher levels and
therefore, a degradation in performance occurs when multistage decoding is
applied. More complex decoding techniques that can approach ML decoding
must be implemented instead of MSD (cf. section 4.2).

e Secondly, several compound codes, like turbo codes, cannot be characterized
by their minimum Hamming distance which is commonly lower than the one
obtained from the Gilbert-Varshamov bound.

To avoid these problems, new design rules based on parameters from information
theory must be used instead of the balanced distance rule. We mainly focus on the
capacity rule and the coding exponent rule.

4.5.2 Capacity rule

To achieve the capacity of a multilevel coding system, the individual rate R;
must be equal to the capacity of its corresponding equivalent channel (cf. section
4.3).

R; = C; i=1,2,...,L (4.15)

For example, in the case of an Ungerboeck partitioned 8-ASK constellation and
for R = C' = 2.5 bits/dimension, the code rates are Ry = 0.52, Ry = 0.98 and
R3; = 1. When compared with the rates obtained from the balanced distance rule, we
obviously see that the rate of the first level is smaller. This improves the performance
of the first level and therefore reduce the error propagation through higher levels.
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4.5.3 Coding exponent rule

The capacity rule is well suited for the design of MLC schemes with large length
N (codes that perform close to capacity). However, for small values of IV, it is more
convenient to use the random coding bound which provides a relation between N
and the word error probability P, of the system(cf. section 1.3.4 in chapter 1)

P, = 2~ NE(B) (4.16)

where R is in bits/dimension and E(R) is the Gallager coding exponent

E(R) = max [Ey(p) — pR] (4.17)

0<p<1

For a discrete-input, continuous-output channel like the AWGN channel, Ey(p)

is defined by
Ey(p) = —logs /

Let E;(R;) be the Gallager coding exponent of the equivalent channel i

1+p
Z P(x)P(y|z) 1+p] dy (4.18)

Ei(R;) = Ofgggl[EOi(P) — pR] i=1,...,L (4.19)
where Ejy;(p) is obtained by averaging the parameter Ey;(p, x;, i1, --.,x1) over all
the subsets A(z;, x;_1,...,1) at level i

Eoi(p) = Evyoi_r,zs 1E0i (05 Tiy i1, .., 21) } (4.20)

and

1

3 P(xi)P(y\xi)l}rn] dy (4.21)

x;=0

EOi(P, TiyLj—1y--- ,3?1) = —lng /
Y

Then, to determine the code rates R;, E;(R;), and hence the word error proba-
bility P,, is fixed to a constant value

1
Ei(R;) = _NZOQQPe = constant (4.22)

For a fixed signal-to-noise ratio, the rate R; that satisfies this equation is de-
termined by evaluating FE;(R;). For the AWGN channel, E;(R;) must be evaluated

numerically.

Figures 4.9.a. and 4.9.b. show the total code rate R and the code rates R;, Ro
and Rj3 of the equivalent channels of an Ungerboeck partitioned 8-ASK as a function
of the average signal-to-noise ratio per symbol E;/Ny in dB. The code length N is
respectively equal to 500 and 100000. The word error probability is equal to 10 3.
This particular value of P, guarantees that the bit error probability is less than 10°
for both values of N. Note that for N = 100000, the curves coincide with those
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obtained using the capacity rule. In fact, the asymptotic values for N — +oo are
those given by the capacity design rule. For N = 500, there is a significant difference
between the results of the two design rules.

251
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a. N = 500. b. N = 100000.

Figure 4.9: Total rate R of the 8-ASK MLC scheme (AWGN channel) and rates R;,
Ry and Rj3 of the three levels, derived from the coding exponent rule, as a function
of f,—; in dB. P, = 1073. Ungerboeck’s partitioning is applied.

For R = 2.5 bits/dimension and P, = 1073, the code rates R; are sketched as a
function of the code length N of the multilevel code (see figure 4.10). We observe
that for N > 1000, the values of the capacity rule are a good approximation of
the exact values calculated using the balanced distance rule. On the other hand,
when N goes to zero the code rates R; go to the values obtained using the balanced
distance rule.

These design rules are the main ones that can be used to determine the code
parameters of a multilevel coding scheme. Other design rules, like the cutoff rate
rule and the equal error probability design rule [98|, are not of great interest. The
cutoff rate rule, V 7 R; = R}, is only useful for codes that cannot approach capacity
but just the cutoff rate R} of the equivalent channels. The equal error probability
rule is limited to the class of codes for which an analytical expression of the word
error probability can be determined for each of the equivalent channels. In this case,
the rates are determined in a way that the word error probability is the same for all
the levels of the multilevel coded modulation.

4.6 Labeling strategies

From section 4.3, we concluded that Ungerboeck’s partitioning is not essential to
approach capacity. Several labeling strategies can be used in practice. These labeling
strategies are discussed in this section. We mainly focus on block partitioning and
Gray labeling which both have some practical advantages. The performance of these

16
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Figure 4.10: Distribution of rates R;, Ry and R3 of the three levels of an 8-ASK
MLC scheme (AWGN channel), derived from the coding exponent rule, as a function
of the block length N. P, = 10~3. Ungerboeck’s partitioning is applied.

labeling strategies is determined by calculating Gallager’s coding exponent. This
allows us to compare the performance of these labeling strategies for finite block
length N.

4.6.1 Block partitioning

Usually, the partitioning of a signal set, ¢.e. a constellation, is done using Unger-
boeck’s partitioning which is based on maximizing the minimum intra-subset Eu-
clidean distance. However an alternative labeling strategy, known as block partion-
ing can be investigated. Block partitioning is based on minimizing the intra-subset
variance. Figure 4.11 shows the block partitioning of an 8-ASK constellation. At
each level, the minimum intra-subset Euclidean distance is the same.

As for Ungerboeck’s partitioning, a signal point from the constellation is labelled
by the vector x = (zr,Zr_1,-..,%;,...,T1) where z; is the binary input of the ™
equivalent channel. However, on the opposite to Ungerboeck’s partitioning, labeling
of the subsets is done begining with x; and then z; 1,...,2;,...,2;. This yields
to the same bijective mapping a = M (x) obtained applying Ungerboeck’s partition-
ing. For example, for an M-ary ASK constellation, the mapping can be represented
by the same equation (4.1). However, in this case, the L equivalent channels are
represented by the L binary random variables X, X7 1|Xy,..., X1|(Xz, .-, X3).
Therefore, it is quite obvious that MSD is processed by first decoding the higher
level L, and then decoding the lower levels L —1,...,4,...,1 (see figure 4.12).
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8-ASK constellation
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Figure 4.11: Block partitioning of an 8-ASK signal constellation.
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Figure 4.12: Multistage decoding of an MLC scheme when block partitioning is
applied.

Block partitioning leads to equivalent channels with capacities C; that have a
smaller divergence (see figure 4.13).

This may facilitate implementation in some cases. For example, block partition-
ing can be applied to construct softly degrading MLC schemes where decoding in
the MSD is done only down to the level that still delivers reliable data [98] [45].
A second application of block partitioning is to construct MLC schemes based on
asymmetric constellations which have equal capacity at each level (see section 4.8).
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Figure 4.13: Capacity C of the 8-ASK modulation and capacities C;, i = 1,2,3 of
the equivalent channels as a function of ﬁ—; in dB. Block partitioning is applied.

4.6.2 Gray labeling

Gray labeling is an interesting alternative first used in [101] to construct an 8-
PSK modulation scheme for Rayleigh fading channels, that outperforms the best
known trellis codes. The main idea is to use a single convolutional encoder that has
a code rate equal to 2/3. The coded bits are randomly interleaved and then mapped
to signal points using Gray labeling. This modulation technique is known as Bit
Interleaved Coded Modulation (BICM).

In this section, we analyze an MLC scheme based on Gray labeling. This will be
of great interest when a sub-optimal parallel independent decoding is used instead of
MSD.

Figure 4.14 shows the partitioning of an 8-ASK constellation when Gray labeling
is applied. As for block partitioning, the minimum intra-subset Euclidean distance
remains the same for all partitioning levels. The difference between the capacities
C; of the equivalent channels is small (see figure 4.15). Moreover, a careful analysis
done in the next two sections shows that MSD can be replaced by an independent
parallel decoding of levels, without significant loss in capacity and performance.

4.6.3 Parallel independent decoding

In MLC with parallel independent decoding (PDL) of the individual levels (see
figure 4.16), the decoder D; makes no use of the decisions of other levels i # j.
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Figure 4.14: Partitioning of an 8-ASK signal constellation: Gray labeling.
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Figure 4.15: Capacity C of the 8-ASK modulation and capacities C;, 1 = 1,2,3 of
the equivalent channels as a function of ﬁ—; in dB. Gray labeling is applied.
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Therefore, the individual rates are bounded by

R, <Cppr,, i=12,...,L (4.23)

where Cppy, is the maximum of the mutual information 1(X;;V;), i.e. capacity of
the equivalent channel ¢ when PDL is applied. It is obvious that

I( X3 Y;) < I(X4|(Xizy, - .-, X1)3 Y)) (4.24)
91
> DecoderDl O
>A<2
Yo—8 Decoder D o
>A<|_
Decoder D | O

Figure 4.16: Parallel independent decoding of an MLC scheme.

