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Abstract—A class of algebraically structured quasi-cyclic (QC)
low-density parity-check (LDPC) codes and their convolutional
counterparts is presented. The QC codes are described by sparse
parity-check matrices comprised of blocks of circulant matrices.
The sparse parity-check representation allows for practical
graph-based iterative message-passing decoding. Based on the
algebraic structure, bounds on the girth and minimum distance
of the codes are found, and several possible encoding techniques
are described. The performance of the QC LDPC block codes
compares favorably with that of randomly constructed LDPC
codes for short to moderate block lengths. The performance
of the LDPC convolutional codes is superior to that of the QC
codes on which they are based; this performance is the limiting
performance obtained by increasing the circulant size of the base
QC code. Finally, a continuous decoding procedure for the LDPC
convolutional codes is described.

Index Terms—Circulant matrices, iterative decoding, low-den-
sity parity-check (LDPC) block codes, LDPC convolutional codes,
LDPC codes, message-passing, quasi-cyclic (QC) codes.

I. INTRODUCTION

LOW-density parity-check (LDPC) codes have attracted
considerable attention in the coding community because

they can achieve near-capacity performance with iterative
message-passing decoding and sufficiently long block sizes.
For example, in [1], Chung et al. presented a block length
(ten million bits) rate- LDPC code that achieves reliable
performance—a bit error rate (BER)—on an additive
white Gaussian noise (AWGN) channel with a signal-to-noise
ratio (SNR) within 0.04 dB of the Shannon limit.

For many practical applications, however, the design of
good codes with shorter block lengths is desired. Moreover,
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most methods for designing LDPC codes are based on random
construction techniques; the lack of structure implied by this
randomness presents serious disadvantages in terms of storing
and accessing a large parity-check matrix, encoding data,
and analyzing code performance (e.g., determining a code’s
distance properties). If the codes are designed with some (alge-
braic) structure, then some of these problems can be overcome.

In the recent literature, several algebraic methods for con-
structing LDPC codes have surfaced [2]–[7]. Among these, the
one most relevant to this paper is the quasi-cyclic
(QC) LDPC code designed by Tanner [2]. This code’s minimum
distance of (determined by computer search using MAGMA)
compares well with that of the best code known with the same
block length and rate—a code. Furthermore, the
code is -regular and has a sparse and elegant constraint
graph (or Tanner graph) representation that makes it well suited
to message-passing algorithms (for example, belief propaga-
tion (BP)). The parity-check matrix of the code is composed
of blocks of circulant matrices, giving the code a QC property,
which can potentially facilitate efficient encoder implementa-
tion. Further, the algebraic structure of the code allows for an
efficient high-speed very large scale integration (VLSI) imple-
mentation.

The main contribution of this paper is to generalize the
construction and obtain a large class of QC regular

LDPC codes with similar properties. Further, by exploiting the
close relationship between QC codes and convolutional codes
[8], [9], a convolutional representation is derived from the
QC block code. The convolutional representation has a LDPC
matrix that retains the graph structure of the original QC code.
Thus, the convolutional code is also well suited to decoding
with message passing. Moreover, with the convolutional code,
continuous encoding and decoding is possible—a desirable
feature in many applications.

The algebraically constructed QC LDPC codes perform quite
well compared to random regular LDPC codes at short to mod-
erate block lengths, while for long block lengths, a randomly
constructed regular LDPC code typically performs somewhat
better. Moreover, random regular LDPC codes of column weight

are asymptotically good. In [10], Gallager showed that the
cumulative distribution function of the minimum distance of a
random ensemble of 1 regular LDPC codes approaches
a step function at some fraction of the block length
as —meaning, “almost all” codes from this ensemble

1An (N; j; k) regular LDPC code is a code of block lengthN that is described
by a parity-check matrix containing j ones in every column and k ones in every
row.
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have minimum distances at least as large as when
is large. The algebraic LDPC codes designed in this paper are
not asymptotically good in this sense.

To emphasize the close relationship between the QC LDPC
block codes and the corresponding convolutional codes, this
paper describes the two in parallel. Section II introduces the
circulant-based code construction; it also shows how the con-
struction can be modified to generate irregular LDPC codes
[11]. Thresholds (i.e., the channel SNRs above which the BP de-
coder is guaranteed to converge on a cycle-free constraint graph
[11]) are better for the irregular LDPC codes than for the regular
ones. Section III describes some of the properties of the codes
and their constraint graphs, including girth, minimum distance,
and encoding procedures. The performance of the codes on an
AWGN channel with iterative message-passing decoding is ex-
amined in Section IV. Section V summarizes the results and con-
cludes the paper.

II. CODE CONSTRUCTION

This section describes the means by which the underlying
structure of multiplicative groups in the set of integers modulo

may be used to construct LDPCs—both block codes and con-
volutional codes.

A. Construction of QC LDPC Block Codes

We use the structure of multiplicative groups in the set of
integers modulo to “place” circulant matrices within a parity-
check matrix so as to form regular QC LDPC block codes with
a variety of block lengths and rates. For prime , the integers

form a field under addition and multiplication
modulo —i.e., the Galois field GF . The nonzero elements
of GF form a cyclic multiplicative group. Let and be
two nonzero elements with multiplicative orders and

, respectively.2 Then we form the matrix of
elements from GF that has as its th element

as follows:

(1)

(Here, and .)
The LDPC code is constructed by specifying its parity-check

matrix . Specifically, is made up of a array of circulant
submatrices as shown in the following:

(2)

where is an identity matrix with rows cyclically shifted
to the left by positions. The circulant submatrix in position

within is obtained by cyclically shifting the rows of the

2There exists such elements if k and j divide �(m) = m � 1, the order of
the multiplicative group.

identity matrix to the left by places. The resulting binary
parity-check matrix is of size , which means the asso-
ciated code has a rate . (The rate may be greater
than due to linear dependence among the rows of ; it
is easy to see that there are, in fact, at least dependent rows
in .) By construction, every column of contains ones and
every row contains ones, and so represents a regular
LDPC code. (We observe here that for the case , our con-
struction yields the graph-theoretic error-correcting codes pro-
posed by Hakimi et al. in [12].)

