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RESUME

Le décodage des codes de réseau & n dimensions se fait en
trouvant le vecteur le plus proche a un vecteur z donné dans
’espace euclidien R™. Le algorithmes de décodage trouvent
des applications dans la quantification vectorielle et dans
la démodulation de constellations de signaux multidimen-
sionnels. Iei on montre un algorithme pour la solution du
probleme du décodage pour un code de réseau quelconque.

1 Introduction

A lattice code is a finite subset of points of a lattice (or
of a lattice translate) within a bounded region containing
the origin, so that the energy of each signal is bounded.
Lattice codes are used in vector quantization, where they
provide highly structured codebooks with efficient encoding
algorithms [10, p. 470 fI.], and in digital communications,
where they generate signal constellations for high-rate trans-
mission (see, e.g., [6] and the references therein). For suffi-
ciently large signal-to-noise ratios, good constellations are
usually carved from dense lattices, a selection prompted by
De Buda’s result that lattice codes asymptotically achieve
Shannon’s capacity bound [3].

A crucial procedure for both applications of lattice codes is

their decoding. Given a d dimensional lattice A and a point-

z in the d-dimensional Euclidean space R® in which A is em-
bedded, decoding the lattice amounts to finding the point of
A closest to z. The problem here is to find this point without
incurring the complexity of an exhaustive search. Practical
algorithms which efficiently decode some well-known lattices
that are attractive for applications (An(n > 1), Dy(n > 2),
E¢, E7, Es, and their duals) are listed in [1]-[2, pp. 443 ff.].
Several Leech lattice decoders have been proposed with ever
improving efficiency; a recent review of the subject can be
found in [4].

The above algorithms are strictly dependent on the special
structure of the lattice being decoded (e.g., its being a binary
lattice [5]). Other algorithms [10, pp. 479-481] for general
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nearest neighbor encoding in vector quantization are valid for
any unstructured codebook. They do not take full advantage
of the lattice structure which is useful for large bit rates. The
algorithm described in section 3 was first created as building
block of a general Minkowski’s basis reduction [9, 13]. We
have adapted it to allow the decoding of any general lattice.
We may also observe here that, since any linear block code
C over Z, (the ring of integers modulo ¢) is in a sense equiva-
lent to a sublattice of Z" (see ‘Construction A’ in [2, Chapter
5]) any general decoding algorithm will also provide a quasi-
Maximum Likelihood soft-decoding algorithm for C.

2 Lattices

Definition 1 Let vi,vs,...,v,, be m linearly independent
vectors of the d-dimensional Euclidean space R® (m < d).
A lattice is the set A of vectors

Aivi+Aava 4+ o+ A v, A, ., An €T
(Z the relative integers). The set of vectors {vi, v, .. S Vm}
is called a basis of A.
If vi = (vi1,via, ..., vi4), = 1,...,m, we define the genera-

tor matriz of A as




612

so that we can simply write A = {u = xM : x € Z™}.
Written in this form, we can view any lattice A as a trans-
formed version of the integer lattice Z™: A is obtained by
stretching Z™ along the coordinate axes and then rotating
it around the origin. From now on we will consider only full
rank lattices, i.e., those for which m = d so that M is a non-
singular square matrix. If M generates A, then any matrix
of the form M’ = TM, where T is an integer orthogonal
matrix (det(T) = 1), is another generator matrix of A the
same lattice: in fact T simply rotates Z¢. T is also called an
integer unimodular matriz.

The fundamental parallelotope of A is the set {§ M}, 8 =
(61,-+,04), 0 < 6; < 1. Its volume is equal to |[det(M)],
a number independent of the lattice basis and called the
determinant of A. We indicate it with d(A).

