
1

Edge Coloring and Stopping Sets Analysis in

Product Codes with MDS components
Fanny Jardel, Member, IEEE, and Joseph J. Boutros, Senior Member, IEEE,

Abstract—We consider non-binary product codes with MDS
components and their iterative row-column algebraic decoding
on the erasure channel. Both independent and block erasures
are considered in this paper. A compact graph representation is
introduced on which we define double-diversity edge colorings
via the rootcheck concept. An upper bound of the number of
decoding iterations is given as a function of the graph size
and the color palette size M . Then, we propose a differential
evolution edge coloring algorithm that produces colorings with
a large population of minimal rootcheck order symbols. The
complexity of this algorithm per iteration is o(Mℵ), for a given

differential evolution parameter ℵ, where M
ℵ itself is small

with respect to the huge cardinality of the coloring ensemble.
Stopping sets of a product code are defined in the context of
MDS components and a relationship is established with the graph
representation. A full characterization of these stopping sets is
given up to a size (d+ 1)2, where d is the minimum Hamming
distance of the MDS component code. The performance of
MDS-based product codes with and without double-diversity
coloring is analyzed in presence of both block and independent
erasures. In the latter case, ML and iterative decoding are proven
to coincide at small channel erasure probability. Furthermore,
numerical results show excellent performance in presence of
unequal erasure probability due to double-diversity colorings.

Index Terms—Product codes, MDS codes, iterative decoding,
codes on graphs, differential evolution, distributive storage, edge
coloring, diversity, erasure channel, stopping sets.

I. INTRODUCTION

The colossal amount of data stored or conveyed by network

nodes requires a special design of coding structures to protect

information against loss or errors and to facilitate its access.

At the end-user level, coding is essential for transmitting

information towards the network whether it is located in a

single node or distributed over many nodes. At the network

level, coding should help nodes to reliably save a big amount

of data and to efficiently communicate with each others.

Powerful capacity-achieving error-correcting codes developed

in the last two decades are mainly efficient at large or

asymptotic block length, e.g. low-density parity-check (LDPC)

codes [24] and their spatially-coupled ensembles [36], parallel-

concatenated convolutional (Turbo) codes [6], [7], and polar

codes derived from channel polarization [4]. Data transmission

This manuscript was submitted to the IEEE Transactions on Information
Theory, paper IT-15-1104, Dec. 2015. First revision completed on September
15, 2016 and second revision made on December 26, 2016. Part of the
stopping sets analysis from this paper was presented at the IEEE International
Symposium on Information Theory, Barcelona, July 2016. Fanny Jardel is with
Nokia Bell-Labs, 70435 Stuttgart, Germany (email: fanny.jardel@nokia.com).
She was with CEA, LIST, Gif Sur Yvette, F91191, France. Joseph J. Boutros
is with the Dept. of Electrical and Computer Engineering, Texas A&M Univer-
sity at Qatar, Education City, 23874 Doha, Qatar (email: boutros@tamu.edu).

and storage in many nowadays networks may require short-

length packets that are not suitable for capacity-achieving

codes. The current interest in finite-length channel coding

rates [45] put back the light on code design for short and

moderate block length. Many potential candidates are available

for this non-asymptotic length context such as binary and

non-binary BCH codes, including Reed-Solomon (RS) codes,

Reed-Muller (RM) codes, and tensor product codes of all these

linear block codes [8], [40], [41].

Product codes, introduced by Peter Elias in 1954 [20],

are tensor products of two (or more) simple codes with

a structure that is well-suited to iterative decoding via its

graphical description. In the early decades after their invention,

product codes received a great attention due to their capability

of correcting multiple burst errors [66], [72], the availability of

erasure-error bounded-distance decoding algorithms [68], the

ability of correcting many errors beyond the guaranteed cor-

rection capacity [1], and their efficient implementation with a

variable rate [70]. The pioneering work by Tanner [62] brought

new tools to coding theory and put codes on graphs, including

product codes, and their iterative decoding in the heart of

modern coding theory [33], [34], [51]. The graph approach of

coding led to new optimal cycle codes on Ramanujan/Cayley

graphs [63] and to generalizations of LDPC and product

codes, known as GLD codes, studied for the binary symmetric

channel (BSC) and the Gaussian channel [10]. The excellent

performance of iterative (turbo) decoding of product codes on

the Gaussian channel [47] made them compete with Turbo

codes and LDPC codes for short and moderate block length.

The convergence rate and stability of product codes iterative

decoding were studied based on a geometric framework [57].

Product codes with mixed convolutional and block components

were also found efficient in presence of impulsive noise [23].

In addition, iterated Reed-Muller product codes were shown

to exhibit good decoding thresholds for the binary erasure

channel, but at high and low coding rates only [67].

The class of product codes in which the row and the

column code are both Reed-Solomon codes was extensively

used since more than two decades in DVD storage media

and in mobile cellular networks [71]. In these systems, the

channel is modeled as a symbol-error channel without soft

information, i.e. suited to algebraic decoding. Improvements

were suggested for these RS-based product codes such as soft

information provided by list decoding [54] within the iterative

process in a Reddy-Robinson framework [50]. Also, RS-based

product codes were directly decoded via a Guruswami-Sudan

list decoder [29] after being generalized to bivariate polyno-

mials [3]. For general tensor products of codes and interleaved

2

codes, a recent efficient list decoding algorithm was published

[25], with an improved list size in the binary case. On channels

with soft information, RS-based product codes may be row-

column decoded with soft-decision constituent decoders [21],

[31].

Tolhuizen found the Hamming weight distribution of both

binary and non-binary product codes up to a weight less than

d1d2 + max(d1⌈d2/q⌉, d2⌈d1/q⌉) [64], where d1, d2 are the

minimum Hamming distances of the component codes and q
is the finite field size. Enumeration of erasure patterns up to a

weight less than d1d2 +min(d1, d2) was realized by Sendrier

for product codes with MDS components [58]. Rosnes studied

stopping sets of binary product codes under iterative ML-

component-wise decoding [53], where the defined stopping

sets and their analysis are based on the generalized Hamming

distance [30], [69].

A. Paper content and structure

In this paper, we consider non-binary product codes with

MDS components and their iterative algebraic decoding on

the erasure channel. Both independent and block erasures are

considered in our paper. The erasure channel is currently a

major area of research in coding theory [37], [38] because

of strong connections with theoretical computer science [38]

and its model that easily allows to understand the behavior of

codes such as for LDPC codes [18], for general linear block

codes [56], and for turbo codes [52]. Coding for block erasures

was examined by Lapidoth in the context of convolutional

codes [39]. This was a basis to later construct codes for the

block-fading channel with additive white Gaussian noise [14],

[28]. The notion of rootcheck introduced in [13], [14] for

single-parity checknodes was applied to more general chec-

knodes in GLD codes [12] and product codes [11] to achieve

diversity on non-ergodic block-fading channels. The rootcheck

concept is the main tool in this paper, in a way similar to [11],

to define a compact graph representation and study iterative

decoding in presence of block erasures. Edge coloring is one

of the most interesting problems in modern graph theory [9].

In this paper, edge coloring is a tool, when combined to

the rootcheck concept, yields double-diversity product codes.

Our work is valid for finite-length MDS-based product codes

only. Product codes for asymptotic block length were studied

for single-parity codes constituents [48] and for the erasure

channel with a standard regular structure [55] and MDS-based

irregular structures [2].

Whether a product code is endowed with an edge coloring

or not, the analysis of stopping sets, their characterization

and their enumeration is a fundamental task to be able to

design codes for erasure channels and determine the decoder

performance. Our work in this sense is an improvement

to previous works cited above by Tolhuizen, Sendrier, and

Rosnes. Besides this objective of stopping sets characterization

which is useful for independent channel erasures and erasures

occurring in blocks of symbols, recent works on locality

[26] stimulated us to search for edge colorings with a large

population of edges that admit a minimal rootcheck order.

Locality is a concept encountered in distributive storage [35],

[49] where classic coding theory is adapted to the nature of

a network with distributed nodes with its own constraints of

load in bandwidth and storage [19], [43]. Furthermore, product

codes with MDS components appear to be suited to distributive

storage [22] owing to their simple and mature techniques of

erasure resilience. In our search for good edge colorings, we

provide a new algorithm based on the concept of differential

evolution [44], [61]. Our MDS-based product codes equipped

with a double-diversity edge coloring are suited to distributed

storage applications and to wireless networks where diversity

is a key parameter. MDS-based product codes do not exhibit

the best locality for multiple erasures as locally repairable

codes codes with sequential recovery [5], nonetheless they

can fill block erasures thanks to double diversity which is an

advantage over locally repairable codes.

The paper is structured as follows. Section II gives a list of

mathematical notations. The graph representation of product

codes is given in Section III, including compact and non-

compact graphs. The rootcheck concept and its consequences

are also found in Section III. Our edge coloring algorithm for

bipartite graphs of product codes is described in Section IV.

The analysis of stopping sets is made in Section V. Finally, in

Section VI, we study the performance of product codes with

MDS components on erasure channels and we give theoretical

and numerical results before the conclusions in the last section.

B. Main results

The main results in this paper are:

• Establishing a new compact graph for product codes.

The compact graph has many advantages, the main one

being its ability to imitate a Tanner graph with parity-

check nodes. The compact graph is also the basis for the

differential evolution edge coloring. See Section III-B.

• Iterative decoding analysis of finite-length product codes,

mainly the proof of new bounds on the number of

decoding iterations. See Theorem 1 and Corollary 1.

• A new edge coloring algorithm (DECA) capable of pro-

ducing double-diversity colorings despite the huge size of

the coloring ensembles. See Section IV-B. Construction

via the DECA algorithm of product codes maximizing

the number of edges with root order 1, i.e. minimizing

the locality when the process of repairing nodes is con-

sidered. See Section IV-C.

• Proving new properties of stopping sets for product

codes with MDS components. See Propositions 1&2,

Corollaries 2-4, and Lemmas 2&3.

• Complete enumeration and characterization of stopping

sets up to a size (d1 + 1)(d2 + 1). This stopping set

enumeration goes beyond the weight d1d2+max(d1, d2)
of Tolhuizen’s Theorem 3 for codeword enumeration

in the MDS components case. See Lemmas 4&5 and

Theorem 2. The enumeration theorem for d1 6= d2 is

not included in this paper due to the lack of space. It can

be found in a longer paper on arXiv.

• First numerical results for MDS-based product codes on

erasure channels showing how close iterative decoding

is to ML decoding, mainly for small ǫ. We proved that

3

iterative decoding perform as well as ML decoding (the

ratio of error probabilities tends to 1) for MDS-based

product codes at small ǫ. See Proposition 3, Corollary 5,

and other performance results in Section VI-B.

• Great advantage of double-diversity colorings of product

codes (with respect to codes without coloring) in presence

of unequal probability erasures. Thus, double-diversity

colorings are efficient on both ergodic and non-ergodic

erasure channels. See Section VI-C.