Thus, Cppr, < C, where C' is the total capacity of the MLC scheme when MSD
is applied. Therefore, PDL approach can be viewed as a sub-optimum decoding
technique of an optimum MLC scheme. The capacity Cppy, strongly depends on the
labeling strategy. The gap to the total capacity C' is small when Gray labeling is
used. To understand why this gap is small, we can simply analyze the subsets of the
set partitioning tree in figure 4.14 and verify that the minimum distance and the
error coefficient stay unchanged when MSD is replaced by PDL. Figure 4.17 shows
the capacities C, Cppr, and the capacities Cppr, of the equivalent channels when
Gray labeling is applied to an 8-ASK. The gap between C' and C'ppy, goes to zero
when % goes to infinity. This can be explained by the fact that when 1]:3,—; goes to
infinity, the inputs X;, ¢« = 1,..., L, will be independent; as a result, equality will
occur in equation (4.24).

Finally, we should note that a BICM modulation, implemented using an infinite
length ideal interleaver, can be viewed as an MLC scheme based on Gray labeling
and decoded using a PDL. Therefore, BICM and MLC combined to Gray labeling
and PDL have the same capacity. The small degradation in capacity due to PDL is
similar to the one found by Caire et al [13] [14] regarding the small capacity loss of
BICM over the AWGN channel when Gray labeling is applied to an 8-PSK and a
16-QAM constellation.

4.6.4 Performance comparison for finite block length

The comparison between the different labeling strategies was done based on their
capacities. However, for finite block length /N, Ungerboeck’s partitioning strategy
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Figure 4.17: Capacity C of the 8-ASK modulation. Total capacity Cppr and capac-
ities Cppr,;, ¢ = 1,2,3 of the equivalent channels as a function of ﬁ—; in dB, when
Gray labeling with parallel independent decoding is applied.

turns out to lead to highest performance. This result can be verified by calculating
Gallager’s random coding exponent.

For example, figures 4.18.a., 4.18.b. and 4.18.c. show the required signal-to-noise
ratio per bit % to achieve a word error probability P, = 102 versus the code word
length N. The total rate is respectively equal to R = 1.5, R = 2 and R = 2.5
bits/dimension. For a fixed code length N, the gaps in performance between Unger-
boeck’s partitioning and the other labeling strategies are smaller for larger values
of R. Moreover, as block length NV goes to infinity, the gaps go to zero in the case
of block partitioning and Gray Labeling since labeling strategy does not affect the
capacity. For Gray labeling with PDL decoding, the gap is equal to the one we have
when the capacities are compared (0.4 dB for R = 1.5 bits/dimension). We get from
these results that, without a significant loss, MSD can be replaced by PDL when
Gray labeling is applied; This specially true for high rates R and large block length
N.

On the other hand, The performance of PDL when Gray labeling is applied are
almost equal to the performance of BICM even for small block length N [98].
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Figure 4.18: Required % in dB to achieve a word error probability P, = 1073, as
a function of the block length N. 8-ASK modulation. Labeling strategies: Unger-
boeck’s partitioning (UP), block partitioning (BP), Gray labeling (GR) and Gray
labeling + PDL (GR/PDL).

4.7 Dimensionality of the constituent signal constel-
lation
For band-limited channels, multidimensional modulations are largely employed.

In the case of a TCM system, one redundant bit is introduced per D-dimensional
symbol. The redundancy is equal to 1/D bits/dimension. However, for an MLC
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scheme the rate in bits/dimension is independent from the dimension D of the sig-
nal set. Therefore, in the design of a multilevel code, any D-dimensional modulation
can be employed. The choice of D is based especially on performance and complex-
ity. For example, let us consider a multilevel coded modulation system based on
a two-dimensional M-ary squared QAM constellation. We consider that the total
code rate is equal to R bits/dimension and that a codeword contains N M-ary coded
symbols. The choice of N is fixed by the maximal data delay allowed during trans-
mission.

This MLC scheme can be constructed in two different ways.

First we can choose D = 2 dimensions, apply one of the labeling strategies pre-
viously defined to the two-dimensional M-QAM constellation, and therefore obtain
a L = 4-level MLC scheme. The code length of the binary block codes will be equal
to N.

Secondly, we can choose D = 1, and therefore construct the MLC scheme using a
4-ASK constellation. In this case, the number of levels is L = 2 and the code length
is 2N. The 2 x N ASK symbols are then combined into N two-dimensional QAM
symbols.

The MLC scheme based on a one-dimensional ASK scheme is largely simpler than
the first one. Moreover, simulation results done by Huber et al using turbo codes
as component codes, showed that this system outperforms the one based on the 2-
dimensional QAM constellation'. For M = 16 the gain is about 0.25 dB. Therefore,
in the sequel, we focus our study on the one-dimensional ASK constellation and two-
dimensional PSK which cannot be represented as two one-dimensional constellations.

4.8 MLC based on asymmetric 2*-ASK modulation

Let us consider the one-dimensional ASK constellation with signal points a. After
block partitioning, the bijective mapping a = M (x) can be represented by the
following equation:

I
a=2""%x 0; (22— 1) (4.25)

i=1
where the parameter «; is an homothetic factor and oy = 1 is fixed. Let C

be the capacity of the symmetric constellation obtained when the scaling factors
(011, Ao, ..., aL—l) S&tiSfy 2

B 1
_ 9L—i

o i=1,2,...,L—1 (4.26)

L This is true for block component codes like turbo codes. For a convolutional component code,
the two-dimensional constellation performs better.
2In the case of a symmetric 8-ASK, (ay,as) = (0.25,0.5).
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Let C, be the capacity of the asymmetric constellation obtained using arbitrary
values of o; € [0,1[, ¢ = 1,2,...,L — 1. We also define C,; as the capacity of
the equivalent channel at level 7. The scaling factors can be determined in such a
way that the capacities C,; are equal. This is done numerically for each average
signal-to-noise ratio per symbol ES.

The two parameters (a4, as) of an 8-ASK modulation reaches (0.25,0.5) when
f,—f) increases to infinity (see figure 4.19). These values correspond to the symmetric
shape. A numerical search was made to find the values of the total capacities C,
and C The result shows that the two capacities are almost equal (see figure 4.20).
For = <13 dB, C, is even greater than C, which means that a small shaping gain
is achleved by the asymmetric constellatlon
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Figure 4.19: Parameters a; and «y of the asymmetric 8-ASK modulation as a func-
tion of ]‘?]—; in dB.

The above result is very interesting : the total capacity is achieved using an
asymmetric constellation that has equal capacity at each level.

Vi R, =C, = % & % (4.27)

Thus, instead of using L encoders and obviously L decoders, only one encoder
and one decoder are sufficient to implement the MLC system. This reduces the
complexity by a factor of L. No additional data delay will occur if we increase the
speed of the encoder. There is no need to increase the speed of the decoder since

MSD is applied.
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Figure 4.20: Capacity C of the 8-ASK modulation, capacity C, of the asymmetric 8-
ASK modulation and capacities Cy; = Cyo = Cy3 = C,/3 of the equivalent channels
as a function of f,—; in dB.

However, even if the asymmetric constellation has the same capacity as for the
symmetric one, a degradation in performance occurs for finite code length N. This
degradation is due to block partitioning labeling strategy that must be applied in-
stead of Ungerboeck’s partitioning in order to get L equivalent channels that have
the same capacity.

To evaluate this degradation in performance, we calculate the average signal-to-
noise ratio per bit £t N b needed to achieve a word error probability equal to® P, = 103
at each level. This is done by finding the values of the L Gallager coding exponents
[98] [45].

Figures 4.21.a., 4.21.b. and 4.21.c. show the average signal-to-noise ratio per
bit —” versus the code length N for code rates respectively equal to 1.5, 2 and
2.5 blts /dimension. Curves correspond to : Ungerboeck’s partitioning applied to a
symmetric constellation (UP), Ungerboeck’s partitioning applied to an asymmetric
constellation which has the best performance (UP/AS), block partitioning applied
to a symmetric constellation (BP) and block partitioning applied to an asymmetric
constellation that has equal rate at each level (BP/AS). When N tends to infinity,
ﬁ—g approaches the value that corresponds to the capacity limit.

3For P, = 102 and large values of N, a bit error probability P, < 10~ is achievable.
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Figure 4.21: Required Lo in dB to achieve a word error probability P, = 1073, as a
function of the block length N. 8-ASK modulation.

