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to information sequenes of weight 2. A more reent sheme of Truhahev et al. [30℄ weedsout all small-weight turbo-odewords in a way that is reminisent of Gallager's methodof exluding small yles when onstruting the parity-hek matrix of an LDPC ode,see also [3℄ for a similar result. They obtain turbo odes whose minimum distane growsproportionally to logN where N denotes the interleaver size. This asymptoti result isessentially the best possible sine it was shown by Breiling [8℄ that D= logN must beupper bounded by a onstant, where D and N denote respetively the minimum distaneand interleaver size of the turbo ode.The seond approah tries to �nd interleavers with struture, in partiular algebraistruture, rather than mimi random hoie. Besides enhaned performane, an additionalmotivation is to have a permutation with a short desription that will save on the memoryrequired to store the interleaver onnetions. With this last feature in mind, a partiularlypromising family of interleavers was proposed by Tanner in [29℄ and onsists of quasi-ylipermutations that yield quasi-yli turbo odes. Enouraging simulation results for thesimpler RA odes were obtained in [28℄, hinting at good minimum distane properties ofquasi-yli turbo-like odes. To quote from the onlusion of [29℄:\We onjeture that the lass of quasi-yli permutations that will reate quasi-yliturbo odes is rih, rih enough to ontain odes that will perform as well or better thanrandom interleavers."In the present work we take up this hallenge and study random quasi-yli per-mutations. Our approah borrows from both the unstrutured, almost random, and thealgebrai, strutured, design strategies: our interleavers have struture, and the inherentadvantageous storage properties, and yet involve a ertain amount of random hoie. Ourmain result is to show that the typial minimum distane of the assoiated turbo odegrows linearly with logN , i.e. has optimal growth, thus justifying Tanner's onjeture.Furthermore, for moderate lengths these interleavers turn out to be not only pratial, butvery eÆient, omparing favorably with random, S-random, and all known interleavers ina number of instanes.The paper is organized as follows. In setion 2 we give a short summary of previouswork on interleaver design. In setion 3 we desribe our family of quasi-yli interleavers.Setion 4 is devoted to proving that a randomly hosen interleaver from this family willhave asymptotially optimal minimum distane with high probability (Theorem 9). Setion5 gives experimental results for short lengths (N = 400 and N = 1600).2 Previous work on interleaver designClassial hannel oding systems using a serial onatenation of Reed-Solomon odes andbinary onvolutional odes inlude a matrix interleaver (also alled blok interleaver) whihenables one to split the error bursts generated by the Viterbi deoder before applying analgebrai Berlekamp-Massey deoding [7℄[20℄. The early researh on interleavers for digitalommuniations has been preeded by the invention of burst-error-orreting yli andburst-error-orreting onvolutional odes [22℄. Although the low density parity hek2



odes developed by R. Gallager [16℄ integrated random interleaving of the parity-hekmatrix olumns, no serious study on interleavers was known until the work by Ramseyon optimum interleavers for in�nite length sequenes [24℄. For example, a type I Ramseyinterleaver guarantees an input separation n1 and an output separation n2 with a minimumdelay equal to n2(n1�1), where n1 and n2 are two positive integers satisfying n2 < n1 < 2n2,n1 and n2 + 1 are relatively prime.The separation guaranteed by Ramsey interleavers has been named spreading afterthe invention of parallel turbo odes based on binary systemati reursive onvolutionalonstituents [5℄[6℄. Finite length interleavers or permutations designed for parallel turboodes have been extensively studied during the last deade. The amount of publiationson the subjet ranges in the hundreds and annot be listed here in full. The followingseletion of interleaver families is an attempt to give a meaningful piture of the stateof researh and to summarize the main tehniques. As mentioned earlier they an berudely partitioned into two ategories: mostly random interleavers with a weak struture,requiring an exhaustive desription of the permutation, or strongly strutured with shortrepresentations.