II. MATHEMATICAL NOTATION AND TERMINOLOGY

We start by the notation related to the product code and

its row and column components. The impatient reader may

skip this entire section and then refer to it later to clarify any

notation within the text. Basic notions on product codes and

fundamental properties are found in main textbooks [8], [40],

[41] and the encyclopedia of telecommunications [33].

The column code C1 is a linear block code over the finite field

Fq with parameters [n1, k1, d1]q which may be summarized

by [n1, k1] when no confusion is possible. The integer q is

the code alphabet size, n1 is the code length, k1 is the code

dimension as a vector subspace of Fn1

q , and d1 is the minimum

Hamming distance of C1. Similarly, the row code C2 is a

linear block code with parameters [n2, k2, d2]q . Let G1 and

G2 be two matrices of size k1 × n1 and k2 × n2 containing

in their row a basis for the subspaces C1 and C2 respectively.

From the two generator matrices G1 and G2 a product code

CP is constructed as a subspace of FN
q with a generator

matrix GP = G1 ⊗ G2, where N = n1n2 and ⊗ denotes

the Kronecker product [41]. CP has dimension K = k1k2
and minimum Hamming distance dP = d1d2. C1 and C2

are also called component codes, this is a terminology from

concatenated codes. In [62] and [11], vertices associated to

component codes are called subcode nodes.

A linear [n, k, d]q code is said to be MDS, i.e. Maximum

Distance Separable, if it satisfies d = n− k+1. Binary MDS

codes are the trivial repetition codes and the single parity-

check codes. In this paper, we only consider non-trivial non-

binary MDS codes where q > n > 2. A linear code over Fq

of rate R = k/n is said to be MDS diversity-wise or MDS in

the block-fading/block-erasure sense if it achieves a diversity

order L such that L = 1 + ⌊M(1 − R)⌋, where M is the

number of degrees of freedom in the channel. The right term

1+⌊M(1−R)⌋ is known as the block-fading Singleton bound

[32], [42]. In this paper, M shall denote the number of colors,

i.e. the palette size of an edge coloring. Assume that code

symbols are partitioned into M sub-blocks, a code is said to

attain diversity L if it is capable of correct decoding when

L−1 sub-blocks are erased by the channel. The reader should

refer to [65], chapter 3, for an exact definition of diversity on

fading channels with additive white Gaussian noise.

A product code shall be represented by a non-compact graph

G = (V1, V2, E). G is a complete bipartite graph where V1 is

the set of n2 right vertices, V2 is the set of n1 left vertices,

and E is the set of N edges representing the code symbols. A

compact graph Gc will also be introduced in the next section

with Gc = (V c
1 , V

c
2 , E

c). The number of edges (also called

super-edges) in the compact graph is |Ec| = N c. A super-edge

is equivalent to a super-symbol that represents (n1 − k1)×
(n2 − k2) symbols from Fq . The ensemble of edge colorings

is denoted Φ(E) and Φ(Ec) for G and Gc respectively. An

edge coloring will be denoted by φ.

Under iterative row-column decoding, the rootcheck order

ρ is equal to the number of decoding iterations required to

solve the edge value (or the symbol associated to that edge). In

this paper, one decoding iteration is equivalent to decoding all

rows or decoding all columns. A sequence of n1 row decoders

followed by a sequence of n2 column decoders is counted as

two decoding iterations. Given φ, the rootcheck order of an

edge is ρ(e). The greatest ρ(e) among all edges will be referred

to as ρmax(φ). The number of edges e satisfying ρ(e) = 1 is

η(φ), this is the number of good edges and will be processed

by the DECA algorithm in Section IV. The DECA parameter

ℵ shall represent the number of edges to be mutated, i.e. those

edges being chosen in the population of bad edges satisfying

ρ(e) > 1.

We give now a general definition of a stopping set. A

detailed study is found in Section V. The notion of a stopping

set is useful for iterative decoding in presence of erasures [18].

Definition 1: Let C[n, k]q be a linear code and D be a

decoder based on a deterministic decoding method. Consider

a set S of s fixed positions i1, i2, . . . , is, where 1 ≤ ij ≤ n,

and assume all code symbols on the s positions given by S
are erased. The set S is said to be a Stopping Set if D fails

in retrieving none of the s erased symbols.

This paper focuses on stopping sets of a product code under

iterative algebraic row-column decoding, i.e. referred to as

type II stopping sets. The number of stopping sets of size w
is τw. The rectangular supportR(S) of a stopping set S can be

seen as the smallest rectangle containing S inside the n1×n2

product code rectangular representation. After excluding rows

and columns not involved in S, the rectangular support has size

ℓ1 × ℓ2 where w = |S| ≤ ℓ1ℓ2. The word error performance

of CP shall be estimated on erasure channels, PML
ew is the

word error probability under Maximum Likelihood decoding

and PGew is the word error probability under iterative row-

column decoding. Three erasure channels are considered: 1-

The Symbol Erasure Channel, SEC(q, ǫ), where code symbols

are independently erased with a probability ǫ, 2- The Color

Erasure Channel, CEC(q, ǫ), where all symbols associated

to the same color are block-erased with a probability ǫ. On

the CEC(q, ǫ), block-erasure events are independent from

one color to another. 3- The unequal probability Symbol

Erasure Channel, SEC(q, {ǫi}
M
i=1), where symbol erasures are

independent but their erasure probability varies from one color

to another.

III. GRAPH REPRESENTATIONS FOR DIVERSITY

Efficient graph representation of codes was established by

Tanner for different types of coding structures [62]. Bounds

on the code parameters and iterative decoding algorithms were

also proposed for codes on graphs [62]. In this paper, we

study the edge coloring of a product code graph, where edges

represent code symbols. As shown below, the original graph

4

for a product code is too complex, i.e. it leads to a large

ensemble of colorings. Hence, we introduce a compact graph

where symbols are grouped together with the same color in

order to reduce the size of the coloring ensemble. The compact

graph also has another asset: grouping parity symbols together

renders check nodes similar to parity-check nodes found in

standard low-density parity-check codes [24] [51].

A. Non-compact graph

Consider a product code C1[n1, k1]q ⊗ C2[n2, k2]q where

C1 is the column code and C2 is the row code. The product

code is defined over the finite field Fq and has length N and

dimension K given by [41]

N = n1n2, K = k1k2. (1)

Each code symbol simultaneously belongs to one row and to

one column. Product codes studied in this paper are regular, in

the sense that all columns are codewords of C1 and all rows

are codewords of C2. The graph of C1[n1, k1]q ⊗C2[n2, k2]q
is built as follows. We use the same terminology as in [51]:

• n1 check nodes are drawn on the left. A left check node

represents the coding constraint which states that a row

belongs to C2. The n1 left check nodes are referred to

as C2 check nodes, or row check nodes, or equivalently

left vertices.

• n2 check nodes are drawn on the right. A right check

node represents the coding constraint which states that

a column belongs to C1. The n2 right check nodes are

referred to as C1 check nodes, or column check nodes,

or equivalently right vertices.

• An edge is drawn between a left vertex and right vertex.

It represents a code symbol located on the row of the left

vertex and on the column of the right vertex. The code

symbol belongs to Fq .

n2 checknodesn1 checknodes

C1C2

C2

C2

C2

C1

C1

C1

EV2 V1

Figure 1: Non-compact bipartite graph G = (V1, V2, E) of a

product code [4, 2]⊗2, i.e. n1 = n2 = 4, k1 = k2 = 2, |V1| =
|V2| = 4, and |E| = N = n1n2 = 16 edges representing 16

symbols in Fq .

In summary, the product code graph (V1, V2, E) is a

complete biregular bipartite graph built from n1 left vertices,

n2 right vertices, and N = |E| = n1n2 edges representing

code symbols. The left degree is n2 and the right degree

is n1. Irregular product codes can be found in [2]. Our

paper is restricted to regular product codes. Figure 1 shows

the bipartite graph of a square regular symmetric product

code [4, 2] ⊗ [4, 2]. The graph structure reveals n1, n2, and

N = n1n2. The dimensions k1 and k2 of the component

codes have no effect on the number of vertices and edges

in the product code graph. Indeed, a [4, 3] ⊗ [4, 3] code can

also be defined by the graph in Figure 1. The role of the

dimensions k1 and k2 is played within the check constraints

inside left and right vertices. Similarly, the size of the finite

field defining the code cannot be revealed from the graph

structure, i.e. the product code graph does not depend on q.

Definition 2: The non-compact graph G = (V1, V2, E) for

a [n1, k1]⊗ [n2, k2] product code is a complete bipartite graph

with n1 = |V2| left vertices and n2 = |V1| right vertices.

B. Compact graph

In [11] where the diversity of binary product codes was

considered, vertices of the non-compact graph were grouped

together into super-vertices (or supernodes) because the

different channel states lead to multiple classes of check

nodes as in root-LDPC codes [14]. To render a graph-

encodable code, supernodes in [11] were made by putting

n−k nodes together for a [n, k] component code. Also, n−k
is not necessarily a divisor of n.

Definition 3: The compact graph Gc = (V c
1 , V

c
2 , E

c) for a

[n1, k1] ⊗ [n2, k2] product code is a complete bipartite graph

with ⌈ n1

n1−k1

⌉ = |V c
2 | left vertices and ⌈ n2

n2−k2

⌉ = |V c
1 | right

vertices.

From the above definition, the number of edges in the compact

graph Gc is found to be

N c = |Ec| =

⌈

n1

n1 − k1

⌉

×

⌈

n2

n2 − k2

⌉

. (2)

Assuming that (n1−k1) divides n1 and (n2−k2) divides n2,

a left check node in Gc is equivalent to n1−k1 row constraints

and a right check node in Gc is equivalent to n2− k2 column

constraints. An edge in the compact graph carries (n1−k1)×
(n2 − k2) code symbols. To avoid confusion between edges

of G and Gc, we may refer to those in Gc as super-edges or

equivalently as super-symbols. If ni is not multiple of ni−ki,
then the last row or column supernode will contain less than

ni − ki check nodes. Figure 2 depicts the compact graph of

the [4, 2]⊗2 product code. All [n, n/2]⊗2 product codes have

a compact graph identical to that of [4, 2]⊗2, for all n ≥ 2, n
even.

C. Diversity and codes on graphs

From a coding point of view, diversity is the art of creating

many replicas of the same information. From a channel

5

2 supernodes 2 supernodes

V c
2 V c

1Ec

Figure 2: Compact bipartite graph Gc = (V c
1 , V

c
2 , E

c) with

two supernodes on each side for the product code [n, n/2]⊗2,

|V c
1 | = |V

c
2 | = 2 and |Ec| = N c = 4 supersymbols. Each

super-symbol (i.e. super-edge) contains n2/4 symbols (i.e.

edges).

point of view, diversity is the number of degrees of freedom

available while transmitting information. In distributive

storage, independent failure of individual machines is

modeled by independent erasures of code symbols, while

the outage of a cluster of machines is modeled as block

erasures of code symbols. Assuming a storage domain with

a large set of machines partitioned into M clusters, diversity

of distributed coding is defined as follows:

Definition 4: Consider a product code CP defined over Fq.

Assume that symbols are given M different colors. Erasing

one color is equivalent to erasing all symbols having this color.

