
On quasi-
y
li
 interleavers for parallel turbo 
odes �Joseph J. Boutros and Gilles Z�emor yNovember 29, 2005Abstra
tWe present an interleaving s
heme that yields quasi-
y
li
 turbo 
odes. We provethat randomly 
hosen members of this family yield with probability almost 1 turbo
odes with asymptoti
ally optimum minimum distan
e, i.e. growing as a logarithmof the interleaver size. These interleavers are also very pra
ti
al in terms of memoryrequirements and their de
oding error probabilities for small blo
k lengths 
omparefavorably with previous interleaving s
hemes.Index Terms: quasi-
y
li
 
odes, 
onvolutional 
odes, turbo 
odes, minimum distan
e,iterative de
oding.1 Introdu
tionIt is now well known that the behaviour of turbo 
odes, although very powerful under highnoise, exhibits an error 
oor phenomenon that 
an be explained by poor minimum distan
eproperties. More spe
i�
ally, it 
an be shown that for randomly 
hosen interleavers, theexpe
ted minimum distan
e of a 
lassi
al two-level turbo 
ode remains 
onstant [21℄[19℄,i.e. does not grow with blo
k length. Can the error 
oor behaviour of turbo 
odes beimproved by designing the interleaver in a way that di�ers from pure random 
hoi
e ?This question has been addressed by many authors and the answer has been shownto be aÆrmative. Two types of approa
hes have been used in trying to �nd improvedinterleavers: the �rst tries to modify as little as possible a randomly 
hosen interleaverby 
ombinatorially avoiding 
on�gurations that yield small-weight 
odewords. This is inprin
iple manageable sin
e the expe
ted number of 
odewords of 
onstant weight in aturbo 
ode remains 
onstant (does not grow with blo
k length). Indeed, this approa
h hasmet with signi�
ant su

ess: perhaps the most widely known design of this type is the S-random interleaver [13℄, that fo
uses on eliminating 
odewords of low weight 
orresponding�Presented in part at the 2004 IEEE International Symposium on Information Theory, Chi
ago, Illinois,USA.yJ.J. Boutros and G. Z�emor are with �E
ole Nationale Sup�erieure des T�el�e
ommuni
ations, 46 rueBarrault, 75634 Paris 13, Fran
e. Email: fboutros,zemorg�enst.fr1



to information sequen
es of weight 2. A more re
ent s
heme of Truha
hev et al. [30℄ weedsout all small-weight turbo-
odewords in a way that is reminis
ent of Gallager's methodof ex
luding small 
y
les when 
onstru
ting the parity-
he
k matrix of an LDPC 
ode,see also [3℄ for a similar result. They obtain turbo 
odes whose minimum distan
e growsproportionally to logN where N denotes the interleaver size. This asymptoti
 result isessentially the best possible sin
e it was shown by Breiling [8℄ that D= logN must beupper bounded by a 
onstant, where D and N denote respe
tively the minimum distan
eand interleaver size of the turbo 
ode.The se
ond approa
h tries to �nd interleavers with stru
ture, in parti
ular algebrai
stru
ture, rather than mimi
 random 
hoi
e. Besides enhan
ed performan
e, an additionalmotivation is to have a permutation with a short des
ription that will save on the memoryrequired to store the interleaver 
onne
tions. With this last feature in mind, a parti
ularlypromising family of interleavers was proposed by Tanner in [29℄ and 
onsists of quasi-
y
li
permutations that yield quasi-
y
li
 turbo 
odes. En
ouraging simulation results for thesimpler RA 
odes were obtained in [28℄, hinting at good minimum distan
e properties ofquasi-
y
li
 turbo-like 
odes. To quote from the 
on
lusion of [29℄:\We 
onje
ture that the 
lass of quasi-
y
li
 permutations that will 
reate quasi-
y
li
turbo 
odes is ri
h, ri
h enough to 
ontain 
odes that will perform as well or better thanrandom interleavers."In the present work we take up this 
hallenge and study random quasi-
y
li
 per-mutations. Our approa
h borrows from both the unstru
tured, almost random, and thealgebrai
, stru
tured, design strategies: our interleavers have stru
ture, and the inherentadvantageous storage properties, and yet involve a 
ertain amount of random 
hoi
e. Ourmain result is to show that the typi
al minimum distan
e of the asso
iated turbo 
odegrows linearly with logN , i.e. has optimal growth, thus justifying Tanner's 
onje
ture.Furthermore, for moderate lengths these interleavers turn out to be not only pra
ti
al, butvery eÆ
ient, 
omparing favorably with random, S-random, and all known interleavers ina number of instan
es.The paper is organized as follows. In se
tion 2 we give a short summary of previouswork on interleaver design. In se
tion 3 we des
ribe our family of quasi-
y
li
 interleavers.Se
tion 4 is devoted to proving that a randomly 
hosen interleaver from this family willhave asymptoti
ally optimal minimum distan
e with high probability (Theorem 9). Se
tion5 gives experimental results for short lengths (N = 400 and N = 1600).2 Previous work on interleaver designClassi
al 
hannel 
oding systems using a serial 
on
atenation of Reed-Solomon 
odes andbinary 
onvolutional 
odes in
lude a matrix interleaver (also 
alled blo
k interleaver) whi
henables one to split the error bursts generated by the Viterbi de
oder before applying analgebrai
 Berlekamp-Massey de
oding [7℄[20℄. The early resear
h on interleavers for digital
ommuni
ations has been pre
eded by the invention of burst-error-
orre
ting 
y
li
 andburst-error-
orre
ting 
onvolutional 
odes [22℄. Although the low density parity 
he
k2