� Purely random interleavers.These interleavers are built from permutations on N integers seleted at random.Here, N denotes the interleaver size. The original turbo odes (N = 65536 bits) weredesigned with purely random interleavers. Without any interleaver optimization, theerror rate performane of parallel turbo odes an be enhaned via primitive feedbakpolynomials in the turbo ode onvolutional onstituents [4℄.� Random interleavers with a weak deterministi struture.This family inludes the S-random or spread interleaver proposed by Divsalar andPollara [13℄. The S-random interleaver � is onstruted at random, it must satisfy theonstraint j�(i)� �(j)j > S for all ji� jj < S, where the maximal theoretial valueof the spread S is pN . High spread random (HSR) interleavers proposed by Crozier[11℄ belong to this family. They rely on the maximization of the spread S = minfji�jj + j�(i)� �(j)jg (also de�ned in [2℄ for arithmeti and random interleavers). Thespread of HSR interleavers is upper bounded by p2N . The permutation desribed byTruhahev et.al. [30℄ that guarantees an asymptotially optimal minimum distaneis mostly random with a weak deterministi struture.� Deterministi algebrai/arithmeti interleavers.Many algebrai permutations have been suggested or spei�ally developed for par-allel turbo odes. In spite of (or perhaps beause of) their very low memory, theytend to exhibit intermediate or poor error rate performane. A short seletion on-sists of the interleavers desribed by Berrou and Glavieux [6℄, by Andrews et.al. [2℄,Sadjadpour et.al. [25℄, Bravo and Kumar [9℄. The Relative Prime and the Golden3



interleavers desribed by Crozier et.al. [10℄ belong to this family of deterministi in-terleavers. More reently, good interleavers based on permutation polynomials havebeen proposed by Sun and Takeshita [27℄.� Deterministi interleavers with a weak random struture.We mention two types of deterministi interleavers where randomness has been addedin order to unbalane somewhat the algebrai struture. Dithered golden interleavers[10℄ and dithered relative prime (DRP) interleavers [12℄. DRP interleavers exhibitexellent error rate performane. They are obtained in 3 steps: 1- appliation of asmall permutation (input dithering) to the interleaver input, e.g., a size 8 permutationapplied N=8 times, 2- a relative prime permutation j = s + ip, where j is the readposition, i is the write position, s is a shift and p is prime relative to N , 3- an outputdithering similar to the input one.� Interleavers from the graphial struture of odes.Cayley-Katz graphs with large girth have been used to design Generalized Low Den-sity (GLD) odes with binary BCH onstituents [23℄. Similar appliation was madeby Vontobel [31℄ to design turbo ode interleavers from large girth graphs. Inter-leavers based on large girth graphs are all deterministi. Yu et.al. [32℄ also designedgood interleavers by looking at the loop distribution in the turbo ode struture.Suh interleavers are random with a weak deterministi struture.