We conclude from these results that :

1. For both symmetric and asymmetric constellations, Ungerboeck’s partition-
ing performs better than block partitioning, especially for small code length
N. When N goes to infinity, the two partitioning strategies have the same
performance.

2. For both Ungerboeck’s and block partitioning, a gain in signal-to-noise ratio
is achieved with asymmetric constellations, especially when N goes to infinity
and for moderate code rates (R = 2 bits/dimension). This can be viewed as a
shaping gain introduced by the asymmetric constellations.
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3. An MLC scheme based on asymmetric constellations with equal capacity at
each level, can perform better than a symmetric one even if it is Ungerboeck
partitioned. This is true when the code length N is large enough and for a
code rate R not too close to the capacity of the modulation vehiculed by the
AWGN channel. As an example, for R = 1.5 bits/dimension, a signal-to-noise
ratio gain is obtained for N > 7000. For R = 2 bits/dimension, N has to be
greater than 15000 to get a positive gain.

4.9 MLC based on asymmetric 8-PSK modulation

PSK modulations are widely used in practice specially for the transmission over
non-linear channels like the satellite channel. Several coded modulations schemes
based on PSK modulation were also proposed for the Rayleigh fading channel [101].
The purpose of this section is to study MLC systems based on M = 2f-ary asym-
metric PSK modulation and in particular the one based on asymmetric 8-PSK. We
begin by determining the asymmetric 8-PSK constellation that leads to an MLC
scheme that has equal capacity at each level.

An asymmetric 8-PSK constellation defined by two angles ¢4 and 65 is represented
figure 4.22. As for asymmetric ASK constellations, and when block partitioning is
applied, the angles (6;,602) can be determined in such a way that the capacities
Cai, © = 1,2,3 of the equivalent channels are equal. Numerically, we got that the
two angles #; and fy are almost equal (f; = 6 ~ 6). This can be explained by
the fact that, for the symmetric shape and under block partitioning, the equivalent
channels 2 and 3 already had the same capacity (see figure 4.24).

=

Figure 4.22: Asymmetric 8-PSK constellation

Figure 4.23 shows the angle 6 in degrees as a function of the average signal-to-
noise ratio 1]\'3; in dB. When E; approaches infinity, # goes to 22.5 degrees. This is
the value of 0 that corresponds to a symmetric 8-PSK constellation. The capacity C
of the symmetric 8-PSK constellation as well as the capacity C, of the asymmetric
one that has the same capacity at each level are depicted in figure 4.24. Notice that
there is a small degradation in capacity as in the case of a BICM modulation [13] [14].



4.9 MLC based on asymmetric 8-PSK modulation

109

25
8=225°
2 -
@ 20 P i
o) P
0] >
© -
[ e
_ e
D -
S Ve
o .
()] e
Ve
= )
S — /. —
@ 1° .
Q ,
7
U
P
-
e
10 | | | | | | | |
0 2 4 12 14 16

8 10
E /N_indB
s 0

Figure 4.23: Parameter 6 in degrees as a function of ﬁ—z in dB.

constellation. Block partitioning is applied.

18

25

N

=
o

=

Capacity in bits/symbol

0.5

0 2 4 6 8 10 12
E /N_indB
s 0

14

16

18

Asymmetric 8-PSK

Figure 4.24: Capacities C' and C, of the symmetric and asymmetric, 8-PSK, capac-
ities C; and Cy;, 1 = 1,2, 3 of their equivalent channels as a function of f]—; in dB.

Block partitioning is applied.



110 Multilevel coded modulations

For finite code length N, the degradation in performance of the asymmetric PSK
is more significant. This can be verified analytically by computing Gallager’s coding
exponents. For rates equal to 1.5, 2 and 2.5 bits/symbol, figures 4.25.a., 4.25.b.
and 4.25.c. show the average signal-to-noise ratio per bit % needed to achieve a
word error probability P, = 1072 versus the code length N. Curves correspond to
: Ungerboeck’s partitioning and a symmetric constellation (UP), block partitioning
with a symmetric constellation (BP) and block partitioning applied to an asymmet-
ric constellation that has equal rate at each level (BP/AS).

The same capacity equalization procedure described for an 8-PSK constellation
can be applied to any M = 2L-PSK signal set.
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Figure 4.25: Required ﬁ—g in dB to achieve a word error probability P, = 1073, as a

function of the block length N. 8-PSK modulation.
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4.10 Simulation results

In order to validate the results stated before, the performance of some MLC
schemes over the AWGN channel is determined by Monte Carlo simulation. We
consider in particular a 4-ASK with R = 1.5 bits/dimension, an 8-ASK with R = 1.5
and 2.5 bits/dimension, and an 8-PSK constellation with R = 1 bit/dimension
(R = 2 bits/symbol). At each level, the encoder E; is a punctured parallel turbo code
of rate R; = R/L and block size K; = R;.N where the code length N is equal to 2!
or 2'7. The recursive systematic convolutional constituent octal generators are g =
(31,27). We consider both, Ungerboeck’s partitioning of a symmetric constellation,
and block partitioning of an asymmetric constellation with equal rate at each level.
Multistage decoding is done. For the symmetric constellations, the rates R; are
chosen using the capacity design rule. For asymmetric constellations, the parameters
(a1, a, ..., ap_1) of the 2E-ASK and the parameters (6;, 6) of the 8-PSK are chosen
to minimize the bit error probability P, of the multilevel coding system

L
1
P =— Py 4.28
where P,; is the bit error probability at level i.

In figure 4.26, we sketche the performance of an MLC scheme with different de-
coding strategies. We considered an asymmetric 8-ASK constellation. The total rate
is R = 1.5 bits/dimension and the rate of the encoder E; is R; = 1/2. The block
length is equal to N = 2!'. Results show that, even for small to moderate block
length, multistage decoding, MSD with a posteriori probability propagation (APP)
from each level, and MSD with iterative decoding of the L levels have similar perfor-
mance. The performance of MSD without error propagation is also represented in
figure 4.26. For this MLC scheme, the degradation in performance caused by error
propagation is equal to 0.2 dB.

Figure 4.27 shows the performance of an MLC scheme based on a 4-ASK con-
stellation. We considered both symmetric and asymmetric constellations. The total
code rate is equal to R = 1.5 bits/dimension. This system is equivalent to a 16-
QAM-based one with total rate R = 3 bits/symbol. For an 8-PSK, the performance
is presented in figure 4.28. The total code rate is R = 2 bits/symbol.

Finally, the performance of different MLC schemes is presented in the bandwidth
efficiency plane (see figure 4.29). Each point specifies the average signal-to-noise ra-
tio per bit needed to achieve a bit-error probability P, equal to 10~°. These results
show that performance close to Shannon limit is exhibited. For both symmetric
Ungerboeck partitioned and asymmetric block partitioned constellations, the dis-
tance to the capacity of the underlying modulation transmitted over the AWGN
channel is less than 1 dB. Moreover, the degradation between block and Unger-
boeck’s partitioning is close to the one found analytically by calculating Gallager’s
coding exponents specially for L = 2 levels. For L = 3, the degradation is a little
bit greater. This is probably due to error propagation between the levels. On the
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other hand, a comparison is made with turbo trellis coded modulations introduced
by Robertson and Wérz |69]. We considered Robertson’s TCM (points of figure 4.29
plotted with a “4+” symbol) based on a 4-ASK with rate R = 1.5 bits/dimension
and block length N = 5000, an 8-ASK with R = 2.5 bits/dimension and N = 3000,
and an 8-PSK with R = 2 bits/symbol and N = 1024 and 5000. We conclude
from this comparison that the performance of MLC with Ungerboeck’s partitioning
and Robertson’s TCM are almost identical. The small gain introduced by Robert-
son’s TCM is probably due to the symbol-by-symbol interleaving that is applied
instead of bit interleaving. The use of a turbo code or an irregular turbo code with
symbol-based iterative decoding, as described in chapter2, will probably improve the
performance of the ML.C scheme and therefore, overcome this small degradation in
performance.

4.11 Conclusion

The main result of this chapter is that multilevel coding, combined to multi-
stage decoding, can reach the capacity of an ASK, a QAM or a PSK modulation
transmitted over an additive white Gaussian noise channel using block partitioned
asymmetric constellations with equal signaling rates at each level. Performance were
derived analytically by calculating Gallager’s coding exponents. The results showed
that the degradation in performance, introduced since block partitioning was ap-
plied instead of Ungerboeck’s partitioning, is relatively small. In the case of an ASK
constellation, and for both Ungerboeck’s and block partitioning, a gain in perfor-
mance, and sometimes in capacity, was achieved by the asymmetric constellations.
This can be viewed as a shaping gain introduced by these constellations. Moreover,
for moderate signaling rates R and for large code length N, a block partitioned
asymmetric ASK constellation which has equal capacity at each level, performed
slightly better than an Ungerboeck partitioned symmetric one. These results were
validated by Monte Carlo simulation of some MLC systems that use regular turbo
codes as constituent codes. Performance close to the Shannon limit was reached.

