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Abstract— A parallel concatenated coding scheme consists of
two simple constituent systematic encoders linked by an inter-
leaver. The input bits to the first encoder are scrambled by the
interleaver before entering the second encoder. The codeword
of the parallel concatenated code consists of the input bits to
the first encoder followed by the parity check bits of both
encoders. This construction can be generalized to any number
of constituent codes. Parallel concatenated schemes employing
two convolutional codes as constituent codes, in connection with
an iterative decoding algorithm of complexity comparable to
that of the constituent codes, have been recently shown to yield
remarkable coding gains close to theoretical limits. They have
been named, and are known as, “turbo codes.” We propose a
method to evaluate an upper bound to the bit error probability
of a parallel concatenated coding scheme averaged over all
interleavers of a given length. The analytical bounding technique
is then used to shed some light on some crucial questions which
have been floating around in the communications community
since the proposal of turbo codes. -

Index Terms— Turbo codes, concatenated codes, iterative de-
coding. .

1. INTRODUCTION AND MOTIVATIONS

NOWLEDGE of the fact that increasing the codeword

length n of block codes (or the constraint length of
convolutional codes) leads to better performance dates back
to Shannon theory. It is also well known that the complexity
of maximum-likelihood (ML) decoding algorithms increases
with n, up to a point where decoding becomes physically
unrealizable.

Thus the research in coding theory has seen many proposals
aiming at constructing powerful codes with large equivalent
block lengths structured so as to permit breaking the ML de-
coding into simpler partial decoding steps. Iterated codes [1],
product codes and their extension [2], concatenated codes [3]
and their generalized version [4], and large constraint-length
convolutional codes with suboptimal decoding strategies, like
sequential decoding, are nonexhaustive examples- of these
attempts, and some of them have been successfully employed
in applications where large coding gains are required, such as,
for example, deep-space communication.
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The most recent successful attempt consists of the so-called
“turbo codes” [5], whose astonishing performance has given
rise to a large interest in the coding community. They are
parallel concatenated codes (PCC) (see Fig. 1 for the case
of block PCC) whose encoder is formed by two (or more)
constituent systematic encoders joined through an interleaver.
The input information bits feed the first encoder and, after
having been interleaved by the interleaver, enter the second
encoder. The codeword of the parallel concatenated code
consists of the input bits to the first encoder followed by the
parity check bits of both encoders.

The suboptimal iterative decoder is modular, and consists of
a number of equal component blocks formed by concatenating
the decoders of the constituent codes (CC) separated by the
same interleaver used in the encoder. Each decoder produces
weighted soft decoding of the input sequence. By increasing
the number of decoding modules, and thus the number of
decoding iterations, bit error probabilities as low as 1075
at F, /Ny = 0.0 dB have been shown by simulation [6]. A
version of turbo codes employing two eight-state convolutional
codes as constituent codes, an interleaver of 32 x 32 bits
and an iterative decoder performing two and a half iterations
with a complexity of the order- of nine times the ML Viterbi
decoding of each constituent code is presently available on a
chip yielding a measured bit error probability of 9.0-10~7 at
Ey/No = 3 dB [7].

Bandwidth-efficient versions of turbo codes, compared to
trellis-coded modulation schemes have also been proposed [8],
as well as turbo codes based on block (instead of convolu-
tional) codes [9], [10].

A careful examination of the literature shows that, rather
than being a sudden apparition, turbo codes are the result
of a clever intuition building on several concepts already
available. We can cite in general the literature on product
and concatenated codes ‘in relation with the idea of paral-
lel concatenation, the pioneering work on symbol-by-symbol
maximum a posteriori decoding of linear codes [11] and the
proposals in [12]-[14] of the soft-decisions Viterbi algorithm
in relation to the way of implementing the iterative decoder.
Very close to turbo codes are also the separable “filters”
described in [15] to iteratively decode multidimensional codes.

As for the applications, it must be mentioned that PCC’s,
like ‘all codes with very long codewords, suffer from one
important drawback, namely the delay due to the interleaver
and to the iterative decoding (as an example, the previously
mentioned “chip” has a latency of 2318 bits). This prevents
them from being used in applications where the combination
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of decoding delay and data rate leads to intolerable delays, like
digital telephony. A broad range of applications still remains,
such as digital audio and video broadcasting, data packet
transmission, and space applications. It is also worthwhile
mentioning that the interleaver inherently present in the PCC
can prove beneficial for transmission on fading channels [8].

Since the successful proposal of turbo codes, neither a good
theoretical explanation of the codes behavior/performance nor
an adequate comprehension of the role and relative importance
of the PCC ingredients (constituent codes and interleaver) have
appeared.

In terms of performance of PCC’s, apart from the measure-
ments on the chip [7], what is known is essentially due to
simulation [5], [8], [15]-[18], which, in itself, is not at all a
simple task, as it requires a huge amount of computer time to
obtain reliable results down to bit error probabilities like 107°.

As a consequence, a number of basic questions are still
unanswered:

1) What is the performance of the ML decoder ?

2) What are the relative contributions of the constituent

codes and of the interleaver length in determining the
PCC performance ?

'3) For a given interleaver length, how sensitive is the
performance to the interleaver choice ?

4) How crucial is the use of recursive (feedback) systematic
convolutional codes (as opposed to nonrecursive ones)
as constituent codes of the PCC scheme ?

5) How close are the proposed suboptimal iterative decod-
ing algorithms to ML decoding?

Answering these questions is certainly important from a the-
oretical point of view. Some of them, however, have gignificant
practical relevance as well. For example, questions 1 and 5 can
encourage (or discourage) the search for improved decoding
algorithms, and question 2 may lead to the optimization
of the PCC for given system constraints such as delay or
complexity. Question 3, in turn, is related to the importance of
the interleaver optimization, a topic which has already received
some “cut-and-try” attention [17]-[19].Finally, question 4 has
been discussed in [20] where the authors seem to believe
that recursive convolutional codes have superior merits in

" themselves, rather than only when used as CC of a PCC.

Formidable complexity obstacles discourage classical the-
oretical analysis of the PCC’s. As an example, the code
implemented in VLSI in [7], when seen as a whole convo-
lutional code, consists of an equivalent time-varying convolu-
tional code with 21030 states, thus preventing any analytical
evaluation of the main performance parameters.

In this paper, we will try to shed some light on the theoret-
ical comprehension of PCC’s. We will propose answers to the
previous questions, some of which may be only preliminary
yet indicative of the right direction.

In particular, we will define and evaluate an upper bound
to the average performance of the ML soft decoder for a
PCC, stemming from characteristics of the CC’s. Owing to
its definition, the average performance, expressed in terms of
bit error probability, turns out to be independent from the
particular interleaver used, and helps in assessing what can

be gained with given CC’s and with an interleaver of a given
length.

We will also present s1mulat10n results for PCC’s with
differently chosen interleavers of the same length and com-
pare them with the proposed bound. The results show that
“random” interleavers offer performance close to the average
ones evaluated through the upper bound, independent, to a
large extent, from the particular interleaver. Bad interleavers
are very easy to avoid in practice.

