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Abstract
The error probability of optimal codes with a given length n and a given rate
R is estimated on additive white Gaussian noise channels with and without flat
fading. A lower bound is given for the error probability on the Gaussian channel
and a good approximation is derived in the presence of Rayleigh fading. The
performance analysis is restricted to binary codes associated to a binary phase shift
keying. However, the results can be easily generalized to any coded modulation.

1 Introduction

The channel coding theorem (e.g. see [8]) states that Gallager’s exponent E(R) is posi-
tive iff the code rate is smaller than capacity. Since the word error probability is upper
bounded by e () the latter can be used as an average performance estimation for
the ensemble of random codes when n is finite and R has a fixed valid value. Instead of
using the random coding technique, Shannon gave a lower bound [7] on the performance
of all spherical codes in Gaussian channel based on a geometrical approach. Some modi-
fications and improvements of his work have been done recently [1][5]. Nevertheless, the
expression derived by Shannon for the main function Q(#) is still the simplest one. This
function gives the probability of moving outside a cone with half-angle 6. Its asymptotic
expression is very accurate: for a code length greater than 100, it is too close to the
exact optimal performance. This has been validated numerically by comparing Q(#) to
the upper bound derived by Shannon in the same paper [7].

In our paper, we generalize Shannon’s geometrical approach to the Rayleigh fading chan-
nel. Section 3 summarizes the main results on the Gaussian channel and gives some
important asymptotic expressions for the solid angle and the code rate. In section 4, we
explain how to compute the conditional solid angle in the presence of independent flat
fading. Finally, some numerical results are illustrated in the last section. The drawn
curves can be used to check the performance of concatenated block and convolutional
codes or any other type of codes capable of approaching channel capacity.
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2 System model and notations

A linear binary code [n,k]s of length n and dimension k& is considered. A codeword
¢ = (c1,¢,...,cpy) is transmitted over an additive white gaussian noise (AWGN) channel
using a binary phase shift modulation (BPSK). The symbols take the values ¢; = ++/2F..,
where E, is the average energy per coded bit. The code rate is R = k/n bits per dimen-
sion and the average energy per information bit is given by E, = E./R.

Two channel models are studied: the Gaussian channel y; = ¢; + z; where z; is a
real Gaussian noise with zero mean and variance Ny, and the flat fading channel [6]
Y = ¢ + z; where o € [0,4+00] is Rayleigh distributed with probability density
function p(a;) = 204e . Note that E[a?] = 1 so the average energy value is not changed
by the Rayleigh channel.

Let us now make a geometrical representation of the code set in the n-dimensional real
space IR". We assume that the codewords are equally probable and selected at random
from the ensemble {++/2E,}". Thus, the codewords ¢ are uniformly distributed on the
n-dimensional sphere Sph(O,n) centered at the origin with squared radius £ = 2nE..
The total space solid angle is denoted €2,. The solid angle of a circular cone with half
angle @ is denoted Q(#). The codeword c is represented as a point lying on Sph(O,n)
and corresponding to a solid angle Q(6p) = Q,/M, where M = 2"% is the code size and
Figure 1 shows the codeword ¢ surrounded by a circular cone C(c¢) delimited by an n — 1-
dimensional sphere (circle) Sph(a,n — 1) and a pyramid V(c) drawn in an hexagonal
form. V(c) is the Voronoi region associated to the codeword ¢, i.e. V(c) is the decision
region of ¢ when maximum likelihood (ML) decoding is applied. The circle Sph(a,n—1)
is the intersection of the sphere Sph(O,n) and a hyperplane denoted by #. The radius
po = po(By) of the circle is chosen such that the solid angle €2(6y) of the pyramid V' (¢) is
equal to that of the cone C(c) delimited by Sph(a,n — 1). Notice that the projection of
the codeword point ¢ on the hyperplane H is denoted a. Two other radii are also shown
on figure 1, the packing radius p, and the covering radius p, of the spherical code equiv-
alent to the considered linear binary code. The vector modules of ¢ and a are related by
lall = llel| cos(6p) where ||c||* = E.

Figure 1: Geometrical representation of the solid angle associated to a codeword.



3 Optimal performance on the AWGN channel

The codewords are supposed to be uniformly distributed and have the same a priori
probability. By symmetry, we can state that the average word error probability P,,
is equal to the conditional error probability P.(c) when ¢ is transmitted, e.g. ¢ =
(+v2E,, +V2F,,...,++2E_). The error probability P,(c) is thus the probability for
the received signal to be moved by the Gaussian noise z outside the pyramid V' (c).

For all n, the Gaussian noise probability density is a decreasing function of the Euclidean
distance d:

op, 1 d?
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It can be easily shown that
op; op:
dv > / v 2
/C(c) ov T Jve oV @)

Let us denote Q(f) the probability for a codeword on the axis of a cone of solid angle
2(6) being moved outside this cone. We have

op;
Q) =1~ /C(c) 8?/ v

Using inequality 2 and the above definition of Q(6y), we obtain the following lower bound
for the word error probability [7]

Q(‘QO) S Pew

In the following, we explain how to compute Q(6p) for a given length n and a given rate
R. The relation R = R(fy) and the expression of Q(#) have been developed by C.E.
Shannon [7] and may also be applied to any spherical code [3], i.e. any coded modulation
with equal energy signals.