The code is said to achieve a diversity L if it is capable of

filling all erasures after erasing L− 1 colors. The code is full-

diversity when L = M .

The integer L may also be called the diversity order. For

Gaussian channels with fading, the diversity order appears as

the slope of the error probability at high signal-to-noise ratio

γ, i.e. L = limγ→∞−
logPe

log γ
[14]. In the above definition, a

cluster has been replaced by a color. We will use this termi-

nology throughout the paper. Notice that coloring symbols is

equivalent to edge coloring of the product code graph. The

number of edges is N in the non-compact graph and N c in

the compact graph. In the sequel, all colorings are supposed to

be perfectly balanced, i.e. M divides both N and N c and the

number of edges having the same color is N/M and N c/M
for the non-compact graph and the compact graph respectively.

More formally, our edge coloring is defined as follows: an edge

coloring φ of G = (V1, V2, E) is a mapping associating one

color to every edge in E,

φ : E → {1, 2, . . . ,M}, (3)

such that |φ−1(i)| = N/M for i = 1 . . .M , where φ−1(i)
is the inverse image of i. Similarly, φ : Ec → {1, 2, . . . ,M}
for Gc = (V c

1 , V
c
2 , E

c) and |φ−1(i)| = N c/M . The set of

such mappings for G and Gc is denoted Φ(E) and Φ(Ec)
respectively.

Consider a coloring φ in Φ(Ec). It can be embedded into

Φ(E) by copying the color of a super-edge to its associated

(n1 − k1) × (n2 − k2) edges in E. Thus, let Φ(Ec → E) be

the subset of colorings in Φ(E) obtained by embedding all

colorings of Φ(Ec) into Φ(E). We have

Φ(Ec → E) ⊂ Φ(E) and |Φ(Ec → E)| = |Φ(Ec)|. (4)

The size of the edge coloring ensembles Φ(E) and Φ(Ec)
is obviously not the same when N c < N , which occurs for

both row and column component codes not equal to single

parity-check codes. Indeed, when a palette of size M is used

to color edges, the total number of colorings of E is

|Φ(E)| =
N !

((N/M)!)M
. (5)

This number for the compact graph is

|Φ(Ec)| =
N c!

((N c/M)!)M
. (6)

As an example, for the [12, 10]⊗2 code and M = 4, there

are 2 · 1083 edge colorings for the non-compact graph and

2 · 1019 edge colorings for the compact graph. It is clear that

the construction of product codes for diversity is much easier

when based on Gc = (V c
1 , V

c
2 , E

c) because its edge coloring

ensemble is smaller. Furthermore, as described below, vertices

in Gc act in a way similar to standard LDPC check nodes

making the design very simple. Furthermore, we will see in

Section V that edge colorings of the compact graph render

larger stopping sets than colorings of the non-compact graph.

The diversity order L attained by a code can never exceed

M , the latter being the diversity from a channel point of

view. A tighter upper bound of L showing the rate-diversity

tradeoff is the block-fading Singleton bound. The Singleton

bound for the maximal achievable diversity order is valid

for all types of non-ergodic channels, including block-erasure

and block-fading channels. The block-fading Singleton bound

states that [32] [42]

L ≤ 1 + ⌊M(1−R)⌋, (7)

where R = K/N is the coding rate of the product code.

Codes satisfying the equality in the above Singleton bound are

referred to as diversity-wise MDS or block-fading MDS codes.

From (7), we deduce that R ≤ 1/M if L = M (full-diversity

coding). For example, we get R ≤ 1/2 with an edge coloring

using L = M = 2 colors and R ≤ 1/4 for L = M = 4 colors.

The coding rate can exceed 1/M when L < M in applications

where full diversity is not mandatory. An example suited to

distributed storage is an edge coloring with a palette of M = 4
colors, a diversity L = 2, and R ≤ 3/4.

D. Rootcheck nodes and root symbols

In a way similar to root-LDPC codes and product codes

built for block-fading channels [11], [14], we introduce now

the notion of root symbols and root-check nodes in product

codes to be designed for distributive storage. A linear [n, k]q
code with parity-check matrix H can fill n − k erasures at

positions where the columns of H are independent. These n−
k symbols correspond to n − k separate edges in the non-

compact graph and to a unique edge (supersymbol) in the

compact graph. Therefore, for simplicity, we start by defining

6

a root supersymbol in the compact graph where supernodes

are equivalent to standard LDPC parity-check nodes.

Definition 5: Let Gc be a compact graph of a product

code, let φ be a given edge coloring, and let e ∈ Ec be a

supersymbol. e is a root supersymbol with respect to φ(e) if

it admits a neighbor vertex υ, υ ∈ V c
1 or υ ∈ V c

2 , such that

all adjacent edges f in υ satisfy φ(f) 6= φ(e).

In Definition 5, if υ ∈ V c
1 then e is a root supersymbol

thanks to the product code column to which it belongs, i.e.

e can be solved in one iteration by its column component

code when the color φ(e) is erased. Likewise, e is protected

against erasures by its row component code if υ ∈ V c
2 in

the previous definition. Finally, a root supersymbol may be

doubly protected by both its row and its column if both right

and left neighbors υ1 ∈ V c
1 and υ2 ∈ V c

2 satisfy the condition

of Definition 5.

Definition 6: Let G be a non-compact graph of a product

code, let φ be a given edge coloring, and let e ∈ E be a

symbol. e is a root symbol with respect to φ(e) if it admits a

neighbor vertex υ such that:

φ(f) = φ(e) for at most n2 − k2 − 1 adjacent edges f if

υ ∈ V1, or

φ(f) = φ(e) for at most n1 − k1 − 1 adjacent edges f if

υ ∈ V2.

As mentioned in the paragraph before Definition 5, Defini-

tion 6 implies that the ni − ki root symbols with the same

color should belong to positions of independent columns in the

parity-check matrix of the component code Ci. This constraint

automatically disappears for MDS component codes since any

set of ni − ki columns of Hi has full rank.

E. The rootcheck order in product codes

Not all symbols of a product code are root symbols.

Under iterative row-column decoding on channels with block

erasures, some symbols may be solved in two decoding

iterations or more. Some set of symbols may never be solved

and are referred to as stopping sets [18], [53], [56]. Our study

is restricted to erasing the symbols of one color out of M .

Hence, the rest of this paper is restricted to double diversity,

L = 2. Absence of diversity is equivalent to L = 1. We

establish now the root order ρ of a symbol. For root symbols

satisfying Definitions 5 and 6, the root order is ρ = 1. For

symbols that can be solved after two decoding iterations, we

set ρ = 2. The formal definition of the root order ρ(e) of an

edge e (or a super-symbol e) can be written in a recursive

manner as in Definition 7 below. For all super-symbols

e ∈ Ec, start by setting ρ(e) =∞.

Definition 7: Let Gc be a compact graph of a product code

and let φ ∈ Φ(Ec) be an edge coloring. The super-symbol e
has root order ρ(e) = min(ρ1, ρ2) where:

1- Let υ1 ∈ V c
1 be the column neighbor vertex of e. If υ1

contains no edge f such that φ(f) = φ(e) then set ρ1 = 1.

Otherwise, set ρ1 to the smallest integer such that ∀f adjacent

to e in υ1 and φ(f) = φ(e), we have ρ(f) < ρ1. Take

ρ1 =∞ if a finite integer cannot be found.

2- Let υ2 ∈ V c
2 be the row neighbor vertex of e. If υ2 contains

no edge f such that φ(f) = φ(e) then set ρ2 = 1. Otherwise,

set ρ2 to the smallest integer such that ∀f adjacent to e in

υ2 and φ(f) = φ(e), we have ρ(f) < ρ2. Take ρ2 = ∞ if a

finite integer cannot be found.

The previous definition implies that ρ(e) = 1 if there exists

no adjacent edge with the same color. When color φ(e) is

erased, symbols belonging to the so-called stopping sets can

never be solved (even after an infinite number of decoding

iterations) and hence their root order ρ is infinite. In Section V

we review stopping sets as known in the literature and we

study new stopping sets for product codes based on MDS

components under iterative algebraic decoding. Definition 7

can be rephrased to make it suitable for the non-compact

graph G. We pursue this section to establish an upper bound

of the largest finite root order valid for all edge colorings φ.

Theorem 1: Let CP be a product code [n1, k1] ⊗ [n2, k2]
with a compact graph Gc = (V c

1 , V
c
2 , E

c). ∀φ ∈ Φ(Ec) and

∀e ∈ Ec we have:

Case 1: ∄f ∈ Ec such that φ(f) = φ(e) and ρ(f) =∞, then

1 ≤ ρ(e) ≤

⌈

N c

2M

⌉

= ρu.

Define the minimum number of good edges,

ηmin(φ) = min
i=1...M

|{f ∈ Ec : φ(f) = i, ρ(f) = 1}|.

Then, in Case 1,

2ρ(e) + ηmin(φ) − 3 ≤

⌈

N c

M

⌉

. (8)

Case 2: ∃f ∈ Ec such that φ(f) = φ(e) and ρ(f) =∞, then

ρ(e) =∞ or 1 ≤ ρ(e) ≤

⌈

N c

M

⌉

− 4,

where N c = |Ec| is given by (2).

Proof: Case 1 corresponds to a product code with di-

versity L = 2, for a given color φ(e), which is capable of

solving all symbols when that color is erased. The graph has

no infinite root order symbols. ρ is recursively built by starting

from ρ = 1 following two paths in the graph until reaching a

common edge e that has two neighboring vertices with edges

of order ρ(e)− 1. There are up to ⌈N c/M⌉ edges, including

e, having color equal to φ(e). The largest ρ(e) is attained

in the middle of the longest path of length ⌈N c/M⌉, hence

2ρ(e)−1 ≤ ⌈N c/M⌉ which is translated into the stated result

for Case 1. An illustrated instance is given for the reader in

Example 1. Back to the path of length 2ρ(e)− 1 ending with

edges of order 1 on both sides, if the population of order 1
edges is η1 for the color φ(e), then the path can only use a

maximum of ⌈N c/M⌉− (η1−2) edges. We get the inequality

2ρ(e)−1 ≤ ⌈N c/M⌉−(η1−2). By plugging ηmin(φ) instead

of η1, this inequality becomes independent from the particular

color. The stated inequality in (8) is obtained after grouping

ρ(e) and ηmin(φ) on the left side.

7

Case 2 corresponds to bad edge coloring where the product

code does not have double diversity, i.e. stopping sets do exist

for the color φ(e). The order of e may be infinite if e is

involved in a stopping set with another edge f having the

same color. Otherwise, consider the smallest stopping set of

size four symbols (the smallest cycle in Gc with edges of color

φ(e)), then there remains ⌈N c/M⌉−4 edges of color φ(e). A

path of length ⌈N c/M⌉− 4 starting with ρ = 1 and ending at

ρ =∞ may exist. The largest finite order in this path before

reaching the stopping set is ρ = ⌈N c/M⌉ − 4.

Corollary 1: Let CP be a product code [n1, k1] ⊗ [n2, k2]
with a compact graph Gc. Let φ ∈ Φ(Ec) be an edge coloring.