odes developed by R. Gallager [16℄ integrated random interleaving of the parity-
he
kmatrix 
olumns, no serious study on interleavers was known until the work by Ramseyon optimum interleavers for in�nite length sequen
es [24℄. For example, a type I Ramseyinterleaver guarantees an input separation n1 and an output separation n2 with a minimumdelay equal to n2(n1�1), where n1 and n2 are two positive integers satisfying n2 < n1 < 2n2,n1 and n2 + 1 are relatively prime.The separation guaranteed by Ramsey interleavers has been named spreading afterthe invention of parallel turbo 
odes based on binary systemati
 re
ursive 
onvolutional
onstituents [5℄[6℄. Finite length interleavers or permutations designed for parallel turbo
odes have been extensively studied during the last de
ade. The amount of publi
ationson the subje
t ranges in the hundreds and 
annot be listed here in full. The followingsele
tion of interleaver families is an attempt to give a meaningful pi
ture of the stateof resear
h and to summarize the main te
hniques. As mentioned earlier they 
an be
rudely partitioned into two 
ategories: mostly random interleavers with a weak stru
ture,requiring an exhaustive des
ription of the permutation, or strongly stru
tured with shortrepresentations.� Purely random interleavers.These interleavers are built from permutations on N integers sele
ted at random.Here, N denotes the interleaver size. The original turbo 
odes (N = 65536 bits) weredesigned with purely random interleavers. Without any interleaver optimization, theerror rate performan
e of parallel turbo 
odes 
an be enhan
ed via primitive feedba
kpolynomials in the turbo 
ode 
onvolutional 
onstituents [4℄.� Random interleavers with a weak deterministi
 stru
ture.This family in
ludes the S-random or spread interleaver proposed by Divsalar andPollara [13℄. The S-random interleaver � is 
onstru
ted at random, it must satisfy the
onstraint j�(i)� �(j)j > S for all ji� jj < S, where the maximal theoreti
al valueof the spread S is pN . High spread random (HSR) interleavers proposed by Crozier[11℄ belong to this family. They rely on the maximization of the spread S = minfji�jj + j�(i)� �(j)jg (also de�ned in [2℄ for arithmeti
 and random interleavers). Thespread of HSR interleavers is upper bounded by p2N . The permutation des
ribed byTruha
hev et.al. [30℄ that guarantees an asymptoti
ally optimal minimum distan
eis mostly random with a weak deterministi
 stru
ture.� Deterministi
 algebrai
/arithmeti
 interleavers.Many algebrai
 permutations have been suggested or spe
i�
ally developed for par-allel turbo 
odes. In spite of (or perhaps be
ause of) their very low memory, theytend to exhibit intermediate or poor error rate performan
e. A short sele
tion 
on-sists of the interleavers des
ribed by Berrou and Glavieux [6℄, by Andrews et.al. [2℄,Sadjadpour et.al. [25℄, Bravo and Kumar [9℄. The Relative Prime and the Golden3