The codes constructed using this technique are QC with
period —i.e., cyclically shifting a codeword by one position
within each of the blocks of circulant submatrices (where each
block consists of code bits) results in another codeword.3

This construction can be extended to nonprime . For any
integer , the set of nonnegative integers less than and rela-
tively prime to , , forms a multiplicative group. In general,

has order

i.e., the Euler “phi” function. Let and be two elements of
with orders and , respectively.4 Then the matrix and
the corresponding parity-check matrix are obtained as above.
As earlier, the binary parity-check matrix is of size
and the associated code has rate . Since every
column of contains ones and every row contains ones,

represents a regular LDPC code. Examples of codes
constructed in this manner from a prime are shown in Table I
[13], and examples constructed from a nonprime are shown
in Table II.

• Example 1: A QC code [2]
Elements , are chosen from GF ; then

, , and the parity-check matrix is given
by

where is a identity matrix with rows shifted
cyclically to the left by positions. The parity-check ma-
trix has rank (determined using Gaussian elimina-
tion), so that describes a rate
code. The Tanner graph resulting from is shown in
Fig. 1, where the code bit nodes correspond to the columns
of and the constraint (parity-check) nodes correspond
to the rows of . (See [14] for an explanation of Tanner
graphs.) The length of the shortest cycle (i.e., the girth)
of the Tanner graph is . The sparse Tanner graph along
with the large girth for a code of this size makes the code

3Strictly speaking, the word “quasi-cyclic” means the code has the property
that when a codeword is cyclically shifted by k positions another codeword is
obtained; to observe this property in the codes constructed above, the bit po-
sitions in each codeword must be permuted to a different order than the one
indicated by the construction.

4As before, if j and k are prime factors of �(m), then such elements always
exist.
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Fig. 1. Tanner graph for a [155; 64; 20] QC code.

Fig. 2. Tanner graph for a [21;8; 6] QC code.

ideal for graph-based message-passing decoding. The as-
sociated code has minimum distance (deter-
mined using MAGMA) and is a regular LDPC code.
As noted before, this compares well with the minimum
distance of the best linear code known with the
same rate and block length. It can be shown that the Tanner
graph of this code has diameter , which is the best pos-
sible for a regular bipartite graph of this size. Also,
the Tanner graph has girth , while an upper bound on girth
is (from the tree bound; see Section III-D).

• Example 2: A QC code .
Elements , are chosen from GF ; then

, , and the parity-check matrix is given
by

where is a identity matrix with rows cyclically
shifted to the left by positions. The resulting Tanner
graph has girth and is shown in Fig. 2. (Fig. 2 shows
both the “ring-like” structure characteristic of these con-
structions and a “flattened” representation that will be

useful in what follows.) The associated code has min-
imum distance and is a regular LDPC
code. The best linear code has .

• Example 3: A QC code with nonprime
.

Elements , are chosen from ; then
, , , and the parity-check matrix is

given by

where is a identity matrix with rows shifted
cyclically to the left by positions. The code is a regular

LDPC code with minimum distance
(determined using MAGMA).

• Example 4: A QC code .
Elements , are chosen from GF (note
that is a prime); then , , and
the parity-check matrix is given by the first matrix at the
bottom of the page, where is a identity ma-
trix with rows cyclically shifted to the left by positions.

is a matrix and describes a regular
LDPC code with minimum distance upper-bounded by
(see Section III-E).

These examples show that the construction technique de-
scribed above yields codes with a wide range of rates and block
lengths.

One possible modification to the above construction is now
proposed. We prune certain edges of the constraint graph ob-
tained from the above construction in a selective manner. We
begin by constructing a regular parity-check matrix as
described above. For , we then replace the last

circulant submatrices in the th row of circulant sub-
matrices with all-zero matrices.5 The modified parity-check ma-
trix is as shown in (3) at the bottom of the page, where is the

all-zero matrix and the LDPC code is now irregular. The
irregular codes are still QC, and hence their parity-check ma-
trices can be described efficiently and they can be used to gen-
erate LDPC convolutional codes (see Section II-B). We show
(in Section III-F) that these codes can be encoded efficiently
with complexity linear in the block length of the code. A sim-
ilar construction of LDPC codes that can be encoded efficiently

5The circulant rows are numbered beginning 0; 1; 2; . . . .

(3)
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TABLE I
EXAMPLES OF CODES CONSTRUCTED FROM (PRIME) CIRCULANT SIZES

TABLE II
EXAMPLES OF CODES CONSTRUCTED FROM (NONPRIME) CIRCULANT SIZES

has been proposed in [15]. We also note that the thresholds of the
irregular codes, described here, calculated using the technique
described in [16], are superior to those of the regular codes of
the original construction.

The rank of the parity-check matrix is plus the
number of linearly independent rows in the last rows of .
(The first rows are linearly independent, and none of
the last rows can be expressed as a linear combination of the
first rows.)

• Example 5: A irregular QC code.

Consider the QC code of Example 1. The
parity-check matrix of this regular LDPC code is
obtained from the original construction. Hence, we can
obtain an irregular LDPC code with parity-check matrix
given by

where is a identity matrix with rows shifted
cyclically to the left by positions and is the
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all-zero matrix. is a matrix and describes a
rate irregular LDPC code with
minimum distance (MAGMA).

B. Construction of LDPC Convolutional Codes

An LDPC convolutional code can be constructed by repli-
cating the constraint structure of the QC LDPC block code to in-
finity [8]. Naturally, the parity-check matrices (or, equivalently,
the associated constraint graphs) of the convolutional and QC
codes form the key link in this construction.

Each circulant in the parity-check matrix of a QC block code
can be specified by a unique polynomial; the polynomial repre-
sents the entries in the first column of the circulant matrix. For
example, a circulant matrix whose first column is
is represented by the polynomial . Thus, the

binary parity-check matrix of a regular LDPC code ob-
tained from the construction described above can be expressed
in polynomial form (with indeterminate ) to obtain the fol-
lowing matrix

Note that, since the circulant submatrices in the LDPC code
construction are all shifted identity matrices, the polynomials in

are all monomials; the power of indicates how many
places the identity matrix was shifted to form the corresponding
circulant submatrix. is the parity-check matrix of a cor-
responding LDPC convolutional code in polynomial form. (The
indeterminate is now interpreted as the delay operator in the
convolutional code.) We note here that the parity-check matrix
of the QC code, when written in circulant form, is over the ring

, i.e., the polynomial ring modulo the
ideal , whereas the parity-check matrix of the convo-
lutional code is over the rational field . In all cases that
were examined, the rate of the LDPC convolutional codes ob-
tained from the QC codes was equal to the design rate of the
original QC code, i.e., . This rate is slightly less
than the rate of the original QC code.