We define

ρmax(φ) = max
e∈Ec

ρ(e). (9)

CP attains double diversity under iterative row-column

decoding if and only if ρmax(φ) < ∞. In this case, we

say that φ is a double-diversity coloring and ∀e ∈ Ec, e
can be solved after at most ρmax decoding iterations where

ρmax(φ) ≤ ρu.

For colorings in Φ(E), we extend the same definition as in

Corollary 1 and we say that φ ∈ Φ(E) is double-diversity if

all edges have a finite rootcheck order. The parameter ρmax

is important in practical applications to bound from above the

amount of conveyed information within a network (whether it

is a local-area or a wide-area network). In fact, in coding for

distributed storage, the locality of a product code per decoding

iteration is max(n1−1, n2−1) in G under algebraic decoding

of its row and column components. Here, the locality is the

number of symbols to be accessed in order to repair an erased

symbol [26]. Locality is max(k1, k2) for MDS components

under ML decoding of the product code components. Finally,

for a product code, the information transfer per symbol is

bounded from above by

ρmax(φ)×max(n1 − 1, n2 − 1). (10)

The exact transfer cost to fill all erasures with iterative

decoding can be determined by multiplying each order ρ
with the corresponding edge population size. This exact cost

may vary in a wide range from one coloring to another. The

DECA algorithm presented in Section IV enlarges the edge

population with root order 1 leading in practice to a dramatic

reduction of ρmax. The interdependence between ρ and the

population of order 1 was revealed in inequality (8). This

inequality is useful in intermediate cases where ρmax = 1
is not attained, i.e. outside the case where all edges have

order 1. The influence of the component decoding method

on the performance of a product code via its stopping sets is

discussed in Section V.

Example 1: Consider a [12, 10]⊗2 product code and a color-

ing φ with M = 4 colors. The compact graph has |Ec| = 6×6
edges. Instead of drawing Gc, we draw the 6×6 compact ma-

trix representation of the product code in Fig. 3. Supersymbols

corresponding to a color φ(e) = 1 are shaded. Fig. 3 also

shows a path in Gc such that a maximal order ρmax = ρu = 5
is attained for φ(e) = 1. If φ has double diversity then ρmax

will not exceed ρu = 5 for all colors φ(e) ∈ {1, 2, . . . ,M}.
Note that the parameters of this product code are such that

N c/M − 4 is also equal to 5 for a φ with a diversity defect.

1 1

2 2

3 3

4 4

5

ρ = 1

ρ = 5

ρ = 4

ρ = 2 ρ = 3

ρ = 4

ρ = 3

ρ = 2ρ = 1

Figure 3: Compact matrix (left) and path in compact graph

(right) for a product code [12, 10]⊗2 showing a maximal root

order of 5.

Example 2: Consider a [14, 12]⊗ [16, 14] product code and

a coloring φ with M = 4 colors. The compact graph has

|Ec| = 7× 8 edges. The compact matrix and a path attaining

ρ = 10 are illustrated in Fig. 4. φ is chosen such that the

first color has a cycle involving four supersymbols. Starting

from the root supersymbol (ρ = 1) it is possible to create a

path in the graph such that ρ = 10 is reached. Note that a

double-diversity φ cannot exceed a root order ρu = 7.

1

2

3

4

8

5

6

7

9

10

ρ = 3

ρ =∞

ρ = 8

ρ = 7

ρ =∞

ρ =∞

ρ = 10

ρ = 9

ρ = 6

ρ = 4ρ = 5

ρ = 1

∞∞

∞ ∞

ρ = 2

ρ =∞

Figure 4: Compact matrix (left) and path in compact graph

(right) for a product code [14, 12]⊗[16, 14] showing a maximal

finite root order of 10.

The ideal situation is to construct a product code and its

edge coloring in order to obtain ρ(e) = 1 for all edges.

An analysis based on ρu reveals the existence of a trade-

off between minimizing the number of decoding iterations

and the valid range of both coding rates for the product

code components. In Section IV-A, we will show unbalanced

product codes where a sufficient condition on the component

rates imposes order 1 to all edges. The sufficient condition is

given by Lemma 1. Section IV introduces an efficient edge

coloring algorithm for product codes by making use of their

compact graph representation.

IV. EDGE COLORING ALGORITHM UNDER CONSTRAINTS

In Section III, we described graph representations of product

codes and we introduced the root order ρ(e) of an edge with

8

respect to its color φ(e). Our objective is to find a coloring

φ such that the maximum diversity order is reached under

block erasures. The notion of root order in Definition 7 is

for double diversity (L = 2) because it indirectly assumes

that all symbols of one color out of M can be erased by

the channel. Given the Singleton bound tradeoff stated in (7),

double diversity is sufficient in distributed storage applications

where the required coding rate should be sufficiently high.

Definition 7 may be generalized to take into account two or

more erased colors, e.g. see Figure 11 in [14] for L = 3
with M = 3 colors where an information symbol is protected

by multiple root checknodes. In this paper, we restrict both

Definition 7 and the design in this section to a double-diversity

product code. This double diversity on a block-erasure channel

is achieved if all stopping sets, as defined and counted in

Section V, can be colored in a way such that at least two

distinct colors are found within the symbols of a stopping set

(valid for both G and Gc). This task is intractable. Imagine

an edge coloring φ designed in a way to guarantee that all

weight-w stopping sets include at least two colors. This task

is already very hard (or almost impossible) for a fixed w.

There is no coloring design tool for non-trivial product codes

to ensure that all stopping sets of all weights incorporate at

least two distinct colors.

A. Hand-made edge coloring and its limitations

The aim of this section is to give more insight on designing

edge coloring, before introducing the differential evolution

algorithm.

The compact graph Gc makes the design of an edge coloring

much simpler. More details will be given later in Section V-C

on the relationship between graphs and stopping sets. The

number of super-edges in Gc with the same color is N c/M .

We also know that the size, height, and width of Gc are directly

related to the component and total coding rates.

Lemma 1: Let CP = C1⊗C2 be a product code with a col-

umn component C1[n1, k1]q and a row component C2[n2, k2]q
whose coding rates are R1 = k1/n1 and R2 = k2/n2

respectively. Assume that ni − ki divides ni, for i = 1, 2,

and assume that M divides N c. Gc admits an edge coloring

φ such that ρmax(φ) = 1 if the coding rates satisfy

min(R1, R2) ≤ 1−
1

M
. (11)

Proof: Consider the |V c
1 | × |V

c
2 | matrix representation of

Gc. A sufficient condition to get ρmax(φ) = 1 is to assign

the N c/M edges having the same color to a single row or a

single column. The sufficient condition for ρmax(φ) = 1 is

expressed as N c/M ≤ max(n1/(n1−k1), n2/(n2−k2)), the

max let us select the longest item among a row or a column.

Recall also that |V c
i | = ni/(ni− ki). Using (2), the sufficient

condition becomes n1n2 ≤M ·max(n1(n2−k2), n2(n1−k1)).
Divide by n1n2 to get the inequality announced in the Lemma

statement.

When the palette has M = 4 colors, the sufficient condition

in Lemma 1 is written as min(R1, R2) ≤ 3/4. In order

to achieve the block-fading Singleton bound for M = 4,

we should take R1 = 3/4 and R2 = 1, i.e. the product

code degenerates to a single component code. It is possible

to approach R = 3/4 by keeping R1 = 3/4 and letting

R2 = n2−1
n2

be very close to 1. In this case, the row code

C2 is a single-parity check code over Fq . The product code is

very unbalanced. An example of such an unbalanced product

code is

CP = [12, 9, 4]q ⊗ [14, 13, 2]q.

From the proof of Lemma 1, the edge coloring of Gc satisfying

ρmax = 1 is given by the following 4× 14 matrix:









R R R . . . R R
G G G . . . G G
B B B . . . B B
Y Y Y . . . Y Y









, (12)

where the colors φ(e) = 1, 2, 3, 4 are replaced by

the four letters ’R’, ’G’, ’B’, and ’Y’. The rate of

[12, 9, 4]q ⊗ [14, 13, 2]q is comparable to the rate of

[12, 10, 3]⊗2q , R ≈ 0.69 but it is still far from reaching three

quarters as the product code [14, 12, 3]q ⊗ [16, 14, 3]q. Of

course, if the practical constraints allow for it, it is possible

to consider an extremely unbalanced code such as the product

[12, 9, 4]q ⊗ [100, 99, 2]q!

Let us build balanced product codes by relaxing the con-

straint ρmax = 1. We may authorize a ρmax greater than 1
but not too large in order to limit the number of decoding

iterations. On the other hand, the double diversity condition

on the edge coloring is maintained. Firstly, let us find a hand-

made edge coloring for the [12, 10, 3]⊗2q product code with

M = 4 colors. Gc has 6 left supernodes, 6 right supernodes,

and a total of 36 edges. Each color is used N c/M = 9
times. The hint is to place a color on the rows of the matrix

representation of Gc, row by row from the top to the bottom

in a way that avoids stopping sets. The smallest stopping set

is the 2× 2 square. Other non-obvious stopping sets may not

be visible without a tedious row-column decoding which is

equivalent to determining the root order of all edges. We start

with the first color ’R’ and use the following number of letters

per row:
















R R R G B Y
R R
R
R
R
R

















. (13)

As seen above, we completed the first row with the three other

colors. On the second row, we moved the second ’R’ to the

right to avoid a 2 × 2 stopping set. Next, we can start filling

the second color ’G’ from the third row, then the third color

’B’ from the fifth row. There will be no choice for the 9
positions of ’Y’. We allow some extra permutations to avoid

small stopping sets. After filling the 36 positions, we found

the following hand-made edge coloring for the [12, 10, 3]⊗2q

9

product code:

















R R R G B Y
R B Y R Y G
B G G G R Y
Y G B Y G R
R G B B B Y
R G B Y Y B

















. (14)

This coloring φ gives 24 super-edges of order 1 (96 edges in

the non-compact graph G) and ρmax(φ) = 3. Can we find a

better φ? Yes, in Section IV-C, the DECA algorithm outputs

an edge coloring with a population of 32 super-edges of

order 1 (128 edges in the non-compact graph G) and reaching

ρmax(φ) = 2 only.