The Gram matriz of A is defined as

ayy -+ aygd
A=MMT =

@dy - Qad

Its elements are the Euclidean scalar products of pairs of vec-
tors of the lattice basis, that is, a;; = (vi,v;) = 3, vigvjk-
A is a symmetric positive definite matrix. Geometrically,
the diagonal elements of A equal the squared norms of the
basis vectors, while the other elements account for the inter-
vector angles. It is immediate to see that det(A4) = d(A)?,
so that the determinant of A is defined also when m < d.
The quadratic form Q(x) = xAx” =}, . a;j2izj, x € RY,
is positive definite, with discriminant §(Q)) =det(A). If we
are only interested in the metric properties of a lattice, we
can equivalently work on the basis vectors or on the form
Q restricted to Z4. For example, the minimum squared Eu-
clidean distance between any two points of A equals the min-
imum of Q(x) for x € Z%\{0}.

3 The decoding algorithm

As a preliminary to the decoding problem, we first describe
an algorithm for computing the shortest nonzero vector of
a lattice. The basic idea in both cases is to restrict the
search to a finite number of lattice points which lie within a
bounded region. We generally start with a large region and,
whenever a shorter vector is found, the region is consequently
restricted.

3.1 Shortest nonzero vector in a lattice

The task of determining nonzero vectors of A with shortest
length was first considered by Gauss and later by Minkowski
in his ‘Geometry of Numbers’. Minkowski’s Fundamental
Theorem provides an upper bound to the length of such vec-
tor [8]. The first application which tackled the computa-
tional aspect of the problem can be found in the study of
the lattice structure of pseudo-random numbers generated
by the linear congruential method [12].

One of the first algorithms proposed is described in [7].
Here, the search region is defined based on the dual of A.
A preliminary base reduction can restrict the size of the
starting region, but the search becomes prohibitively com-
plex when the lattice dimensionality grows above a certain
threshold (around 10).

Figure 1: The two-dimensional hexagonal lattice

A substantial improvement was introduced by Pohst in
[13]. and further analyzed in [9]. We briefly illustrate this
algorithm here, and provide some further insight through its
geometrical interpretation. Consider a vector u € R?, and
let |Ju]| = VuuT denote its Euclidean norm. A ball of radius

C' is defined by the inequality

Jul* < C. (1)

If u is a lattice point, then it can be written in the form

u = xM for some integer vector x € Z¢, and lies inside the
ball if

d d
xMMTxT = xAxT = Z Z ajjeiz; < C (2)
i=lj=1

If we let the vector x take on real values, then (2) is the
equation of an ellipsoid (Figs. 1 and 2), the lengths of whose
semi-axes are directly related to eigenvalues A; of the matrix
A.

Cholesky’s factorization yields A = RT R, where R is an
upper triangular matrix with elements r;; = 0 for 2 < i <
j<d-1andryi =+ Then

d d 2
xAxT = “RxTHZ = Z riidi + Z rii&; <C. (3)

i=1 j=i+1

Substituting ¢;; = rZ for i = 1,...,d and ¢;; = r;;/ri; for
t=1,...,d,5=1+1,...,d, we can write

2
dey i1 d
Q)= g | =i+ Y @z | <C. (4)

i=1 j=idl

The canonical form of this ellipsoid

d
Y gXi<C (5)
=1

is obtained by using a suitable coordinate tranformation.
The value of each component of a point inside the el-
lipsoid can be bounded in the new coordinate system
{Xi1,...,X4-1,Xq} based on the axes of the ellipsoid.



Z,

Figure 2: The integer lattice with the transformed region

Figure 3: The integer lattice in the new coordinate system.
The points inside the ellipse are numbered according to the
order in which they are tested by the algorithm.
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The search algorithm procedes very much like a mixed
radix counter, with the addition that the bounds change
whenever there is a carry operation from one digit to the
next. (Figure 3 shows how the algorithm works. It scans
exactly all the points of Z? inside the ellipse in the order
indicated by the numbers).

If a vector u = xM for some x € Z%, such that |ju||® < C,
is found, then we are able to reduce the radius of the ball.
We substitute |[u]|® for C', we update all the bounds, and we
keep on searching in the smaller ball without restarting from
the beginning.

The great advantage of this method over [7] lies in the fact
that we never test vectors with a norm greater than the given
radius. Every vector tested requires the computation of its
norm, which entails d multiplications and d — 1 additions.
The increase in number of operations needed to update the
bounds is largely compensated for by the enormous reduction
in the number of vectors tested.