interleavers des
ribed by Crozier et.al. [10℄ belong to this family of deterministi
 in-terleavers. More re
ently, good interleavers based on permutation polynomials havebeen proposed by Sun and Takeshita [27℄.� Deterministi
 interleavers with a weak random stru
ture.We mention two types of deterministi
 interleavers where randomness has been addedin order to unbalan
e somewhat the algebrai
 stru
ture. Dithered golden interleavers[10℄ and dithered relative prime (DRP) interleavers [12℄. DRP interleavers exhibitex
ellent error rate performan
e. They are obtained in 3 steps: 1- appli
ation of asmall permutation (input dithering) to the interleaver input, e.g., a size 8 permutationapplied N=8 times, 2- a relative prime permutation j = s + ip, where j is the readposition, i is the write position, s is a shift and p is prime relative to N , 3- an outputdithering similar to the input one.� Interleavers from the graphi
al stru
ture of 
odes.Cayley-Katz graphs with large girth have been used to design Generalized Low Den-sity (GLD) 
odes with binary BCH 
onstituents [23℄. Similar appli
ation was madeby Vontobel [31℄ to design turbo 
ode interleavers from large girth graphs. Inter-leavers based on large girth graphs are all deterministi
. Yu et.al. [32℄ also designedgood interleavers by looking at the loop distribution in the turbo 
ode stru
ture.Su
h interleavers are random with a weak deterministi
 stru
ture.� Interleavers by other 
riteria.Abbasfar and Yao [1℄ re
ently proposed good interleavers that eliminate 
odewordswith Hamming weight less than a 
ertain distan
e. The 
onstru
tion algorithm isbased on a two dimensional representation of the permutation. This representa-tion previously inspired Crozier [11℄ in his design of dithered-diagonal interleavers.The interleaver design by distan
e spe
trum shaping 
an be 
lassi�ed in the 
lassof random interleavers with a weak deterministi
 stru
ture. Finally, we mention theinterleavers designed by Hokfelt et.al. [18℄ via the minimization of the 
orrelationbetween extrinsi
 informations under iterative de
oding.The bi-dimensional quasi-
y
li
 interleaver des
ribed in the next se
tion 
ombines ran-domness and determinism in an almost equal manner. When designed from a squarematrix, its quasi-
y
li
ity period is pN , meaning that a set of 2pN integers is needed tosave the bi-dimensional interleaver into memory, rather than the N integers needed for apurely random permutation.3 Bi-dimensional, or quasi-
y
li
 interleaversFor simpli
ity, we restri
t ourselves to the 
lassi
al turbo 
ode 
onstru
tion with a �xed
onstituent 
onvolutional 
ode C0 of rate R0 = 1=2. The turbo en
oder takes an infor-mation sequen
e s of N bits, produ
es a �rst sequen
e of N 
he
k bits by submitting4



� = �0 1 2 3 43 2 0 4 1� X0 = 0; X1 = 3; X2 = 4; X3 = 2; X4 = 1:266664 0 1 2 3 45 6 7 8 910 11 12 13 1415 16 17 18 1920 21 22 23 24
377775 266664 3 2 0 4 18 7 5 9 613 12 10 14 1118 17 15 19 1623 22 20 24 21

377775 266664 3 12 5 19 218 17 10 24 113 22 15 4 618 2 20 9 1123 7 0 14 16
377775A B C(�(0); �(1); �(2); : : : ; �(24)) =(3; 12; 5; 19; 21; 8; 17; 10; 24; 1; 13; 22; 15; 4; 6; 18; 2; 20; 9; 11; 23; 7; 0; 14; 16):Figure 1: Example: 
onstru
tion of �, N = 25, n1 = n2 = 5: Write 0; 1; : : : ; N � 1 in asquare array A, apply � to permute 
olumns, giving B, and rotate 
olumn j 
y
li
ally, byXj mod 5, giving array C. Read o� the rows to get �(0); �(1); �(2); : : :.s = s0; s1; : : : sN�1 to an en
oder for C0, and a se
ond sequen
e of a further N 
he
k bitsby submitting a permuted version s�(0); s�(1); : : : ; s�(N�1); of s to the en
oder for C0. Theoverall turbo 
ode rate is R = 1=3 and the interleaver is the permutation � on the orderedset of information 
oordinates N = f0; 1; : : : ; N � 1g.There will be a 2-dimensional stru
ture inherent to our 
hoi
e of permutation �, there-fore we shall restri
t ourselves to the 
ase when N = n1 � n2 is a 
omposite integer.Let � be a permutation on N = f0; 1; : : : ; N � 1g de�ned as follows. For any (i; j) 2f0; 1; : : : ; n1 � 1g � f0; 1; : : : ; n2 � 1g de�ne the fun
tion� : f0; 1; : : : ; n1 � 1g � f0; 1; : : : ; n2 � 1g ! N(i; j) 7! i� n2 + jLet � be a permutation of f0; 1; : : : ; n2 � 1g and let (Xj)j=0:::n2�1 be a family of integersmod n1. De�ne the permutation � on f0; 1; : : : ; n1 � 1g � f0; 1; : : : ; n2 � 1g by�(i; j) = (i+Xj mod n1; �(j)):Finally de�ne the permutation � = ����1 on the set N. A small example is given inFigure 1.The quasi-
y
li
 nature of the permutation � just de�ned is stressed in the followingLemma, a dire
t 
onsequen
e of the de�nition.Lemma 1 A permutation � belonging to the 
lass de�ned above satis�es, for any x; x0 2 Nsu
h that x0 = x+ n2 mod N , �(x0) = �(x) + n2 mod N:5