� Interleavers by other riteria.Abbasfar and Yao [1℄ reently proposed good interleavers that eliminate odewordswith Hamming weight less than a ertain distane. The onstrution algorithm isbased on a two dimensional representation of the permutation. This representa-tion previously inspired Crozier [11℄ in his design of dithered-diagonal interleavers.The interleaver design by distane spetrum shaping an be lassi�ed in the lassof random interleavers with a weak deterministi struture. Finally, we mention theinterleavers designed by Hokfelt et.al. [18℄ via the minimization of the orrelationbetween extrinsi informations under iterative deoding.The bi-dimensional quasi-yli interleaver desribed in the next setion ombines ran-domness and determinism in an almost equal manner. When designed from a squarematrix, its quasi-yliity period is pN , meaning that a set of 2pN integers is needed tosave the bi-dimensional interleaver into memory, rather than the N integers needed for apurely random permutation.3 Bi-dimensional, or quasi-yli interleaversFor simpliity, we restrit ourselves to the lassial turbo ode onstrution with a �xedonstituent onvolutional ode C0 of rate R0 = 1=2. The turbo enoder takes an infor-mation sequene s of N bits, produes a �rst sequene of N hek bits by submitting4



� = �0 1 2 3 43 2 0 4 1� X0 = 0; X1 = 3; X2 = 4; X3 = 2; X4 = 1:266664 0 1 2 3 45 6 7 8 910 11 12 13 1415 16 17 18 1920 21 22 23 24
377775 266664 3 2 0 4 18 7 5 9 613 12 10 14 1118 17 15 19 1623 22 20 24 21

377775 266664 3 12 5 19 218 17 10 24 113 22 15 4 618 2 20 9 1123 7 0 14 16
377775A B C(�(0); �(1); �(2); : : : ; �(24)) =(3; 12; 5; 19; 21; 8; 17; 10; 24; 1; 13; 22; 15; 4; 6; 18; 2; 20; 9; 11; 23; 7; 0; 14; 16):Figure 1: Example: onstrution of �, N = 25, n1 = n2 = 5: Write 0; 1; : : : ; N � 1 in asquare array A, apply � to permute olumns, giving B, and rotate olumn j ylially, byXj mod 5, giving array C. Read o� the rows to get �(0); �(1); �(2); : : :.s = s0; s1; : : : sN�1 to an enoder for C0, and a seond sequene of a further N hek bitsby submitting a permuted version s�(0); s�(1); : : : ; s�(N�1); of s to the enoder for C0. Theoverall turbo ode rate is R = 1=3 and the interleaver is the permutation � on the orderedset of information oordinates N = f0; 1; : : : ; N � 1g.There will be a 2-dimensional struture inherent to our hoie of permutation �, there-fore we shall restrit ourselves to the ase when N = n1 � n2 is a omposite integer.Let � be a permutation on N = f0; 1; : : : ; N � 1g de�ned as follows. For any (i; j) 2f0; 1; : : : ; n1 � 1g � f0; 1; : : : ; n2 � 1g de�ne the funtion� : f0; 1; : : : ; n1 � 1g � f0; 1; : : : ; n2 � 1g ! N(i; j) 7! i� n2 + jLet � be a permutation of f0; 1; : : : ; n2 � 1g and let (Xj)j=0:::n2�1 be a family of integersmod n1. De�ne the permutation � on f0; 1; : : : ; n1 � 1g � f0; 1; : : : ; n2 � 1g by�(i; j) = (i+Xj mod n1; �(j)):Finally de�ne the permutation � = ����1 on the set N. A small example is given inFigure 1.The quasi-yli nature of the permutation � just de�ned is stressed in the followingLemma, a diret onsequene of the de�nition.Lemma 1 A permutation � belonging to the lass de�ned above satis�es, for any x; x0 2 Nsuh that x0 = x+ n2 mod N , �(x0) = �(x) + n2 mod N:5



If we make the trellis of the onstituent onvolutional ode tail-biting, and if we writethe hek bits of the turbo ode in the proper order, we obtain a quasi-yli turbo ode[29℄. For this reason, permutations of the above type will be alled (n1; n2)-quasi-yli (orsimply quasi-yli).We shall take instanes of (n1; n2)-quasi-yli permutations � by hoosing the permu-tation � randomly, with uniform distribution, among permutations of f0; 1; : : : ; n2 � 1g,and by hoosing the Xi; i = 0 : : : n2 � 1 randomly, with uniform distribution, among theset of integers mod n1. We hoose the Xi to be independent of eah other and of �. Thisis a way of hoosing � uniformly in the lass of (n1; n2)-quasi-yli permutations.As a �rst omment, we may note that � has quite a lot more struture than a totallyrandom permutation. A ertain amount of randomness remains however; to quantify itsomewhat, suppose for example that n1 = n2 = n = pN (we shall see experimentally insetion 5 that n1 = n2 is a good hoie), we see that � is de�ned by logn! + n logn �pN logN random bits as opposed to theN logN bits that de�ne an otherwise