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Design of Parallel Concatenated Convolutional Codes 
Sergio Benedetto, Senior Member, IEEE and Guido Montorsi, Member, IEEE 

Abstract-.’ parallel concatenated convolutional coding scheme 
consists of two constituent systematic convolutional encoders 
linked by an interleaver. The information bits at the input of the 
first encoder are scrambled by the interleaver before entering 
the second encoder. The codewords of the parallel concatenated 
code consist of the information bits followed by the parity check 
bits of both encoders. Parallel concatenated codes (turbo codes), 
decoded through an iterative decoding algorithm of relatively low 
complexity, have recently been shown to yield remarkable coding 
gains close to theoretical limits. In this paper, we characterize the 
separate contributions that the interleaver length and constituent 
codes give to the overall performance of the parallel concatenated 
code, and present some guidelines for the optimal design of the 
constituent convolutional codes. 

Zndex Terms- Iterative decoding, concatenated codes, turbo 
codes. 

I. INTRODUCTION 
HE RECENTLY introduced “turbo codes” [ 11-[3] have T raised great interest in the coding community with their 

astonishing performance. They are parallel concatenated con- 
volutional codes (PCCC’s) whose encoder is formed by two or 
more constituent systematic recursive convolutional encoders 
joined by an interleaver. The input information bits feed 
the first encoder and, after having been scrambled by the 
interleaver, enter the second encoder. The codeword of the 
parallel concatenated code consists of the information bits 
followed by the parity check bits of both encoders. 

Since the interleaving length is normally very large, maxi- 
mum likelihood decoding would be of astronomical complex- 
ity and is, thus, out of question. The proposed suboptimal 
decoder [ 11 implements an iterative algorithm whose central 
core is a maximum a posteriori symbol-by-symbol decoder. 
By increasing the number of iterations, a bit error probability 
of lop4 has been obtained by simulation at Eb/No as low as 

Since the successful proposal of turbo codes, neither a 
good theoretical explanation of the code behavior and perfor- 
mance nor an adequate comprehension of the role and relative 
importance of the PCCC ingredients (constituent codes and 
interleaver) have yet appeared. 

In [5] and [6], we have proposed for the first time a method 
to obtain analytical upper bounds to the bit error probability 
of maximum-likelihood decoded PCCC’s and showed a wide 

-0.15 dB [4]. 
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range of results that help to understand this new coding 
scheme. 

In this paper, we will show how the interleaver and the 
constituent codes (CC’s) contribute to the good performance of 
PCCC’s and propose design guidelines to find “optimum” CC 
for a given memory. We will define a new parameter, called 
efSective free distance, that strongly influences the performance 
of a PCCC, show how to maximize it and give a table of the 
best rate-1/2 CC’s with number of states ranging from 2-32. 
The optimization criterion is the minimization of the bit error 
probability. 

In Section 11, we will briefly recall the results from [6] 
that are necessary to understand what follows. In Section 
111, we will prove that in order to achieve large interleaver 
gains, PCCC’s need recursive convolutional encoders. Section 
IV shows analytically, and with the support of simulations, 
that PCCC performance is strictly related to the effective free 
distance of the CC’s, and presents a theorem on how to obtain 
a large value for it. The results are then applied to find the 
“best” CC and to present bit error probability bounds for the 
optimized PCCC. Finally, a summary of the main results of 
the paper will be presented in Section V. 

11. SUMMARY OF KNOWN RESULTS 

The block diagram of a PCCC is shown in Fig. 1. Two 
equal linear systematic convolutional encoders with rate 1/2 
and memory Y (so that the number of states is A4 = 2”) are 
linked through an interleaver of length N so that every block 
of N information bits entering the second encoder is just a 
permuted version of the block that entered the first encoder. 
The PCCC codeword is then formed by adding to the input 
information bit the parity-check bits generated by the first and 
second encoder. In this case, the PCCC is a rate 1/3 linear 
PCCC.’ 