Since the irregular LDPC codes obtained from the modified
construction are also QC, the above procedure can also be ap-
plied on them to obtain corresponding irregular LDPC convolu-
tional codes.

• Example 6: A rate 2/5 LDPC convolutional code.
From the QC code in Example 1, we can ob-
tain a rate– convolutional code with parity-check and
generator matrices given by

where

The generator matrix was obtained from the parity-
check matrix using Gaussian elimination. We con-
jecture that the above convolutional code has a free dis-
tance of . By choosing one of the information se-
quences equal to the denominator polynomial, i.e.,

, and the other informa-
tion sequence as the all-zero sequence, we obtain a code
sequence of weight . This only provides an upper bound
on the of this convolutional code, but we have been
unable to find any lower weight code sequences. Inter-
estingly, as we shall see, this is the same as the upper
bound obtained by MacKay and Davey [17] for LDPC ma-
trices constructed by using nonoverlapping permutation
matrices that commute with each other, as is the case here.
Further, the results of [8] guarantee that the minimum dis-
tance of the QC block code, in this case, provides a
lower bound on the free distance of the associated convo-
lutional code.

Note, however, that above is not in minimal
form. The minimal-basic generator matrix [18] has the
minimum overall constraint length among all equivalent
rational and polynomial generator matrices and is thus of
interest. The minimal-basic form of , with overall
constraint length , is given by

where
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Fig. 3. Tanner graph for the rate–1=3 convolutional code of Example 7.

Several different LDPC convolutional codes can be obtained
from the same QC LDPC block code. For example, reordering
the rows of the parity-check matrix of the QC code within each
block of circulant submatrices will leave it unchanged but can
lead to a completely different LDPC convolutional code.6

Consider once again the QC code. Let us cycli-
cally shift the first block of rows above by one position,
the middle block of 31 rows by five positions, and the last block
of 31 rows by 25 positions, so that now the first row in each
block has a in the first column. The resulting LDPC matrix is
given by

where again is a identity matrix with rows cyclically
shifted to the left by positions. Clearly, the QC block code
and its associated constraint graph are unaffected by these row
shifts. However, the convolutional code obtained by following
the above procedure has the parity-check matrix

Looking at the third constraint equation of and ,
we see that that the two codes are in fact different. (Note that
the first and second constraint equations of and
are equivalent, since the first and second rows of are just
delayed versions of the first and second row of .)

• Example 7: A rate– LDPC convolutional code.
From the QC code of Example 2, a rate– convolutional
code with the following parity-check and generator ma-
trices is obtained:

6Here we are only interested in those convolutional codes that have the same
graph connectivity (i.e., nodes of the same degrees) as the base QC block code.
For example, equivalent representations for the QC block code can be obtained
by suitable linear combinations of rows ofH . However, in such a case, the new
representation(s) of the block code and that of the corresponding convolutional
code will in general not have the same node degrees as the original representa-
tion of the QC code.

In this case, the minimal basic generator matrix has overall
constraint length . The convolutional code has a free
distance , equal to the minimum distance of the
original QC code.

In this manner, it is possible to construct numerous convolu-
tional codes with a sparse constraint graph representation. For
example, for every entry in Table I, it is possible to construct a
convolutional code with an actual rate equal to the design rate
indicated in the table.

III. PROPERTIES OF CONSTRUCTED CODES

This section describes the properties of the codes constructed
in Section II. Specifically, the structure of the constraint graphs,
the minimum distance of the codes, and encoding techniques are
described.

A. Relation Between the Block and Convolutional Constraint
Graphs

Similar to the block codes, a constraint graph based on a
parity-check matrix can be obtained for the convolutional codes.
However, in the case of the convolutional codes, the constraint
graph is infinite. The constraint graphs for the rate- convolu-
tional code in Example 7 and the corresponding QC code (Ex-
ample 2) are shown in Fig. 3. We observe here that the con-
straint graph of the convolutional code is strikingly similar to
that of the QC code. This reflects the similarity in the QC and
convolutional parity-check constraints. (The constraint graph of
the convolutional code can be viewed as being unwrapped from
that of the QC code.)

B. QC Block Codes Viewed as Tail-Biting Convolutional Codes

Tail biting is a technique by which a convolutional code can
be used to construct a block code without any loss of rate [19],
[20]. An encoder for the tail-biting convolutional code is ob-
tained by reducing each polynomial entry in the generator ma-
trix of the convolutional code modulo for some positive
integer and replacing each of the entries so obtained with cir-
culant matrices of size . The block length of the block
code7 so derived depends on . Since the generator matrix con-
sists of circulant submatrices, the tail-biting convolutional code
obtained is a QC block code. However, this tail-biting code has
a rate equal to that of the convolutional code—which is less than
or equal to the rate of the original QC code. As expected, the two

7With a feedforward encoder for the convolutional code, a tail-biting code of
any block length may be obtained [21].
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QC codes, i.e., the original QC code and the tail-biting convolu-
tional code are closely related, as the following theorem shows.

Theorem 3.1: Let be a length QC code with the
parity-check matrix , where is composed of

circulants (i.e., its period is ). Let be a convolutional code
obtained by unwrapping . Then the QC block code (tail-biting
convolutional code) of length constructed from is a
subcode of .

Proof: Since the tail-biting code is QC with period ,
any codeword in can be described by a set of polynomials in
the ring . Therefore, any codeword in is of
the form , where is the gener-
ator matrix of the convolutional code and is an informa-
tion polynomial. Now, we know that the polynomial generator
matrix of the convolutional code satisfies the parity constraints
imposed by its parity-check matrix , i.e.,

. Therefore, . Since, by con-
struction, is also the parity-check matrix of the original
QC block code , with the entries in now interpreted as
being in the ring , any codeword in satisfies
the constraints of the original QC code , i.e., the tail-biting
code is a subcode of .

If there were no rank reduction in the parity-check matrix of
the original QC block code, it would have a rate equal to that of
the convolutional code. In such a case, it is easy to see that the
tail-biting convolutional code would be exactly the same as the
original QC block code.

We have derived a rate- convolutional code (Example 5)
from the QC block code (Example 1); from the
rate- convolutional code we can, in turn, derive a tail-biting
convolutional code, i.e., another QC block code of block length

and 62 information bits (rate ), that is a subcode of the
original QC block code and has .