unstruturedpermutation.Our strategy will be probabilisti, i.e. we will estimate the probability that the per-mutation � produes turbo ode words of small weight w << logN and show that thisprobability must be vanishingly small. Interestingly, over all permutations �, the expetednumber of turbo odewords of small weight w does not vanish with N . This is beause ofan all-or-nothing phenomenon. Permutations of the above type produe either no turboodewords of small weight, or relatively many (at least n = pN).4 Minimum distane analysisFor any two integers x and y of N let us denote by d(x; y) the irular distane betweenx and y, i.e. the smallest non-negative integer d suh that x + d = y mod N or x � d =y mod N . Let us draw an edge between x and y whenever d(x; y) = 1, giving N a irularstruture: by an interval of N we shall mean a sub-path of N.Let s = s0; : : : ; sN�1 be an information sequene, and let v � N be the support of s.The information sequene s generates a path in the (tail-biting) trellis of the onvolutionalode C0. Consider the partition N = Z [ T where Z is de�ned as the set of oordinatesi for whih the path assoiated to s goes from the zero state to the zero state. For everyi 2 Z we have si = 0 and the orresponding hek bit is also 0. The omplement T ofZ is a union of intervals T = [a1; b1℄ [ [a2; b2℄ [ : : : [ [am; bm℄. The intervals [aj; bj℄ aresometimes alled simple trellis paths, or simple error events in the onvolutional odingterminology. The trellis of a reursive onvolutional ode has the property that the zerostate an only be left at time t if st = 1 and it an only be reahed from a nonzero stateat time t if st = 1. This means that v � T and every interval [aj; bj℄; j = 1 : : :m startsand ends with an element of the support v of s. A reursive onvolutional ode also hasthe property of outputting a steady stream of non-zero symbols during the time it goesthrough a simple trellis path, i.e. during the time it is fed the information bits st fort 2 [aj; bj℄. In other words, there exists a onstant �, depending only on C0, suh that6



Rate 1/2 RSC odesOtal Generators Number of States Parameter �(7, 5) 4 1/2(13, 15) 8 2/5(17, 15) 8 1/2(37, 21) 16 1/4(23, 35) 16 4/11Table 1: Rate 1/2 reursive systemati onvolutional odes. The parameter � is the mini-mal ratio of Hamming weight to trellis length among all odewords.the total weight of the onvolutional odeword assoiated to the information sequene s isat least �Pmj=1 d(aj; bj). Some numerial values of � are given in Table 1. Those valuesare found by lassial transfer funtion tehniques [14℄ as desribed in setion 4.7 of [26℄.Using the state transition matrix, � is equal to the minimal ratio of Hamming weight totrellis length over all yles determined by raising the state transition matrix to powersless than or equal to the number of non-zero states. Summarizing:Fats: Assoiated to any information sequene s of support v there is a subset T(s) � Nsuh that1. T(s) = [a1; b1℄ [ [a2; b2℄ [ : : : [ [am; bm℄ is a union of intervals of N2. v � T(s)3. for any j = 1 : : :m, jv \ [aj; bj℄j � 24. on input s the onvolutional enoder outputs at least �Pmj=1 d(aj; bj) nonzero sym-bols, for some positive onstant �Let us all the trellis weight of s the quantity Pmj=1 d(aj; bj) de�ned above, denote itby WT (s). Now the turbo ode word assoiated to s has its weight lower-bounded by bothonvolutional odewords orresponding to the input s and to the permuted input s�. Sinethe maximum weight of the two onvolutional odewords is lower-bounded by half theirsum, Fat 4 above implies:Lemma 2 If the information sequene s produes a turbo odeword of Hamming weightw, then WT (s) +WT (s�) � 2w=�.This last lemma says that low-weight turbo odewords an only exist if there is aninformation sequene s suh that both s and s� have small trellis weight. Now the deom-position of the supports of s and s� into simple trellis paths is rather awkward to handleprobabilistially, so we shall introdue a related onept that will be easier to deal with.The following de�nition is purely ombinatorial.7