If we make the trellis of the 
onstituent 
onvolutional 
ode tail-biting, and if we writethe 
he
k bits of the turbo 
ode in the proper order, we obtain a quasi-
y
li
 turbo 
ode[29℄. For this reason, permutations of the above type will be 
alled (n1; n2)-quasi-
y
li
 (orsimply quasi-
y
li
).We shall take instan
es of (n1; n2)-quasi-
y
li
 permutations � by 
hoosing the permu-tation � randomly, with uniform distribution, among permutations of f0; 1; : : : ; n2 � 1g,and by 
hoosing the Xi; i = 0 : : : n2 � 1 randomly, with uniform distribution, among theset of integers mod n1. We 
hoose the Xi to be independent of ea
h other and of �. Thisis a way of 
hoosing � uniformly in the 
lass of (n1; n2)-quasi-
y
li
 permutations.As a �rst 
omment, we may note that � has quite a lot more stru
ture than a totallyrandom permutation. A 
ertain amount of randomness remains however; to quantify itsomewhat, suppose for example that n1 = n2 = n = pN (we shall see experimentally inse
tion 5 that n1 = n2 is a good 
hoi
e), we see that � is de�ned by logn! + n logn �pN logN random bits as opposed to theN logN bits that de�ne an otherwise unstru
turedpermutation.Our strategy will be probabilisti
, i.e. we will estimate the probability that the per-mutation � produ
es turbo 
ode words of small weight w << logN and show that thisprobability must be vanishingly small. Interestingly, over all permutations �, the expe
tednumber of turbo 
odewords of small weight w does not vanish with N . This is be
ause ofan all-or-nothing phenomenon. Permutations of the above type produ
e either no turbo
odewords of small weight, or relatively many (at least n = pN).4 Minimum distan
e analysisFor any two integers x and y of N let us denote by d(x; y) the 
ir
ular distan
e betweenx and y, i.e. the smallest non-negative integer d su
h that x + d = y mod N or x � d =y mod N . Let us draw an edge between x and y whenever d(x; y) = 1, giving N a 
ir
ularstru
ture: by an interval of N we shall mean a sub-path of N.Let s = s0; : : : ; sN�1 be an information sequen
e, and let v � N be the support of s.The information sequen
e s generates a path in the (tail-biting) trellis of the 
onvolutional
ode C0. Consider the partition N = Z [ T where Z is de�ned as the set of 
oordinatesi for whi
h the path asso
iated to s goes from the zero state to the zero state. For everyi 2 Z we have si = 0 and the 
orresponding 
he
k bit is also 0. The 
omplement T ofZ is a union of intervals T = [a1; b1℄ [ [a2; b2℄ [ : : : [ [am; bm℄. The intervals [aj; bj℄ aresometimes 
alled simple trellis paths, or simple error events in the 
onvolutional 
odingterminology. The trellis of a re
ursive 
onvolutional 
ode has the property that the zerostate 
an only be left at time t if st = 1 and it 
an only be rea
hed from a nonzero stateat time t if st = 1. This means that v � T and every interval [aj; bj℄; j = 1 : : :m startsand ends with an element of the support v of s. A re
ursive 
onvolutional 
ode also hasthe property of outputting a steady stream of non-zero symbols during the time it goesthrough a simple trellis path, i.e. during the time it is fed the information bits st fort 2 [aj; bj℄. In other words, there exists a 
onstant �, depending only on C0, su
h that6