C. Graph Automorphisms

The structure of the multiplicative groups used in con-
structing the regular LDPC codes leads to certain graph
automorphisms in the constraint graphs of the constructed
codes. These symmetries are the topic of this subsection. A
node belonging to the vertex set of the graph is denoted
by . If contains an edge between and , then the pair

is said to belong to the edge set of , i.e., .
A graph automorphism is a bijective map from to that
preserves edges, i.e., iff .

The bit nodes of the constraint graph correspond to the
columns of the parity-check matrix (in (2)) and the con-
straint nodes correspond to the rows. The bit and constraint
nodes can be divided into blocks of nodes, called bit blocks
and constraint blocks, respectively, where the first columns
of correspond to the first bit block of nodes, the next

columns correspond to the second bit block of nodes,
and so on. Similarly, dividing the rows of , the first
rows correspond to the first constraint block of nodes, the
next rows to the second constraint block, and so on. To
illustrate the graph automorphisms, the bit nodes are labeled
as ; this notation denotes that a bit node
participates in th parity-check equation in the th constraint

block, , . For instance, for
the parity-check matrix in Example 1, the first bit node is
denoted by . A constraint node is denoted by a tuple

, where only the th position is defined. This
represents the th parity-check equation in the th constraint
block, , . For the parity-check
matrix in Example 1, the th parity-check equation in the third
constraint block is denoted by8 , for .

The constraint graph for the parity-check matrix in (2) has the
following graph automorphisms:

1) Bit nodes:

Constraint nodes:

2) Bit nodes:

Constraint nodes:

3) Bit nodes:

Constraint nodes:

th posn. th posn.

where and are the elements of GF (orders and ,
respectively) used to construct the parity-check matrix as de-
scribed earlier.

The automorphism maps a bit node to another bit node in
the same bit block as the original node, whereas maps a bit
node in one bit block to a bit node in another bit block. Like-
wise, maps a constraint node in one constraint block to a con-
straint node in another constraint block. All the bit nodes can be
generated as an orbit of a single bit node under the group of
automorphisms generated by and , i.e.,

In Example 1, the bit nodes are the orbit of . Similarly,
all the constraint nodes can be generated as an orbit of a single
constraint node under the group of automorphisms generated
by and , i.e.,

In Example 1, the constraint nodes are the orbit of . We
also note that, using , , and , any edge of the constraint graph
can be mapped to any other edge.

8In the notation [�; �; t], “�” denotes that the quantity is undefined, i.e., to de-
note the tth check equation in the third constraint block, since H contains three
blocks of constraints, the first two components are undefined.



TANNER et al.: LDPC BLOCK AND CONVOLUTIONAL CODES BASED ON CIRCULANT MATRICES 2973

Fig. 4. A 12-cycle.

Fig. 5. A tree beginning at a constraint node for a (j; k) regular LDPC graph.

The map is just a restatement of the QC nature of the code
and is therefore valid for any QC code represented in circulant
form. Hence, it is also valid for constraint graphs of the irreg-
ular LDPC codes of the modified construction. In addition, an
automorphism analogous to is valid for the constraint graph
of the convolutional code. This automorphism indicates the time
invariance property of the convolutional codes.

D. Girth

The BP decoding algorithm converges to the maximum a pos-
teriori (MAP) solution for graphs that are trees—i.e., have no
cycles; for graphs with cycles, there is no such optimality. The
girth of a graph is the length of the shortest cycle in the graph.
If the girth of the constraint graph is , then the iterative BP al-
gorithm is known to be exact for iterations. (By exact,
we mean that the messages exchanged between the nodes of the
graph during BP decoding are independent.) For prime circu-
lant sizes, , the constraint graph representing the parity-check
matrix in (2), cannot have girth less than . This is seen by
observing that the relative difference between the shifts across
any two columns is different along different rows. For nonprime

, however, the girth can be as low as . Irrespective of prime or
nonprime , the constraint graph of in (2) cannot have girth
larger than . Fig. 4 is a graphical illustration of why this is so
(see also [6]). The dark diagonal lines in the figure represent the
nonzero entries of the parity-check matrix and the empty regions
represent the zeros. The dotted lines indicate a cycle of length

in the constraint graph involving bit nodes through and
constraint nodes through . The structure of the circulant
submatrices in gives rise to numerous -cycles. Likewise,
the upper bound on the girth of the irregular LDPC constraint
graphs of in (3) is also .

An upper bound on the girth of a graph is obtained from the
well-known tree bound [10]. For a constraint graph representing
a regular LDPC code, a tree is generated beginning at a
constraint node (see Fig. 5). The first (constraint) level of the
tree is a single constraint node. This is connected to bit nodes
at the first bit level of the tree. Each of the bit nodes are then
connected to other constraint nodes at the second constraint
level of the tree, and so on.

Enumerating the nodes in this manner, the number of bit
nodes counted up to the th bit level is

If exceeds , the total number of bit nodes in the graph,
then at least one of the bit nodes in the tree enumerated up to bit
level must have occurred more than once, meaning there is a
closed path (or a cycle). Hence, if

an upper bound on the girth of the graph is

if
if .
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Similarly, counting the number of constraint nodes enumer-
ated up to the th constraint level, we have

If exceeds , the total number of constraint nodes in the
graph, then this implies the existence of a cycle in the tree enu-
merated up to constraint level . Therefore, if

an upper bound on the girth of the graph is

if
if .

Therefore, the girth of the regular LDPC codes is upper-
bounded by the minimum of and .

For the parity-check matrix of the code of
Example 1, the tree bound is , whereas the actual girth of the
graph is . For the matrix of the code of Example
2, the tree bound is and so is the actual girth. The tree bound
is tight typically for short block lengths. As the circulant size
increases, the girth of the constraint graphs of (2) tends to .
The inherent algebraic structure in the parity-check matrices of
the constructed codes allows one to check for the presence of
short cycles very efficiently.