De�nition 3 Let x = x0; x1; : : : x`, ` odd, be an even-numbered sequene of elements ofN. Let yi = �(xi); i = 0 : : : ` for some permutation � of N. Let us all the �-weight of xthe quantity: w�(x) = X1�i;2i<` d(x2i�1; x2i) + d(x0; x`) + X0�i;2i+1�` d(y2i; y2i+1):Note that the quantity w� is essentially the summarized distane of [30℄. The reasonfor introduing the above de�nition lies in the following lemma.Lemma 4 If there exists a odeword of weight w in the turbo ode with interleaver �, thenthere exists an even-numbered sequene x of distint elements of N of �-weight w�(x) �2w=�.Proof : Let s be the information sequene orresponding to the turbo odeword of weightw and let v be its support. Note that the support of s� is u = ��1(v). Let T(s) =[a1; b1℄[ [a2; b2℄[ : : :[ [am; bm℄ be the deomposition of T(s) into m intervals given by Fat1 and let T(s�) = [a01; b01℄ [ [a02; b02℄ [ : : : [ [a0k; b0k℄ be the orresponding deomposition forthe permuted version s� of the information sequene. Now onsider the bipartite graphwhose vertex set is made up of the two sets A and B where A is the set of the k intervals[a0i; b0i℄; j = 1 : : : k; and B is the set of the m intervals [aj; bj℄; j = 1 : : :m. Put an edgebetween interval [a0i; b0i℄ and [aj; bj℄ for every x 2 ��1(v) \ [a0i; b0i℄ suh that �(x) 2 [aj; bj℄(multiple edges may our). Fat 2 implies that the minimum degree of the bipartitegraph is at least 2. Therefore there exists an (even-length) elementary yle in the graph,i.e. a string of distint verties V0; V1; : : : V`, ` odd, where the interval Vi belongs to A(respetively B) for i even (respetively odd) and where there is an edge between Vi and Vjwhenever i� j = �1 mod `+1. For 0 � i; 2i < ` the edge between V2i and V2i+1 is de�nedby an element of V2i \ u that we denote x2i, and an element of V2i+1 \ v that we denotey2i and that equals y2i = �(x2i). Similarly, for 1 � i = 1; 2i < `, every edge between V2iand V2i�1 is assoiated to x2i�1 2 V2i and y2i�1 2 V2i�1 with y2i�1 = �(x2i�1). Finally letx` 2 V0 and y` = �(x`) 2 V` orrespond to the edge between V0 and V`.We have onstruted a sequene x = x0; x1; : : : ; x` of elements of the support u =��1(v) of s� suh that fx2i�1; x2ig � V2i, 1 � i; 2i � `, fx`; x0g � V0, and fy2i; y2i+1g �V2i+1, 0 � i; 2i+1 � `: see Figure 2. Therefore, denoting by L(V ) the length of an intervalV , we have w�(x) � X̀i=0 L(Vi) � WT (s) +WT (s�)whih proves the result by Lemma 2.We shall now study the probability that a sequene of small �-weight exists. We needsome more notation.Let r = r1; r2; : : : ; r`, ` odd, be a sequene of integers modulo N . Let jrij denotethe smallest absolute value of a (possibly negative) integer equal to ri modulo N , and8
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Figure 2: ` = 3. The yle V0; V1; V2; V3 de�ned in the proof of Lemma 4, the assoiatedsequenes x = x0; x1; x2; x3, y = y0; y1; y2; y3, r = r1; r2; r3.0 3 4 13 14 6 7 21 �Figure 3: Let � be the same as in Figure 1. The sequene r = 1; 1; 1 together with x0 = 0de�ne x = x(r; x0) = 0; 13; 14; 21. We have w�(x) = 1 + 1 + 1 + d(0; 21) = 7.let krk = jr1j + jr2j + : : : + jr`j. Let x0 2 N. Together x0 and r uniquely de�ne the(`+ 1)-sequene x = x(r; x0) = x0; x1; : : : ; x` and y = y(r; x0) = y0; : : : ; y` suh that1: yi = �(xi); i = 0 : : : `;2: for all i � 0 suh that 2i+ 1 � `; y2i+1 = y2i + r2i+1 mod N3: for all i � 1 suh that 2i < `; x2i = x2i�1 + r2i mod NNote that w�(x(r; x0)) = krk+ d(x0; x`): (1)Finally, let us say that the sequene r M-yles at x0 ifw�(x(r; x0)) �M:The de�nitions are illustrated in Figure 3.Lemma 4 translates diretly into the following, given that the xi are distint only if allthe ri are non-zero.Lemma 5 If there exists a turbo odeword of weight w then there exists x0 2 N and anon-zero sequene r = r1; : : : ; r`, ri 6= 0; i = 1 : : : `, ` is odd, that 2w=�-yles at x0.We now have everything in plae for doing the probabilisti analysis. Let Zr;x0 bethe Bernoulli random variable equal to 1 if the sequene r M -yles at x0 and equal to0 otherwise. The set of all permutations � of the set N is endowed with two probabilitymeasures, namely: 9