As a byproduct of this algorithm we may obtain the kissing
number of A, that is, the number of lattice points at the
minimum distance from the origin.

3.2 Closest lattice point

Here we want to solve the problem

min ||z — u|| =
Ueh

wiin flw]]. (6)
We write u = xM with x € Z4, z = ¢ M with { =
(€1,...,€a), and w = & M with ¢ = (&1,...,&4), where
¢ and £ are real vectors. Then we have w = Z:Ll £ivy
where & = (; —z;,i = 1,...,d. We now have to find the
shortest nonzero vector of the translated lattice z — A. As
before, we construct a ball of radius v/C centered at z and
we test all the lattice points that are inside.

Some additional comments on the choice of v/C are ap-
propriate here. The furthest point of R? from a point of A
is called a deep hole of the lattice. The covering radius R of
A is the smallest distance of a lattice point from a deep hole.
If the covering radius of the lattice is known, then we take it
as the starting value for v/C: otherwise we may use Roger’s
upper bound to the covering radius [11, p. 241].

In a practical application the radius could be adaptively
adjusted according to the noise level in the following way. If
no lattice point is detected inside the ball, the radius must
be increased and an erasure can be indicated to the higher
levels. On the contrary, when the distance of the received
point from the lattice point ||w|| is small, then the radius
can be decreased.

4 Soft-decoding of the ternary
(12,6,6) Golay code

As an example of application of the algorithm described be-
fore, we study its complexity when used to soft-decode the
ternary (12,6,6) Golay code. The generator matrix of the
corresponding lattice is
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(100000011111\

0010000 2 01 2 21
O Ol 0 s 2001w TELY 2002
00150, 01 a0 “F 12 21,10 Al 2
g 0.0 & 10 2 2,3 1 80 1
000001212210

M= 1.0 0.0 "0 20x 0.3 16 0.0~ 6 10 (7
0 000O0OO30000
0 000O0OOOTU O3 000
000 0O0O0OOO 02300
000 0O0O0OO0OOUO030
\000000000003)

which corresponds to periodically repeating in each direc-
tion the code vectors contained in a 12-dimensional cube of
edge 3. The covering radius of this lattice is not known and
Roger’s upper bound gives R = 2.48 (we conjecture R = 2,
a value that has never been exceeded in our computations).
The simulation was performed by generating a sequence of
vectors z in the form x + n, where n is a zero-mean Gaus-
sian vector with independent, identically distributed com-
ponents. According to simulation, the average numbers of
additions, multiplications and square roots per codeword are
about 4900, 3800 and 350. For a complete search through
code book we would need 16767 additions and 8748 multipli-
cations, as well as the complete storage of all the 729 ternary
codewords. Although square roots are usually considered as
lengthy operations, in our case they can be performed with a
reduced precision, since they are followed by a floor or ceiling
function. Finally we observe that the decoding algorithm is
not exactly Maximum Likelihood since it can decode a lattice
point which is not a code vector. In general this difference
is only noticeable for very low signal to noise ratios and for
small values of g. To better approximate the ML decoding
various strategies can be adopted

1. reduce modulo 3 the lattice point coordinates produced
by the decoder;

2. during the search in the sphere, discard the points which
are not code vectors; if no code vector is found declare
an erasure or use strategy 3;

3. take a hard decision on the information part of the re-
ceived vector.

Note that when any of the above strategies is adopted, the
uniform error property is no longer valid since the decoder
is performing some non linear operation.

In order to obtain ML decoding, we are currently inves-
tigating a noise compression technique which forces large
received vectors to lie on the surface of the smallest sphere
containing all the code points.

5 Conclusions

The algorithm we have presented shows the advantages of-
fered by the continuous structure of the space in which lat-
tices are embedded. This algorithm was also tested as a
Leech lattice decoder and the total number of operations was
about 885,000, where additions, multiplications, and square
roots were in the same proportions as in the previous ex-
ample. This result may look discouraging when compared
with 8000 operations required by the fastest Leech decoding
algorithm known [4]. However, it should be kept in mind

that the generality of our procedure enables one to decode
lattices for which no ad hoc algorithm is known.
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