In [5],  [6], and [8], we have introduced the notion of uniform 
interleaver of length N ,  defined as a probabilistic device that 
maps a given input sequence of length N and weight w into all 
distinct (E) permutations of it with equal probability 1/ (E). 
The uniform interleaver has proven to be a very useful tool, 
in that it makes independent the weight distributions of the 
parity-check bits generated by the first and second encoder and 
permits a relatively easy evaluation of the weight distribution 
of the PCCC. Moreover, it permits estimation of an “average” 
interleaver gain, independent of the particular interleaver used 
in a practical scheme and, thus, decouples the roles played 

’ Several generalizations are possible, like having more than two CC, having 
them different, increasing the overall rate by puncturing, etc. [7]. We will 
consider here only the case of two identical CC’s. 
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Fig. 2. Example of a sequence belonging to A(w, 2. n) .  

by the interleaver and by the CC in determining the overall 
PCCC performance. 

We will enumerate here without derivations the results from 
[6] that will be needed in the following. When not explicitly 
stated, they refer to PCCC using a uniform interleaver. 

1) Performance evaluation: 

a) For N much larger than the memory of the CC, 
the performance of a PCCC is almost identical 
to that of the equivalent ( 3 N ,  N - 2v) parallel 
concatenated block code Cp whose codewords are 
sequences of the PCCC of length 3N that start 
from and end at the zero states of both CC’s. 
Defining the conditional weight enumerating func- 
tion of the equivalent block code as 

b) 

3 

where Z is a dummy variable and AEP, is the 
number of codewords with parity-check weight j 
and information bit weight w,  an upper bound to 
the bit error probability of a PCCC for transmis- 
sion over additive Gaussian noise channels and 
maximum likelihood decoding is 

where Rc is the rate of the code. 
c) The conditional weight enumerating function 

A C p ( w ,  2) is obtained simply from the con- 
ditional weight enumerating functions Ac( w ,  2) 

of the two (2N ,  N - u)  constituent block codes 
equivalent to the constituent CC as 

\w/ 
d) Finally, the conditional weight enumerating func- 

tion AC(w , 2) of the equivalent constituent block 
code can be derived from the standard transfer 
function of the CC. 

2) Over a wide range of signal-to-noise ratios (SNR’s), 
say, from 1.5 dB down to what can be simulated, the 
upper bound (1) for maximum likelihood decoding and 
uniform interleaving can be approached very closely by 
a PCCC making use of the same CC, of a randomly 
selected fixed interleaver and suboptimum iterative de- 
coding. 

3) For interleaver length N significantly larger than the CC 
memory, the interleaver performance gain is a reduction 
by a factor 1/N of the bit error probability. 

111. ROLE OF THE INTERLEAVER AND CONSTITUENT CODES 

In 161, we have shown how to compute the conditional 
weight enumerating function ACP(w, 2) in (1) exactly. In 
this section, we will develop an approximation valid for large 
N ,  which will permit pushing the analysis further so we can 
draw conclusions useful for code design. 

Consider a rate 1/2 convolutional code with memory v, and 
its equivalent ( 2 N ,  N - v) block code whose codewords are 
all sequences of length 2N of the convolutional code starting 
from and ending at the zero state.’ The codewords of the 
equivalent block code are concatenations of error events of 
the convolutional code. 

Let 

A ( w ,  2, .) = A W J T 3 3  (3) 
3 

be the parity-check enumerating function of the sequences of 
the convolutional code generated by concatenating n error 
events with total information weight w (see Fig. 2). In (3) ,  
Awjn is the number of codewords with information bit weight 
w, parity-check weight j and number of concatenated error 
events n. For N much larger than the memory of the con- 
volutional code,3 the conditional weight enumerating function 
AC(w, 2) of the equivalent block code can be approximated 
by 

where nmax, the largest number of error events generated by 
a weight w information sequence, is a function of w which 
depends on the encoder. 