Therefore, asymmetric constellations are well suited for multilevel coding schemes
like the softly degrading scheme where decoding is done only to the level that deliv-
ers reliable data, or the unequal error protection (UEP) schemes. The complexity
of the MLC system is largely reduced since only one architecture of encoding and
decoding have to be implemented.

In the next chapter, We apply the principles of MLC to a multiple-input multiple-
output flat fading channel. A MLC scheme based on a 2-level BICM is proposed for
a non-ergodic block fading channel with 2 transmit and 2 receive antennas.
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Chapter 5

MLC in a multiple-antenna system

5.1 Introduction

The next generation of wireless systems are required to provide high quality and
high data rates for wireless multimedia applications. However, achieving low error
rates at high data transmission rates is extremely difficult over a wireless multipath
channel that may suffer from sever attenuations.

The only practical way to improve the performance of such systems is by in-
troducing some form of diversity. Several techniques, like time diversity, frequency
diversity and antenna diversity, can be used to provide some replicas of the transmit-
ted signal. We focus our study on multiple-input multiple-output (MIMO) channels
that use multiple transmit and receive antennas.

We review some recent results regarding the capacity of MIMO channels [85]
[31]. The capacity is also examined by formulating it in the context of multilevel
coding as in chapter 4 [9]. We consider both ergodic flat fading Rayleigh channels
and non-ergodic block fading channels. We assume that the channel coefficients be-
tween every pair of transmit and receive antenna are statistically independent and
known by the receiver.

We propse two coding schemes based on bit-interleaved coded modulations [12]
and multilevel coding. The performance of these systems is compared to the one we
get using an orthogonal design [84] like the Alamouti scheme [1].

Notice that we didn’t verify the effectiveness of the proposed systems for MIMO
channels with very high data rates where more than two transmit antennas are
used. For similar systems, the reader can consider using V-BLAST space-time codes
[39] [40] [41] which achieves good performance using simple encoding and decoding
schemes, or the linear dispersion space-time codes [43] that are designed to optimize
the mutual information between the transmitted and the received signals. Finally,
for unknown channel coefficients, the reader can refer to several studies mainly done
by Marzetta and Hochwald [61] [44].
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We begin this chapter by introducing the system model. In section 5.3, we
review the calculation of the capacity of an ergodic Rayleigh flat fading channel.
For a non-ergodic block fading channel, we determine in section 5.4 the outage
probability which corresponds to the probability that the code rate is not supported
by the channel. In section 5.5, we examine the capacity and the outage probability
of a MIMO channel using multilevel coding. This is interesting for the design of
a coding scheme for the MIMO channel. In section 5.6, we review the orthogonal
designs and specially the Alamouti scheme which leads to significant improvement in
performance using very simple encoding and decoding schemes. In order to achieve
better performance, we study the effectiveness of bit-interleaved coded modulations
in section 5.7. Both QPSK and 16-QAM constellations are considered. Finally, a
two levels MLC scheme is applied to a 16-QAM constellation. At each level of the
MLC, a bit-interleaved code is applied.

5.2 System model

Let us consider a flat fading multiple-input multiple-output (MIMO) channel
with n; transmit and n, receive antennas (see figure 5.1). The received and the
transmitted signals are related by

y=Hx+n (5.1)
where y = (y1,¥2,---,¥n,)" denotes the vector of complex received signals during
any given channel use, x = (21, Z2,...,%;,-..,%n,)" denotes the vector of complex

transmitted symbols. The superscript ¢ stand for transpose. The superscript ”, that
will be used later, stands for transpose conjugate. The symbols z; belong to a PSK
or a QAM constellation of size M = 2™. The channel matrix H = [h; ;] € C**™
is assumed to be perfectly known at the receiver but not at the transmitter. The
fading coefficients h; ; € C are Gaussian, circular, mutually independent and satisfy
E[|hi;[*] = 1. For an ergodic Rayleigh flat fading channel, the matrix H varies at
each channel use. For a non-ergodic block fading channel, H is fixed in time. n
denotes the vector of additive white complex Gaussian noise with zero mean and
variance 2N.

When 7T channel uses are considered, where 7" stands for time, equation (5.1)
becomes

y=HS+n (5.2)

where S is a n; X T matrix. Each column of S represents a transmit vector x at a
given channel use. y and n are n, X T' channel matrices.
5.3 Capacity of an ergodic Rayleigh channel

We review in this section the calculation of the capacity of an ergodic Rayleigh
flat fading MIMO channel [85]. Since H is known to the receiver and not to the
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Figure 5.1: MIMO channel with n; transmit and n, receive antennas.

transmitter, it can be considered as part of the output. The capacity is therefore
obtained by maximizing the mutual information I(x; (y, H)). It can be shown after
some simple manipulations that this quantity is equal to Eg{I(x;y|H = H)} where
H denotes a realization of H. The mutual information in this last expression is
maximized when x is a zero mean complex circularly symmetric Gaussian vector
(see [85] for the definition of a circularly symmetric random vector). This mutual
information is given by

1
Ir, (x;y|H = H) = logy(det(I,, + WHRXHh)) (5.3)
0

where Ry = E{xx"}. Furthermore, the expectation which gives the capacity is
maximum when the covariance matrix Ry is a multiple of identity. We shall write

where obviously P = E{x"x} is the total transmitted energy per channel use. In
short, the capacity on a Rayleigh fading channel is given by

P
2 ol

C = E{logy(det(I,, + H.H"))} (5.4)
Since all elements h;; are independent and satisfy E{|h;;|*} = 1, the quantity
p= % represents the SNR at each receiver antenna. Notice that C corresponds to
the maximal number of information bits that can be transmitted per channel use H
(one vector x is transmitted per channel use).

Figure 5.2 shows the capacity of some MIMO channels with continuous input as
a function of the total signal-to-noise ratio at each receive antenna.
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Figure 5.2: Capacity of a MIMO channel with continuous input as a function of the
total signal-to-noise ratio at each receive antenna p = ﬁ—; in dB.

Remarks

e For n; = n, = 1, we get the capacity of a single-input single-output Rayleigh
fading channel

C = Eu{loga(1 + plhui[*))} (5.5)
where hq; is a complex scalar.

e The capacity increase with number of receive antennas. For example, for n, =1
transmit antenna, the capacity per channel use is equal to

C = Enflogs(1+ Y 1))} (5.6)

=1

The coefficient |hy1|? that we have for n, = 1 is replaced by the sum > ., |h;; |?
where the coefficients h;; are complex independent Gaussian random variables.
This is the effect of diversity on the capacity of the MIMO Rayleigh channel.

e Let us consider the case of n; = n, parallel independent channels where the
channel realization matrix is equal to the identity matrix (H = I, ). The
capacity of this system is given by
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Uz p

For n; sufficiently high, C' — %. On the other hand, the capacity is just
equal to C = logy(1 + p) for n, = 1. Therefore, the capacity for large value of
n; is not just only greater than the one we had for n, = 1 but also increases
linearly with the average signal-to-noise ratio p instead of logarithmic-ally as
for n; = 1. However, parallel independent channel is not feasible in practice.

e Tarokh [83] specifies that the capacity C grows at least linearly with the num-
ber of transmit antennas as long as the number of receive antennas is greater
than or equal to the number of transmit antennas. From the results found by
Foschini and Gans [31] regarding the capacity C, Tarokh also concluded that
for one receive antenna little can be gained by using more than four transmit
antennas. For two receive antennas, almost all the capacity increase can be
obtained using n; = 6 transmit antennas. These results can be validated using
the capacity plots given by Telatar [85].

5.4 Outage probability of a non-ergodic block fad-
ing channel

The maximum mutual information has the meaning of capacity when the channel
is memoriless 7.e. when each use of the channel employs an independent realization
of the channel matrix H.

For a non-ergodic block fading channel, H is chosen randomly at the beginning
of all time and is held fixed for all the use of the channel, i.e. for the transmission
of a whole code word c. In this case, there’s always some realizations of H for which
the capacity

P

Cyg=1 det(1,
H 092(6( r+2 T

H.H")) (5.8)

of the corresponding Gaussian channel is smaller than the total code rate transmit-
ted per channel use. A non-zero word error probability is obtained even if the code
word length goes to infinity. Therefore, the capacity of the channel is equal to zero.
The quantity to be used in order to evaluate the effectiveness of the channel is not
its capacity anymore.