Moreover, we will show that recursive convolutional codes,
although providing almost the same performance as nonrecur-
sive codes when used alone, are indeed crucial when embedded
in a PCC as -CC’s. ‘

Finally, by comparing our bound on ML performance with
simulation results based on iterative decoding, we will give
heuristic evidence that the suboptimal algorithms can come
very close to the optimum.

To help the reader, we will accompany the description with
frequent examples, and will start from the simpler case of
PCC schemes using block codes as CC’s (parallel concatenated
block code (PCBC)) leaving for the, final sections the more
complicated case of parallel concatenated convolutional codes
(PCCO).

II. NOTATIONS AND DEFINITIONS

Notations and definitions will be introduced for the case of
parallel concatenated block codes, the extension to convolu-
tional codes being straightforward.

Given an (n, k) systematic block code C, its well-known
weight enumerating function (WEF) is

2 zn: B;H
1=0

where B; is the (integer) number of codewords with Hammirfg
weight (number of ones) ¢ and H is a dummy variable. The
WEF of a code can be used to compute the exact expression
of the probability of undetected errors and an upper bound to

the word error probability [21].
We define the input-redundancy weight enumeratmg func—
tion (IRWEF) of the code as
AW, Z) = ZAw Wz

w,j

where A,, ; denotes the (integer) number of codewords gen-
erated by an input information word of Hamming weight w
whose parity check bits have Hamming weight j, so that the
overall Hamming weight is w + 7.

The IRWEF makes explicit in each term of the WEF the
separate contributions of the information and of the parity-
check bits to the total Hamming weight of the codewords, and
thus provides additional information on the (Hamming) weight
profile of the code. It will prove crucial in the following when
dealing with parallel concatenated codes (PCC), since the two
input words to the constituent encoders, the-second being
obtained by interleaving the first, share the same Hamming
weight, so that the redundant bits generated by the two
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encoders derive from terms of the IRWEF with the same input
weight w.

We mention also that the IRWEF characterizes the whole
encoder, as it depends on both input information words and
codewords, whereas the WEF only depends upon the code. As
a consequence, the WEF is related to the word error probability
of the code, whereas the IRWEF provides information on the
bit error probability.

Obviously, the following relationship holds true:

BY(H)=A°(W =H,Z = H)
with

A°(H,H) = Z Ay jHYHT =

w,j

Z B,H*
where

> Auj

w+j=k

Example 1; The (7,4) Hamming code has the following
WEF: :

BE(H) =1+ TH® + TH* + H'.

Splitting the contribution of the information and redundancy

bits to the total codeword weight we obtain the IRWEF of
the code

AC(W,2) =1+ W32+ Z%) + W?(3Z +32?)

+W3(1+32) + WiZ3. (1)

4 o

Consider now the conditional weight enumerating function

AS(Z) of the parity check bits generated by the code C

corresponding to the input words of weight w. It can be

obtained from the IRWEF as
1 OvA°(W,2Z)
AS(z Ay 20 = — . ——— 2
(2) = Z g w! oww W=0

so that we can also write the inverse relat10nsh1p
AC(W,Z) =) WUAL(Z). 2
Both IRWEF and the A$(Z) can be used with the union bound
to compute an upper bound to the bit error probability for ML
soft decoding of the code over a channel with add1t1ve white

Gaussian noise in the form
W 0AC (W, 2)
P 2 ANDA)
S T ow

k w

Y. T WrALZ)

w=1

IN

lW:Z—_—.e*Rc Ey/No

Il

W=Z=e EcBEp/No

=> D,H™ 3)
m H=—e~ RcFp/No
with
w
Dn, = Z EA“’:J' *

Jtw=m

.where R, is the code rate.

The second and third line of (3) represent two equivalent
expressions to bound the bit error probability. The first expres-
sion keeps distinct the contributions of information words with
different weight w, whereas the second sums the contributions
according to the overall weight m of the codeword through
the coefficient D,, defined in (4).

A tighter bound can also be obtained from 3) [22] explmt—
ing the inequality

erfe (T +y) < erfe(Va)e™
Po(e) < Werte

dmichEb
- 2k Ny

dmiglie B AAC (W, Z)
oW

It assumes the form

®)

e \
W:Z:e_Rch/NO

which admits of course a further development like (3).

For parallel concatenated convolutional codes the infor-
mation and code sequences are semi-infinite and, as a a
consequence, the summation (explicit in (3) and implicit in
(5)) must be truncated to a finite value. For the bound in the
second line of (3) the truncation involves the computation of
the complete conditional weight distributions up to a given
information weight, whereas for the bound in the third line the
truncation leads to the computation of the weight multiplicities
of the unconditional weight distribution up to a given overall
weight of the code sequences. Computing algorithms and a
comparison of the two approximations are discussed in {23].

Using a finite number of terms in (5) transforms the upper
bound into the approximation

P,,(e ZD erfc< RN‘? > (6)

In the following, all the results in terms of bit error probability
will be computed using (6).

Example 2: The conditional WEF’s of the Hamming code
(7,4) considered in the previous example are

AS(Z)=1

AS(2)=322+ 27

AS(Z) =37 + 327

A§(Z2)=1+3Z
AS(2) =

so that the upper bound on the bit error probability computed
through (6) and (4) becomes

3 [3R.E} 4R FEj
Py(e) < Eetfc ( —N—0—> + 2erfc ( N )
1 TR.Ey
+ 3 erfc( N ) . ©
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Cp (n+0,-k k)
---------------------------- A
l\/ -7 k 14 [TE_T \»‘
T . “_________AL——"
§ : Systematic
Interleaver | code C, (n,,k)
length k

\ Systematic _~

\% code C, (n,,k)
[k ]

Fig. 1. Parallel concatenated block code.

TI. PARALLEL CONCATENATED BLOCK CODES

Consider now a parallel concatenated block code (PCBC)
obtained as in Fig. 1. Two linear systematic block codes Cy
with parameters (ni, k) and Cy with parameters (ng, k), the
constituent codes (CC), having in common the length % of the
input information bits, are linked through an interleaver so that
the information part of the second codeword is just a permuted
version of the first one. The PCBC codeword is then formed
by adding to the input bits the parity-check bits generated by
the first and second encoder. The PCBC, that we denote as
Cp, is then a (n; + ng — k, k) linear code as the interleaver
petforms a linear operation on the input bits.

If w is the (Hamming) weight of the input word, and 2z
and 2y the weights of the parity check bits introduced by
the first and second encoders, respectively, the weight of the
corresponding codeword of Cp will be w + 21 + 23.

We want now to obtain the IRWEF A7 (W, Z) of Cp start-
ing from the knowledge of those of the constituent codes. For
a given interleaver, this operation is exceedingly complicated,
as the redundant bits generated by the second encoder will not
only depend on the weight of the input word, but also on how
its bits have been permuted by the interleaver. The only viable
solution, in theory, would be an exhaustive enumeration of all
possible cases; in practice, this is an impossible achievement
for large k, and this was precisely the reason for lengthy
computer simulations.