2For simplicity, we limit ourselves to PCCC’s that employ the same rate 
112 convolutional code for both CC’s The extension to rate l / n  and possibly 
different CC’s is straightforward 

This assumption permits neglecting the length of the error events compared 
to N ,  and assuming that the number of ways n infomation sequences 
producing n error events can be arranged in a register of length N is (f) 
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Fig. 3. Bit error probability bounds for PCCCl and PCCC2 of Example 1 for interleaver lengths I\: = 30, 100, and 1000. 

Consider now, the PCCC obtained by using as CC's the 
previously considered convolutional code and a uniform in- 
terleaver of length N .  Inserting (4) into (2), we obtain the 

catenated block code equivalent to the PCCC as 

Inserting (6) into ( l ) ,  we obtain the following asymptotic 
(in N )  bound for the bit error probability: 

N 
N conditional weight enumeration function of the parallel con- Pb(e) 5 w . w! N2nmax-w-l 

nmax!2 w=w",l" 
' ww[A(w, 2, nmax)I2 ( M J = Z = r - ~ c ~ b i ~ o  (7) 

where wmin denotes the minimum information weight in the 
error events of the CC. 

A(w, 2, n1)A(w, 2, .2). A. Recursive and Nonrecursive Constituent Encoders 

Using now for the binomial coefficient the asymptotic approx- 
imation 

we get 

For nonrecursive convolutional constituent encoders, with 
reference to (7), we have w,;, = 1 and rima, = w. In this 
case, in fact, every information sequence with weight one 
generates a finite-weight error sequence of length 2(v + l ) ,  
so that an information sequence with weight w can generate, 
at most, w error events corresponding to the concatenation of 
w error events of weight one. Taking now into account that 

A(w, 2, W) = A(l ,  2, 1)" 

equation (7) particularizes to 

NW-1 

2 c which, for large N ,  can be approximated by the terms in the 
summations having the highest power of N ,  namely, those 
with n1 = n2 = nmaX 

w = l  

x w w [ ~ ( l ,  2, 1)12w I W = Z = e - R c E b ~ N o .  (8) 

W! 2 (6) Equation (8) shows that, in the most favorable case (w = 1), A C P ( ~ ,  2) - N2nmax-w 
the bit error probability is independent of N ,  so that no 

[A(w ,  2, nmax)] . 
nmax!2 
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probability: (a) PCCC1; (b) PCCC2. 

Contributions in percent of  error events with increasing information weight w to the overall bit error probability as functions of the bit error 

interleaving gain is possible. It is worthwhile to mention that 
the same conclusions apply to parallel concatenated codes 
using block codes as CC, since also for block codes w,i, = 1 
and n,,, = w. 

On the other hand, for recursive encoders, wmin is always 
greater than one. In particular, for recursive encoders, the 
following theorem holds. 

Theorem I :  The parameter w,in is equal to two for recur- 

Proof: For simplicity, we shall prove the theorem for 
constituent codes of rate 1/2, with generator matrix G = 
[I, n ( D ) / d ( D ) ] .  The extension to the general case of rate 
k / n  is straightforward. 

sive convolutional encoders. v 

The generator matrix of a rate 1/2 systematic recursive 
encoder with memory v has the form 

where d ( D )  is a polynomial of degree v. For this encoder, 
finite-weight error events are produced by the polynomial 
multiples of d(D) .  Now, every polynomial d ( D )  divides a 
polynomial of the form 1 +D", where i is the period of a linear 
feedback shift register with connection polynomial d( D ) .  On 
the other hand, since d ( D )  has the form 1 +. . .+ D", it cannot 

w divide a polynomial of the form Di for any i .  
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Simulation results for the codes PCCCl and PCCC2 (solid lines) compared to ML upper bounds. The simulated suboptimum iterative decoding 
algorithm used at most 20 iterations. 