The constraint graphs of the LDPC convolutional codes con-
structed herein have their girth lower-bounded by the girth of
the corresponding QC LDPC constraint graph. For any cycle in
the convolutional code constraint graph we can find an equiva-
lent cycle in the QC constraint graph. Say, a particular set of bit
and constraint nodes form a cycle in the convolutional code con-
straint graph. Then the relative shifts between the bit nodes sum
to zero. The corresponding sequence of bit and constraint nodes
in the QC code (obtained by reducing indices modulo , where

is the circulant size in the QC code) have exactly the same
relative shifts (now read modulo ) between the bit nodes, and
hence sum to zero—i.e., in the QC code constraint graph, we
find a corresponding cycle of the same length. However, a cycle
in the QC constraint graph does not always lead to a cycle in
the convolutional constraint graph. While the relative shifts be-
tween bit nodes may sum to zero modulo , the shift may be a
nonzero multiple of , meaning the corresponding bit nodes in
the convolutional code do not form a cycle. Hence, it is possible
that the convolutional code constraint graph may have a larger
girth than the QC code constraint graph. Observe, however, that
in Fig. 4 the relative shifts between bit nodes sum to zero, so
that the corresponding bit nodes in the convolutional code also
form a -cycle. Hence, the girth of the convolutional codes is
also upper-bounded by .

E. Minimum Distance

At high SNRs, the maximum-likelihood decoding perfor-
mance of an error-correcting code is dominated by the code’s
minimum distance. MacKay and Davey obtained an upper
bound on the minimum distance of certain LDPC codes whose
parity-check matrices are composed of nonoverlapping blocks
of permutation submatrices that all commute with each other

[17]. The regular LDPC codes constructed here satisfy this con-
dition, so the upper bound in [17] on the minimum distance is
applicable. The result in [17] says that if a parity-check matrix

is composed of an array of
nonoverlapping permutation submatrices that all commute with
each other, then the minimum distance of the corresponding
code is at most . For small column weight , the bound
imposes a stringent limitation on the code’s minimum distance,
especially for codes with large block lengths. Using the same
arguments as in [17], it can be shown that for the codes obtained
using the modified irregular construction the minimum distance
is upper-bounded by 3 for .

The definition of an “asymptotically good” code construction
is one that yields a sequence of codes whose minimum distances
grow linearly with the block length as . In [10], Gal-
lager considered an ensemble of regular LDPC codes
and showed that, with high probability, a code chosen at random
from this ensemble has a minimum distance ,
where is a parameter that is dependent on and

and independent of . In other words, this result shows the
existence of regular LDPC codes in Gallager’s en-
semble that have minimum distance at least . The reg-
ular LDPC codes described here cannot have a minimum dis-
tance larger than , and hence they are not asymptotically
good. However, they may compare well with random
LDPC codes for block lengths up to , where

. For example, in the case of LDPC codes,
, which means the algebraic LDPC codes of Section II

are comparable in minimum distance to random LDPC
codes for block lengths up to around . (This
inference assumes that, as the block length increases, the min-
imum distance of the algebraically constructed LDPC codes in-
creases until the bound is met—an assumption that has
not been shown to be true in general.)

Using simple graph-based analysis, lower bounds on the min-
imum distance of LDPC codes can be obtained [22]. For in-
stance, when the column weight and the girth of the con-
straint graph is , then any columns of the parity-check
matrix are linearly independent. This implies that ,
and in fact, it is exactly . For the code of Example
2, the girth of the constraint graph is and the minimum dis-
tance is . Similar bounds can be obtained for column weight

, as in [23].
The results in [8] show that the LDPC convolutional codes

obtained by unwrapping the constraint graph of the QC codes
have their free distance lower-bounded by the minimum
distance of the corresponding QC code. Essentially, this is be-
cause wrapping back any codeword of the convolutional code
produces a valid codeword in the QC code. More succinctly, a
codeword in the convolutional code reduced modulo
is a codeword in the QC code, as shown for the tail-biting codes
in Theorem 3.1.

F. Encoding

With the use of iterative message-passing decoders with near-
optimal performance, decoding has become a simpler task re-
quiring only complexity [11], whereas traditional en-
coding techniques require complexity. The general pro-
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cedure for encoding any linear block code, specified by a parity-
check matrix, is to find a suitable generator matrix for the code.
This is done by reducing the parity-check matrix to system-
atic form using elementary row and column operations. The
computational cost of reducing the matrix to systematic form
is in general . Further, the cost of the actual encoding is
itself .

In [24], Richardson et al. show how random LDPC codes can
be encoded with almost linear cost. They exploit the sparseness
of the LDPC matrices to show that the complexity of encoding
LDPC codes can be reduced from to , where

is a number that depends on the particular LDPC ma-
trix. In the following subsections, we look at alternative ways
to encode the LDPC codes introduced in Section II—ways that
exploit the inherent algebraic structure of the codes.

1) Encoding Based on the Structure of the Parity-Check Ma-
trix: The parity-check matrix of the QC regular LDPC codes
written in polynomial form is

In the above matrix, we observe that an entry along a row
is the th power of the previous entry in that row. (The en-
tries are modulo .) Similarly, an entry along a column
is the th power of the previous entry in that column. Using
Tanner’s transform theory [25], it can be shown that this code
can be alternately described by a generator matrix composed of
a block of circulant submatrices, since the code is QC. Hence,
the code can be encoded using shift registers, as is done with
cyclic codes. A generator matrix composed of circulants can be
obtained as follows: a convolutional code can be derived from
the original QC code as described earlier. Then a systematic
parity-check matrix for the convolutional code, expressed over
the field of rationals , where is the binary field, can
be obtained using elementary row and column operations. (This
step is simple because the parity-check matrix is of size .) A
systematic (in general, feedback) generator matrix of the convo-
lutional code is easily determined from the corresponding sys-
tematic parity-check matrix. Note that the convolutional code
can now be encoded as usual using shift registers. By rewriting
the generator matrix of the convolutional code in feedforward
form and reducing the entries modulo , a polynomial
matrix with entries in the ring is obtained. As
has already been shown (Theorem 3.1), this is the generator ma-
trix of a tail-biting convolutional code that is a subcode of the
original QC code.9 Rewriting the polynomial entries as
circulant matrices, a matrix of size spanning the
tail-biting subcode is obtained. This matrix forms a partial gen-
erator matrix for the original QC code. The original QC code
is spanned by this partial generator matrix and a few additional

9The generator matrix of the convolutional code can either be in minimal
or nonminimal form. In either case, a (possibly different) QC code, which is
a subcode of the original QC code (Theorem 3.1), is obtained by reducing the
entries of the convolutional generator matrix modulo hD + 1i.

rows. The additional rows can be found using Tanner’s trans-
form theory approach (see [25] for details).