To overcome this difficulty, we introduce an abstract inter-
leaver called uniform interleaver, defined as follows.

Definition 1: A uniform interleaver of length k is a prob-
abilistic device which maps a given input word of weight w

into all distinct QIZ permutations of it with equal probability

/(R A

w

From the definition, it is apparent that the conditional weight
enumerating function AS?(Z) of the second code becomes
independent from that of the first code thanks to the uniform
randomization produced by the interleaver.

As a nice consequence of this, we can easily evaluate the
conditional weight enumerating function of the PCBC which
uses the uniform interleaver as the product, suitably normal-
ized, of the two conditional weight enumerating functions of

the constituent codes
' AGH(Z) - A (2)

ASP(Z) = 7
w (Z) A )]
w
Also, from (2) we obtain the IRWEF of the code Cp as
k
AP (W, Z) =Y W™AGR(Z).  (8)
w=1

Example 3: The IRWEF of the PCBC constructed using
as constituent codes two identical (7,4) Hamming codes can
be obtained plugging the conditional WEF obtained in the
previous example into (7) and applying (8)

ACP(W,Z) =1+ W(2.252* + 1.52° +0.252%)+
+W2(1.52% +32% + 1.52%)+
+W3(0.25 + 1.57 + 2.252%) + WZ8. (9) -

Notice in (9) the presence of fractional coefficients represent-
ing the multiplicity of the various terms. They are a direct
consequence of the use of the uniform interleaver. -0

The introduction of the uniform interleaver permits an easy
derivation of the weight enumerating functions of the PCBC.
However, in practice, one is confronted with deterministic
interleavers, which give rise to one particular permutation of
the input bits. So, what is the significance of the preceding
definitions and equations ? .

To answer this question, we prove now the main propert
of a PCBC which uses the uniform interleaver.

Theorem 1: Let A°7x (W, Z) be the IRWEF of the code
Cp, obtained using the particular interleaver Ij. Then

By [ACP (W, Z)] = AP (W, Z) (10)

where E, means expectation with respect to the whole class
of iterleavers. v
Proof of Theorem 1: The proof makes use of (2) throug
the following equality chain:
E.[A“" (W, Z)] =E, lz W™ AGT (Z)} 1

w

=Y W“E, [Aipk (Z)] (12)

= WYASF(Z2) = A" (W, Z). (13)

where the third equality comes from the definition of the
uniform interléaver. ‘ " QED
A second result, which comes as a corollary of the previous
one from the linear dependency of (6) with respect to the
conditional weight enumerating function, is the following.
Corollary 1: The upper bound computed using the IRWEF
AP (W, Z) coincides with the average of the upper bounds
obtainable with the whole class of deterministic interleavers.
v
The corollary guarantees that, for each value of the signal-
to-noise ratio, the performance obtained with the uniform inter-
leaver are achievable by at least one deterministic .interleaver.
Example 4: We can check the result (10) by computing, for
the simple example of Hamming code previously examined,
the IRWEF’s of the PCBC’s constructed using all the inter-
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TABLE I
IRWEF OF THE PARALLEL CONCATENATED CODES BASED ON THE (7,4) HAMMING CODE FOR ALL POSSIBLE INTERLEAVERS

Perm. I

ACP(W, Z)

0123 )
0321
1023
1320
3021
3120

14+ W(324 + 28) + W2(322 + 32%) + W3(1 + 32%) + W*Z®

0132
0213
0231
0312
1032
1203
1230
1302
2013
2031
2103
2130
2301
2310
3012
3102
3201
3210

14+ W(2Z4 4225 + W2(Z2 +42Z° + 2%) + W3(2Z + 22%) + W*Z5

T

101!

e
4},‘.‘“

107

102

Py(e)

Fig. 2. Upper bounds for Example 4.

leavers originating from the 24 = 4! permutations of the input
bits. The computed IRWEF’s are reported in Table L
From the table, it is apparent that, for this scheme, only two
types of IRWEF are possible:
ACPU (W, Z) =1+ W(22* +22%) + W2(Z2% + 42° + Z*)
+W3(27 +22%) + W'z (14)

which derives from 18 different permutations and

ACP (W, Z) = 1+ W(3Z* + Z5) + W*(32% + 3Z%)
+ W31 4+32%) + Wwz" (15)

4 5 6
Ey/Ny

7 8 9

which appears six times. The average computed over all
possible interleavers yields

18 6
A9 (W, Z) = S AT (W, 2) + 52 AP (W, Z)

which coincides with (9).
The upper bounds obtained substituting (14), (15), and (9)
into (6) are plotted in Fig. 2. o
Let n,k,t) denote the parameters of a t-error correcting
(n,k) code: We have also analyzed the performance achieved
by a PCBC using as CC the (63,57,3) and the (63,51,5)
BCH codes. The interleavers have lengths k = 57 and 51,
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Fig. 3. Upper bounds to the bit error probability of two PCBC’s using the (63,57,3) and (63,51,5) BCH codes as CC’s and interleavers of lengths

57 -and 51, respectively.

respectively. The results are reported in Fig. 3, where we

also plot for comparison the results pertaining to the (7,4)

Hamming code of the previous example. In this case, the
performance of the PCBC schemes improves over that of the
CC’s, and a gain of 1 dB is obtainable.

So far, we have used an interleaver with length & equal to
that of the input word of the block code. It is straightforward to
extend all previous results to the more general case where we
use as basic codeword for a PCBC { consecutive codewords of
the constituent code C as in Fig. 4. In particular, the IRWEF
of the new constituent (Iny, k) code C! is given by

AW, Z) = [AS (W, Z)]! (16)

and similarly for the second constituent code C%.

The conditional weight enumerating function of the new
component code can still be obtained from the IRWEF through
1 9wASY(W, Z)

AS(2) = —

w! OWw an

W=0

From the conditional weight enumerating functions of the
two new. constituent codes, owing to the property of the
uniform interleaver of length [k, we obtain the conditional
weight enumerating function of the (I(nq +n2— k), k) PCBC
as

AS (Z)- AS: (2)

(+)

ASP(2) = (18)

...........

Interleaver
length N=lk

Fig. 4. Parallel concatenated block code with interleaver length Ik.

From this point on, the performance of the new PCBC can be
obtained as before through (6).

It is important to note that the PCBC obtained in this way
is in some sense a generalization of the concept of product
codes. In fact, a product code which does not transmit the
parity checks on parity check bits can be obtained from the
PCBC using a row-column interleaver of length N = k2.
Product codes with iterative ‘decoding have been considered
in [10].

Example 5: Taking as component code the Hamming code
of previous examples we can build different PCBC of increas-
ing complexity by simply grouping ! consecutive codewords.