In the case of a recursive CC, with reference to (7), we 
have, thus, wmin = 2 and nm,, = lw/2], where 1x1 means 
"integer part of x." For convenience, we distinguish terms in 
the sum in (7) with odd and even w. For odd values of w, 
namely, w = 2IC + 1, we have 

W2'++1(2IC + l ) (k  + 1) ('IC, ')Np2[A(2IC+l, 2, k)I2 (9) 

whereas, for even w = 2k 

W2'22k ( y )  N-l[A(2, 2, 1)12' (10) 

where we have made use of the equality 

A(2IC, 2, I C )  = A(2, 2, (11) 

since the codewords described by A(2k, 2, IC) can only be the 
concatenation of IC error events with information weight two. 

Comparing (9) and (IO) shows that terms with odd w are 
negligible, since they depend on N as W2.  

To proceed further, we notice that the weight enumerating 
function of paths with weight two for the constituent code can 
be easily shown to be 

A(2, 2, 1) = Z Z m l n  + 2 2 z m * n - 2  + 2 3 Z m i n - 4  + . . .  

where zmin is the minimum weight of the parity check bits in 
error events generated by information sequences with w = 2. 

Substituting (12) into (10) and then into (7) yields the 
asymptotic expression of the upper bound 

(H2+2zmin 

(1 - HZ,," - 2 ) 2 k  )' IH=e-RcEbi"  
(13) 

where we have set W = Z = H .  
Equation (13) leads to two important conclusions. First, 

it explains why the interleaver gain [see Section 11, item 31 
for PCCC' s employing recursive constituent encoders goes as 
1/N. 

Second, it makes explicit the most significant parameter 
through which the CC influences the PCCC performance, 
namely, zmin, the lowest weight of the parity-check bits in 
error events of the CC generated by information sequences of 
length two. We define the lowest exponent of H in (13) as the 
effective free distance of the PCCC 

since it plays a role similar to that of the free distance for 
convolutional codes. From the above considerations, we can 
conclude that the constituent encoders must be recursive, and 
that they should be chosen to maximize zmin and, hence, 
dfree,eff. 
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Bit error probability bounds for rate 113 PCCC with interleaving length N = 100 employing as CC, the 32-state encoders yielding the value 

Iv. OPTIMIZATION OF THE 
RECURSIVE CONSTITUENT ENCODERS 

Although the behavior of PCCC’s for very low values of the 
SNR is not well understood yet, we believe that in this region, 
below the cut-off rate, the interleaver gain dominates the code 
performance and, thus, the effects induced by changing the 
CC will generally not be very great. 

Nonetheless, for SNR’s above 1.5-2 dB, the choice of the 
encoder matters. The following example can help to clarify 
the previous  result^.^ 

Example 1: Consider two PCCC’s using uniform inter- 
leavers with the same length N and two different four-state 
systematic recursive convolutional CC’s, identified as CC1 and 
CC2. The generator matrices are 

GI = [ I ,  1 + D + D 2 ]  1 + D 2  

for CCl and 

1 + D + D 2  1 + 0 2  1 G2 = [l; 

for CC2. 

outputs, and have the same free distance, namely, five. 
The two CC’s are identical up to interchange of the two 

Let us embed CC1 and CC2 into two PCCC’s (PCCCI and 
PCCC2). For CC1 the information sequence 1 + D2 generates 
a code sequence [l +D2,  1 +D+D2] with ,zmin = 3, which in 
turn leads to the PCCCl sequence [l+D2, 1+D+D2, 1+D+ 
D 2 ]  with dfree,eff = 2+22,;, = 8. On the other hand, for CC2 
the information sequence 1 + D3 generates a code sequence 
[1+ D2,  1 + D + D2 + D3] with z,in = 4, and this leads to the 
P C C C ~  sequence [ I + D ~ ,  1+o+o2+o3, ~ + D + D ~ + D ~ ]  
with dfree,+R = 10. 