Let us denote ['(x) the Euler function defined by I'(z) = [;"* e~*t*~'dt. The volume of
an n-dimensional sphere with unit radius is [3]

7.‘.n/2

Vol(n) = m

For large space dimensions, n >> 1, the Stirling approximation yields

m)””

Vol(n) ~ ("W

The total solid angle €2, is equal to the surface of the n-dimensional sphere considered
above and is related to its volume by €2, = nVol(n). The solid angle Q(0) is computed
by summing elementary ring surfaces d2(¢) = Q,, 1 sin" "2 ¢de.
(n—1)r"z
nt1
o)

Now the code rate is related to the half angle by M = 2" = g—z

1 ()
R = ElogQ (P(g) foﬂo sin™ 2 ¢d¢>

Q) = /0 " sin" 2 pdo
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Asymptotically, when n >> 1, the expressions of the solid angle and the rate become

n/2 cn—1
1 2em sin” ™ 6
Q0) ~

() 7T\/§< > cosf (3)

onE A, vV 27n sin O cos By

sin” 90

(4)

Finally let us compute Q(#) from its derivative

Q) = [ a0 +a(}) (5)

Notice that Q(g) = ler fc(%), where er fc is the complementary error function [6].
This term will be neglected since it has a minor influence on Q(8).

Consider equation 1 and figure 2. dV is the volume of a ring given by its depth dr, its
width 7df and placed at a distance d from ¢ given by d*> = E + 72 — 2rv/E cosf. The
cone element of volume dV is

av = rdrao"

The probability density for moving c inside this cone element according to the noise
Gaussian distribution is

~dQ(r,0) = " rdrdo
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The differential —dQ(#) is obtained by integrating —d*Q(r, ) on the variable r, between
0 and +oc:

Q) (n—1)exp (— B5R0) sin"2 6d (r=VBeost)?\ .,
o (2N0)n/2\/_r(ﬂ) /0 eXP( 5N, )7“ dr

This equation can be approximated asymptotically [7]

[Gsin&exp ( — % + ; 2]5661 Cos 0)]nd0 (6)
0 0

(n—1)

—dQ0) ~ V1 + G2 sin? f

where G = %[,/ZNEOC cosf + ,/% cos2 6 + 4|. To derive the numerical results versus the

signal-to-noise ratio Ej/Ny, we used equations (5) and (6) combined together with the
relation £, = RFE), to evaluate the lower bound on the word error probability

0(6) 1 1 [Gsinﬁoexp(—ﬁ—;+%\/ﬁCGCOSGO)]n @)
O /T /1 + GZsin 6, 282 (7 5in” y — cos g

The cone half-angle 6, is computed by solving equation (4) for a fixed space dimension
n and a fixed rate R.



Figure 2: Section of the cone of half-angle 6.

4 Optimal performance on the Rayleigh channel

The spherical code is affected by a real fading o = (1, g, - . ., ;). The codeword point ¢
is transformed into ac = (¢, ey, . . ., apc,) and then corrupted by the white Gaussian
noise. The symmetric Voronoi region V(c¢) of the spherical code without fading is now
transformed into oV (¢) which is not completely superimposed with the exact Voronoi re-
gion V' (ac) of the faded spherical code. The problem of finding the shape and boundaries
of V(ae) is intractable especially in high dimensions. Hence, we are only able to find
theoretically an approximation (not an exact lower bound) for the word error probability
of the linear binary code [n, k], over the Rayleigh channel. To do so, we first approximate
the solid angle of V(ac) by that associated to aC(c). Then we compute the equivalent
angle 6; = 0;(a, 6y) corresponding to a circular cone having the same solid angle and
finally we evaluate the conditional error probability P.,(6;) ~ Q(6:).

According to section 2, the elliptic cone aC(c) is now delimited by the n — 1-dimensional
ellipsoid &€ = aSph(a,n — 1). The latter is defined as the intersection of the new hyper-
plane aH and the n-dimensional ellipsoid centered at the origin aSph(O,n). All points
x belonging to £ satisfy the two following equations

aSph(O,n) : > a—; =FE (8)
i=1 %
and "
;5
aH: > = |la|f? 9)

i=1

It is easy to show that the point aa is the center of the ellipsoid £ and that aa belongs
to the line O — ac.
The solid angle ©(#;) of aC(c) is equal to the surface of £ (i.e. n—1-dimensional volume)



projected on the n-dimensional unity sphere. The surface Q(#;) is well approximated by

Q(6,) =~ Vol(n H d; = (n_ﬂ) H (10)
where {d;} are the projections of the n—1 axes of £ on the unity sphere. Notice that each
ellipsoid axis is defined by two opposite points around the center ca. The distance 2d;
is the arc length obtained after the projection of the two opposite points. Equation (10)
is an approximation and not an equality because the hyperplane a{ is not orthogonal
to the line O — ac when o # 1.