The first coefficients D, defined in (4) for the resulting
PCBC and [ = 1,2,3,4,5 are reported in Table II. The
effect of longer interleavers is clearly apparent from the table.
Namely, the multiplicity of the terms which dominate the
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Constituent code —
1

1=t
J Ry R —
=10 e

N
1=100 -+

Py(e)

K \
Ay N

6 1 2 3

4

5 6 7 8 9 10 11
Ey/No

Fig. 5. Upper bounds to the bit error prdbability referring to Example 5. The different curves refer to interleavers of various lengths /k.

TABLE II
COEFFICIENTS Dy, FOR THE EVALUATION OF THE BIT ERROR PROBABILITY OF
THE PCBC OBTAINED FROM THE (7,4) HAMMING CODE AND UNIFORM
INTERLEAVERS GROUPING 1,2, 3,4,5 CoONSECUTIVE INPUT WORDS

Hamming l
distance 1 2 3 4 5
3 0.1875 | 0.02678 | 0.01022 | 0.00535 | 0.00328
4 1.875 | 0.48214 | 0.26590 | 0.18214 | 0.13815
5 3.75 | 1.44642 | 1.06363 | 0.91071 | 0.82894
6 1.125 | 1.20535 | 0.95259 | 0.81597 | 0.73103
7 0.0625 | 3.83928 | 3.11412 | 2.77902 | 2.57720
8 19.96428 | 6.63116 | 5.44900 | 4.82972
9 23.7053 | 16.4537 | 13.6749 | 12.2146
10 11333928 | 32.8558 | 30.8499 | 30.0122
11 21.5089 | 51.5566 | 52.5036 | 52.2468
12 12.3214 | 104.044 | 113.328 | 117.619
13 i 7.16071 | 192.425 | 219.463 | 231.044
14 4,40178 | 311.545 | 418.307 | 463.480
15 6.26785 | 379.400 | 737.146 | 894.473
16 1.23214 | 316.259 | 1207.75 | 1620.00
17 0.04464 | 227.272 | 2018.09 | 3016.75
18 148.853 | 3120.65 | 5357.44
19 95.6634 | 4271.70 | 9176.27
20 1| 74.2149 | 4865.35 | 14962.0

performance (those with lower Hamming weight) decreases
when [ increases. Also, Hamming distances not present in
the constituent codes show up. The minimum distance of the
PCBC is still 3, as for the constituent codes.

Applying the upper bound (6) we obtain the results reported
in Fig. 5, where the bit error probabilities for the considered
code and various interleaver lengths [ = 1,2,10,20,100 are
plotted versus the signal-to-noise ratio E}/Ny. For compari-
son, the curve of the constituent code is also reported.

The figure shows that a gain of 2 dB can be achieved
increasing [ at the expense of an increased delay. Also, we

Rate 1/3PCCC .,

>x

X redundancy
bit

t

Rate 1/2 systematic
convolutional encoders

oy

Interleaver
length=N

e x G
|____—§:| redundancy :‘..1
bit B 2:'

Fig. 6. Encoder structure of a PCCC.

notice from the results that the beneficial effect of increasing
the interleaver length tends to decrease the larger [ becomes. ¢

The results obtained in the example illustrate an interesting
phenomenon that will be observed again: performance im-
provements for a significant range of signal-to-noise ratios
can be obtained with PCC’s without increasing (or almost
independently from) the minimum distance of the CC’s. We
ought to mention that independence of bit error probability
performance from the code minimum distance for codes with
large codewords length was already foreseen in [24].

IV. PARALLEL CONCATENATED CONVOLUTIONAL CODES

The first applications of parallel concatenated coding
schemes used convolutional codes as constituent codes. The
resulting codes have been named by the authors turbo codes,
and the main reason for their successful implementation
resides in the availability of efficient algorithms for soft
iterative decoding [5], [7], [25]. In our context, we will call
them parallel concatenated convolutional codes (PCCC).. A
block diagram showing how they work is presented in Fig. 6.
The behavior is similar to that of a PCBC, the main difference
being the fact that now the interleaver of length N does not
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Fig. 7. Hyper-trellis for the PCCC.

contain an integer number of input words, since the input
sequences are infinite in length.! The figure represents the
case of a rate 1/3 PCCC obtained from two rate 1/2 CC’s.
Several generalizations are possible. The number of CC’s can
be more than 2, and their rates can be different. Also, the
final rate of the PCCC-can be increased by puncturing the
redundant bit sequences at the encoders outputs.

We will break the performance analysis of PCCC into two
steps, the first performing an exact analysis to obtain the upper
bound to the bit error probability, and the second showing how
to obtain an accurate approximation which drastically reduces
the complexity analysis.

A. Exact Analysis

Consider a PCCC formed by an interleaver of length N and
two convolutional CC’s C; and Cs whose trellises have m
and my states, respectively.

To examine the full dynamic of the PCCC, we must consider
a hyper-trellis with my - mgo states, like the one depicted in
Fig. 7.

The state S,; of the hyper-trellis corresponds to the pair of
states s1; and $y; for the first and second constituent codes,
respectively. Each branch S;; — Sy, in the hyper-trellis
represents all paths which start from the pair of states sy,
89, and reach the pair s1,, s9; in N steps (see Fig. 8).

Thus when embedded in a PCCC using an interleaver of
length N, the constituent convolutional codes contributions to
the final codeword (or code sequence) derive from NV -truncated
versions of their input information sequences, or, equivalently,
from trellis paths of length V.

Let AS”, (W, Z) be the label of the branch S;; — S
of the hyper-trellis. It represents the IRWEEF of the equivalent
parallel concatenated block code obtdined by enumerating the
weights of all N-truncated sequences of the PCCC joining
the hyper-states S;; and S.,;. Once we know all these labels,
the performance of the PCCC can be obtained through the
standard transfer function bound approach [22] applied to the
hyper-trellis.

1 This observation, and the computing algorithms explained in the following,
refer to the case of continuous transmission and decoding. When the PCCC
is used as a block code with trellis termination, the same procedure described
for PCBC can be applied.

N sieps

Fig. 8. Associations of states and paths of the trellises of constituent codes
to states and paths of the PCCC hyper-trellis.

To derive the branch labels of the hyper-trellis we can use
the same procedure as that applied in Section III to parallel
concatenated block codes, as we have seen that each label is
indeed the IRWEF of a particular equivalent block code with
information word length equal to N.2

We start with the conditional weight enumerating functions
ASk(w, Z)? of the equivalent block codes associated with the
constituent convolutional codes. These functions enumerate all
possible paths connecting the state s with the state n in N
steps for the kth constituent encoder, k£ = 1,2, and can be
obtained from the transfer functions of the CC’s as described
in the Appendix. From them, we compute the conditional
weight enumerating functions AZJ r (w, Z) of the equivalent
parallel concatenated block codes. Owing to the properties of
the uniform interleaver, they are simply the normalized product
of AL (w,Z) with ASE (w,Z)

AT (w, Z) - AP (w, Z)

)

Then, we obtain the IRWEF from the corresponding condi-
tional weight enumerating functions through (2) and, finally,
use the transfer function approach to get an upper bound to
the bit error probability.