Rate 1/2 RSC 
odesO
tal Generators Number of States Parameter �(7, 5) 4 1/2(13, 15) 8 2/5(17, 15) 8 1/2(37, 21) 16 1/4(23, 35) 16 4/11Table 1: Rate 1/2 re
ursive systemati
 
onvolutional 
odes. The parameter � is the mini-mal ratio of Hamming weight to trellis length among all 
odewords.the total weight of the 
onvolutional 
odeword asso
iated to the information sequen
e s isat least �Pmj=1 d(aj; bj). Some numeri
al values of � are given in Table 1. Those valuesare found by 
lassi
al transfer fun
tion te
hniques [14℄ as des
ribed in se
tion 4.7 of [26℄.Using the state transition matrix, � is equal to the minimal ratio of Hamming weight totrellis length over all 
y
les determined by raising the state transition matrix to powersless than or equal to the number of non-zero states. Summarizing:Fa
ts: Asso
iated to any information sequen
e s of support v there is a subset T(s) � Nsu
h that1. T(s) = [a1; b1℄ [ [a2; b2℄ [ : : : [ [am; bm℄ is a union of intervals of N2. v � T(s)3. for any j = 1 : : :m, jv \ [aj; bj℄j � 24. on input s the 
onvolutional en
oder outputs at least �Pmj=1 d(aj; bj) nonzero sym-bols, for some positive 
onstant �Let us 
all the trellis weight of s the quantity Pmj=1 d(aj; bj) de�ned above, denote itby WT (s). Now the turbo 
ode word asso
iated to s has its weight lower-bounded by both
onvolutional 
odewords 
orresponding to the input s and to the permuted input s�. Sin
ethe maximum weight of the two 
onvolutional 
odewords is lower-bounded by half theirsum, Fa
t 4 above implies:Lemma 2 If the information sequen
e s produ
es a turbo 
odeword of Hamming weightw, then WT (s) +WT (s�) � 2w=�.This last lemma says that low-weight turbo 
odewords 
an only exist if there is aninformation sequen
e s su
h that both s and s� have small trellis weight. Now the de
om-position of the supports of s and s� into simple trellis paths is rather awkward to handleprobabilisti
ally, so we shall introdu
e a related 
on
ept that will be easier to deal with.The following de�nition is purely 
ombinatorial.7



De�nition 3 Let x = x0; x1; : : : x`, ` odd, be an even-numbered sequen
e of elements ofN. Let yi = �(xi); i = 0 : : : ` for some permutation � of N. Let us 
all the �-weight of xthe quantity: w�(x) = X1�i;2i<` d(x2i�1; x2i) + d(x0; x`) + X0�i;2i+1�` d(y2i; y2i+1):Note that the quantity w� is essentially the summarized distan
e of [30℄. The reasonfor introdu
ing the above de�nition lies in the following lemma.Lemma 4 If there exists a 
odeword of weight w in the turbo 
ode with interleaver �, thenthere exists an even-numbered sequen
e x of distin
t elements of N of �-weight w�(x) �2w=�.Proof : Let s be the information sequen
e 
orresponding to the turbo 
odeword of weightw and let v be its support. Note that the support of s� is u = ��1(v). Let T(s) =[a1; b1℄[ [a2; b2℄[ : : :[ [am; bm℄ be the de
omposition of T(s) into m intervals given by Fa
t1 and let T(s�) = [a01; b01℄ [ [a02; b02℄ [ : : : [ [a0k; b0k℄ be the 
orresponding de
omposition forthe permuted version s� of the information sequen
e. Now 
onsider the bipartite graphwhose vertex set is made up of the two sets A and B where A is the set of the k intervals[a0i; b0i℄; j = 1 : : : k; and B is the set of the m intervals [aj; bj℄; j = 1 : : :m. Put an edgebetween interval [a0i; b0i℄ and [aj; bj℄ for every x 2 ��1(v) \ [a0i; b0i℄ su
h that �(x) 2 [aj; bj℄(multiple edges may o