Therefore, the effective free distance for PCCC2 is 10, as 
opposed to eight for the PCCC1. Note also that dfree = 8 
for PCCC1, whereas, for PCCC2 the free distance is obtained 
from the information sequence 1 + D + D2 which generates 
the code sequence (1 + D + D 2 ,  1 + D 2 ,  1 + D 2 )  with weight 
df,,, = 7. However, since this information sequence has odd 
weight w = 3, a large enough N will make its contribution 
to the bit error probability insignificant with respect to that 

These conjectures will be supported now by analytical 
results based on the evaluation of (1). They are reported in 
Fig. 3, where we plot the bit error probabilities for PCCCl 
and PCCC2 for interleaver lengths N = 30, 100, and 1000. 
We see that the improvement yielded by PCCC2 over PCCC 1 
increases progressively with increasing N and that the perfor- 
mance curves cross only for large values of the SNR’S.’ 

of dfree,eff. 

4This example was suggested to the authors by D. Forney, upon reading a 
draft version of [6]. ’This crossing is due to the lower df,,, of PCCC2. 
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of z,,, of Theorem 2. 

Bit error probability bounds for rate 1/3 PCCC with interleaving length A; = 100 employing as CC the 16-state encoders yielding the value 

To obtain further insight into the significance of the parame- 
ter zmln, we have plotted in Fig. 4, the relative contributions in 
percent to the overall bit error probability of the error events of 
PCCCl and PCCC2 with interleaver length N = 1000 due to 
input sequences with increasing weights w as functions of the 
bit error probability Pb(e). The curves in Fig. 4(b) give clear 
evidence that the codeword with information weight w = 2 
is the dominant one for bit error prababilities ranging from 
low3 down to loplo. 

Finally, to show that the improvement yielded by PCCC2 
over PCCCl under uniform interleaving is preserved with 
real, fixed interleavers, we have simulated the two PCCC with 
interleavers of length N = 100 chosen at random. The decoder 
uses an iterative algorithm described in [lo] with a number of 
iterations equal to 20. The results are reported in Fig. 5,  where 
we have also redrawn the upper bounds previously obtained.0 

The design objective for the constituent recursive convo- 
lutional encoders is to obtain as large zmin as possible. The 
following theorem shows what can be achieved with a CC of 
rate lln, given the memory and using a primitive feedback 
polynomial. 

Theorem 2: A rate l/n recursive convolutional encoder 
with memory v and generator matrix 

can achieve the following value for zmin: 

zmln = (n  - 1)(2.-1 + 2). (16) 

Indeed, any check generators n, (D) /d(D) ,  where d(D)  is 
any primitive polynomial of degree v and n,(D) is any 
monic polynomial of degree I/ except d ( D )  [with the (n - 1) 
numerator polynomials {n , (D) ,  1 5 i 5 n - 1} having 
greatest common divisor 11 will achieve this value of xmln.v 

Proof For simplicity, we will prove the theorem for a 
CC of rate 1/2, with generator matrix G = [1, n ( D ) / d ( D ) ] .  
The extension to the general case of rate lln is straightforward. 

The polynomial n ( D )  must have degree deg[n(D)]  5 v. 
We first prove that all polynomials n ( D )  with degree d < v 
yield a value of zmin strictly less than the right-hand side 
of (16). To this end, let M = 2" and note that d(D)  is the 
generator polynomial of an ( M  - 1, M - v - 1) Hamming 
code [ll]. Moreover, since d ( D )  is a primitive polynomial, 
the minimum-degree polynomial of the form 1 + Dz which 
is a multiple of d(D)  is (D"-l + 1). The quotient q(D) 
obtained from the division of (D"-l + 1) by d ( D )  is the 
generator polynomial of an ( M  - 1, u)  cyclic maximal length 
shift-register code [ll], so that the products q(D)n(D)  are 
codewords of this code, which is known to have all words 
(except the zero codeword) with the same weight z = M/2.  
This completes the first part of the proof of (16). 