A good measure of the effectiveness of the channel is the outage probability P,,;,
that is, the probability that the code rate is not supported by the channel

P, = Prob(Cg < R) (5.9)

P,,; is evaluated numerically by calculating, using equation (5.8), the capacity
Cy for a large number of channel realizations H. For R = 2 and R = 4 bits per
channel use, figure 5.3 shows the outage probability of a MIMO channel as a function
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Figure 5.3: Outage probability of a continuous MIMO channel as a function of the
average signal-to-noise ratio at each receive antenna p = f]—; indB.R=2and R=14
bits per channel use. n; = n, = 2.

of the total signal-to-noise ratio at each receive antenna. This curve is a lower bound
on the word error probability of MIMO channels when coding is done.

5.5 Multiple antennas examined using MLC

In the previous chapter, we determined the capacity of a MLC scheme based on
a M-ary constellation using the chain rule of mutual information which allows us
to represent the transmission over the physical channel using L equivalent channels,
one for each coded bit. The same procedure can be used in order to analyze a coded
MIMO system in which a vector ¢ of L coded bits or @-ary symbols is mapped
one-to-one onto the vector x transmitted using n; antennas [9]. For a M = 2™-ary
modulation, we have

m.n;
L =
loga(Q)

For example, let us consider n; = 2 transmit antennas and a QPSK modulation
(M = 4). The signal constellation observed by each receive antenna is a linear
combination of two QPSK constellations. The number of signal points is equal to
16 (see figure 5.4). In the case of a quaternary code (@ = 4), The number of coded
levels is L = 2, one level for each transmit antenna. Two equivalent channels are
defined, one for each quaternary symbol. From the chain rule of mutual information
we have

(5.10)
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Figure 5.4: Example of receive constellation with QPSK and n; = 2 transmit anten-
nas.

I(X;Y) = I(X;Y) + I(Xa; Y| X)) (5.11)

X is the random variable that represents the transmission of the first quaternary
symbol over the first equivalent channel. X, represents the transmission of the sec-
ond quaternary symbol. Multistage decoding can be done. We begin by decoding
the first level that carries the first quaternary symbol. Assuming that the first qua-
ternary symbol is known, we decode the second level. Notice that for the second
level, the received constellation contains 4 points.

5.5.1 Capacity of the equivalent channels

Let us consider an ergodic Rayleigh fading channel. For a fixed realization H,
the output of the channel Y is a vector of Gaussian random variables.

ly — x|
No

The calculation of the capacity of an equivalent channel is done as in section 4.3
of chapter 4 and by averaging over all the realizations of H. We get

pr(y[x) o exp — (5.12)

Cz' = EH,w1,...,xi_1{I(Xia s ,XL|(371, s ,xifl); Y)}_EH,wl,...,zi{I(Xi+la s aXL‘(xla R .’Ez), Y)}
(5.13)
The total capacity of the discrete input MIMO channel is equal to the sum of
the capacities of the L equivalent channels
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cC=>C (5.14)

We represent in figure 5.5 the total capacity C' and the capacities C'; and Cy of
the equivalent channels of the ergodic MIMO channel with n, = n, = 2 and a QPSK
constellation. These plots are obtained by Monte Carlo integration of 5.13 using
5000 noise samples and 5000 channel realizations of the fading channel matrix H.
We also represent the total capacity of the continuous input MIMO channel which
is determined using equation (5.4).
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Figure 5.5: Total capacity C' and capacities C; and Cs of the equivalent channels of
the MIMO system with a QPSK modulation and an ergodic Rayleigh fading channel.
ng =n, = 2.

5.5.2 Capacity regions and rate design

The MIMO system can be considered as a multi-user system. The capacity region
of the system can be determined as in section 4.4 of chapter 4. For two equivalent
channels, the code rates R; and R, must satisfy

Ri + Ry < I((X1,X5);Y) (5.15)
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Points "A" and "B" of figure 4.8 correspond to the chain rule 7.e. the capacity
design rule. For these two points, the total capacity of the discrete input MIMO
channel can be reached using Multistage decoding. For the points on the straight line
connecting points "A" and "B", capacity can be reached using maximum likelihood
decoding.

5.5.3 Outage probability

For a non-ergodic block fading channel, the outage probabilities of the equivalent
channels are determined. When MSD decoding is applied, the outage probabilities
P,,:, of the equivalent channels are defined by

P, = Prob(R; > C;); (5.17)
where C; = I((X;,...,X.);Y|(X1,...,X;-1)) is determined using equation (5.13).
The outage probability of the discrete input MIMO channel is equal to

P, = Prob(R > C); (5.18)

Figure 5.6 shows the outage probabilities of the equivalent channels and the
MIMO channel considered previously, as a function of the code rate. Monte Carlo
integration was performed. The average SNR is equal to 10 dB. These curves can
be used in order to determine the code rates R;. For a fixed outage probability
Pout, = Py, the code rates Ry and R, are determined. The total code rate will be
R = Ry + R,. This value is less or equal to the one we get from equation (5.18).
For example, for P,;, = P, = Py = 107!, we have R; = 1.35, R, = 1.65 and
R = R, + R, = 3 bits per channel use instead of R = f~!(P,,;) = 3.2 bits.

10°

I
aut
Ow

10"

| i i i
15 2 25 3 35
R in bits per channel use

b. p =% =10 dB.

s \ s s \ \ \ i \ i
2 4 6 8 10 12 14 16 18 20 0 0.5 1
p=E/N,indB
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Figure 5.6: Outage probability of a QPSK. n; =n, = 2.
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5.6 Orthogonal designs

In this section, we review the orthogonal designs that were originally proposed
by Alamouti in 1998 [1| and later generalized by Tarokh in 1999 [84]. The resulting
space-time block codes are easily decoded by a maximum-likelihood decoding algo-
rithm which is based only on linear processing at the receiver.

Alamouti’s orthogonal design is a simple two-branch transmit diversity scheme.
For n, = 2 transmit antennas and n, = 1 receive antenna, the scheme provides a
diversity order equal to 2 as for a maximal-ratio receiver combining (MRRC) with
n; = 1 transmit antenna and n, = 2 receive antennas. Alamouti also showed that the
scheme may be generalized to a n; = 2 transmit antennas and n, receive antennas
scheme that provides a full diversity order of 2n,. We first study the MRRC scheme.

5.6.1 Maximal-ratio receiver combining

Consider a MIMO channel with n; = 1 transmit antenna and n, = 2 receive
antennas. The received signal is y = H.x + n where y = (y1,v2), H = (h11, ho1)?
and x = (x1). We have

Y1 = hll-xl —+ny (519)

Yo = hor.z1 + o (5.20)
The ML decoder consists in finding the vector x that minimizes the euclideanne
distance ||y — H.x||? = |y1 — hi1-21]? + |yo — hor.21 [

The MRRC scheme for two-branches computes the output z as follows

F=h .y + hi (5.21)

we get

I = (|h11|2 =+ ‘h21|2)..’1)1 + h’{l.nl + h;l.ng (522)

Z is delivered to the ML decoder which finds the vector x, i.e the symbol z; that
minimizes the euclideanne distance d(Z,x1). The diversity of the two-branch MRRC
scheme is equal to 2.

5.6.2 Alamouti scheme

The transmitter in a space-time block code based on orthogonal design is repre-
sented in figure 5.7.

The "orthogonal design" block transforms the n; symbols of a M-ary modulation
into a n; x T matrix S. T stands for time. At each channel use, a column of the
matrix S is transmitted by the n; transmit antennas. The efficiency of the system
is equal to logs(M).% bits per channel use. The most simple example is the one
proposed by Alamouti [1] where n, =T = 2 and S is given by
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Figure 5.7: Transmitter in a space-time block code based on orthogonal design.

