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Abstract—We propose the construction of a new family of
lattice sphere packings. Given a small-dimensional lattice, we
start by building a first lattice in a large dimension by the
direct sum of the small lattice. Then, the coordinates of the first
large lattice are permuted to yield a second large-dimensional
lattice. Finally, our generalized low-density (GLD) lattice is the
intersection of the first and the second lattice. We restrict our
construction in this paper to integer lattices. GLD lattices are
the result of mixing classical lattice theory with modern coding
theory. They are potential candidates not only for channel coding
as coded modulations, but also for physical-layer network coding
and for secure digital communications.

I. INTRODUCTION
Lattice constellations are known to be good codebooks

for source coding, channel coding, and data transmission in
networks. In recent times, analysis of lattice constellations and
efficient lattice families have been proposed for the purpose
of channel coding. A non-exhaustive list of publications on
the subject is [5]–[19], [21]. In this paper, we deal with a new
family of lattices for coding over channels with additive white
Gaussian noise. This family is referred to as Generalized Low-
Density (GLD) Lattices. The idea of introducing GLD lattices
comes from two main intentions:
1) Adapting to real lattices the construction of Generalized

Low Density (Tanner) Codes based on linear binary BCH
codes [3] [4].

2) Extending the work on Low-Density Lattice Codes [13]
to other lattice families, still basing their strength on
sparse parity-check matrices.

GLD lattices considered in this paper are integer (i.e.
contained in ZN ) and have a sparse rectangular parity-check
matrix. These two features are the most important for the
design of a suitable iterative decoding algorithm and represent
the solid foundations of the GLD family. Also, interesting
mathematical problems arise from the GLD lattice definition.

The following sections give algebraic and graphical descrip-
tions of GLD lattices in a tutorial-like manner suitable for
both mathematicians and engineers. Section II briefly defines
a lattice in RN . Section III gives a matrix representation
of GLD lattices. The corresponding graph representation is
found in Section IV. Iterative decoding of GLD lattices is
briefly discussed in Section VI. Section V shows how to select
the component small-dimensional lattice in the GLD lattices
family. The paper ends with a section revealing numerical
results of the performance of GLD lattices in dimension 1000
on a Gaussian channel.

II. LATTICES
The main subject of this paper is real lattices. Mathemati-

cally, a lattice is a Z-module of the Euclidean vector space RN .
Concretely, it is simply a discrete, additive subgroup of RN ,
according to the following definition [1]:
Definition 1: Given M and N two natural numbers,

M ≤ N , and given a set of M linearly independent vectors
b1,b2, . . . ,bM ∈ RN , an M -dimensional lattice Λ is defined
as the set of all integer linear combinations of the bi’s:

Λ =

{

x ∈ R
N : x =

M
∑

i=1

zibi, zi ∈ Z

}

. (1)

The bi’s are called a basis of the lattice Λ and we say that they
generate it. M is called the rank of the lattice and we say that
the lattice has full rank ifM = N . TheM×N matrixG whose
rows are the bi’s is called the generator matrix associated with
that basis and

Λ =
{

x ∈ R
N : x = zG, z ∈ Z

M
}

= Z
MG. (2)

When M = N and G is square, we define the volume of the
lattice as Vol(Λ) = | det(G)|.
Given a rank-N lattice Λ ⊆ RN , any generator matrix G of

Λ is square and has full rank; then, let H = G−1. A definition
of Λ equivalent to (1) and (2) is

Λ =
{

x ∈ R
N : xH is an integer vector

}

. (3)

Extending to lattices the terminology of linear codes, H can
be viewed as a parity-check matrix defining Λ.

III. ALGEBRAIC CONSTRUCTION
Now, let the space dimension N be fixed. The first ingre-

dient for the construction of a GLD lattice in RN is an n-
dimensional lattice Λ0 ⊆ Rn, for some small n dividing N .
Let G0 be its generator matrix and H0 = G−1

0 . Let L = N/n
and consider the N × N matrix

H1 =











H0 0 . . . 0
0 H0 . . . 0
...