ur). Fa
t 2 implies that the minimum degree of the bipartitegraph is at least 2. Therefore there exists an (even-length) elementary 
y
le in the graph,i.e. a string of distin
t verti
es V0; V1; : : : V`, ` odd, where the interval Vi belongs to A(respe
tively B) for i even (respe
tively odd) and where there is an edge between Vi and Vjwhenever i� j = �1 mod `+1. For 0 � i; 2i < ` the edge between V2i and V2i+1 is de�nedby an element of V2i \ u that we denote x2i, and an element of V2i+1 \ v that we denotey2i and that equals y2i = �(x2i). Similarly, for 1 � i = 1; 2i < `, every edge between V2iand V2i�1 is asso
iated to x2i�1 2 V2i and y2i�1 2 V2i�1 with y2i�1 = �(x2i�1). Finally letx` 2 V0 and y` = �(x`) 2 V` 
orrespond to the edge between V0 and V`.We have 
onstru
ted a sequen
e x = x0; x1; : : : ; x` of elements of the support u =��1(v) of s� su
h that fx2i�1; x2ig � V2i, 1 � i; 2i � `, fx`; x0g � V0, and fy2i; y2i+1g �V2i+1, 0 � i; 2i+1 � `: see Figure 2. Therefore, denoting by L(V ) the length of an intervalV , we have w�(x) � X̀i=0 L(Vi) � WT (s) +WT (s�)whi
h proves the result by Lemma 2.We shall now study the probability that a sequen
e of small �-weight exists. We needsome more notation.Let r = r1; r2; : : : ; r`, ` odd, be a sequen
e of integers modulo N . Let jrij denotethe smallest absolute value of a (possibly negative) integer equal to ri modulo N , and8



�y0 y1
x0 x1 x2x3

y3 y2r1 r2 r3
V0 V2

V1 V3
NN

Figure 2: ` = 3. The 
y
le V0; V1; V2; V3 de�ned in the proof of Lemma 4, the asso
iatedsequen
es x = x0; x1; x2; x3, y = y0; y1; y2; y3, r = r1; r2; r3.0 3 4 13 14 6 7 21 �Figure 3: Let � be the same as in Figure 1. The sequen
e r = 1; 1; 1 together with x0 = 0de�ne x = x(r; x0) = 0; 13; 14; 21. We have w�(x) = 1 + 1 + 1 + d(0; 21) = 7.let krk = jr1j + jr2j + : : : + jr`j. Let x0 2 N. Together x0 and r uniquely de�ne the(`+ 1)-sequen
e x = x(r; x0) = x0; x1; : : : ; x` and y = y(r; x0) = y0; : : : ; y` su
h that1: yi = �(xi); i = 0 : : : `;2: for all i � 0 su
h that 2i+ 1 � `; y2i+1 = y2i + r2i+1 mod N3: for all i � 1 su
h that 2i < `; x2i = x2i�1 + r2i mod NNote that w�(x(r; x0)) = krk+ d(x0; x`): (1)Finally, let us say that the sequen
e r M-
y
les at x0 ifw�(x(r; x0)) �M:The de�nitions are illustrated in Figure 3.Lemma 4 translates dire
tly into the following, given that the xi are distin
t only if allthe ri are non-zero.Lemma 5 If there exists a turbo 
odeword of weight w then there exists x0 2 N and anon-zero sequen
e r = r1; : : : ; r`, ri 6= 0; i = 1 : : : `, ` is odd, that 2w=�-
y
les at x0.We now have everything in pla
e for doing the probabilisti
 analysis. Let Zr;x0 bethe Bernoulli random variable equal to 1 if the sequen
e r M -
y
les at x0 and equal to0 otherwise. The set of all permutations � of the set N is endowed with two probabilitymeasures, namely: 9