S = [ S =8 } (5.23)

*
82 81

This matrix is known as the "Alamouti matrix".

a) Alamouti scheme with n, = 1 receive antenna

With n, = 1, equation (5.2) becomes

(v v ] =] hn hlg].[z iﬂﬂnl ny | (5.24)

where y; and y, are the received signals at the first and the second channel use.
Equation (5.24) can be written as

Y1 hi1 hi2 ] [ S1 ] |: m ]
=1 .. Sl + | 9.25
[ Yo ] [ hi, —hi 52 Ny ( )
We get a MIMO system that can be represented by the following equation

yva = Hox, +n, (5.26)

where ya = (y1,¥5)%, Xa = (51, 82)%, na = (n1,no*)" and H, is the equivalent channel
matrix which verifies

H..H; = H . H, = (|hu> + |h2/)12 (5.27)

Hence, we just need to multiply y, by H} in order to get independent observations
for s; and s,

Vo = Hiya = (|hu|® + |h12]?) Xa + Da (5.28)

This equation can be separated into two equations

Ga1 = (|h11 > + |h12]?)-51 + foar (5.29)
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Jaz = (|11 |* + |P12]?)-50 + lan (5.30)

Maximum likelihood decoding of s; and s; is therefore decoupled and the diver-
sity is equal to 2 as for the MRRC scheme. On the other hand, the capacity of this
orthogonal design can be determined from equation (5.4) by replacing the matrix H
by the matrix H, and by multiplying the result by a factor % = % that is due to the
orthogonal design. We find

1

Ca = 5Buflogs(det(Ta+ 5 (hul* + [hs]*))La)}
= Bu{logs(1+ 5 (|l + [h/)} (5.31)
This is equal to the full channel capacity C' of a MIMO channel with n; = 2
transmit antennas and n, = 1 receive antenna. Therefore, the orthogonal design is
optimal not only from a diversity point of view but also from a capacity point of

view.
b) Alamouti scheme with n, =2 or more receive antennas

The same calculations can be derived as for n, = 1. For example , with n, = 2,
equation (5.2) becomes

Y11 Y12 _ hi1 hio . S1 —Sé + nir N2 (5.32)
Yo1 Y22 ho1  hoo 592 Sq Na1  Nag
which can be organized as

Ya = Ha-xa +n, (533)

t _ t —
where Ya = (ylla yTQa Ya1, y;Z) y Xa = (Sla 52) y Ma = (nlla n;la ni2, n;?) and the channel
matrix H, is equal to

hll h/12

h¥, —h?
H,— | M2~ 5.34
hot oo (5:34)

h3y —h3

H,, verifies

H, H; = H,H, = (|hu|* + |h21|* + |hia|* + |hoa|*)12 (5.35)
= ¥Va = H,.ya = (|h11‘2 + ‘h21‘2 + |i112|2 + |h22‘2)-xa +1n, (5.36)

A diversity order of 4 is reached. This is the full diversity of a MIMO system
with n; = 2 transmit and n, = 2 receive antennas.

In general, for n, received antennas, Alamouti scheme leads to a full diversity
order of 2n,. However, unlike n, = 1, the orthogonal design structure prohibits us
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from achieving capacity. To verify this, we compare the capacity C, of the Alamouti
scheme with the actual channel capacity of the MIMO system.

1
C, = §EH{5092(d€t(12 + g(|h11|2 + |hg1|2 + |h12|2 + |h22|2))12)}
2
= Eu{log(1+ Zp(\hn\? + |ho1|? + |h12|® + |hool*))}
= Eu{log(1+ %(\h11|2 + |ha1|? + |hi2|? + |hee|?))} (5.37)

This is the channel capacity of a MIMO system with n; = 4 transmit antennas
and n, = 1 receive antenna at a signal-to-noise ratio p’ = 2p. This capacity is
smaller than the one we have for a MIMO channel with n, = n, = 2. Thus, when
n, = 2, Alamouti scheme is sub-optimal from a capacity point of view. The amount
of loss in capacity is high at high signal-to noise ratios (see figure 5.8).

Alamouti

Capacity in bits per channel use

Il Il Il Il Il

—010 -5 0 5 10 15 20
p= ES/N0 in dB

Figure 5.8: Capacity of the Alamouti scheme compared to the total capacity of a
MIMO channel. n; = n, = 2.

For n, > 2, similar results can be reached. We simply state that for n, = 2
transmit antennas and n, receive antennas, Alamouti scheme allows us to attain
only the capacity of a MIMO system with n; = 2n, transmit antennas and n, = 1
receive antenna at a signal-to-noise ratio p' = n,.p.
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5.6.3 Other orthogonal designs

In the previous section, we studied orthogonal designs with n; = 2 transmit
antennas. However, orthogonal designs also exist for n, > 2 [84]. For example. for
n; = 3 and T = 4, we have the orthogonal design obtained using

81 —s8; —S3 0
S=1| s s 0 —s3 (5.38)
53 0 s7 s

It can be shown that the maximum likelihood decoding of the variables s;, so,
s3 is decoupled. Using an argument similar to the one presented for n; = 2, we can
show that the capacity C, for n, receive antennas is equal to %C’ where C is the full
capacity of a MIMO system with 3n, transmit antennas and 1 receive antenna at a
signal-to-noise ratio p’ = n,p. C, is much less than the true channel capacity. In
fact the complex orthogonal designs for n, = 3 are no longer "full rate" [84]. They
generally perform poorly in the capacity that they can achieve, even when n, = 1.

In section 5.7, we improve the performance of a MIMO system with n; = n, = 2,
using bit-interleaved code modulations and multilevel coding.

5.7 Bit-interleaved coded modulations for MIMO
systems

The study of the Alamouti scheme in the case of a MIMO channel with n, = 2
transmit and n, = 2 receive antennas showed that, although full-diversity is reached,
the capacity of the scheme is largely reduced specially at high signal-to-noise ratios.
In this section, we apply Bit-interleaved coded modulation to a MIMO system in
order to achieve better performance [12].

bits | j Encoder > Interleaver rrs%ggﬁlg S/P

Y

-
Inforl\ln'?ation cj Xt J//[/l/
B

Figure 5.9: BICM transmitter.

The transmitter structure is illustrated in figure 5.9. The information bits
I=(L,L,...,Iy,) are encoded into a vector ¢ = (¢, ¢ca,...,cn,) of N, coded bits
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which are then randomly interleaved and mapped into M = 2™-ary PSK or QAM
symbols z;. The block of Ny = N./m symbols to be transmitted is then divided into
sub-blocks of length n; and sent in parallel by the n; transmit antennas. At every
time index i.e. every channel use, the signal vector is function of m x n; coded bits.

The motivation to this work is that, for most signal constellations with Gray
labeling, the capacity of a BICM over a Rayleigh flat fading channel is almost equal
to the capacity of the signal constellations themselves. This result was found by Caire
et al [13] [14] who considered a Rayleigh fading channel with only one transmit and
one receive antenna'. Results are derived in the next section for MIMO systems
with more than one transmit and/or one receive antenna.

5.7.1 Capacity of a MIMO system with BICM

The calculation of the capacity is done under the assumption that infinite inter-
leaving is realized at the encoder output. In this case, the capacity of a BICM is
equal to the sum of the capacities of the L = m.n; equivalent channels of the MIMO
system. This is the capacity of a L-level ML.C scheme with parallel independent
decoding (cf. chapter 4, section 4.6.3)

L
Cpiom = Crp = Y C; (5.39)

=1

where C; = maxp(x,)I(Y;X;). X, is the random variable that represents the
transmission of the coded bit number ¢ over the corresponding equivalent chan-
nel. The transmission of the L coded bits is represented by the random variable
X =(X1,...,Xi,...,X). Notice that, form the chain rule of mutual information,

we have

I(Y; X,) = I(Y; X) = [(V; X|X,) (5.40)

For example, in case of a Gray labeled QPSK constellation and n; = n, = 2
transmit and receive antennas, the symmetry in the constellation leads to L = 4
equivalent channels that have the same capacity i.e. C; = Cy = C3 = Cy. We get

Cprem = 4C; =4 (1{{(1%?3 I(Y; Xl)) (5.41)
with
1YV X1) = I(Y; X) — I(Y; X| X)) (5.42)

Results are represented in figure 5.11.a. The additional signal-to-noise ratio
needed to achieve the same capacity of the MIMO system with discrete QPSK input
is almost equal to 0.75 dB for C' = 2 bits per channel use.

'We verified in chapter 4 that this result is also true for an AWGN channel.
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Now let us consider a 16-QAM constellation (n, = n, = 2). Analyzing this
constellation, we observe that the L = 8 equivalent channels can be divided into
two classes. Each class contains 4 equivalent channels that have the same capacity.
The first one contains the 4 "Good" equivalent channels of the better protected bits
of the two 16-QAM symbols. Those bits are denoted by "a'" in figure 5.10. "Bad"
equivalent channels are those of the less protected bits labeled by "b" (the minimum
euclideanne distance is the same for "Good" and "Bad" equivalent channels. How-
ever, for the "Good" equivalent channels, the kissing number is equal to 1/2 instead
of 1 as for the "Bad" equivalent channels).

10 X X X X

11 X X X X

01 X X X X

ab=00 X X X X
ab=00 01 11 10

Figure 5.10: 16-QAM constellation. a — better protected bits. b — less protected
bits.

The random variable X is now denoted X = (X,, X;) where X, = (X1, ..., Xas)
and X, = (X1, ..., Xps4) respectively represent the transmission over the "Good"
and the "Bad" equivalent channels. Due to symmetry, the 4 "Good" equivalent
channels have the same capacity. This also true for the "Bad" equivalent channels.
The total capacity of the MIMO system is therefore equal to

Crcm = 4(Ca + Cb) (543)

where C, = maxp(x,) [ (Y;X,) and C, = maxp(x,) I(Y; X;) (C, > Cp). Results are
sketched in figure 5.11.b. The degradation in signal-to-noise ratio of this system
over the MIMO system with 16-QAM input is equal to 1.4 dB for C' = 4 bits per
channel use.