In a similar way, we attempt to build a double-diversity

coloring for a well-balanced rate-3/4 product code, e.g. the

[14, 12, 3]q⊗ [16, 14, 3]q product code where R1 = 6/7, R2 =
7/8, and R = 3/4. The compact graph Gc has 7 left vertices

and 8 right vertices. For M = 4 colors, each color is used

N c/M = 56/4 = 14 times. Again, we try to avoid small

obvious stopping sets like 2× 2, 2× 3, 3× 3, etc. We start by

putting five ’R’ on the first row, three ’R’ on the second row,

two ’R’ on the third row, and one ’R’ on the remaining rows

as follows:





















R R R R R G B Y
R R R
R R
R
R
R
R





















. (15)

We repeat the same number of color entries ’G’ starting on

the fourth row. The color ’B’ starts with five entries on the

seventh row. We allow some extra permutations to avoid small

stopping sets. Colors were exchanged within a row or within a

column. The coloring process was tedious. Many permutations

had to be applied. Some non-obvious stopping sets appeared, a

computer software was used to reveal those sets (only for this

task). We reached the following hand-made double-diversity

edge coloring for the [14, 12, 3]q ⊗ [16, 14, 3]q product code:





















Y R R Y R G B R
R Y B G Y R R B
B B B Y Y R G R
R G G G G G B Y
R G Y Y B Y G G
G G R R B Y Y Y
R G B B B B B Y





















. (16)

This coloring gives 30 super-edges of order 1 in Gc (120
edges in the non-compact graph G) and ρmax(φ) = 5. In

Section IV-C, for the same rate-3/4 product code, the DECA

algorithm outputs an edge coloring with a population of 40
super-edges of order 1 (160 edges in the non-compact graph

G) and reaching ρmax(φ) = 3 only.

B. The algorithm

We propose in this section an algorithm for product codes

that searches for an edge coloring with a large number of root-

order-1 edges (good edges) and achieving double diversity.

The search is made in the ensemble of edge colorings Φ(Ec)
of the compact graph Gc. A necessary condition on the coding

rate R to get double diversity is

R ≤ 1−
1

M
, (17)

i.e. those satisfying inequality (7), where M is the color

palette size. Codes attaining equality in (7) are referred to

as MDS in the block-fading/block-erasure sense [14], [28].

The main loop of our algorithm is a differential evolution

loop that mutates a fraction of the population of bad edges.

The algorithm will be referred to as the Differential Edge

Coloring Algorithm (DECA).

The population of bad edges is defined by the following set

B = {e ∈ Ec : ρ(e) > 1}. (18)

It should be remembered that B = B(φ) because of Defini-

tion 7, but φ is dropped here for the sake of simplifying the

notations. The number of good edges is given by

η(φ) = |Ec \B| = |{e ∈ Ec : ρ(e) = 1}| . (19)

Among the |B| bad edges, colors of a fraction of ℵ edges

are modified in order to maximize η(φ), ℵ ∈ N. The fraction

ℵ/|B| should be large enough to allow for a population

evolution but it should stay small enough in order to limit

the algorithm complexity. The DECA algorithm proceeds as

follows.

Initialization. The compact graph (V c
1 , V

c
2 , E

c), the number

of colors M , the differential evolution parameter ℵ, a

maximum number of rounds MaxIter, and an initial edge

coloring φ0 are made ready as an input to DECA.

Pre-processing. Build all weak compositions of ℵ with M
parts, i.e. write ℵ as the sum of M non-negative integers,

ℵ = γ1 + γ2 + . . .+ γM , (20)

the number of weak compositions being

Γ =

(

ℵ −M + 1

M − 1

)

. (21)

For each weak composition, prepare the Λ permutations that

permute colors among the ℵ edges, the total number of these

permutations is

Λ(γ1, . . . , γM) =
(γ1 + . . .+ γM)!

∏M

i=1 γi!
. (22)

This pre-processing step is completed by setting a loop

counter to zero.

Differential evolution loop. This looping phase of DECA

includes three main steps.

10

• Edge sets initialization. Set φ = φ0 and ηmax = 0. Build

B = B(φ) and randomly select a subset Bℵ. There is a

unique weak composition (γ1, . . . , γM) of ℵ associated

to Bℵ determined by

γi = |{e ∈ Bℵ : φ(e) = i}| . (23)

• Color permutations. For λ = 1 . . .Λ(γ1, . . . , γM), re-

place the image of Bℵ in the mapping φ by a permutation

of φ0(Bℵ). The color permutation is denoted by πλ. This

step is a modification of the mapping φ0 at the ℵ bad

edges, i.e. φ(Bℵ) ← πλ(φ0(Bℵ)). Record the mapping

with the largest number of good edges, i.e. the edge

coloring with the best η(φ), in φ1 and update ηmax.

• Termination. Increment the counter of evolution loops.

Stop and output φ1 if this counter reaches MaxIter,

otherwise set φ0 = φ1 and go back to the edge sets

initialization.

A detailed functional flowchart of DECA is drawn in

Figure 5. The complexity of DECA is mainly due to the

differential evolution loop. The complexity is proportional to

Λ(γ1, . . . , γM) per round. Hence, the number of operations in

DECA behaves as

Λ ≤ Λmax(ℵ,M) =
ℵ!

((ℵ/M)!)M
. (24)

When ℵ is not multiple of M , the denominator in the right

term should be rewritten as
∏i0

i=1⌊ℵ/M⌋ ×
∏M

i=i0+1⌈ℵ/M⌉,
where i0 is chosen such that the sum of all elements involved

in both products is equal to ℵ. All Γ compositions of ℵ are

not considered by the algorithm. In fact, the total number of

permutations for all weak compositions is

Γ
∑

j=1

(γ1(j) + . . .+ γM (j))!
∏M

i=1 γi(j)!
= Mℵ. (25)

Fortunately, the per-round complexity of DECA given in (24)

is much smaller that Mℵ, i.e. Λmax = o(Mℵ). In practical

product code design, we will also have Λmax ≪Mℵ ≪MNc

.

The proposed edge coloring algorithm aims at maximizing

η(φ) but does not guarantee that ∀e ∈ Ec, ρ(e) <∞. In some

cases, the algorithm may terminate all its rounds with some

edges having an infinite order, i.e. the coloring is not double-

diversity. This occurs when trying to design a product code

with a coding rate very close or equal to 1− 1/M , the block-

fading/block-erasure Singleton bound rate. To remedy for this

weakness, DECA is endowed with an extra subroutine called

Max Diversity, as shown in Figure 5. Likewise the second

step in the differential evolution loop, this subroutine applies

color permutations to a subset Bℵ1 of edges, |Bℵ1 | = ℵ1,

Bℵ1 ⊂ B∞, and

B∞ = {e ∈ Ec : ρ(e) =∞}. (26)

C. Applications

Now, let us apply DECA to design two double-diversity

product codes with MDS components. Numerical values are

Subroutine

(optional)

Max Diversity

NO

iter = 0

M , ℵ, MaxIter

(V c
1
, V c

2
, Ec)

φ0 ∈ Φ(Ec)

Precompute Γ weak compositions

For each composition γ1 + . . . + γM = ℵ

precompute the Λ color permutations

λ < Λ

φ(Bℵ)← πλ(φ0(Bℵ))

η(φ) > ηmax

YES

YES

NO

Select Bℵ ⊂ B

ηmax = η(φ)

φ1 = φ

λ← λ + 1

φ = φ0, ηmax = 0, λ = 1

Build B = {e ∈ Ec : ρ(e) 6= 1}

φ1

iter < MaxIter iter ← iter + 1

YES

NO

φ0 = φ1

Figure 5: Flowchart of the edge coloring algorithm (DECA)

for designing double-diversity product codes.

selected to make these codes suitable to distributed storage

applications and to diversity systems in wireless networks.

The parameter MaxIter is 100. DECA with its hundred

iterations runs in a small fraction of a second on a standard

computer machine.

Example 3: The first application of DECA is to color edges

in the compact graph of CP1 = [n, k, d]⊗2q , where n = 12,

k = 10, d = 3, and the finite-field alphabet size is q > 12.

The coding rate of CP1 is R(CP1) = 25/36 < 1 − 1/M =
3/4, i.e. the gap to (7) is 1/18. This small gap is enough to

render an uncomplicated double-diversity design. The coloring

in Φ(Ec) can be easily converted into its counterpart in Φ(E)
by replacing each supersymbol with 4 symbols. From (5) and

(6), the total number of edge colorings is |Φ(E)| ≈ 1083 in

11

the non-compact graph and |Φ(Ec)| ≈ 1019 in the compact

graph. The differential evolution parameter ℵ is set to 8. The

diversity subroutine is deactivated. We have

Λmax(8, 4) = 2520≪ |Φ(Ec)| ≪ |Φ(E)|.

For almost any choice of the initial coloring φ0 uniformly

distributed in Φ(Ec), DECA yields a double-diversity

coloring φ1. For roughly one choice out of three for φ0,

the algorithm outputs a coloring φ1 such that η(φ1) ≥ 28.

Figure 6a shows the matrix representation of a special φ1

found by DECA. It has η(φ1) = 32 which corresponds to

η = 128 in (V1, V2, E). The corresponding rootcheck order

matrix is shown in Figure 6b. The highest attained order for

this coloring is ρmax(φ) = 2. The maximal order for all

colorings in Φ(Ec) from Theorem 1 is ρu = 5. This coloring

satisfies equality in (8) since 2ρmax(φ) + ηmin(φ) = 12.

G B R

G

B

Y

Y

GR

B

B R Y

Y

G B

Y

B

G

G R

RY

R

R

Y

G

G

R

GBY

BY

B

R

(a)

1r 1c 1r

1c

1c

1c

1c

1r2b

2b

1r 1r 1r

1r

1r 1r

2b

1c

2b

1c 1r

1c1c

1r

1c

1r

1c

1c

1c

1r1r1c

1r1r

1c

1c

(b)

Figure 6: Compact coloring matrix (figure a) and the corre-

sponding rootcheck-order matrix (figure b) for the [12, 10]⊗2

product code CP1 found by DECA, η(φ) = 32 and ρmax = 2.

Example 4: The second more challenging application of

DECA is the design of a double-diversity product code at-

taining the block-fading/block-erasure Singleton bound. Let us

consider CP2 = [n1, k1, d1]q ⊗ [n2, k2, d2]q , where n1 = 14,

k1 = 12, n2 = 16, k2 = 14, d1 = d2 = 3, and the

finite-field alphabet size is q > 16. The coding rate is

R(CP2) = 1−1/M = 3/4. From (5) and (6), the total number

of edge colorings is |Φ(E)| ≈ 10131 in the non-compact graph

and |Φ(Ec)| ≈ 1031 in the compact graph. The differential

evolution parameter ℵ is set to 7. The diversity subroutine is

activated with ℵ1 = 8. We have

Λmax(7, 4) + Λmax(8, 4) = 3150≪ |Φ(Ec)| ≪ |Φ(E)|.

The initial coloring φ0 is taken to be uniformly distributed

in Φ(Ec). For almost three φ0 choices out of four, DECA

yields a double-diversity coloring φ1. Roughly one φ0 choice

out of two guarantees η(φ1) ≥ 34. Figure 7a shows the

matrix representation of a special φ1 found by DECA. It has

η(φ1) = 40 which corresponds to η = 160 in (V1, V2, E).
The rootcheck order matrix is shown in Figure 7b. The

highest attained order for this coloring is ρmax(φ) = 3. The

maximal order for all colorings in Φ(Ec) from Theorem 1

is ρu = 7. This coloring satisfies 2ρmax(φ) + ηmin(φ) = 16
while the right term in (8) is 17.