� the uniform probability measure Pr, in other words Pr(�) = 1=N ! for all �.� the quasi-
y
li
 probability measure Pq de�ned by Pq(�) = 1=(nn21 n2!) if � is (n1; n2)-quasi-
y
li
 and Pq(�) = 0 otherwise. Note that, as mentioned in se
tion 3, this isequivalent to 
hoosing the permutation � randomly, with uniform distribution, amongpermutations of f0; 1; : : : ; n2� 1g, and by 
hoosing the Xi; i = 0 : : : n2� 1 randomly,independently of ea
h other and of �, and with uniform distribution, among the setof integers mod n1.Lemma 6 Let M < N , x0 and r = r1; : : : ; r` be given, ri 6= 0; i = 1 : : : `, ` is odd. Wehave:1. If krk �M then Pr[Zr;x0 = 1℄ = Pq[Zr;x0 = 1℄ = 0.2. If krk < M then Pr[Zr;x0 = 1℄ < 2M=(N � 1).3. If krk < M < n2, then Pq[Zr;x0 = 1℄ < 2Mn1(n2�1) .4. If krk < M and ri = 0 mod n2 for every i = 1 : : : `, then Pq[Zr;x0 = 1℄ = 1.Proof : Point 1 is a dire
t 
onsequen
e of (1).To see Point 2, 
onsider x1; : : : ; x` as random variables. Conditional on the position ofx`�1, i.e. on the event x`�1 = k, the distribution of x` is, sin
e r` 6= 0, uniform on the setN n fkg. ThereforePr(Zr;x0 = 1) = Xk Pr[d(x`; x0) �M � krk j x`�1 = k℄Pr[x`�1 = k℄� Xk 1 + 2(M � krk)N � 1 Pr[x`�1 = k℄ = 1 + 2(M � krk)N � 1< 2MN � 1 :To see Point 3 argue as follows: write d(x0; x`) = qn2 + �, 0 � � < n2. Sin
e we havesupposed M < n2 we have Zr;x0 = 1 if and only if(a) q = 0(b) � �M � krk.Sin
e r` 6= 0 andM < n2 imply that r` 6= 0 mod n2, we 
an argue as in point 2, repla
ing therandom permutation � of f0; 1; : : : ; N �1g by the random permutation � of f0; 1; : : : ; n2�1g, to obtain that the event (b) o

urs with probability not more than 2M=(n2 � 1). By
onstru
tion of the quasi-
y
li
 permutation the event (a) is independent of (b) and o

urswith probability 1=n1.Point 4 is simply due to the fa
t that for quasi-
y
li
 � we have �(x0 + n2) = �(x0) +n2 mod N for any x0 2 N, therefore d(x0; x`) =P1�i�` ri < M .10



Next, we shall study the expe
ted number of 
ouples (r; x0) for whi
h r M -
y
les atx0, i.e. the expe
tation of the random variableZ = Xx02N;ri 6=0;krk<M Zr;x0: (2)Sin
e r must have only non-zero terms, its length ` 
annot ex
eed its norm krk. Thenumber of sequen
es of given norm m, length ` and non-negative terms is exa
tly �m̀�, sothat the number of terms in the sum (2) is not more thanN X1�m<M X0�`�m 2`�m̀� = N X1�m<M 3m < N3M=2:From this and Point 3 of Lemma 6 we obtain therefore:Lemma 7 Let M < n2. The expe
ted number Eq[Z℄ of 
ouples (r; x0) su
h that rM-
y
lesat x0 satis�es, for the probability measure Pq,Eq[Z℄ �M3M (1� 1=n2)�1:Noti
e that Point 2 of Lemma 6 would give essentially the same estimate of the expe
tedvalue of Z for uniformly random �. However, the 
ru
ial property of the 
lass of quasi-
y
li
 permutations that will make a big di�eren
e between 
hoosing � uniformly randomand quasi-
y
li
-random is the following dire
t 
onsequen
e of Lemma 1:Lemma 8 If the sequen
e r M-
y
les at x0 for a quasi-
y
li
 �, then r M-
y
les at x0 +n2 mod N for �. In parti
ular, Z is a multiple of n1 for every quasi-
y
li
 permutation �.This means that Eq[Z℄ = Pz�n1 zPq[Z = z℄ � n1Pq[Z > 0℄. We have therefore thatwhenever the quantity Eq[Z℄=n1 is made to be vanishing with N , the probability that thereexists a sequen
e x of �-weight not more thanM tends to zero. Putting together Lemma 7and Lemma 4 we obtain this se
tion's main result :Theorem 9 For any 
onstant C < �=2 and blo
k length N = n1n2 
hosen to satisfyn2 > 2C� log3 n1, the minimum distan
e of the random quasi-
y
li
 turbo 
ode satis�es, withprobability that tends to 1 as n1 tends to in�nity,D � C log3 n1In parti
ular D � C2 log3N when n1 = n2.
11