Iterative decoding can significantly reduce this degradation. In fact, in this case,
decoding is done with some knowledge, specially at high iterations, of the coded bits
at the different levels of the modulation. This can be viewed as a sub-implementation
of multistage decoding.
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Figure 5.11: Capacity of a MIMO channel with BICM. n;, =n, = 2.

5.7.2 Iterative detection and APP decoding

To recover the binary stream, soft information on the coded bits needs to be
extracted from the received signals, or more precisely from the contribution of
each transmit antenna. Given the whole received signal over all time index k =
1,...,N./(m.n;), and since coded bits have been randomly interleaved, it is possible
to compute the APP of ¢; which can be expressed as

APP(cj) = plcily)
= IM j=1,....,mmn (5.44)
by
APP(c;) o m(c;)-p(yle;) = m(c;).0bs(c;) (5.45)

where 7(c;) is the a priori probability of the bit ¢; and the observation obs(c;) =
p(y|cj). The conditional probability density p(y|c;) is determined by marginalizing
the joint density of all bits and the observation when taking into account that the
received signal y, are independent conditionally to the coded bits ci,. .., cnn,

p(yle) =

Z p(Yacla"'7cjflacj+1a"'7c’m-nt‘cj)

Cii=1,...,m.ng,i#£]

Z p(yles, -+ Cmny) Hﬂ(q) (5.46)

Cii=1,...,m.ng,i#£] I#£j

Cii=1,...,m.ng,i#£]

Z (ﬂp(yr\cl, ey Cmmy) H W(Cl)) (5.47)

r=1 I#7

The conditional density p(y,|c1,- - ., Cmn,) is calculated using
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The evaluation of the conditional likelihood p(y|c;) = obs(c;) corresponds to the
detection stage located at the receiver front. This likelihood is then processed by a
soft-input soft-output decoder. The SISO decoder generates an extrinsic information
Ext(cj) which is equivalent to a new a priori probability 7(c;) for the coded bit c;.
Hence, it is convenient to feed this a priori information back to the likelihood detec-
tor defined by equation (5.47). We get an iterative detection and decoding system
which is an excellent way to improve the estimation of the a posteriori probabilities.

lu’.\"

L— Compute Marginalize

I channel > to get = De-interleaver p(ylc;) APP(I;)
| | likelihoods p(les) SISO B
g ! DECODER

Ezxt(c;)

7(c;)
Interleaver
iter>1

Figure 5.12: BICM iterative decoder.

Figure 5.12 illustrates the iterative detection and decoding receiver structure.
Note that the receiver is separated into two parts: the first part is non iterative and
computes the received signal conditional probability at every antenna r according
to equation (5.48). The second receiver part is iterative and its input depends also
on the a priori probabilities. The final decision is made out of the a posteriori
probability generated by the SISO decoder at the last iteration.

5.7.3 Numerical results

We consider a BICM based on a rate-1/2, 16 state non-recursive non-systematic
convolutional code with octal generators g = (31,27) and total frame length N, =
200 bits when QPSK constellation is used, and N, = 400 bits for a 16-QAM constel-
lation. The trellis of the convolutional code is terminated to zero state. For both
constellations, the number of coded symbols is Ny = 100.

Figures 5.16.a. and 5.16.b. represents the frame error rate (FER) of the BICM
transmitted over a non-ergodic block fading channel. For a QPSK constellation,
with a total rate R = 2 bits per channel use and FER = 103, performance is at
2.1 dB from the performance limit of a MIMO channel with QPSK input. This
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corresponds to a gain of 3 dB over the performance of the Alamouti scheme that has
the same code rate and the same frame length Ny = 100 symbols. Notice that better
performance can be reached using a more complex convolutional code like the 64
state code with octal generators g = (115,117) [12]. For the 16-QAM constellation
with R = 4 bits per channel use (see figure 5.16.b.), the gain over the Alamouti
scheme is almost equal to 3.5 dB.

5.8 MLC based on a two stage BICM

The iterative decoder described previously allows us to approach the perfor-
mance of the underlying constellation with multistage decoding. However, iterative
decoding is not a direct implementation of MSD specially when the number of levels
is relatively high as for a 16-QAM with n; = 2 transmit antennas. We can try to
achieve better performance using a multilevel coding scheme with two Bit-interleaved
codes (see figure 5.13). The vectors of coded bits at the output of the two encoders
have the same length N./2. The code rates verify R; + Ry = R/m where R is the
total rate in bits per channel use. Hence, R, and Ry can be optimized in a way to
achieve the best performance. The length of the information bits at the input of
the first and the second encoder are respectively equal to Ny = Ry X (N./2) and
Np2 = Ry x (N./2). The coded bits at the output of the first interleaver are used to
select the "Good" bits a; of a 16-QAM symbol. The coded bits at the output of the
second interleaver select the "Bad" bits b;.

N s

bl.
Information 3

bits | T Encoder 1 = |nterleaver 1 . i( 4/
Symbol t N —

Ny, mapping S/P ;

Information bj |

: —| Encoder 2 = |nterleaver 2 |

bits | 9 |

L

Figure 5.13: Two stage BICM transmitter.

MSD consists in decoding the first level of "Good" bits then the second level of
"Bad" bits knowing the first level. The capacity of this scheme is equal to

Coprem = 4(Cq + Cyla) (5.49)
where Cyj, = maxp(Xy)I(Y; X3 |X,) is the capacity of one of the "Bad" equivalent

channels knowing the first level i.e. knowing the 4 "Good" equivalent channels.

From figure 5.14, we get that the degradation in signal-to-noise ratio over the
MIMO system with 16-QAM input is equal to 0.5 dB for a total code rate R = 4
bits per channel use. This corresponds to gain of 0.9 dB over the system with only
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Figure 5.14: Capacity of a MIMO channel with a two stage BICM. 16-QAM con-
stellation. n; = n, = 2.

one BICM. Moreover, iterative decoding at each level will significantly reduce the
0.5 dB degradation.

However, MSD decoding of the two levels with separate iterative decoding at
each level is not recommended. This is due to the interaction between the iterative
decoders and the signal constellation. The proposed structure of the decoder is
represented in figure 5.15. The whole iterative receiving scheme is performed as
follows :

N p, likelihoods from the channel output.

e Initialization : Precompute the ¢
Set the N, a priori probabilities 7(a;) and 7 (b;) at the input of the "Marginal-

ize" block to 1/2.

e At each iteration :

1. Compute the N./2 observations p(y|a;) from the channel output using
equation (5.47). The SISO decoding at the first level calculate the N,/2
a posteriori probabilities APP(a;) o« Exzt(a;) % obs(a;) over the coded
bits and the Ny a posteriori probabilities APP(1;;) over the information
bits. The extrinsic information at the output of the SISO is used as a
new a priori information.

2. Compute the N./2 observations p(y|b;) from the channel output using
the newly updated a priori information. Then SISO decoding is done as
for the first level.

o At the last iteration : decision is made over the information bits using AP P(I;;)
and APP(IQJ)
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Figure 5.15: Two stage BICM iterative decoder.

The performance of the system over the non-ergodic block fading channel is
plotted in figure 5.16.b. The gain achieved by this system over the system with one
BICM is less than 0.5 dB. We didn’t get better performance probably because of
the error propagation between the two levels of the MLC scheme. The price to pay
in order to achieve this small gain is in complexity. Therefore, the two stage BICM
is not of great interest for MIMO channels with only n; = 2 transmit antennas.

5.9 Conclusion

In this chapter, we briefly studied the transmission over a multiple-antenna chan-
nel. the system was examined using multilevel coding. We specially considered the
case of a non-ergodic block fading channel with n; = 2 transmit and n, = 2 receive
antennas. Performance close to the limit of a MIMO channel with discrete input is
reached using a bit-interleaved coded modulation. For a QPSK constellation with
a total rate R = 2 bits per channel use and a frame length N, = 100 symbols, the
gain in signal-to-noise ratio of a BICM over the Alamouti scheme is equal to 3 dB
at a frame error rate equal to 1073. In the case of a 16-QAM constellation with
R = 4 bits per channel use, the gain is equal to 3.5 dB. The price to pay in order to
achieve these performance is in complexity.