R

G

R

R

R

R

R

R

R

G

Y

Y

B

B

R

B

G

G

G

B

Y

G

G

G

G

G G

G G

G

Y

Y

Y

Y

BB

B

B

B

B

B

B B B

Y

Y

Y

Y

Y

Y Y

R

R R

RR

(a)

2c

1c

3b

2r

1r

1r

1r

1r

2r

1c

1c

1c

1c

1c

1c

1r

1r

1r

2c

2c

1c

3r

1r

1r

1c 1c

2c 1c

1r

1r

2c

1r

1r

1c2r

1r

1c

1r

1r

1r

2c 1c

2r

1c

1c

1r

2r

3b 1c

1c

1c 1c

1c1c

3b

3r

(b)

Figure 7: Compact coloring matrix (figure a) and the corre-

sponding rootcheck-order matrix (figure b) for the [14, 12]⊗
[16, 14] product code CP2 found by DECA, η(φ) = 40 and

ρmax = 3.

Example 5: A third example suitable for nowadays dis-

tributed storage warehouses is CP3 = [10, 8, 3]q ⊗ [10, 9, 2]q.

The coding rate is R = 18/25 = 0.72 with a minimum

distance d1d2 = 6 and the locality is n1 − 1 = n2 − 1 = 9,

i.e. this code is an improvement to the standard RS[14, 10]
used by Facebook [49]. However, from locality point of view

only, better codes are found under sequential recovery [46] as

given by the bound and the construction proposed in [5] for

multiple erasures. A locality of 9 is achieved for a higher rate

of 0.8010 and a better locality of 6 is possible at an equivalent

rate of 0.7176, see Theorem 2 in [5]. The drawback of such

locally repairable codes is the loss of diversity and hence

the loss of block-erasure filling capacity attained by our

edge-colored product codes.

The coloring ensembles have sizes |Φ(E)| ≈ 1057 and

|Φ(Ec)| ≈ 1027 respectively. The DECA algorithm pro-

duced double-diversity edge colorings where we distinguish

two classes: a first class of colorings with ρmax = 3 and

η(φ) = 41, and a second class with ρmax = 2 and

η(φ) = 40. An edge coloring of the second class is shown

in Figure 8. The reader is invited to determine the rootcheck

order matrix and verify that 40 super-edges have root order 1
and 10 super-edges have a root order equal to 2.

G

R

Y

G

B

Y

R

B

G

B

R

R

Y

G

B

B

Y

R

B

G

Y

G

R

G

B

B

Y

R

R

G

B

Y

R

G

Y

Y

B

R

G

R

Y

R

G

G

B

B

R

Y

Y

G

Figure 8: Compact coloring matrix for the [10, 8] ⊗ [10, 9]
product code found by DECA, η(φ) = 40 and ρmax = 2.

In figures of the previous examples, the four colors were

also indicated by the first letter of the color name, Red, Green,

Blue, and Yellow. The rootcheck order ρ(e) for an edge e in Ec

(which is also the order of the four code symbols associated

to that edge) is indicated by an integer in the right part of

each figure for the first two examples. In the rootcheck order

12

matrix, 2r means that this supersymbol has order 2 and its root

checknode is a row. Similarly, 2c designates a supersymbol

with order 2 and a column rootcheck. The letter ’b’ is written

when a supersymbol has both rootchecks, a row and a column

rootcheck.

D. Random edge coloring

The efficiency of the DECA algorithm was validated in the

previous section in terms of number of edges of first order

and the maximal order over all edges. Clearly, while evolving

from one coloring to another in order to get a large η(φ),
DECA also produced a very small maximal order ρmax(φ).
Any deterministic construction seems to be destined to fail

given the huge size of the ensembles Φ(E) and Φ(Ec).

In this sub-section, another way to show the efficiency of our

coloring algorithm is to make random selections from Φ(E)
and Φ(Ec) and get an estimate of the probability distribu-

tions of η(φ) and ρmax(φ). Indeed, a uniformly distributed

permutation in the symmetric group of order N yields a

uniformly distributed edge coloring φ in Φ(E). This is also

true for Φ(Ec) when the symmetric group has order N c. Thus,

in a uniform manner, we selected 2 billion edge colorings

through our computer application from Φ(E) and Φ(Ec)
respectively. For each coloring, rootcheck orders of all edges

were computed, i.e. for the N edges in the non-compact graph

and the N c edges in the compact graph. Only double-diversity

colorings are counted in this comparison, i.e. colorings with

at least one edge of infinite rootcheck order are excluded. As

an illustration, the characteristics of double-diversity random

coloring for CP1 are plotted in Figure 9 where numerical

estimations of all probability distributions are compared to

colorings designed via DECA.

Double diversity design is more arduous for the rate-3/4
CP2 product code than for the rate-25/36 CP1 product code

because of the rate-diversity tradeoff given by the Singleton

bound. For CP1, the [12, 10]⊗2 code, 8.97% of uniformly

sampled colorings have double diversity in Φ(Ec), whereas

this fraction is 43.6% in Φ(E). For CP2, the [14, 12]⊗ [16, 14]
code, only 0.00039% of uniformly sampled colorings have

double diversity in Φ(Ec), and we found no double-diversity

colorings in Φ(E) despite the 2 billion samples. As expected,

compact graphs exhibit better characteristics than non-compact

graphs thanks to their simpler structure, i.e. ni − ki par-

ity symbols are grouped inside a unique supersymbol: for

CP1, one double-diversity random coloring has η(φ) = 88,

ρmax(φ) = 4 for non-compact graphs, seven double-diversity

colorings have η(φ) = 120, and ρmax(φ) = 2 for compact

graphs. There exists a double-diversity coloring in Φ(E) with

ρmax(φ) = 3 but its η is 85. The estimated probability mass

functions for CP1 are plotted in Figures 9a and 9b. For CP2,

one double-diversity random coloring reached η(φ) = 128 and

ρmax(φ) = 4 out of the 2 billion samples from Φ(Ec). In all

cases, for both η and ρ, double-diversity random colorings are

not as efficient as colorings designed via the DECA algorithm.

The situation is worse for random colorings if a double-

diversity code with maximal rate 1− 1/M is to be designed.

The DECA algorithm exhibits excellent values, η = 160 and

ρ = 3, for the rate-3/4 [14, 12]⊗ [16, 14] product code.

In the next section we analyze stopping sets in product codes

with MDS components, we describe the relationship between

stopping sets and the product code graph representation, and

finally we enumerate obvious and non-obvious stopping sets.

Stopping sets enumeration is useful to determine the perfor-

mance of a product code with and without edge coloring.

V. STOPPING SETS FOR MDS COMPONENTS

The purpose of this section is to prepare the way for

determining the performance of iterative decoding of non-

binary product codes. The analysis of stopping sets in a

product code will yield a tight upper bound of its iterative

decoding performance over a channel with independent era-

sures. The same analysis will be useful to accurately estimate

the performance under edge coloring in presence of block and

multiple erasure channels.

A. Decoding erasures

Definition 8: An erasure pattern is said to be ML-

correctable if the ML decoder is capable of solving all its

erased symbols.

For an erasure pattern which is not correctable under ML or

iterative decoding, the decoding process may fill none or some

of the erasures and then stay stuck on the remaining ones.

Before describing the stopping sets of a product code, let

us recall some fundamental results regarding the decoding of

its row and column component codes. The ML erasure-filling

capability of a linear code satisfies the following property.

Proposition 1: Let C[n, k, d]q be a linear code with q ≥ 2.

Assume that C is not MDS and the n symbols of a codeword

are transmitted on an erasure channel. Then, there exists an

erasure pattern of weight greater than d − 1 that is ML-

correctable.

Proof: Let H be an (n − k) × n parity-check matrix of

C. We have n − k > d − 1 because C is not MDS. For

any integer w in the range [d, n− k], there exists a set of w
linearly independent columns in H . Choose an erasure pattern

of weight w with erasures located at the positions of the w
independent columns. Then, the ML decoder is capable of

solving all these erasures by simple Gaussian reduction of H .

For MDS codes, based on a proof similar to the proof of

Proposition 1, we state a well-known result in the following

corollary.

Corollary 2: Let C[n, k, d]q be an MDS code. All erasure

patterns of weight greater than d− 1 are not ML-correctable.

We conclude from the previous corollary that an algebraic

decoder for an MDS code attains the word-error performance

of its ML decoder. What about symbol-error performance?

Indeed, for general binary and non-binary codes, the ML

decoder may outperform an algebraic decoder since it is

capable of filling some of the erasures when dealing with a

pattern which is not ML-correctable. In the MDS case, the

answer comes from the absence of spectral holes for any MDS

13

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

 20 40 60 80 100 120 140

P
ro

ba
bi

lit
y

M
as

s
F

un
ct

io
n

Number of edges of order 1

DECA, Example 6, eta=128

Non-Compact Graph

Compact Graph

(a)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

 0 2 4 6 8 10 12

P
ro

ba
bi

lit
y

M
as

s
F

un
ct

io
n

Largest rootcheck order in a graph

DECA, Example 6
Max(rho)=2

Non-Compact Graph

Compact Graph

(b)

Figure 9: Distribution of η(φ) (figure a) and ρmax(φ) (figure b) for double-diversity random edge colorings uniformly distributed

in Φ(E) and Φ(Ec). Product code [12, 10]⊗2.

code beyond its minimum distance. This basic result is proven

via standard tools from algebraic coding theory [8], [41]:

Proposition 2: Let C[n, k, d]q be a non-binary MDS code

(q > n > 2). For any w satisfying d ≤ w ≤ n and any

support X = {i1, i2, . . . , iw}, where 1 ≤ ij ≤ n, there exists

a codeword in C of weight w having X as its own support.

Proof: By assumption we have w > r = n−k. Let H be

a parity-check matrix of C with rank r = n− k. Recall that

the MDS property makes full-rank any set of n− k columns

of H [41]. w is written as w = r + ℓ, where ℓ = 1 . . . k. The

w positions of X are anywhere inside the range [1, n], but for

simplicity let us denote h1 . . . hr the r columns of H in the

first r positions. The last ℓ columns are denoted ζ1 . . . ζℓ. For

any j = 1 . . . ℓ, we have

ζj =
r

∑

i=1

ai,jhi,

where ai,j ∈ Fq \ {0} otherwise it contradicts d = n− k+ 1.

Now, select α1 . . . αℓ from Fq \ {0} such that: α1 is arbi-

trary, α2 is chosen outside the set {−α1ai,1/ai,2}
r
i=1, then

α3 is chosen outside the set {(−α1ai,1 − α2ai,2)/ai,3}
r
i=1,

and so on, up to αℓ which is chosen outside the set

{−
∑ℓ−1

u=1 αuai,u/ai,ℓ}
r
i=1. Here, the notation a/b in Fq \ {0}

is equivalent to the standard algebraic notation ab−1. The

equality
ℓ

∑

j=1

αjζj =

r
∑

i=1

ℓ
∑

j=1

αjai,jhi

produces a codeword of Hamming weight w. Hence, there

exists a codeword of weight w with non-zero symbols in all

positions given by X .

Now, at the symbol level for an MDS code and an erasure

pattern which is not ML-correctable (w > d−1), we conclude

from Proposition 2 that the ML decoder cannot solve any

of the w erasures because they are covered by a codeword.