Consider the code of Example 1. A generator
matrix of the corresponding convolutional code is the feedfor-
ward minimal basic encoder shown in Example 6. The gener-
ator matrix of a tail-biting subcode is obtained by reducing the
entries in modulo , resulting in the matrix

. A binary matrix of size is the binary equiv-
alent of when written in circulant form, and it has full
rank. forms a partial generator matrix for the
QC code. Since the code has 64 information bits,
we are missing two linearly independent rows. The missing (lin-
early independent) rows are found from the transform theory
approach.10 In this case, referring to Fig. 1, an all-one vector in
any two of the five bit rings solves the constraint equations and
those solutions complete the space. Note that the linear space
spanned by the vectors that are all-one in any two of the five bit
rings has dimension . However, since two of these dimensions
are already spanned by , as can be seen by inspection, we
need to add only a subset of the vectors that are all-one in any
two of the five bit rings. By contrast, these solutions do not exist
in the convolutional code.

Alternatively, by reducing the (nonminimal) generator ma-
trix in Example 6 (written in nonsystematic feedforward
form) modulo , a generator matrix of a different QC
code is obtained. Rewriting this in circulant form, a
matrix is obtained. However, we find that is not of full
rank; there are two linearly dependent rows (and hence, it de-
scribes a QC code).

The transform theory approach can also be used to find the
complete set of generators without having to obtain a partial set
of generators from the tail-biting code; however, we prefer the
above procedure since it is computationally simpler.

For the regular QC LDPC codes it has been observed that, in
most cases, the rank of is less than full rank. Thus,

. However, it is possible that the rank
of is less than . An example, of a code
where the drop in the rank of is
for is given in the Appendix. In either case, a partial
generator matrix for the QC code can be obtained from the rows
of the tail-biting generator matrix and the remaining (linearly
independent) rows can be obtained from the transform theory
approach. An efficient encoder based on shift registers can then
be implemented using this generator matrix.

2) Encoding by Erasure Decoding: Luby et al., in their pi-
oneering work on the design of codes for the binary erasure
channel [26] also showed how the graph-based message-passing
decoder can be exploited to encode their codes. In this subsec-
tion, we investigate their approach for encoding the algebraic
LDPC codes introduced in Section II.

To perform graph-based encoding, the bit nodes corre-
sponding to information bits are assumed to be known and
the bit nodes corresponding to parity bits are assumed to be
unknown, or, erased. The parity bits can potentially be re-
covered by simulating the graph-based decoder for an erasure

10In fact, in this case, the missing rows are obtained from just the 0th eigen-
value matrix of the transform [25].
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Fig. 6. Encoding the [21; 8; 6] QC LDPC code by erasure decoding.

channel. Recently, Di et al. in [27] introduced the notion of a
stopping set in a constraint graph. The graph-based decoder
cannot successfully recover all erasures if the erased bit nodes
contain a stopping set of the constraint graph. In the context of
encoding, if none of the stopping sets of the LDPC constraint
graph contain only parity-bit nodes, then the result of erasure
decoding on such a constraint graph is a successful recovery of
all the parity bits, implying a successful encoding!

The constraint graphs of the algebraically designed LDPC
codes introduced in Section II have structure that can be ex-
ploited in encoding. The code of Example 2 provides an illus-
tration of how the constraint graph itself can be used to perform
encoding without the need to find the generator matrix of the
code. The constraint graph of the QC code in Fig. 2 can
be redrawn as in Fig. 6. Of the 21 bit nodes, eight correspond
to information bits and 13 correspond to parity bits. Suppose all
the bits in the first circulant block (the first seven nodes) and the
first bit in the second circulant block are chosen as information
bit nodes (as shown in the figure). Then, to encode, the values of
the remaining bit nodes must be determined. The values of the
information bit nodes are obtained from the bits to be encoded
and the parity-bit nodes are assumed to be erased. The numbers
on the nodes indicate the order in which the parity bits are recov-
ered by the erasure decoding procedure. The node labeled “1”
is an information bit node; the decoder will first recover nodes
labeled “2” and “3,” and then the nodes labeled “4” and “5,” and
so on.

The erasure decoding procedure can be described as follows.
Each constraint node is assigned a value that equals the value of
the known adjoining bit node in the first circulant block; these
known bit nodes in the first circulant block are then deleted from
the graph. Examining the reduced constraint graph shown at the
bottom of Fig. 6, it can be seen that there is now a single path of
length that traverses through all 14 nodes once, i.e., the re-

duced graph is a single cycle of length . Since every constraint
node now has degree , assigning a value to the remaining infor-
mation bit node determines the values of all the parity-bit nodes
uniquely.

A natural question that arises is whether all the LDPC codes
having the structure in (2) can be encoded in the above manner,
and if so, how do we choose the nodes that represent information
bits? The answer to this is not known in general; however, for
a specific case, the question may be answered in the affirmative
by the following lemma.

Lemma 3.1: For all regular LDPC codes constructed
as described, if , then the code can
be encoded via erasure decoding with linear complexity.

Proof: If the code is designed from the multiplicative
group of the integer , then the block length of the code is .
Since the sum of all rows of is the zero vector, there is
at least one dependent row in the matrix. Moreover, because

it can be shown that the
submatrix comprised of the last columns of has a rank
of exactly . Hence, the rank of is reduced by one
and consequently the dimension of the code is .
We can let the last columns of correspond to
parity-bit nodes and hence, the first columns
of (2) represent information-bit nodes. By specifying the
values of the first information bits, the values of the
adjoining constraint nodes can be updated and the
information-bit nodes can be deleted. The reduced graph now
contains bit nodes and constraint nodes, where each
node is of degree . The claim is that all of these nodes are
connected by a single cycle of length . Given the claim, by
specifying the value of one of the remaining bit nodes (i.e.,
the last information bit node), the parity-bit nodes are
determined uniquely, thereby completing the encoding. The
claim is easily seen as follows: The matrix representing the
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reduced constraint graph is a submatrix of the original matrix
with all the rows present and some of the columns removed.
Therefore, the single dependent row in this submatrix is the
sum of the remaining rows. Since the column and row weights
are two in the submatrix, the reduced graph itself is a single
cycle of length connecting the nodes. Finally, we note
that the complexity of encoding, which is the complexity of
erasure decoding on the constraint graph, is linear in the block
length.