Finally, a more complex coding scheme based on a two stage BICM was applied
to a 16-QAM constellation in order to improve the performance of the one based on
one BICM. However, the gain in signal-to-noise ratio was less than 0.5 dB. This was
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probably due to error propagation between the two levels of the system.
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Figure 5.16: Frame error rate of a BICM over a non-ergodic MIMO channel. n; =
n, = 2.
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Figure 5.17: Bit error rate of a BICM over a MIMO ergodic Rayleigh fading channel.
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Conclusions and perspectives

The problem of capacity-approaching was largely studied in this thesis especially
for the AWGN channel. The major work was divided into four parts :

First, the limits in terms of channel capacity and word error probability were
reviewed. The word error probability of finite length optimal spherical codes, over
the continuous AWGN channel, was calculated using the upper and the lower bound
derived by Shannon using respectively a geometrical approach and general random
coding techniques (For a code length N greater than 100, the two bounds are al-
most equal). These are the best performance that can be achieved by a finite length
spherical code. For the BSC channel, the upper bound derived by Gallager seems
to be a good approximation of the performance of optimal codes. These results
determine the best achievable performance. Digital communications systems with
performance close to these limits must be designed.

As shown in chapter 1, this can be done using a structured codes like lattice codes.
In fact, it has been demonstrated that lattice codes can achieve, not only capacity,
but also the performance of optimal spherical codes. Therefore, lattice codes are
optimal for finite and infinite code length. However, methods for decoding lattice
codes with a large code length are not practical.

Secondly, the performance of finite length turbo codes and irregular turbo codes
were improved using symbol-based iterative decoding. The gain in performance is
due to the reduction of the short cycles in the graph of the code.

The error floor that appears in the performance of the rate-1/2 irregular turbo
code proposed by Frey [34| was lowered by replacing the punctured rate-1/2 RSC
constituent code, by a rate-2/3 RSC code and by applying symbol-based iterative
decoding. For a bit error probability equal 1075, the performance was better than
the best known LDPC codes even for very large values of N. In any case, for small
values of N, a regular turbo code can achieve better performance than LDPC.

For infinite code length, capacity of the AWGN channel with a BPSK input was
reached as for LDPC codes. This was done using irregular turbo codes. Code rates
equal to 1/3 and 1/2 were considered.

In summary, the advantages of turbo codes over LDPC codes are not only in the
simplicity of the encoder and the performance for small code length, but also in the
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performance for large code length.

Further investigations need to be carried out. For example, the study of iterative
decoding on a graph that contains cycles must be developped.

On other hand, although capacity was achieved, however for finite code length,
the performance in terms of bit error probability are relatively degraded if com-
pared to the bit error probability of an optimal spherical code. The degradation
is more important when the word error probabilities are compared. This is due to
the poor minimum Hamming distance achieved by turbo codes and compound codes
in general. Instead of applying symbol-based iterative decoding to a binary code,
an improvement could be reached by considering non-binary codes. This would be
interesting when a small word error probability or a small bit error probability is
needed (for example P, ~ 107 or P, ~ 1078).

Thirdly, in the case of M-ary coded-modulations, it is shown that multilevel cod-
ing, combined to multistage decoding, can reach the capacity of an ASK, a QAM or
a PSK modulation transmitted over an additive white Gaussian noise channel using
block partitioned asymmetric constellations with equal signaling rates at each level.
Performance were derived analytically using Gallager’s coding exponents. Monte
Carlo simulations showed that performance close to the Shannon limit are reached.

Therefore, asymmetric constellations are well suited for multilevel coding. The com-
plexity of the MLC system, for example a multilevel UEP system, is largely reduced
since only one encoder and one decoder must be implemented. For moderate code
length N, the price to pay in order to reduce complexity is a relatively small degra-
dation in performance due to the use of block partitioning instead of Ungerboeck’s
partitioning.

For finite code length, the use of irregular turbo codes and symbol-based iterative
decoding would probably improve the performance of MLC. Non-binary codes must
also be considered.

For infinite code length, the performance limits of an MLC scheme must be deter-
mined in order to find if capacity can be reached using MSD with iterative decoding
at each level.

Note that, other turbo coded-modulations techniques like the pragmatic approach
[38], the bit-interleaved coded modulations [12], as described in chapter 5 for MIMO
channels , or Robertson’s trellis coded modulations [69] could be more efficient than
MLC.

Finally, the work done in chapter 5, concerning MIMO channels, is just an intro-
duction to this field. For a non-ergodic block fading channel with n; = 2 transmit
and n, = 2 receive antennas, performance close to the limit of a MIMO channel
with discrete input is reached using a bit-interleaved coded modulation. The gain
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over the Alamouti scheme that has the same code rate and the same frame length
is relatively important.

For a 16-QAM constellation, a small additional gain is obtained When the BICM
is replaced by a more complex 2-level ML.C scheme with a bit-interleaved code at
each level. The price to pay in order to achieve this small gain is the increase of
the complexity of the system. Therefore, the use of this scheme cannot be justified,
although this not necessarily the case for more than 2 transmit antennas. This idea
has to be discussed in the future.
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Appendix A

Joint convergence of total and partial
APP

We first prove the following result :

Result A.1
Let x, ypm, zm be 8 real random variables such that

Zm =T+ Ym

where m € N. We consider that the random wvariable x verify the following two
hypotheses :

eVe>0,FA€R, Priz > A)<e
eVe>0, AR, Prlx<A)<e

Then, the two following statements are equivalent :
1.Va€eR, Ve>0, 3mg, Vm>mg Pr(y, > a) <e

2.VBeR, Ve>0, Amgy, Vm >my Pr(z,m > ) <e€

Proof :

1. Consider that statement (1) is verified :
VaeR, Ve>0, 3mg, Vm>my Pr(y, > a) <e.
Let € = f(e). From the two hypotheses defined for the variable z, we get
JAs €eR, Pr(z > Au) <€ .
Let B and € be two strictly positive real variables. We have

Pr(zm > B) = Pr(2y > Blz < Au)Pr(z < Ae)+Pr(z, > Blz > Au)Pr(z > Ad) .
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This probability can be upper bounded by
Pr(z, > B) < Pr(z, > Blz < Au) + €
(The other probabilities were upper bounded by 1). On the other hand,
r<Ads & pf—z>0— A

hence
Pr(z, > B) < Pr(y, > 8 — Ae) + € .

Now defining ¢ = § and o = 8 — Ax, we get the statement (2).
2. Consider that statement (2) is verified :
VBeR, Ve>0, 3my, Vm >mgy Pr(z, > ) <e.
Let € = f(e). From the two hypotheses defined for the variable x, we get
JA€R, Prz < Av) <€
Let o and € be two strictly positive real variables. We have
Pr(ym, > o) = Pr(y, > alr < Ag)Pr(z < Ag)+Pr(y, > alz > Ag)Pr(z > Ay) .
This probability can be upper bounded by
Pr(ym > a) < € + Pr(y, > alz > Ay)
(The other probabilities were upper bounded by 1). On the other hand,
x> A at+x>a+ A

hence
Pr(ym > a) < Pr(y, > a+ Ae) +¢€ .

Now defining ¢ = § and 3 = o+ Ao, we get the statement (1).

QED.

Result A.2 Joint convergence of total and partial APP
The sequence x = (—1,...,—1) is transmitted over an AWGN channel. Consider
the two following statements :

1. Ye > 0, 3 myg such that Ym > my, Pr(B, > 0) <
2. Ye > 0, 3 my such that Ym > my, Pr(LR,, > 0) <€

Then, statement (1) implies statement (2).
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Proof :
Consider the case where
LR, = B, +extLR,, ,

and
B,, = obsLR + extLR,,_ .

The case where B,, is obtained from d, — 1 independent and identically distributed
extrinsic informations can be directly deduced from the following proof. Hence, we
consider

2m = LR,  Ym = extLR,, +extLR,, 1 x =o0bsLR .

The variable x verifies the two hypotheses of Result A.1 since z is a Gaussian random
variable. Therefore :

Veé>0,3A€R, Pr(z > A) < ¢

and
Veé>0,3A€eR, Prz<A4)<¢€.
Consider that statement (1) is verified. From Result A.1 applied first on variables
(B, 0bsLR, extLR,, 1), we have :
VaeR, Ve >0, Imy Ym > mg Pr(extLR, 1 > a) <€ . (A1)

n __ ! n .
For a fixed €, and m{; = max(m(, mg), we get V. m > my :

Pr(y, > 0) = Pr(extLR,, + extLR,, 1 > 0lextLR,, 1 < a)Pr(extLR,, 1 < «)
+ Pr(extLR,, + extLR,, 1 > OlextLR,,_1 > «)Pr(extLR,,_1 > «) .

This probability can be upper bounded by
Pr(y, > 0) < Pr(extLR,, + extLR,_1 > OlextLR,, 1 < a) + €,

thus,
Pr(y, > 0) < Pr(extLR,, > —a) + ¢ .

n n

From equation (A.1), 3m,, Vm>m, :
Pr(eztLR,, > —a) < €,

now defining ¢ = £, we have

55
Pr(y, >0) <e.
Applying Result A.1 to variables (2, Z, ¥ ), we get the statement (2).

QED.

Finally, the Gaussian approximation applied to the extrinsic informations allows
us to prove that statements (1) and (2) are equivalent.
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