An example will clarify the whole procedure

Example 6: Consider the PCCC obtained by linking two
identical 2-state recursive convolutional constituent codes with
an interleaver of length N = 4. The resulting encoder structure
is depicted in Fig. 9.

First, we need to derive, using the algorithm described
in the Appendix, the four conditional WEF’s Ag(w, Z) that
enumerate all the possible paths connecting in four steps the

A?;’:m( AR (19)

2 Actually, only the label A00 Y oo(W, Z) describes a linear code containing
the all “0” word; the other labels refer to cosets .of this code. This has no
effect on the analysis. .

3For clarity, we slightly changed the notation of the conditional weight

enumerating function by inserting the COHdlthﬂlng weight w within the
parentheses. :
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TABLE 1T
CONDITIONAL WEIGHT ENUMERATING FUNCTIONS ENUMERATING ALL POSSIBLE PATHS' CONNECTING
STATE s; WITH STATE s; IN FOUR STEPS FOR THE CONSTITUENT ENCODER OF EXAMPLE 6

A(w, 2)
ij lw=0 w=1 w=2 w=3 [w=14
00 1 222+ 7°4+ 37 Z?
01 Z+72+ 723+ 2¢ 27% +27°
0 142422+ 73 27 +27°
11| 24 Z +22% 43273 VA
TABLE 1V
CONDITIONAL WEIGHT ENUMERATING FUNCTIONS LABELING THE HYPER-TRELLIS DESCRIBING THE DYNAMIC OF THE PCCC OF EXAMPLE 6
A (w,2) .
ij,mijw =0 w=1 w=2 w=3 w=4
72 1122541025 1425428
00, 00 1 9. 12 ng 4 Z4
00,01
00,10
00.11 22427343744 4254376 42274 78 47448754478
’ 1 - 4
01,00 )
3 5
01,01 74 372487 +14624+sz +378 74
01.10 Z4222437%44244325427%427 42348244478
L] 4 4
01,11
10,00
10,01 = Agflo(wv Z)
10,10 = Af{fm(w, Z)
10,11
11.00 14274322 44234324 42754 28 42248734474
9 4 4
11,01
11,10
Z2+42° 41024 4122549275
11,11 78 +42° 410 ﬁ4-12 +92%) 74
Thus the average IRWEF ACF (W, Z) of the PCCC can
be found by applying the transfer function technique to this
hyper-trellis. ) ~ o
Uniform
Interleaver B. An Accurate Approximation

Fig. 9. Parallel concatenated convolutional encoder of Example 6.

state s; with the state s; of the CC. The results are summarized
in Table III and refer to both identical CC’s.

The previous results can be used to construct, through (19),
the conditional weight enumerating functions Ai(’;f’ml
and, through (2), the labeling IRWEF Aicjf’ml(VV, Z) of the
hyper-trellis (Table IV).

The hyper-trellis describing the dynamics of this scheme
is then a 4-state trellis. The technique that leads to the
computation of the performance of this scheme is the same
as for a classic time-invariant convolutional encoder.

(w, 2)

In the preceding example, as the encoder had a very simple
structure and the interleaving length was only 4, an analytic
approach could be used to determine the exact expression of
the average performance of the scheme.

In general, for long interleavers and codes with larger
constraint lengths, the hyper-trellis is completely connected, so
that the number of branches increases with the fourth power of
the number of states (supposed to be equal) of the CC’s. Thus
although the complexity of the analysis is only related to the
CC’s and not to the interleaver length, it may become very
large. Our experience shows that this is the case for CC’s
with more than eight states.

To overcome this difficulty, we propose a much simpler
analysis. It is based on approximating the complete transfer
function of the hyper-trellis with the IRWEF AOCOF: w0(W, Z)
which labels the branch joining the zero states of the hyper-
trellis. It describes all paths which diverge from the zero states
of both CC’s and remerge into the zero states after V steps.
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Fig. 10. Comparison between exact and approximate techniques to evaluate the performance of a PCCC. The results refer to the 2-state PCCC of Example
6, with N = 2,10, 1000. Curves labeled “a” refer to the approximation, and curves labeled “b” to the exact analysis of the hyper-trellis.

o,
-

v

Fig. 11. 4-state recursive convolutional encoder.

To check the accuracy of the approximation technique, we
have used the exact and approximate analyses to estimate
the performance of the PCCC of Example 6 with different
interleaver lengths, namely N = 2,10,1000. The results are
reported in Fig. 10. For N = 2, the approxxmate ‘and exact
curves are 51gn1ﬁcantly different above 10~*. They merge
around 10~2 for N = 10, and are completely indistinguishable
for N = 1000. Actually, this behavior starts from N = 20.

In general, we have seen that the approximate method gives
accurate results when the interleaver length is significantly
larger (say, ten times) than the CC memory. For this reason,
since the results that follow refer to this situation, we will use
the approximate analysis.

Example 7: Consider a PCCC employing as constituent
codes the same 4-state recursive systematic convolutional

code with generators (5,7), free distance 5, and encoder as
shown in Fig. 11. We have constructed different PCCC’s’
through interleavers of various lengths, and passed through
the previous steps to evaluate their performance.

Upper bounds to the error probability based on the union
bound (the transfer function approach for convolutional codes)
present a divergence at low values of signal-to-noise ratio.
We have checked the influence on the performance bounds of
truncating multiple error events of the convolutional code on
the basis of their weight. Fig. 12 shows the bit error probability
of a PCCC using an interleaver of length 1024, for different-
truncation weights (25, 30, 35, 38).

Since we did not notice a convergence of the curves, we
exfended the coefficients D, defined in (4) by means of an
extrapolation based on the exponential law

Dp(z) = exp (e + fz).

where the parameters o and 3 have been obtained through a
mean-square optimization over the known values of D,,,. The
curve labeled “extended” in the figure has been obtained in
this way. The D,, profile for this code is shown in Fig. 13,
together with the curve obtained through extrapolation. The
“artificial” decrease in the multiplicities of D,, for large m
due to the truncation can be seen from the figure, together with
the accuracy of the extrapolation which. allows us to include
the multiplicities for larger values of m.

The accuracy of the extension procedure has been checked
by simulation. For CC’s with no more than eight states, it
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Fig. 12. Influence of the truncation of multiple errors based on their Hamming weight on the performance bound.