For prime , the condition
is always true; in particular, all of the LDPC codes in
Table I satisfy Lemma 3.1. However, this is not necessarily true
for nonprime .

We now show that the irregular LDPC codes obtained from
the modified construction technique proposed in Section II can
also be encoded, using their constraint graphs, by the above pro-
cedure.

Theorem 3.2: For an irregular LDPC code, from the modified
construction, if , then the code can
be encoded via erasure decoding with linear complexity.

Proof: Assume the code is originally designed as a
regular LDPC code with block length . Then the irregular
code has a block length of and a parity-check matrix of
size . The last rows of contain at least one de-
pendent row. Since it follows, as in
the proof of Lemma 3.1, that the rank of the parity-check ma-
trix is reduced by exactly one and consequently the dimension
of the code is . Let the first columns
of represent information bits. The structure of the
parity-check matrix (3) is such that by specifying the values of
these information bits, the next bits corresponding to
the next columns of are determined uniquely from the first
row of circulant submatrices; knowing these bits, the next
bits are then determined from the second row of circulant sub-
matrices. This procedure is repeated through the th row
of circulant submatrices, and in the process parity
bits are recovered. The first constraint nodes are now
deleted from the graph, the remaining constraint nodes are
updated with the values of the known adjoining bit nodes, and
the known bit nodes are then deleted. The reduced constraint
graph contains bit nodes and constraint nodes and the
graph is a single cycle of length connecting all the nodes.
By the previous lemma, specifying the one remaining informa-
tion bit node determines the remaining parity-bit nodes
uniquely, thus completing the encoding. Here again, the com-
plexity of encoding is linear in the block length.

The encoding procedure described above for the block codes
can also be extended to the convolutional codes. If the graph-
based encoding does not directly apply to a regular LDPC
code constructed as described (i.e., one for which either
or , but the rank drop in the parity-check matrix is larger
than one, thus violating the condition for Lemma 3.1), then by
a procedure akin to the one described in [24], the parity-check
matrix can be reduced to a form where graph-based encoding
almost works. This form of the parity-check matrix will contain
an matrix (where is much smaller than the block length

of the associated QC code) that needs to be inverted to com-
plete encoding.

IV. PERFORMANCE RESULTS

In this section, the performance obtained with the QC and cor-
responding convolutional LDPC codes introduced in Section II
is presented for a binary phase-shift keying (BPSK) modulated
AWGN channel. In both cases, the iterative BP algorithm was
used for decoding.

A. LDPC QC Block Codes

The performance of a few regular LDPC codes, constructed
as described in Section II, with BP decoding is shown in
Fig. 7; the results are compared with regular randomly con-
structed LDPC codes11 of similar rates and block lengths for a
BPSK-modulated AWGN channel with SNR . The BP
decoder was allowed a maximum of 50 decoding iterations.
The BP decoder stops when either a valid codeword is found
or the maximum number of decoding iterations is reached. All
codes in the figure have and . The algebraic con-
struction12 is seen to outperform the random construction for
short to moderate block lengths (up to in the figure) [28].
However, at longer block lengths, the algebraic constructions
are not as good as the random constructions.

The algebraic constructions show an error floor, which may
be due to their limited minimum distance. For , the min-
imum distance of the algebraically constructed codes is at most

[17]. The minimum distance of random
codes, on the other hand, can grow linearly with the block length
[10], and the random codes in the figure do not exhibit an ob-
vious error floor behavior.

The performance of the regular code
of Example 8 (see Appendix A) is shown in Fig. 8. This

code has atypical behavior compared to the other LDPC
codes; despite its good waterfall performance, the code’s small
minimum distance is reflected in the poor error floor behavior.
Because of the linear dependency among rows, there is a rate
gain in this case that results in a waterfall performance better
than what one would expect from the degree profile of the code.
In contrast, the regular code has a
good minimum distance and its performance at high SNRs, as
shown in Fig. 7, is superior to the performance of a block length

randomly constructed regular LDPC code. We con-
jecture that the minimum distance of this code is (achieving
the upper bound of [17]), since it was observed during
simulations that whenever the BP decoder converged to a wrong
codeword, that wrong codeword was at a Hamming distance of

from the correct codeword.
Fig. 9 compares the performance of the algebraically con-

structed regular LDPC codes having and with
regular randomly constructed LDPC codes; in this case,

11The regular random LDPC matrices were constructed using the online soft-
ware available at http : ==www:cs:toronto:edu=� radford=software�
online:html: This program generates random regular LDPC codes of any
specified rate and block length and is capable of expurgating four cycles in the
LDPC constraint graph.

12It was observed that the algebraic construction yielded codes that perform
at least as well as random codes primarily for prime circulant sizes m.
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Fig. 7. Algebraic versus random construction of regular (3; 5) LDPC codes.

the algebraically constructed codes are found to perform as well
as the random codes for block lengths up to around 100 000
and they clearly outperform the random codes at shorter block
lengths [28]. Further, we do not see any evidence of the error
floor problems observed in the longer codes, possibly be-
cause the codes have larger minimum distances, consis-
tent with the larger bound of .

Fig. 10 compares the performance of the original regular con-
struction with the modified irregular construction for codes de-
rived from LDPC matrices. The irregular construction
gives rise to LDPC codes for which the BP decoder converges at
a smaller channel . The thresholds of the irregular codes
are superior to the thresholds of the regular codes. The threshold
of the regular codes is 2.65 dB, whereas the irregular
codes have a threshold of only 0.87 dB. Hence, the waterfall
regions of the BER performance curves for the irregular codes
occur at much lower SNR than those of the regular codes. How-
ever, the main drawback of the irregular construction is that it
can yield codes with poor minimum distance, resulting in high
error floors.

B. LDPC Convolutional Codes

The LDPC convolutional codes obtained in this paper typi-
cally have large constraint lengths. Therefore, the use of trellis-
based decoding algorithms is not feasible. As has been noted,
the convolutional code constraint graphs are sparse, and hence
the BP algorithm can be used for decoding. As described in [29],
BP decoding of LDPC convolutional codes can be scheduled

so that decoding results are output continuously after an initial
delay. Let denote the memory order, i.e., the largest power of

, in the syndrome former matrix13 . If decoding itera-
tions are allowed, then the initial decoding delay is .
Further, decoding can be scheduled so that the iterations are
carried out independently and in parallel by identical proces-
sors [29].