Consequently, an algebraic decoder for an MDS code also

attains the symbol-error performance of the ML decoder.

This behavior will have a direct consequence on the iterative

decoding of a product code with MDS components: stopping

sets are identical when dealing with algebraic and ML-per-

component decoders.

A general description of a stopping set was given by

Definition 1. The exact definition of a stopping set depends on

the iterative decoding type. For product codes, four decoding

methods are known:

• Type I: ML decoder. This is a non-iterative decoder. It is

based on a Gaussian reduction of the parity-check matrix

of the product code.

• Type II: Iterative algebraic decoder. At odd decoding

iterations, component codes C1 on each column are

decoded via an algebraic decoder (bounded-distance) that

fills up to d − 1 erasures. Similarly, at even decoding

iterations, component codes C2 on each row are decoded

via an algebraic decoder.

• Type III: Iterative ML-per-component decoder. This de-

coder was considered by Rosnes in [53] for binary

product codes. At odd decoding iterations, column codes

C1 are decoded via an optimal decoder (ML for C1). At

even decoding iterations, row codes C2 are decoded via

a similar optimal decoder (ML for C2).

• Type IV: Iterative belief-propagation decoder based on

the Tanner graph of CP , as studied by Schwartz et al.

for general linear block codes [56] and by Di et al. for

low-density parity-check codes [18].

The three iterative decoders listed above give rise to three

different kinds of stopping sets. As previously indicated, from

Corollary 2 and Propositions 2, we concluded that type-II and

type-III stopping sets are identical if component codes are

MDS.

B. Stopping set definition

Let C be a q-ary linear code of length n, i.e. C
is a sub-space of dimension k of Fn

q . The support of

C, denoted by X (C), is the set of ℓ distinct positions

14

{i1, i2, . . . , iℓ} = {ij}
ℓ
j=1, 1 ≤ ij ≤ n, such that, for all

j, there exists a codeword c = (c1 . . . cn) ∈ C with cij 6= 0.

This notion of support X is applied to rows and columns in

a product code.

Now, we define a rectangular support which is useful to

represent a stopping set in a bi-dimensional product code. Let

S ⊆ {1, . . . , n1} × {1, . . . , n2} be a set of symbol positions

in the product code. The set of row positions associated to

S is R1(S) = {i1, . . . , iℓ1} where |R1(S)| = ℓ1 and for all

i ∈ R1(S) there exists (i, ℓ) ∈ S. The set of column positions

associated to S is R2(S) = {j1, . . . , jℓ2} where |R2(S)| = ℓ2
and for all j ∈ R2(S) there exists (ℓ, j) ∈ S. The rectangular

support of S is

R(S) = R1(S)×R2(S), (27)

i.e. the smallest ℓ1 × ℓ2 rectangle including all columns and

all rows of S.

Definition 9: [53] Consider a product code CP = C1⊗C2.

Let S ⊆ {1, . . . , n1} × {1, . . . , n2} with |R1(S)| = ℓ1 and

|R2(S)| = ℓ2. Consider the ℓ1 rows of S given by S
(i)
r =

{j : (i, j) ∈ S} and the ℓ2 columns of S given by S
(j)
c = {i :

(i, j) ∈ S}. The set S is a stopping set of type III for CP

if there exist linear subcodes C
(j)
c ⊆ C1 and C

(i)
r ⊆ C2 such

that X (C
(j)
c) = S

(j)
c and X (C

(i)
r) = S

(i)
r for all i ∈ R1(S)

and for all j ∈ R2(S).
The cardinality |S| is called the size of the stopping set

and will also be referred to in the sequel as the weight

of S. Recall that type II and type III stopping sets are

identical when both C1 and C2 are MDS. Stopping sets of

type III were studied for binary product codes by Rosnes

[53]. His analysis is based on the generalized Hamming

distance [30], [69] because sub-codes involved in Definition 9

may have a dimension greater than 1. In the non-binary MDS

case, according to Proposition 2, all these sub-codes have

dimension 1, i.e. they are generated by a single non-zero

codeword. Consequently, the generalized Hamming distance

is not relevant when using MDS components. In such a case,

the analysis of type II stopping sets is mainly combinatorial

and does not require algebraic tools.

Stopping sets for decoder types II-IV can be characterized

by four main properties summarized as follows.

• Obvious or not obvious sets, also known as rank-1 sets.

A stopping set S is obvious if S = R(S).
• Primitive or non-primitive stopping sets. A stopping

set is primitive if it cannot be partitioned into two or

more smaller stopping sets. Notice that all stopping sets,

whether they are primitive or not, are involved in the code

performance.

• Codeword or non-codeword. A stopping set S is said to

be a codeword stopping set if there exists a codeword c
in CP such that X (c) = S.

• ML-correctable or non-ML-correctable. A stopping set S
cannot be corrected via ML decoding if it includes the

support of a non-zero codeword.

In the remaining material of this paper, we restrict our

study to type II stopping sets.

Example 6: Consider a [n1, n1 − 2, 3]q ⊗ [n2, n2 − 2, 3]q
product code. A stopping set S of size w = 9 is shown as a

weight-9 matrix of size n1 × n2, where 1 corresponds to an

erased position:

S =





















0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 1 1 0
0 0 0 0 0 0
0 1 0 1 1 0
0 1 0 1 1 0
0 0 0 0 0 0





















. (28)

We took n1 = n2 = 7 for illustration. The rectangular support

is shown in a compact representation as a matrix of size

ℓ1 × ℓ2 = 3 × 3,

R(S) =





1 1 1
1 1 1
1 1 1



 . (29)

The stopping set in (28) is obvious, it has the same size as

its rectangular support. It corresponds to a matrix of rank 1.

Each row and each column of S has weight 3. Iterative row-

column decoding based on component algebraic decoders fails

in decoding rows and columns since the number of erasures

exceeds the erasure-filling capacity of the MDS components.

This stopping set is not ML-correctable because it is a product-

code codeword. In the sequel, all stopping sets (type II) shall

be represented in this compact manner by a smaller rectangle

of size ℓ1 × ℓ2.

Example 7: For the same [n1, n1− 2, 3]q ⊗ [n2, n2− 2, 3]q
product code used in the previous example, the following

stopping sets of size 12 are not obvious.

S1 =





















0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 1 1 1 0 0 0
0 0 1 1 1 0 0
0 1 0 1 1 0 0
0 1 1 0 1 0 0
0 0 0 0 0 0 0





















, (30)

S2 =





















0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 1 0 1 1 0 0
0 0 0 1 1 1 0
0 1 0 0 1 1 0
0 1 0 1 0 1 0
0 0 0 0 0 0 0





















. (31)

In compact form, their rectangular support is

R(S1) = R(S2) =









1 1 1 0
0 1 1 1
1 0 1 1
1 1 0 1









. (32)

These stopping sets have size 12 and a 4 × 4 rectangular

support. For w = 12, it is also possible to build an obvious

stopping set in a 3 × 4 rectangle or a 4 × 3 rectangle full

15

of 1. S1 is ML-correctable since it does not cover a product

code codeword. S2 covers a codeword hence it is not ML-

correctable.

C. Stopping sets and subgraphs of product codes

A stopping set as defined by Definition 9 corresponds

to erased edges in the non-compact graph G introduced in

Section III-A. Indeed, consider the size-9 stopping set given

by (28) or (29). The nine symbol positions involve nine edges

in G, three row checknodes, and three column checknodes.

Each of these six checknodes has three erased symbols making

the [12, 10, 3] decoder fail. This stopping set is equivalent to

a subgraph of 9 edges in G as shown in Figure 10.

C1C2

C2

C2

C2

C1

C1

C1

5

6

7

8

5

6

7

8

Figure 10: A sub-graph of G representing the size-9 obvious

stopping set. The graph G has |E| = 144 edges, |V2| = 12 left

(row) checknodes, and |V1| = 12 left (column) checknodes.

Only the stopping set edges are drawn.

The subgraph in Figure 10 has three length-4 cycles and two

length-6 cycles. The small cycles of length-4 are associated to

an erasure pattern with a 2×2 rectangular support which is not

a stopping set (d1 = d2 = 3). Similarly, length-6 cycles are

not stopping sets and are associated to erasure patterns with a

2× 3 rectangular support. We will see in the next section that

the minimum stopping set size is d1d2 = 9, i.e. it is equal to

the minimum Hamming distance of the product code.

A subgraph of Gc can be embedded into G by splitting each

super-edge into (n1−k1)×(n2−k1) edges. The converse is not

always true. The subgraph with nine edges in Figure 10 cannot

be compressed into a subgraph of Gc. For the [12, 10, 3]⊗2

product code, a supersymbol in Gc contains four edges. Hence,

a necessary condition for a stopping set in G to become a valid

stopping set in Gc is to erase edges in groups of 4. Knowing

that type II and type III stopping sets are identical when row

and column codes C1 and C2 are MDS, Definition 9 leads to

the following corollaries.

Corollary 3: Let CP = C1 ⊗ C2 be a product code with

MDS components C1 and C2 having minimum Hamming

distance d1 and d2 respectively. Assume that symbols (edges)

of G = (V1, V2, E) are sent over an erasure channel. A

stopping set for the iterative decoder is a subgraph of G such

that all column vertices in V1 have a degree greater than or

equal to d1 and all row vertices in V2 have a degree greater

than or equal to d2.

Corollary 4: Let CP = C1 ⊗ C2 be a product code with

MDS components C1 and C2 having minimum Hamming

distance d1 and d2 respectively. Assume that supersymbols

(super-edges) of Gc = (V c
1 , V

c
2 , E

c) are sent over an erasure

channel. A stopping set for the iterative decoder is a subgraph

of Gc such that all column vertices in V c
1 have a degree greater

than or equal to 2 and all row vertices in V c
2 have a degree

greater than or equal to 2.

The above corollaries suppose a symbol (or a supersymbol)

channel with independent erasures. When G is endowed

with an edge coloring φ, we get the same constraint on the

validity of a subgraph embedding from Gc into G. We know

from Section III-A that Φ(Ec → E) is a subset of Φ(E),
i.e. some edge colorings of G are not edge colorings of Gc.

Consequently, on a block-erasure channel, if all super-edges

of the same color are erased, stopping sets in Gc are a

subset of those in G. The non-compact graph G has a larger

ensemble of stopping sets, with or without edge coloring. As

an example, for the [12, 10, 3]⊗2 product code, the smallest

stopping set in Gc has size 2 × 2 when four super-edges are

erased which yields a stopping set of size 16 in G.