...
. . .

...
0 0 . . . H0











; (4)

its diagonal blocks are L copies of the matrix H0 defining Λ0.
Therefore, H1 defines the lattice

Λ1 = Λ⊕L
0 , (5)



where the exponent⊕L denotes the direct sum of L summands
all equal to Λ0. Now, let π be a permutation of {1, 2, . . . , N}
and let

Λ2 = {(xπ(1), xπ(2), . . . , xπ(N)) : (x1, x2, . . . , xN ) ∈ Λ1}.

A parity-check matrix for Λ2 is clearly obtained by permuting
with π the rows of H1, that is, if Π is the permutation matrix
representing π, H2 = ΠH1. We call Λ2 the lattice generated
by the parity-check matrix H2 and we emphasize the relation
between Λ1 and Λ2 with the notation

Λ2 = π(Λ1) = π(Λ⊕L
0 ). (6)

Definition 2 (GLD lattice): Given Λ1 and Λ2 built as de-
scribed before, we call Generalized Low-Density (GLD) lattice
the lattice

Λ = Λ1 ∩ Λ2 = Λ⊕L
0 ∩ π(Λ⊕L

0 ). (7)

Notice that a (non-square, N × 2N ) parity-check matrix H
for the GLD lattice Λ is

H =
(

H1 H2

)

. (8)

H is rectangular, so in particular it is not invertible and
we cannot say that its inverse generates Λ. Nevertheless, it
is a parity-check matrix in the sense that it defines Λ as
in (3). Clearly, since we are in an N -dimensional space, the
2N columns of H (or, equivalently, the 2N corresponding
parity-check equations) cannot generate a lattice of dimension
bigger than N . It means that at least N of these columns
are redundant or, more mathematically, at least N of them
are linearly dependent on the others. Nevertheless, this matrix
will be our favorite for representing GLD lattices and it will
be directly used in iterative decoding of GLD lattice codes.
Its main feature, hence the adjective Low-Density, is that it is
sparse, provided that n is small compared to N . Namely, by
construction, it has row degree at most 2n and column degree
at most n.
Before going on, let us make a small example to make this

construction explicit. Let n = 2, L = 2, and N = 4; let

π : (a, b, c, d) → (d, b, a, c) (9)

be the permutation of four elements that sends the first element
to the third position, the second element to the second position,
and so on according to (9); hence

Π =









0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0









. (10)

Then, let

H0 =

(

1 1
1 −1

)

, H1 =









1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1









(11)

and H2 =









0 0 1 −1
1 −1 0 0
1 1 0 0
0 0 1 1









, (12)

with H2 = ΠH1. The corresponding GLD lattice is then
defined by the parity-check matrix

H =









1 1 0 0 0 0 1 −1
1 −1 0 0 1 −1 0 0
0 0 1 1 1 1 0 0
0 0 1 −1 0 0 1 1









. (13)

IV. GRAPHICAL REPRESENTATIONS
As we have already anticipated, our main goal is to design

lattices that are suitable for channel coding and iterative
decoding. For the latter, we also need to associate a graph
with our lattice structure. Similar to the case of linear codes
(and in particular LDPC codes), we can associate a Tanner
graph [2] with a parity-check matrix of a GLD lattice Λ. This
is a bipartite graph, built as follows:

• One set of nodes represents the variables x1, x2, . . . , xN .
• The other set of nodes represents parity-check equations
(the columns hj of H , j = 1, 2, . . . , 2N ).

• There is an edge between a variable node xi and a parity-
check node hj if and only if the entry hi,j of H is
different from 0.

In order to better understand this, let us build the Tanner graph
for the GLD lattice of the example of the previous section.
This lattice is identified by H in (13) and the corresponding
Tanner graph is depicted in Figure 1.

h1
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x3

x4

x2
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Figure 1. Tanner graph of the lattice defined by H in (13). Variable nodes
x1, x2, x3, x4 are on the left, check nodes h1,h2, . . . , h8 are on the right.