5 Experimental results and 
on
luding 
ommentsIn this se
tion, we provide 
omputer simulation results for the word error rate (WER) ofparallel turbo 
odes using our new family of interleavers and 
omparing it with S-randomand random interleavers. The output of the turbo en
oder is modulated via a binary phaseshift keying (BPSK) modulation and transmitted over an ideal additive white gaussiannoise (AWGN) 
hannel. The turbo de
oder performs iterative a posteriori probabilityestimation by applying the forward-ba
kward algorithm to ea
h 
onvolutional 
onstituent.Word error rate versus signal-to-noise ratio results are depi
ted in Figures 4 and 5. Inthe �rst example, Fig. 4 illustrates the performan
e of a rate 1/2 turbo 
ode with an 8-state re
ursive systemati
 
onvolutional 
onstituent (13; 15)8. These o
tal generators havebeen adopted in the European third generation mobile radio standard UMTS [15℄. In thisexample the interleaver size is N = 400, and we 
ompare the performan
e of a randominterleaver, a S-random interleaver, and two quasi-
y
li
 interleavers with n1 = n2 = 20:one quasi-
y
li
 permutation was randomly 
hosen and the other 
orresponds to the bestwe were able to �nd. The exa
t quasi-
y
li
 permutation is given in Table 2: note the shortdes
ription that the quasi-
y
li
 stru
ture allows. As shown in Fig. 4, the bi-dimensionalinterleaver 
learly outperforms the spread interleaver. The in
rease in minimum distan
e
an in prin
iple also be validated numeri
ally by measuring the turbo 
ode minimumdistan
e using the algorithm proposed by Garello et al. [17℄.In the se
ond example, the rate 1/2 turbo 
ode has a re
ursive systemati
 
onvolutional
onstituent (37; 21)8, the o
tal generators proposed in the original turbo 
ode by Berrou etal. [5℄. The interleaver size is N = 1600, n1 = n2 = 40, and the exa
t permutation is givenin Table 3. As shown in Fig. 5, we again get a signi�
ant improvement over the S-randominterleaver.After a number of experiments, it turned out that the optimum 
hoi
e of the values ofn1 and n2, at least for the moderate lengths we experimented with, is very 
lose to pN .This is a phenomenon for whi
h we were unable to get a satisfying theoreti
al explanation.
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Square Bi-dimensional Quasi-
y
li
 Interleaver of Size 400� 2 10 0 9 1 8 4 13 7 14 3 11 6 12 17 5 15 16 18 19X 6 2 12 0 5 19 3 1 4 17 10 18 9 8 7 11 15 14 13 16Table 2: Bi-dimensional interleaver of size 400 = 20� 20. The �rst row de�nes the 
olumnpermutation � and the se
ond row de�nes the 
olumn 
y
li
 shiftX. This square interleaveris used in 
onjun
tion with RSC(13,15) in Fig. 4.Square Bi-dimensional Quasi-
y
li
 Interleaver of Size 1600� 1 15 17 18 25 39 33 29 19 4 0 37 14 20 27 9 22 31 10 2830 36 23 35 7 16 6 2 13 26 3 34 32 21 11 8 5 38 12 24X 29 30 21 10 39 11 26 4 28 15 22 25 31 3 34 23 18 17 32 270 9 1 19 24 36 2 37 6 35 14 33 20 13 8 12 5 16 38 7Table 3: Bi-dimensional interleaver of size 1600 = 40 � 40. The �rst two rows de�nethe 
olumn permutation � and the last two rows de�ne the 
olumn 
y
li
 shift X. Thisinterleaver is used in 
onjun
tion with RSC(37,21) in Fig. 5.
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Figure 4: Performan
e of rate 1/2 turbo 
ode for di�erent interleavers of size 400 bits.O
tal generators (13,15), 
oding rate is raised from 1/3 to 1/2 by pun
turing parity bits,32 de
oding iterations, additive white gaussian noise 
hannel, binary phase shift keyingmodulation. For all points drawn above, at least 100 blo
k errors and 500 bit errors havebeen measured during Monte Carlo simulation to estimate the word error probability.
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Figure 5: Performan
e of rate 1/2 turbo 
ode for di�erent interleavers of size 1600 bits.O
tal generators (37,21), 
oding rate is raised from 1/3 to 1/2 by pun
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oding iterations, additive white gaussian noise 
hannel, binary phase shift keyingmodulation. For all points drawn above, at least 100 blo
k errors and 500 bit errors havebeen measured during Monte Carlo simulation to estimate the word error probability.
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