To find the 2n — 2 points defining the n — 1 axis of £, we optimize ||z — « a||? under the
two constraints (8) & (9). Introducing the two Lagrange multipliers A and v respectively
associated to the constraints (8) & (9), the following function f(z) is optimized with
respect to x

@)= e = al = A(3 55~ ) = (35 2 ~ o) (1)

The solutions to the above optimization (algebraic manipulations and details omitted)
are the 2n — 2 points z = z(\,y) = (21, %2, ..., T,) given by

gl 2
7 T
al — A

xoe; t=1,...,n (12)

where a; = ¢;cos(0y) = /2E cos(6). The multiplier A takes n—1 values \;, j =1...n—1,
which are the solutions of the equation

>
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2
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For each value of ), there are two values for 7 associated to the two opposite points
around aa and given by the following second degree equation

iy’ + 4V + 4<V4 ~ 60812 00) =0 (13)
where
- 1
ho= Lo
i = St

Let us denote the roots of (13) by y4 and g

—2V, + 24/VZ — Vi(Vi — 1/ cos? by)
Vi

fYAv fYB —



The distances {d;} needed in equation (10) are defined as

The two angles 14 and g € [0...7/2], expressed in radians, are equal to the length
of the arc lying on the unity sphere and linking the projected ellipsoid center ca and
the projected point x determined by (12). If < z,y >= >, x;y; represents the scalar
product in the Euclidean space IR", then

z(Aj,74)  oa z(Aj,78)  aa
cos(Pa) =< ; > cos(Yp) =< , >
lz(Aj, )l llevall lz(Aj, vB)|l" [leal]
To summarize, for a given fading a = (a4, ag, . . ., a,), evaluate the equivalent solid angle

2(6,) using (10), find 6, by solving (3) and then compute the conditional error probability
Q(6,) from equation (7).

5 Numerical results

Notice that the optimal performance analysis, i.e. the lower bound Q(f,) of section 3
and the approximation Q(6;) of section 4, give an estimation of the optimal word error
probability versus the signal-to-noise ratio. In order to estimate the bit error probability,
we consider 4

Peb% ew

where dgpmin is the minimum Hamming distance of the code. Gallager [4] showed that
when n is large enough, binary random codes quickly approach the Gilbert-Varshamov
bound, i.e.

H2(<5 - dH’m'") —1-R

n
where Hy(z) = —zlogz — (1 — ) log(1 — z) is the entropy function, and 0 < § < 1.
Consequently

Poy = Hyjg 1 oy(1 = R) X Py (14)

Typical values of § are listed in the table below

R |6 =Hyp,(1—R)
1/4 0.2145

1/2 0.1100
3/4 0.0417

The bit error rate performance of an optimal code is compared to that of a parallel
concatenated convolutional code (Turbo code [2]) in figure 3. The code rate is 0.5 bits
per dimension. The turbo code constituent is the recursive systematic convolutional
code defined by the octal generators 23,35. The number of decoding iterations is 12 for
the length n = 2048 (interleaver size 1024) and 20 decoding iterations for the length
n = 131072 (interleaver size 65536). As illustrated, the turbo code is 0.9 dB away from
the optimal code at 10™° when n = 2048. The gap is about 0.6 dB at 10~* for the longer
code n = 131072.



Figure 4 illustrates the performance of a parallel turbo code on a Rayleigh fading channel.
The code parameters are identical to the one used in figure 3. The turbo code is 0.45 dB
away from the optimal code at 107,

Finally, figures 5, 6 & 7 show the optimal bit error probability for a binary code of rate
1/4, 1/2 and 3/4 respectively. The curves are plotted for four different lengths n = 100,
200, 800, 2000 bits on both Gaussian and Rayleigh fading channels. The curves on the
fading channel exhibit a very high diversity since the minimum Hamming distance of
the random code derived from the Gilbert-Varshamov bound is relatively large. For the
greatest code length n = 2000, the gap between the Rayleigh and the Gaussian channels
is 1.4, 2.3 & 2.5 dB with the code rates 0.25, 0.50 & 0.75 bits/dim respectively.
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Figure 3: Turbo codes versus optimal codes, n = 131072 & 2048, rate 1/2, AWGN
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Figure 4: Turbo code versus optimal code, n = 2048, rate 1/2, Rayleigh
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Figure 5: Optimal performance, rate 1/4, code length n = 100, 200, 800, 2000
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Figure 6: Optimal performance, rate 1/2, code length n = 100, 200, 800, 2000

1E-02

1E-03 |

1E-04 |

1E-05 |

Peb(bit error probability)

1E-06 |

1E-07 |

1E-08
1

4
Eb/NO (dB)

Figure 7: Optimal performance, rate 3/4, code length n = 100, 200, 800, 2000
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