� the uniform probability measure Pr, in other words Pr(�) = 1=N ! for all �.� the quasi-yli probability measure Pq de�ned by Pq(�) = 1=(nn21 n2!) if � is (n1; n2)-quasi-yli and Pq(�) = 0 otherwise. Note that, as mentioned in setion 3, this isequivalent to hoosing the permutation � randomly, with uniform distribution, amongpermutations of f0; 1; : : : ; n2� 1g, and by hoosing the Xi; i = 0 : : : n2� 1 randomly,independently of eah other and of �, and with uniform distribution, among the setof integers mod n1.Lemma 6 Let M < N , x0 and r = r1; : : : ; r` be given, ri 6= 0; i = 1 : : : `, ` is odd. Wehave:1. If krk �M then Pr[Zr;x0 = 1℄ = Pq[Zr;x0 = 1℄ = 0.2. If krk < M then Pr[Zr;x0 = 1℄ < 2M=(N � 1).3. If krk < M < n2, then Pq[Zr;x0 = 1℄ < 2Mn1(n2�1) .4. If krk < M and ri = 0 mod n2 for every i = 1 : : : `, then Pq[Zr;x0 = 1℄ = 1.Proof : Point 1 is a diret onsequene of (1).To see Point 2, onsider x1; : : : ; x` as random variables. Conditional on the position ofx`�1, i.e. on the event x`�1 = k, the distribution of x` is, sine r` 6= 0, uniform on the setN n fkg. ThereforePr(Zr;x0 = 1) = Xk Pr[d(x`; x0) �M � krk j x`�1 = k℄Pr[x`�1 = k℄� Xk 1 + 2(M � krk)N � 1 Pr[x`�1 = k℄ = 1 + 2(M � krk)N � 1< 2MN � 1 :To see Point 3 argue as follows: write d(x0; x`) = qn2 + �, 0 � � < n2. Sine we havesupposed M < n2 we have Zr;x0 = 1 if and only if(a) q = 0(b) � �M � krk.Sine r` 6= 0 andM < n2 imply that r` 6= 0 mod n2, we an argue as in point 2, replaing therandom permutation � of f0; 1; : : : ; N �1g by the random permutation � of f0; 1; : : : ; n2�1g, to obtain that the event (b) ours with probability not more than 2M=(n2 � 1). Byonstrution of the quasi-yli permutation the event (a) is independent of (b) and ourswith probability 1=n1.Point 4 is simply due to the fat that for quasi-yli � we have �(x0 + n2) = �(x0) +n2 mod N for any x0 2 N, therefore d(x0; x`) =P1�i�` ri < M .10



Next, we shall study the expeted number of ouples (r; x0) for whih r M -yles atx0, i.e. the expetation of the random variableZ = Xx02N;ri 6=0;krk<M Zr;x0: (2)Sine r must have only non-zero terms, its length ` annot exeed its norm krk. Thenumber of sequenes of given norm m, length ` and non-negative terms is exatly �m̀�, sothat the number of terms in the sum (2) is not more thanN X1�m<M X0�`�m 2`�m̀� = N X1�m<M 3m < N3M=2:From this and Point 3 of Lemma 6 we obtain therefore:Lemma 7 Let M < n2. The expeted number Eq[Z℄ of ouples (r; x0) suh that rM-ylesat x0 satis�es, for the probability measure Pq,Eq[Z℄ �M3M (1� 1=n2)�1:Notie that Point 2 of Lemma 6 would give essentially the same estimate of the expetedvalue of Z for uniformly random �. However, the ruial property of the lass of quasi-yli permutations that will make a big di�erene between hoosing � uniformly randomand quasi-yli-random is the following diret onsequene of Lemma 1:Lemma 8 If the sequene r M-yles at x0 for a quasi-yli �, then r M-yles at x0 +n2 mod N for �. In partiular, Z is a multiple of n1 for every quasi-yli permutation �.This means that Eq[Z℄ = Pz�n1 zPq[Z = z℄ � n1Pq[Z > 0℄. We have therefore thatwhenever the quantity Eq[Z℄=n1 is made to be vanishing with N , the probability that thereexists a sequene x of �-weight not more thanM tends to zero. Putting together Lemma 7and Lemma 4 we obtain this setion's main result :Theorem 9 For any onstant C < �=2 and blok length N = n1n2 hosen to satisfyn2 > 2C� log3 n1, the minimum distane of the random quasi-yli turbo ode satis�es, withprobability that tends to 1 as n1 tends to in�nity,D � C log3 n1In partiular D � C2 log3N when n1 = n2.