TABLE V
COEFFICIENTS D,;, FOR THE EVALUATION OF THE BIT ERROR PROBABILITY OF
THE PCCC or ExampLE 7 wiTH INTERLEAVERS LENGTHS 100, 1000, 100600

Hamming N
distance 100 1000 10000
8 3.8900E-02 | 3.9881E-03 | 3.9988E-04
9 7.6590E-02 | 7.9605E-03 | 7.9960E-04
10 0.1136 { 1.1918E-02 | 1.1991E-03
11 0.1508 | 1.5861E-02 | 1.5985E-03
12 0.1986 | 1.9887E-02 | 1.9987E-03
13 0.2756 | 2.4188E-02 | 2.4017E-03
14 0.4079 | 2.9048E-02 | 2.8102E-03
15 0.6292 | 3.4846E-02 | 3.2281E-03
16 1.197 | 6.5768E-02 | 6.0575E-03
17 2.359 0.1457 | 1.3697E-02
18 4.383 0.2984 | 2.8543E-02
19 7.599 0.5472 | 5.2989E-02
20 12.58 0.9171 | 8.9441E-02
21 20.46 1.437 0.1403
22 33.31 2.144 0.2082
23 © 54.65 3.090 0.2957
24 91.23 4.465 0.4177
25 154.9 6.716 0.6133
26 265.5 10.67 0.9577
27 455.6 17.65 1.574
28 779.0 29.61 2.646
29 1327. 49.31 4.430
30 2257. 80.57 7.267
31 3842. 128.6 11.60
32 6556. 201.3 18.04
33 11221 311.5 27.57
34 19261 481.2 41.88
35 33143 748.8 63.94

permits precise estimation of the bound divergence, and will
be used in the following to obtain error probability bounds.

We notice, in any case, that all curves merge at a bit error
probability around 10~* and stay together from there on.

Let us consider now the performance of different PCCC’s
when varying interleaver length. In Table V the coefficients
D,,, needed for the evaluation of the bit error probability of
the resulting PCCC for N = 100, 1000, 10000 are reported.
The effect of longer interleavers is apparent from the table.

* Namely, the multiplicity of the terms which dominate the

performance (those with lower Hamming weights) decreases,
when N increases, approximately as 1/N. As to the free
distance, it has increased from 5 (the CC’s) to 8.

Finally, in Fig. 14 we present the bit error probabilities of
different PCCC’s employing the same CC with interleavers
of different lengths and, for comparison, the curve of the
CC. Gains beyond 4 dB are achievable. The curves in the
figure have been extended down to very low values of bit
error probability, to show the progressive narrowing of the
gap between the curves with different interleaver lengths. This
is due to the fact that the free distance of the PCCC’s is the
same, and thus the curve will eventually merge at high values
of signal-to-noise ratio. The curves also show the decrease

" by a factor 10 of the bit error probability for a factor 10

increase of the interleaver length, as anticipated from the table
of coefficients (Table V). o

V. COMPARISON BETWEEN ANALYTICAL UPPER BOUNDS ON
ML AVERAGE PERFORMANCE AND SIMULATION RESULTS

We deal here with questions 2, 3, and 5 raised in the
Introduction.
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Fig. 13. Profile of the coefficients Dy, of the code of Example 7 and its extrapolation (N = 100).
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Fig. 14.  Average upper bounds to the bit error probability for the PCCC of Example 7 with uniform interleavers of lengths 100, 1000, 10000.

A. The Role of Constituent. Codes

We have seen previously that increasing the interleaver
length for given CC’s lead to noticeable improvements in

performance for a wide range of bit error probabilities, even
though asymptotically the performance of the PCCC with uni--
form interleaver are independent from the interleaver length.
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Fig. 15.

Average upper bounds to the bit error probability for a PCCC using as CC’s two recursive convolutional encoders with 2,4,8, and 16 states and

uniform interleavers of length N = 100 (continuous curves) and N = 1000 (dashed curves).

Let us now consider a uniform interleaver with two lengths

N =100 and N = 1000 as the building block of PCCC’s em-
ploying CC’s of different constraint length. We will examine
the case of rate 1/3 CC’s with constraint lengths 2,3, 4,5 and

delay must be kept low, in the sense that interleaver length
(and thus delay) can be traded with CC’s complexity. As an
example, the PCCC based on 8-state codes with N = 100 has

the following generating matrices:

.1

_MTD]

[1 1+D+D2J
14+ D?

r 1+D+D2+D3]

2 —

3 —

4 —

|7 1+D+D3
{1 1+D+D2+D4]
T 1+D3+ Dt |
[ 1+ D* *
I ’1+D+D2+D3+D4J ’

5—

For the case of constraint length 5 we have examined two
codes: the first uses as denominator of the generating matrix
a primitive polynomial, whereas the second (marked with the
asterisk) is the one used in the simulation of [3].

Their performance is shown in Fig. 15. Continuous curves
refer to the interleaver length 100, while dashed curves are for
N = 1000. A few comments seem appropriate. At low bit error
probabilities, say 1077, the coding gain yielded by increasing

the complexity of the CC’s is rather large, namely around 6
dB passing from 2 states to 16 states for both length NV = 100
and N = 1000. This can help in those situations where

better performance than the PCCC based on 4-state codes with
N = 1000, yet reduces the delay. Similar considerations can
be developed for higher values of the bit error probability. A
comparison between the two 16-state codes show that the code
used in [5] (curves marked with an asterisk) is sensibly worse
than the one we propose employing a primitive polynomial.
Apart from the effect of the constraint length of constituent

codes, there are-also important effects due to the choice of the
CC’s for a given constraint length. This “optimization” of the
constituent codes is dealt with in a companion paper [26).

B. Maximum-Likelihood and Suboptimal Iterative Decoding

The upper bound (6) is known to be tight for values of the bit
error probabilities lower than 1073 — 10~%, Tt represents then
a good estimate of the average performance of the ML soft
decoding of PCC. On the other hand, the practical importance
of turbo codes resides in the availability of a simple suboptimal
iterative decoding algorithm. To compare its performance with
those of ML decoding, we have simulated iterative decoding
using a “log-map” soft-output algorithm* applied to the PCCC
employing two 4-state CC’s described in Example 7. The
results are reported in Figs. 16 and 17, for N = 100 and

4This algorithm, a variation on the theme of soft output algorithms like the

MAP algorithm described by Bahl [11] and the SOVA algorithm of [14], is
described in [27].

421
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Fig. 16. Comparison between the average upper bound and simulation results for the 4-states rate 1/3 PCCC of Example 7 with interleaving length
N = 100. The dashed curve refers to the analytical bound, whereas continuous curves represent simulation results obtained with increasing number

of iterations Ny = 1,2,3,4,5.

N = 1000, respectively. In the figures, the dashed curves
refer to the bound, whereas the continuous curves show the
simulation results obtained with an increasing number of
iterations, Ny = 1,2,3,4,5 for N =100 and Ny = 1,---,10
for N = 1000.

For the simulations, we have used interleavers chosen
at random from the set of all permutations. The results
were almost independent from the interleaver choice for error
probabilities down to 1072, whereas they started to slightly
diverge for lower values, owing to the different values of
the free distance yielded by different interleavers. This sheds
some light on question 3 of the Introduction, showing that the
choice of the interleaver is not critical, as long as one avoids
obvious “bad” choices like the replicating interleaver (the one
which replicates the input sequence), for medium-high values
of the bit error probabilities. A more careful choice yielding
higher free distances can pay off for lower values of the error
probability.

The results also show that the performance obtained with the
uniform interleaver are indeed very close to those obtainable
with a practical appropriately chosen interleaver. Also, the
convergence of the simulated curves to the ML bound for
increasing number of iterations gives a heuristic evidence of
the asymptotic optimality of the iterative decoding procedure.
This is particularly evident in Fig. 17, where the simulated
curves for an increasing number of iterations progressively
conform to the ML performance bound.