To increase the value of zmln, the only possibility consists 
in increasing the degree of n(D)  to v. We prove now that all 
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Fig. 8. 
value of zmin of Theorem 2. 

Bit error probability bounds for rate 113 PCCC with interleaving length N = 100 employing as CC the eight-state encoders yielding the 

TABLE I 
BEST RATE 112 CC FOR RATE 1/3 PCCC WITH INTERLEAVER LENGTH 
N = 100 THE POLYNOMIALS d(D)  AND n ( D )  DEFINING THE FEEDBACK 

AND PARITY-CHECK CONNECTIONS OF THE ENCODERS GIVEN IN 
OCTAL NOTATION WITH THE LEAST SIGNIFICANT BIT ON THE LEFT 

significant bit [a “zero” instead of the “one” which would 
follow from a cyclic sGft of one position to fie left of he 
codeword c1 ( D ) ] .  Thus, summing modulo-2 the binary words 
represented by Dcl(D)  and c2(D) yields, for powers from 
D up to part of a codeword of the maximal length 
code with weight M/2.6 As to the remaining powers, D‘-’ 
contributes a “one” to the weight, and Do gives another “one” 
since cz(D) has least significant bit equal to “one,” whereas, 
Dcl(D) has it equal to “zero.” This completes the proof of 
(16). 

The only hypotheses made on the polynomials n(D) is that 
they be of the kind D” + . . . + 1. There are obviously M such 
polynomials; all work, with the exception of n ( D )  = d(D) .  
This completes the proof of the second part of the theorem.. 

polynomials n ( D )  of the form n(D) = D” + . . . + 1 achieve 
(16). Split n (D)  as 

n ( D )  = D .  D”-l + n2(D) def D .  n l ( D )  + n2(D) 

and consider that the products c l (D)  = q(D)n l (D)  and 
c2(D) = q(D)n2(D) are codewords of the maximal-length 
shift-register code with a “one” as the least significant bit. On 
the other hand, the product Dcl(D)  represents a (noncyclic) 
shift of one position to the left of c1 ( D ) .  Since the maximal- 
length code is cyclic, and c1 ( D )  has degree M - 1, the binary 
word represented by Dcl(D)  coincides with a codeword of 
the maximal length code except for the most significant bit 
(a “one” corresponding to the power and the least 

One could ask why we choose d(D)as a primitive poly- 
nomial. One reason is that by doing so the quotient (0’ + 
l ) / d ( D )  has the largest degree, making it easy to choose an 
n ( D )  that maximizes z,;,.~ Moreover, if D‘ + 1 divides d(D) ,  
thus, Dka + 1 also divides it, for k integer. Thus, the number 
of distinct binomials that are multiples of d(D)  contained in 
an interleaver of length N (which can originate error events 
of the PCCC with w = w,,,) is of the order of N / i ,  and there 

6This codeword would have the least significant bit equal to zero, being 
the sum modulo-2 of c2 ( D )  and the cyclic shift of one posihon to the left of 
DU-lq(D)  

7We discussed th s  matter with S W. Golomb, and, a few days after, he 
was so !ad so as to send us a proof 191 that (16) is indeed the largest zmln 
achievable by any polynomal d( D )  . 
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encoders reported in Table I. 

Bit error probability bounds for rate 1/3 PCCC with interleaving length N = 100 employing as CC the best two, four, eight, 16, and 32-state 

is an obvious reason to keep this number as low as possible 
by maximizing i. 