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5 Experimental results and onluding ommentsIn this setion, we provide omputer simulation results for the word error rate (WER) ofparallel turbo odes using our new family of interleavers and omparing it with S-randomand random interleavers. The output of the turbo enoder is modulated via a binary phaseshift keying (BPSK) modulation and transmitted over an ideal additive white gaussiannoise (AWGN) hannel. The turbo deoder performs iterative a posteriori probabilityestimation by applying the forward-bakward algorithm to eah onvolutional onstituent.Word error rate versus signal-to-noise ratio results are depited in Figures 4 and 5. Inthe �rst example, Fig. 4 illustrates the performane of a rate 1/2 turbo ode with an 8-state reursive systemati onvolutional onstituent (13; 15)8. These otal generators havebeen adopted in the European third generation mobile radio standard UMTS [15℄. In thisexample the interleaver size is N = 400, and we ompare the performane of a randominterleaver, a S-random interleaver, and two quasi-yli interleavers with n1 = n2 = 20:one quasi-yli permutation was randomly hosen and the other orresponds to the bestwe were able to �nd. The exat quasi-yli permutation is given in Table 2: note the shortdesription that the quasi-yli struture allows. As shown in Fig. 4, the bi-dimensionalinterleaver learly outperforms the spread interleaver. The inrease in minimum distanean in priniple also be validated numerially by measuring the turbo ode minimumdistane using the algorithm proposed by Garello et al. [17℄.In the seond example, the rate 1/2 turbo ode has a reursive systemati onvolutionalonstituent (37; 21)8, the otal generators proposed in the original turbo ode by Berrou etal. [5℄. The interleaver size is N = 1600, n1 = n2 = 40, and the exat permutation is givenin Table 3. As shown in Fig. 5, we again get a signi�ant improvement over the S-randominterleaver.After a number of experiments, it turned out that the optimum hoie of the values ofn1 and n2, at least for the moderate lengths we experimented with, is very lose to pN .This is a phenomenon for whih we were unable to get a satisfying theoretial explanation.
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Square Bi-dimensional Quasi-yli Interleaver of Size 400� 2 10 0 9 1 8 4 13 7 14 3 11 6 12 17 5 15 16 18 19X 6 2 12 0 5 19 3 1 4 17 10 18 9 8 7 11 15 14 13 16Table 2: Bi-dimensional interleaver of size 400 = 20� 20. The �rst row de�nes the olumnpermutation � and the seond row de�nes the olumn yli shiftX. This square interleaveris used in onjuntion with RSC(13,15) in Fig. 4.Square Bi-dimensional Quasi-yli Interleaver of Size 1600� 1 15 17 18 25 39 33 29 19 4 0 37 14 20 27 9 22 31 10 2830 36 23 35 7 16 6 2 13 26 3 34 32 21 11 8 5 38 12 24X 29 30 21 10 39 11 26 4 28 15 22 25 31 3 34 23 18 17 32 270 9 1 19 24 36 2 37 6 35 14 33 20 13 8 12 5 16 38 7Table 3: Bi-dimensional interleaver of size 1600 = 40 � 40. The �rst two rows de�nethe olumn permutation � and the last two rows de�ne the olumn yli shift X. Thisinterleaver is used in onjuntion with RSC(37,21) in Fig. 5.
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Figure 4: Performane of rate 1/2 turbo ode for di�erent interleavers of size 400 bits.Otal generators (13,15), oding rate is raised from 1/3 to 1/2 by punturing parity bits,32 deoding iterations, additive white gaussian noise hannel, binary phase shift keyingmodulation. For all points drawn above, at least 100 blok errors and 500 bit errors havebeen measured during Monte Carlo simulation to estimate the word error probability.
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Figure 5: Performane of rate 1/2 turbo ode for di�erent interleavers of size 1600 bits.Otal generators (37,21), oding rate is raised from 1/3 to 1/2 by punturing parity bits,40 deoding iterations, additive white gaussian noise hannel, binary phase shift keyingmodulation. For all points drawn above, at least 100 blok errors and 500 bit errors havebeen measured during Monte Carlo simulation to estimate the word error probability.
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