Finally, it is confirmed that approaching the ML perfor-
mance requires an increasing number of iterations for low
values of the signal-to-noise ratio; four iterations are enough
at Py(e) = 1075 — 107°, whereas we need 8-10 at Py(e) =
1073 — 107*.

VI. RECURSIVE AND NONRECURSIVE
CONSTITUENT ENCODERS

In this section, we deal with question 4-of the Introduction;
namely, the role played by recursive systematic convolutional
encoders as constituent codes (CC) of the PCCC. Through
the analytical upper-bounding technique, we will show that
turbo codes do require recursive convolutional encoders to
work properly, and that this is a distinctive feature of turbo
codes, in the sense that, when considered alone, systematic re-
cursive (SR) and systematic nonrecursive (SNR) convolutional
encoders have very similar performance.

Consider a rate 1/3 PCCC employing as CC’s two rate 1/2
convolutional codes with constraint length 2 whose encoders
are shown in Fig. 18. Both are systematic codes’, the first one
(Fig. 18(a)) is recursive while the second (Fig. 18(b)) is not.
They have the same transfer function and thus the same error

S Using systematic codes is not strictly required; however, it simpliﬁes the
decoder and has no effects on attainable performance, so that we will limit
ourselves to them.
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Fig. 18. Two-state recursive (a) and nonrecursive (b) encoders.

event probability.® The bit error probability depends on the
input—output correspondence of the encoders, and thus is not
the same, although the difference is small. Moreover, in this
gase, as Fig. 19 shows,’ the systematic nonrecursive encoder
behaves better than the recursive one for £y /Ny larger than
1 dB.

We now take sequences of length 100 from both CC’s,
and compute their conditional weight enumerating functions
A§y(w, Z) for weights of the input sequences up to 10. The
results are plotted in Figs. 20 and 21, for the recursive and

6 Actually, this simple case is one of the very few where we can find two
eyuivalent codes, one SR and the other SNR, with the same number of states.

"In [20] the authots claim that RS convolutional encoders yield significantly
lower error probabilities than SNR codes, even when they have the same
transfer function, the key fact being the inapplicability of the Viterbi algorithm
for decoding and of the transfer function bound for performance evaluation.
To check their conclusions, we have obtained the curve of Fig. 19 using both

the transfer function approach and an equivalent block code with very large
block size, up to N = 1000. '

nonrecursive CC, respectively. The differences are apparent.
For each weight of the input sequence, the redundancy weights
generated by the input sequences of the SR CC span a broad
range with a rather uniform multiplicity, while, for the SNR
CC the input sequences with small weight generate a small
set of redundant weights of low value. These are responsible,
after the convolution with themselves which leads to the labels
of the branches of the hyper-trellis of the PCCC, for the poor
behavior of the concatenated scheme, as will be seen soon.
We notice also that, for SNR CC, information sequences with
weight w = 1 generate error events of finite weight, while, for
SR CC, error events start with w = 2. This will be proved to
be crucial in Section VI-A.

Using the exact bounding technique described in Section
IV-B, based on the complete hyper-trellis of the PCCC, we
have computed the bit error probabilities for the two types
of CC’s. The results are reported in Fig. 22 for both schemes
employing the SNR code as well as the SR code as CC’s. The
curves show the bit error probability versus the signal-to-noise
ratio for different interleaver lengths.

Curve “A” of Fig. 22 corresponds to the uncoded binary
PSK which is reported for reference. Curves “B” and “C” refer
to the SNR CC: curve “B” represents the performance of the
PCCC obtained by simply duplicating the redundant bit of the
CC, while curve “C” derives from the use of an interleaver of
length 1000. The results show that the differences with N are
marginal (less than half a decibel), and limited to a short range
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Fig. 21. Coefficients of the conditional weight enumerating functions A§j,(w, Z) for the systematic nonrecursive encoder (N = 100).

of error probabilities. In fact, the curves practically merge
below 1077,

A completely different behavior for the SR CC is offered
by curves “D” and “E,” referring to the same situations as
the previous curves “B” and “C.” Here, in fact, we notice a
significant improvement for N = 1000, yielding a gain of 3
-dB at 1075, Also in this case the curves will merge (being free-
distance-independent from NN for the uniform interleaver), but
this will happen at very low values of the bit error probabilities.

Interestingly enough, for NV = 1 (compare curves “B” and
“D”) the SNR-based PCCC improves over the SR one. This is
due to the fact that the same free distance of both rate 1/2 CC’s
(recursive and not) is obtained from different contributions of
the input and redundant bits, so that duplicating the redundant
bits leads to a larger free distance of the SNR-based PCCC.
The hierarchy is completely reversed for N = 1000.

A. An Approximate Analytical Explanation

We have seen earlier that recursive constituent encoders
do play a fundamental role in PCCC’s, and that this is due
to the interleaving gain they yield because of the uniform
spread of the weight distributions corresponding to low-weight
information sequences. We will give here a simple heuristic
explanation of this fact, which illuminates the most important
parameters of the CC’s in determining the PCCC perfor-
mance.® A more detailed and accurate analytical explanation

8We ought to mention that Dave Forney came to the same conclusions
shown hereafter after reading a first version of this manuscript, where they
did not show up clearly. The line of thought in this subsection follows closely
his comments.

can be found in [26], where the attention is focused on the
optimal design of PCCC with respect to the constituent codes.

Consider a PCCC with an interleaver of length N and two
identical convolutional constituent codes C'. Let an error event
of C have weight m = w + j, where w is the number of
information bit errors and j the number of redundant bit errors
and call wy,;, the minimum w in any finite-weight error event,
and N, the number of error events with wy,;, information
errors and lowest weight

Mmin = rnjin[wmin + J]

per unit time in C.
The number of possible information error events of weight
Wmin contained in an interleaver of length N is

(o)

so that the probability under uniform interleaving that the
information errors are associated with the lowest weight 7m0
error event is

Nmin -N

where the last expression holds for large values of N.
Equation (20) shows that the interleaver gain in the error
coefficient is proportional to N1~%min and, consequently, that
this parameter wp,;, is indeed a key design parameter of the
CC’s. Now, it is easy to see that wp;, is equal to 2 for all
recursive convolutional encoders, which yields the interleaver

1—Wmin
~ Nmin . wmin! N

(20)
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Fig. 22. Bit error probabilities comparison between PCCC using SR and SNR CC’s.

gain increase 1/N noted in Example 7, and that it is equal
to 1 for nonrecursive encoders, which explains the results of
Fig. 22 being almost independent from N. It is worthwhile
mentioning that wy,;, is also equal to 1 for block codes, which
explains the lower gain obtained with PCBC’s of Section IL
To quote Dave Forney’ “Turbo codes seem to turn the
conventional design principles on their head; they make error
coefficients more important than minimum distance !” Indeed,
the main CC’s design parameters to optimize a PCCC for a
given interleaver length are wpin and myin, and the last can
also be significantly larger than the free distance of the code.