For a general GLD lattice, a Tanner graph has N variable
nodes and 2N check nodes. Instead of considering columns
of H as separate check nodes, given definition (7), we build a
more compact Tanner graph having 2N/n = 2L check nodes.
This graph is called generalized Tanner graph in the sequel. It
is more efficient for iterative decoding by message passing [2].
Each of its check nodes represents on its own n columns of
H and corresponds to a lattice copy of Λ0. Let us illustrate



this graph through our previous example in (13). The left half
part of H has L = 2 copies of H0, i.e. the direct sum Λ⊕2

0 .
The right half part has also two copies of H0 where point
coordinates are reordered according to π, i.e. π(Λ⊕2

0 ). As
depicted in Figure 2-(a), the Tanner graph has four generalized
check nodes and represents Λ = Λ⊕2

0 ∩ π(Λ⊕2
0 ).

(a) (b)
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Figure 2. The generalized Tanner graph associated with the GLD lattice
defined by H in (13), where Λ = Λ1 ∩ Λ2 = Λ⊕2

0
∩ π(Λ⊕2

0
).

By GLD construction Λ = Λ1 ∩ Λ2, i.e. intersection of two
lattices, variable nodes representing lattice coordinates all have
degree 2 in the generalized Tanner graph. Hence, the graph can
be further simplified by moving the first L check nodes to the
left and assigning coordinates to edges. This transformation in
the example n = L = 2 and dimension N = 4 converts the
graph in Figure 2-(a) into the simpler graph of Figure 2-(b).
For a GLD lattice Λ of rank N = nL, as depicted in Figure 3,
the generalized Tanner graph has L check nodes on the right
and L check nodes on the left. A check node has degree n; it
represents a local constraint defined by Λ0. The total number
of edges is N = nL. One lattice coordinate is assigned to one
graph edge.
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Figure 3. The generalized Tanner graph associated with a GLD lattice Λ of
rank N = nL, where Λ = Λ⊕L

0
∩ π(Λ⊕L

0
).

V. CHOICE OF THE COMPONENT LATTICE Λ0

The choice of the n-dimensional lattice Λ0 is crucial for
the construction of good GLD lattices. Indeed, it can make
the difference between having a useless, trivial intersection
Λ⊕L

0 ∩ π(Λ⊕L
0 ) = {0} or a more significant GLD lattice of

full rank N . In other words, the presence of some kind of

symmetry in Λ0 is necessary if we want the GLD construction
to produce non-trivial new lattices.
For this reason, from now on we restrict our analysis to

GLD lattices for which Λ0 is obtained by Construction A:
Definition 3 (Construction A (see also [1])): Let p be a

prime number and let C0 = C0[n, k, dH ]p be a linear code
over Fp of length n, dimension k, rate R = k/n, and
minimum Hamming distance dH . The lattice Λ0 obtained by
Construction A from C0 is defined as:

Λ0 = {x ∈ R
n : x ≡ c mod p, ∃c ∈ C0}. (14)

A compact way of expressing the previous formula is to write
Λ0 as a coset code [20]:

Λ0 = C0 + pZ
n. (15)

One simple consideration about a Construction A lattice Λ0 is
that

pZ
n ⊆ Λ0 ⊆ Z

n, (16)

from which we directly obtain:

pZ
N ⊆ Λ⊕L

0 ⊆ Z
N and pZ

N ⊆ π(Λ⊕L
0 ) ⊆ Z

N . (17)

Finally,
pZ

N ⊆ Λ = Λ⊕L
0 ∩ π(Λ⊕L

0 ) ⊆ Z
N . (18)