From here on, we will limit ourselves to the case of CC 
with rate 1/2. Generalization to rate l/n constituent codes is 
straightforward. Theorem 2 and its proof suggest that a good 
procedure for the choice of the generator matrix 

of a recursive CC with memory u is the following: 
1)  Choose as d(D)  a primitive polynomial of degree v. 
2) For all n ( D )  yielding a weight z,,, = 2"-l + 2, 

evaluate the weight distribution and choose the best. 
The optimization in its simplest form can be done by 
choosing the n ( D )  that maximizes the free distance 
of the PCCC, or, more accurately, by evaluating the 
analytical bounds to the bit error probability for all 
candidate codes and choosing the one yielding the lowest 
bit error probability for the desired interleaver length 
and range of SNR's. 

An example of the design of a CC with 32 states will clarify 
the procedure. 

Example 2: Consider a PCCC with rate 113 employing as 
its CC a 32-state rate 1/2 systematic recursive encoder. There 
are 15 distinct polynomials n ( D )  yielding the highest value of 
zmin = 18. We have evaluated the upper bounds to the bit error 
probabilities of the PCCC using these codes and a uniform 

interleaver of length N = 100. The results are reported in Fig. 
6. The curves show that the differences in performance due 
to different CC's are significant. In fact, the dispersion of the 
curves is close to 3 dB at a bit error probability of 0 

We have applied this procedure to optimize rate 1/3 PCCC 
using rate 112 constituent recursive convolutional encoders 
with memory v from 1-5 and a uniform interleaver with length 
N = The results are reported in Table I, where we show 
the generator matrix through the polynomials n(D) and d ( D ) ,  
the effective free distance dfree+~ ,  the free distance dfree of 
the PCCC and the weight wfree of the information sequence 
which generates the error event yielding the free distance. 

In Figs. 6-8, we report the bit error probabilities for all 
candidate codes with eight, 16, and 32 states (for two and 
four states, there is only one code, whose performance will 
be shown in Fig. 9). 

Finally, in Fig. 9, the performance of the best codes for 
each number of states is reported. These curves give evidence 
that increasing the number of states can improve the perfor- 
mance significantly. We conclude that interleaver length and 
the memory of the CC have to be traded off according to 

*The significant difference in performance between codes with the same 
dfrcc,efi, especially evident for low values of the bit error probability, 
suggests that other error events of the PCCC with higher w and weight lower 
than dfrec,efi begin to influence the performance. The significance of this 
phenomenon and the bit error probability where it starts to have impact depend 
highly on the interleaver length. 

'The hierarchy does not change for larger values of N .  
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the system requirements. In fact, increasing the interleaver 
length increases the decoding delay at almost no expense 
in complexity, whereas, increasing the memory increases the 
complexity with only a slight increase in decoding delay. 
These conclusions differ somewhat from those of [I] where 
the role of the CC was considered unimportant. This was 
probably due to the SNR range considered and to the very 
long interleaver used. 

V. CONCLUSIONS 

Our main results may be summarized as follows: 
0 The error coefficient interleaving gain for a PCCC with 

large interleaving length goes as LV-”-~-, where N is 
the interleaver length and w,,, is the minimum number 
of information bits in a finite-weight error event. 

0 All recursive convolutional encoders have wmln = 2, so 
that the interleaving gain goes as 1/N.  On the other hand, 
all nonrecursive convolutional encoders and block codes 
have w,,, = 1, so such codes are not useful in parallel 
concatenated codes. 

* The next most important constituent code parameter is 
x,,,, the minimum parity-check weight in code sequences 
with w = 2 .  For a large range of SNR’s, the behavior of 
the PCCC is determined by the effective free distance 

It is possible to achieve zmin = (n - l)(2.-’ + 2 )  with a 
rate 1 /n  recursive convolutional encoder with memory u, 

0 Bit error probability bounds show that there are significant 
performance differences between PCCC codes with the 
same N ,  u, zmln. A table of the best rate 1/2 convo- 

dfree,eff = 2 + 2&” 

lutional codes to be used as CC in a PCCC has been 
presented, for 1 5 v 5 5 .  
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