VII. PROSPECTS OF RESEARCH

There are several important open questions and topics for
future research, including those in the following list.

1) We have shown through examples that the iterative
soft-output decoding scheme employed by turbo codes
approaches the ML performance bound for increasing
number of iterations. An important theoretical question
concerns the convergence of the suboptimal algorithm
to the ML decoding. Does it converge ? Under what
conditions ?

2) We have shown in some cases that a reasonable choice
of the interleaver leads to. performance close to the
average, and that the interleaver choice is not critical,
as opposed to its length, which is indeed the main
reason for the good performance of PCC’s. However,
the interleaver plays a role in determining the free
(or minimum) distance of the PCC, and, consequently,
the asymptotic performance of the code. Constructive
algorithms to find “good” interleavers of a given length,

9 Private communication.

3)

4)

5)

6)

7

as well as theoretical results on limits to the achievable
free distance for a given interleaver length and CC’s
would be important, especially for PCCC’s employing
short interleavers. A few, very preliminary steps in this
directions have been taken in [17], [19], [25], [28] using
“cut-and-try” approaches. v ~
For some applications, a short decoding delay is a must.
In these cases, the best compromise between interleaver
length and CC’s complexity certainly deserves attention,
as does the optimization of the CC’s based on the new
principles outlined in Section VI-A. ;

Several iterative decoding algorithms have already been
proposed. A comparison of them, as well as the search
for new ones aiming at reducing the number of iterations
(and consequently delay) required would be an important
achievement.

We have proposed here a bounding technique valid for
both block and convolutional PCC’s. While simple and
good iterative soft-decoding algorithms for PCCC have
been proposed and implemented, the same is not true
for PCBC’s. A first solution for the particular case of
product block codes has been proposed recently in [10].
However, a complexity analysis is still missing, and
other alternatives need to be explored. »

In' certain applications, bandwidth efficiency is required,
and the best compromise between coding gain and
bandwidth efficiency found so far is trellis-coded mod-
ylation. A pragmatic approach to /joint turbo coding
and modulation was presented in [8], with promising
results. A satisfactory approach to overall optimization
as available for TCM is nevertheless still to come.

It is a common belief that the performance of PCC
degrade significantly if one tries to increase the rate, This
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conclusion is based on simulation of PCC employing
punctured CC’s. Other solutions should be tried, such
as using higher rate CC’s. The analytical tools presented
here give a way to analyze them.

8) We already mentioned that the interleaver inherently
present in the coding scheme might prove beneficial for
channels affected by fading. Some results obtained by
simulation in this direction are contained in [8]. Ex-
tension of the analytical bounding technique presented
here for AWGN channels to fading channels would be
important for both analysis and design purposes.

VIII. CONCLUSIONS

We have proposed for the first time a method to evaluate
the bit error probability of a parallel concatenated coding
scheme independently from the interleaver used. Crucial was
the introduction of a probabilistic interleaver called uniform
interleaver which permits an easy derivation of the weight
enumerating function of the parallel concatenated code starting
from the weight enumerating functions of the constituent
codes. The two cases of parallel concatenated block codes and
parallel concatenated convolutional codes were considered.
This analytical bounding technique was then used extensively
to clarify some relevant aspects of this mterestlng and promis-
ing coding technique.

APPENDIX
EVALUATION OF THE CONDITIONAL WEIGHT ENUMERATING
FUNCTION AS(Z) OF THE EQUIVALENT BLOCK CODE

In this Appendix we show how to compute the conditional
weight enumerating function AS, (w, Z) which describes the
equivalent block code obtained as the set of sequences of the
constituent code (CC) C leading to the CC trellis from state
ss to state s, in IV steps. For simplicity, we will only show
the derivation of AS,(w, Z), which will be called AC(Z) for
brevity.

We corsider then for each constituent convolutional code
an equivalent block code whose trellis representation is the
truncation at step IV of the trellis of the convolutional code,
and whose codewords lead the trellis into the identity state at
step V. Our goal is to derive the IRWEEF of such a block code,
starting from the knowledge of a suitably defined error events
enumerating function of the convolutional code.

With -such a definition, the number of codewords of the
equivalent block code can be very large, but not infinite as for
the convolutional code, so that a short closed-form expression
for its IRWEF does not exist. For this reason, we will use an
algorithmic approach that allows the evaluation of the most
significant terms of the IRWEF.

Let us consider Fig. 23. By our previous hypotheses on the
block code which approximates the constituent convolutional
code, any codeword belonging to the block code is obtainable
by combining the set of error events of the convolutional code
with suitable sequences of “0” so that the total length equals
N.

As an example, a single error event of length / smaller than
N produces all codewords with N — [ zeros positioned before
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Fig. 23. How to obtain codewords of the equivalent block code from error

events of the convolutional code.

and after the error event. All these codewords share the same
input and redundancy weight, so that they can be grouped
together. The multiplicity K[l,1] of the block codewords
produced from this single error event in the IRWEF of the
block code equals the number of partitions of N — [ into two

numbers:
K[i,1] = (N‘ll“) =N-I+L

Similarly, a single pair of error events with total length
| produces all the codewords with zeros before, after, and
between the two error events. Thus the multiplicity K([l, 2] of
the codewords produced from this single pair in the IRWEF
of the block code equals the number of partitions of N — I
into three numbers

K[1,2] = (N ;21+2).

Proceeding this way, one can obtain the general expres-
sion for the multiplicity of codewords produced by a single
combination of n error events with total length [

K[l,n] = (N‘7i+").

Let T¢(W, Z, L, Q) be the transfer function of the convo-
lutional code which enumerates all paths in the trellis leaving
the zero state -at step 1, and remerging into the zero state
at or before step N, with possible remerging into the zero
state at other steps in between, subject to the constraint that,
after remerging, they leave the zero state immediately -at the
successive step!®

TCW,Z,L,2) = Y Tijm, WiZILmOn

,],m n

@n

where T; j m,n is the number of paths in the trellis produced
by an input sequence of weight ¢, with weight of the redundant
bits equal to , length m, and n remergings with the zero state
(and hence concatenating n error events).

As for the case of block codes, we define the conditional
transfer function TS (Z, L, Q) as

> TujmnZ? L™

Jym,m

TS(%,L,Q) = (22)

Passing now to the codewords of the equivalent block code, we
notice that each path of length m and number of remergings n

10Examples of these concatenations of single error events were shown in
Fig. 23.
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belonging to TS (Z, L, ) gives rise to K[m,n] codewords
with the same input and redundancy weights, so that the
* conditional IRWEF. AS(Z) of the equivalent block code can
be obtained as

49(2) = 3 Ay 7 @3)

J
with

ZK[mn

An efficient algorithm able to compute the most significant
terms'! of the transfer function 7 (W, Z, L,§)) has been
implemented, elaborating on the algorithm described in [29] to
evaluate the transfer function of a convolutional code, and then
yielding as output the conditional IRWEF of the equivalent
block code.

w,J,m,ne
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