These simple inclusions yield the first, essential consequence
of building Λ0 with Construction A: independently from the
choice of the permutation π, the corresponding GLD lattice is
automatically 1) integer; 2) of full rank N . The first property
is very useful to implement the decoding algorithm, in which
messages will not need to be probability density functions (as
in [13]), but discrete distributions instead. The second property
is a guarantee of consistency of the construction itself.
While in the general case it is hard to find and describe

the intersection of a lattice with a permuted version of itself,
our particular choice of Λ0 allows us to analyze in the GLD
setting two of the main lattice parameters: the volume and
the minimum squared (Euclidean) distance, defined as d2

Λ =
minx∈Λ!{0} ||x||

2:
Proposition 1: In the notation of this section, if Λ is a GLD

lattice with Λ0 obtained by Construction A, then

min(p2, dH) ≤ d2
Λ ≤ p2 (19)

and
p(1−R)N = p(n−k)L ≤ Vol(Λ) ≤ pN . (20)

Proof: The inclusion pZN ⊆ Λ implies the following
inequalities: Vol(Λ) ≤ Vol(pZN ) = pN and d2

Λ ≤ p2. More-
over, (15) directly implies that d2

Λ0
≥ min(p2, dH) and the

inclusion Λ ⊆ Λ⊕L
0 implies that d2

Λ ≥ d2
Λ⊕L

0

= d2
Λ0
. Putting

all of this together, we conclude that min(p2, dH) ≤ d2
Λ ≤ p2,

which is (19).
Passing to the proof of (20), we notice that Λ ⊆ Λ⊕L

0 also
implies that

Vol(Λ) ≥ Vol
(

Λ⊕L
0

)

= Vol(Λ0)
L.



The volume of a Construction A lattice is known to be equal
to pn−k = pn(1−R) [1] [20], where n is the length of the code
C0, k is its dimension over Fp and R its rate. This suffices to
state that

p(1−R)N = p(n−k)L ≤ Vol(Λ) ≤ pN .

We can actually say something more precise concerning
Vol(Λ); this is possible passing through another way of
defining the GLD lattice construction when Λ0 is obtained by
Construction A. Putting together (7) and (15), we can deduce
that

Λ = (C0 + pZ
n)⊕L ∩ π((C0 + pZ

n)⊕L)

=
(

C⊕L
0 ∩ π(C⊕L

0 )
)

+ pZ
N (21)

= CGLD + pZ
N .

This means that GLD lattices can be seen in this case as
obtained by Construction A from a non-binary GLD code
CGLD = C⊕L

0 ∩ π(C⊕L
0 ), as defined in [3] [4]. There, it is

also mentioned that if the rate of C0 is R ≥ 1/2, then the rate
of the GLD code for variables of degree 2 is

RGLD = 2R − 1, (22)

for almost all permutations π, when L - hence N - tends to
infinity. Thus, we know that Λ = CGLD + pZN and we know
the rate of CGLD. We can deduce that:
Proposition 2: Keeping the notation of this section, if

R ≥ 1/2, then for large L, for almost all permutations
π defining the GLD lattice Λ, we have

Vol(Λ) = pN(1−RGLD) = p2N(1−R). (23)

VI. ITERATIVE DECODING
Iterative decoding of a GLD lattice will be done via

message passing [2] along edges of its generalized Tanner
graph. Computation of messages by a check node H0 can be
accomplished locally using a soft-input soft-output decoder
of the lattice Λ0, then sending extrinsic messages to the n
neighboring check nodes. Soft-input soft-output decoding of
the small-dimensional lattice Λ0 can be done in two methods:

• List sphere decoding. This method described in [22] is
based on point enumeration as in sphere decoding [21]. A
list built around the Maximum-Likelihood point is used
to generate probabilistic messages on lattice coordinates.
This method is valid for any lattice Λ0 with a reasonable
dimension, e.g. n ≤ 32.

• Syndrome trellis forward-backward decoding. Assume
that Λ0 is built by Construction A as in the previous
section, Λ0 = C0[n, k]p +pZn. Soft-input soft-output de-
coding of C0 is done by the forward-backward algorithm
applied on the syndrome trellis with pn−k states [23].
Messages from and to lattice coordinates are converted
up and down to the finite field Fp as in [17].