Consider the convolutional code defined by

Fig. 11 shows a part of the constraint graph of this convolutional
code. The memory order of the syndrome former is .
Suppose now that we allow a maximum of decoding iterations.
Then the decoding window, shown by dotted lines in the figure,
for iterations, is comprised of time
units. Decoding results are output after an initial delay equal
to the decoding window size i.e., time
units. Channel values enter the decoding window from the left
and decoded results are output from the right. As the bits move
through the decoding window, successive iterations are carried
out by successive processors, i.e., the th iteration on a bit is
performed by the th processor. Further, each processor needs
to update only the constraint nodes and variable
nodes referred to as “active” nodes in the figure.

13We assume here that there are no common factors in any column ofH (D).



TANNER et al.: LDPC BLOCK AND CONVOLUTIONAL CODES BASED ON CIRCULANT MATRICES 2979

Fig. 8. Performance of two regular (3; 5) algebraically constructed LDPC codes: atypical behavior of the [755;334] code.

Fig. 9. Algebraic versus random construction of (5;7) LDPC codes.
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Fig. 10. Rate–2=7 LDPC codes: Regular versus irregular constructions.

Fig. 11. Continuous decoding of an LDPC convolutional code with I iterations.

Fig. 12 shows the performance of the LDPC convo-
lutional codes and that of the corresponding QC codes for a
BPSK-modulated AWGN channel assuming 50 BP iterations.
We see that the LDPC convolutional codes significantly outper-
form their block-code counterparts in the waterfall region [30].
At higher SNRs, the convolutional codes exhibit an error floor
and the improvement obtained with respect to the block code
is reduced. (Occasionally, with the convolutional LDPCs,
the BP algorithm needed 200–300 iterations to converge. We
found that using an ad hoc limiting factor on the reliabilities

passed in BP decoding insured faster convergence, i.e., within
50 iterations).

Fig. 13 shows the performance of the LDPC convolu-
tional codes and the corresponding QC block codes. Again, the
convolutional codes outperform the block codes. In this case,
there is no apparent error floor exhibited by the convolutional
codes. Observe that the waterfall for the convolu-
tional code occurs at a lower SNR than the threshold for reg-
ular LDPC block codes. This may be because the initial
check nodes of the convolutional code have degree less than
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Fig. 12. The performance of convolutional LDPC codes versus the corresponding QC block LDPC codes for (3; 5) connectivity.

Fig. 13. The performance of convolutional LDPC codes versus the corresponding QC block LDPC codes for (5;7) connectivity.

, resulting in a slightly irregular structure (see [31]). Fig. 14
shows the performance of a rate- , block length ,

regular QC LDPC code (Example 4) and that of the cor-
responding rate- LDPC convolutional code derived from
this QC code.The figure shows that, for a maximum number
of 100 BP iterations, the convolutional code performance again
surpasses that of the base QC code.

The convolutional code can be viewed as being “unwrapped”
by extending the size of each circulant block in the parity-check
matrix of the QC block code to infinity. This “unwrapping” is
the principal reason for the performance gain of the convolu-
tional code over the QC block code. To illustrate this, we form
a class of block codes with parity-check matrices of increasing
circulant sizes, while retaining the same structure within each
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Fig. 14. The performance of convolutional LDPC codes versus the corresponding QC block LDPC codes for (3; 17) connectivity.

Fig. 15. Performance of regular (3; 5) QC block codes with increasing circulant size m.

circulant. As an example, consider the block length
regular QC code. The circulant submatrices are of size

in this case. Increasing the circulant size to and

gives QC codes of block lengths and ,
respectively. The performance of these block codes with BP de-
coding is shown in Fig. 15. The figure also shows the perfor-
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Fig. 16. Performance of convolutional codes versus corresponding QC block codes for (5; 7) regular and irregular constructions.

mance of the corresponding convolutional code. The number of
BP iterations is fixed at 50 in all cases.14 The gradual improve-
ment in performance of the block codes illustrates that the con-
volutional code represents the limiting case of the block codes
as the circulant size increases.

In Fig. 16, the performance obtained with regular and
irregular convolutional codes are compared. As for the block
codes, the irregular codes show a significant improvement in
the waterfall performance. Moreover, as in Fig. 13, the waterfall
for the irregular convolutional codes derived from regular
convolutional codes appears before the threshold of irregular
LDPC block codes having the same degree profile.

V. CONCLUSION

An algebraic construction based on circulant matrices for de-
signing LDPC codes has been proposed. The properties of the
LDPC codes resulting from this construction have been exam-
ined. Given the nature of the construction, the codes obtained are
QC, which allows for the possibility of deriving corresponding
LDPC convolutional code representations. The convolutional
representations allow for continuous encoding and decoding.

14Since we are limiting the number of iterations for the convolutional code to
50 andm in this case is 187, this implies that BP decoding for the convolutional
code occurs across nodes up to 50� (187+1) time units away. So its behavior
is expected to be equivalent to that of a block code with a circulant size of m =
9400.

The proposed codes perform comparably to random LDPC
codes at short to moderate block lengths—making them poten-
tial candidates for practical applications. The algebraic structure
of the codes makes them particularly suitable for high-speed
VLSI implementation [32].

A modified construction to yield irregular LDPC codes has
also been presented. The irregular LDPC codes perform well
in the low-SNR regime, but some suffer from poor distance.
Generalizations to the proposed construction may exist for
designing irregular codes with good distance that retain the
promising features of the original construction.

The LDPC convolutional codes that are obtained from this
construction are time-invariant convolutional codes with a va-
riety of rates and constraint lengths. The performance of BP de-
coding on these codes has been illustrated using a continuous
decoding procedure. A significant performance gain is obtained
by considering the convolutional representations instead of the
original QC versions.

APPENDIX

The following LDPC code is designed from GF .

• Elements , are chosen from GF ; then
, , and the LDPC matrix is given by
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The code shows atypical behavior in comparison with the
other regular LDPC codes constructed here. The
rank drop in the parity-check matrix is and not

, as it is for most of the other codes. Further, the
code has a small minimum distance that
leads to a poor error floor behavior with belief propaga-
tion decoding. Despite the significant rank loss in the QC
code, the corresponding LDPC convolutional code has a
parity-check matrix with full rank, i.e., it is a rate– con-
volutional code.
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