It is well-known that iterative decoding needs an underlying
graph without small cycles. It is opportune, then, to pay

attention to the construction of the graph when building a GLD
lattice. Luckily, as we have already pointed out, the structure
of the generalized Tanner graph depends on the permutation
π and the dimension n but not on the special structure of Λ0.
Thus, these two aspects can be dealt with separately.

VII. NUMERICAL RESULTS
A lattice sphere packing has many figures of merit. In

some cases, the fundamental coding gain, also known as the
Hermite constant, in conjunction with the kissing number is
useful to predict the asymptotic behavior of a finite lattice
constellation with points transmitted over a Gaussian channel.
A better estimation of error rate performance, at small
and moderate lattice dimensions, can be determined from
the Theta series. These standard figures of merit assume
maximum-likelihood (ML) decoding, i.e. finding the closest
lattice point within the finite constellation. One of our future
projects is to determine an average Theta series for a GLD
lattice ensemble. Given the difficulty of implementation of
an ML decoder in dimensions N > 100, and since our GLD
lattices family has a sparse structure, iterative decoding is the
unique method to decode in large dimensions.

In order to validate the goodness of GLD lattices on the
Gaussian channel, independently from constellation shaping
and labeling, we measure the error rate performance of an
infinite GLD lattice constellation. For infinite constellations,
a vanishing decoding error probability can be attained only if
the variance σ2 of the additive white Gaussian noise does not
exceed Poltyrev’s limit [5]:

σ2 < σ2
max =

Vol(Λ)
2

N

2πe
. (24)

The distance to Poltyrev’s limit can be expressed in decibels
as the ratio of current signal-to-noise ratio to the minimal
achievable signal-to-noise ratio. This gap in dB is (for large
dimension N ):

∆dB = 10 log10

(

Vol(Λ)
2

N

2πeσ2

)

= 10 log10

(

p4(1−R)

2πeσ2

)

.

A first GLD lattice of dimension N = 1000 is built from a
component lattice Λ0 with n = 8 and L = 125. We considered
Λ0 = C0[8, 6, 3]11 + 11Z8. The linear block C0 defined over
the field F11 has minimum Hamming distance dH = 3. It is
a shortened version of a Reed-Solomon [10, 8, 3]11 built from
the generator polynomial g(x) = x2 − 6x + 8. From C0, it is
straightforward to determine the generator matrix of Λ0,

G0 =

























1 0 0 0 0 0 5 8
0 1 0 0 0 0 5 4
0 0 1 0 0 0 1 4
0 0 0 1 0 0 10 3
0 0 0 0 1 0 8 8
0 0 0 0 0 1 1 2
0 0 0 0 0 0 11 0
0 0 0 0 0 0 0 11

























. (25)
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Figure 4. Error rate performance as a measure for the goodness of a GLD
lattice over the Gaussian channel, Λ0 = [8, 6, 3]11 + 11Z8 , N = 1000.

The error probability per lattice coordinate, usually called
symbol error probability, is plotted in Figure 4 versus the
gap to Poltyrev’s limit. The symbol error probability has
been estimated via Monte Carlo method where at least 200
erroneous lattice points are measured. Message passing in the
generalized Tanner graph did at most 200 decoding iterations.
Despite the good structure of Λ0, the GLD lattice is more than
2dB away from Poltyrev’s limit. This weakness is mainly due
to a relatively small value of L = N/n = 125.
A second GLD lattice of dimension N = 1000 has been

built from C0[4, 3, 2]11 with smaller but more check nodes,
n = 4 and L = 250. The linear code C0 is a single parity-
check over F11. The generator matrix of Λ0 is

G0 =









1 0 0 4
0 1 0 3
0 0 1 2
0 0 0 11









. (26)

Under similar conditions as the first GLD lattice, this one
performs closer to the theoretical limit on the Gaussian channel
as shown in Figure 5. This performance is comparable to that
of the best lattices known in the current literature.
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