Example 8: Consider the [9, 6, 4]⊗2q product code where

d1 = d2 = 4 and q > 9. Assume that our palette has

M = 3 colors. The non-compact graph admits an ensemble

of |Φ(E)| = 4490186382903298862950669893074864640
edge colorings! The compact graph has |Φ(Ec)| = 1680
only. In Gc, each color is used N c/M = 3 times. For a channel

erasing all symbols of the same color, the compact graph has

no stopping sets (the 2×2 rectangular support cannot be filled

by a single color). A compact matrix representation of Gc

attaining double diversity with all symbols of order 1 is given

by the trivial matrix




R G B
B R G
G B R



 , (33)

where the color φ(e) = 1 is replaced by the letter ’R’, φ(e) =
2 is replaced by the letter ’G’, and φ(e) = 3 is replaced by the

letter ’B’. The non-compact graph has 9×9 edges, each color is

used 27 times. Double diversity is lost in G if one of the 4×4,

4× 5, or 5× 5 obvious stopping sets is covered by a unique

color. Clearly, Gc makes the design much easier. This double-

diversity product code has a relatively low coding rate. More

challenging product code designs are given in Section IV with

higher rates up to the one imposed by the block-fading/block-

erasure Singleton bound.

D. Enumeration of stopping sets

For a fixed non-zero integer w, the number of stopping sets

of size w, denoted as τw, falls in two different cases. Firstly,

τw = 0 if w is small with respect to the minimum Hamming

distance of the product code. Also, τw = 0 for special

erasure patterns obtained by adding a small neighborhood to

a smaller obvious set. Secondly, for both obvious and non-

obvious stopping sets, τw is non-zero and the weight w may

correspond to many rectangular supports of different height

16

and width. The code performance over erasure channels is

dominated by not-so-large stopping sets. Non-empty stopping

sets of the second case satisfy the general property stated in

the following lemma.

Lemma 2: Given a weight w ≤ (d1 + 1)(d2 + 1) and

assuming τw > 0, then ∃S0 such that ∀S with |S| = w,

we have ‖R(S)‖ ≤ ‖R(S0)‖ = (ℓ01, ℓ
0
2), where

ℓ01 ≤ d1 + 1 +

⌊

d1 + 1

d2

⌋

, (34)

ℓ02 ≤ d2 + 1 +

⌊

d2 + 1

d1

⌋

. (35)

Proof: Let w be equal to (d1 + 1)(d2 + 1). In order to

establish an upper bound of the height ℓ1, we build the highest

possible rectangular support for this weight w. Assume the

rectangle is ℓ01 × ℓ2, each of its rows should have at least

d2 erasures to make the type-II decoder fail. Then d2ℓ
0
1 ≤

(d1 + 1)(d2 + 1) which becomes the upper bound given by

(34). Now, if w is less than (d1 + 1)(d2 + 1), the rectangular

support of the stopping set can only shrink in size. The upper

bound of the width in (35) is proven in a similar way.

The above lemma states the existence of a maximal rectangular

support for a given stopping set size. The example given below

cites stopping sets with a unique-size rectangular support and

stopping sets with multiple-size rectangular supports.

Example 9: Consider a C1⊗C2 product code where C1 and

C2 are both MDS with minimum Hamming distance 3. The

stopping set given by (29) cannot have a large rectangular

support. In general, all stopping sets of size d1d2 have a

rectangular support of fixed dimensions d1 × d2. Now, let

w = 12. As indicated in Example 7, stopping sets of size 12
may be included in rectangular supports of dimensions 3× 4,

4× 3, and 4× 4. For w = 12, it is impossible to build a 4× 5
rectangular support (reductio ad absurdum) making ℓ01 = 4
and ℓ02 = 4. A similar proof by contradiction yields ℓ01 = 5
and ℓ02 = 5 for w = 15.

The next lemma gives an obvious upper bound of the size

of R(S) by stating a simple limit on the number of zeros

(non-erased positions) inside R(S).
Lemma 3: Let R(S) be the ℓ1×ℓ2 rectangular support of a

stopping set S of size w. Let β = ℓ1ℓ2 −w be the number of

zero positions, or equivalently β is the size of the set R(S)\S.

Then

β ≤ min((ℓ1 − d1)ℓ2, ℓ1(ℓ2 − d2)). (36)

Before stating and proving Theorem 2, we announce two

results in Lemma 4 and Lemma 5 on bipartite graphs enu-

meration. We saw in the previous section that stopping sets

are sub-graphs of G and Gc, see Corollary 3 and Corollary 4.

In other words, the enumeration of stopping sets represented

as matrices of a given distribution of row weight and column

weight is equivalent to enumerating bipartite graphs where left

vertices stand for rows and right vertices stand for columns.

An edge should be drawn between a left vertex and a right

vertex according to some rule, e.g. the rule used in the previous

section draws an edge in the bipartite graph for each 1 in the

stopping set matrix. Stopping sets enumeration in the next

theorem is based on β, the number of zeros or the number of

non-erased positions. Hence, we shall use the opposite rule.

A stopping set of weight w and having a ℓ1 × ℓ2 rectangular

support shall be represented by a bipartite graph with ℓ1 left

vertices, ℓ2 right vertices, and a total of β = ℓ1ℓ2 −w edges.

Notice that these bipartite graphs have no length-2 cycles

because parallel edges are forbidden.

For finite ℓ1 and ℓ2, given the left degree distribution and

the right degree distribution, there exists no exact formula for

counting bipartite graphs. The best recent results are asymp-

totic in the graph size for sparse and dense matrices [15],

[17] and cannot be applied in our enumeration. The following

two lemmas solve two cases encountered in Theorem 2 for

w = d(d + 2) and w = (d + 1)(d + 1) both inside a

(d+2)× (d+2) rectangular support. The definition of special

partitions is required before introducing the two lemmas.

Definition 10: Let ℓ ≥ 2 be an integer. A special partition

of length j of ℓ is a partition defined by a tuple (ℓ1, ℓ2, . . . , ℓj)
such that its integer components satisfy:

• ℓ1 ≤ ℓ2 ≤ . . . ≤ ℓj .

•
∑j

i=1 ℓi = ℓ.
• ℓi ≥ 2, ∀j.

• 1 ≤ j ≤ ℓ/2.

A special partition shall be denoted by ((ℓ1, . . . , ℓj)).
Definition 11: The group number of a special partition,

denoted by κ = κ(ℓ1, ℓ2, . . . , ℓj), is the number of different

integers ℓj , for j = 1 . . . ℓ/2. In other words, following set the-

ory, the set including the j integers ℓi’s is {ℓi1 , ℓi2 , . . . , ℓiκ}.
The group number divides the partition of ℓ into κ groups

where the mth group includes ℓim repeated gm times, and
∑κ

m=1 gm = j.

Lemma 4: Consider bipartite graphs defined as follows:

ℓ left vertices, ℓ right vertices, all vertices have degree 2, and

no length-2 cycles are allowed. For ℓ ≥ 2, the total number

xℓ of such bipartite graphs is given by the expression

xℓ =
∑

((ℓ1,...,ℓj))

1
∏κ(ℓ1,...,ℓj)

m=1 gm!

j
∏

k=1

∏ℓk−1
u=0 (ℓ −

∑k−1
i=1 ℓi − u)2

2ℓk

(37)

where
∑

((ℓ1,...,ℓj))
is a summation over all special partitions of

the integer ℓ, κ(ℓ1, . . . , ℓj) is the group number of the special

partition ((ℓ1, . . . , ℓj)), and gm is the size of the mth group.

Proof: Firstly, let us find the number of Hamiltonian

bipartite graphs having ℓk left vertices, ℓk right vertices,

all vertices of degree 2, and no length-2 cycles allowed.

There are (ℓk!)
2 ways to choose the order of all left and

right vertices. If the Hamiltonian cycle is represented by a

sequence of 2ℓk integers corresponding to the 2ℓk vertices

of the bipartite graph, then there are 2ℓk ways to shift the

Hamiltonian cycle without changing the graph. Hence, the

number of Hamiltonian bipartite graphs of degree 2 is

(ℓk!)
2

2ℓk
. (38)

Secondly, given the half-size ℓ of the bipartite graph stated

in this lemma, all special partitions of ℓ are considered. For

a fixed special partition ((ℓ1, ℓ2, . . . , ℓj)) the bipartite graph

is decomposed into j Hamiltonian graphs each of length ℓk,

17

k = 1 . . . j. The number of choices for selecting the vertices

of the j Hamiltonian graphs is

j
∏

k=1

(

ℓ−
∑k−1

i=1 ℓi
ℓk

)2

. (39)

The above number should be multiplied by the number of

Hamiltonian graphs for each selection of vertices to get

j
∏

k=1

(

ℓ−
∑k−1

i=1 ℓi
ℓk

)2
(ℓk!)

2

2ℓk
. (40)

But for a given special partition, each group of size gm is

creating gm! identical bipartite graphs. Hence, the final result

for a fixed partition becomes

1
∏κ(ℓ1,...,ℓj)

m=1 gm!

j
∏

k=1

(

ℓ−
∑k−1

i=1 ℓi
ℓk

)2
(ℓk!)

2

2ℓk
. (41)

Then, xℓ is obtained by summing (41) over all special parti-

tions of the integer ℓ to yield

xℓ =
∑

((ℓ1,...,ℓj))

1
∏κ(ℓ1,...,ℓj)

m=1 gm!

j
∏

k=1

(

ℓ−
∑k−1

i=1 ℓi
ℓk

)2
(ℓk!)

2

2ℓk
.

(42)

The simplification of the factors (ℓk!)
2 yields the expression

stated by this lemma.

Lemma 5: Consider bipartite graphs defined as follows:

ℓ left vertices, ℓ right vertices, all left vertices have degree

2 except one vertex of degree 1, all right vertices have degree

2 except one vertex of degree 1, and finally no length-2 cycles

are allowed. For ℓ ≥ 3, the total number yℓ of such bipartite

graphs is

yℓ = ℓ2 ·
(

(2ℓ− 1) · xℓ−1 + (ℓ− 1)2 · xℓ−2

)

, (43)

where xℓ is determined via Lemma 4 and x1 = 0.

Proof: Let the first ℓ−1 left vertices and the first ℓ−1 right

vertices be of degree 2. There exists two ways to complete

this bipartite graph such that the two remaining vertices have

degree 1.

• Each of the xℓ−1 sub-graphs has 2(ℓ−1) edges. Break one

edge into two edges and connect them to the remaining

left and right vertices, the number of such graphs is 2(ℓ−
1)xℓ−1. Another set of xℓ−1 bipartite graphs is built by

directly connecting the last two vertices together without

breaking any edge in the upper sub-graph. Now, we find

2(ℓ− 1)xℓ−1 + xℓ−1 = (2ℓ− 1)xℓ−1 bipartite graphs.

• Fix a vertex among the ℓ−1 upper left vertices and fix one

among the ℓ − 1 upper right vertices ((ℓ − 1)2 choices).

Consider a length-2 cycle including these two vertices.

One edge of this cycle can be broken into two edges and

then attached to the degree-1 vertices at the bottom. The

remaining ℓ− 2 left and right vertices may involve xℓ−2

sub-graphs. Consequently, the number of graphs in this

second case is (ℓ− 1)2xℓ−2.

The total number of bipartite graphs enumerated in the above

cases is

(2ℓ− 1)xℓ−1 + (ℓ − 1)2xℓ−2. (44)

Finally, the degree-1 left vertex has ℓ choices and so has the

degree-1 right vertex. The number of graphs in (44) should be

multiplied by ℓ2.

We make no claims about a possible generalization of

Lemma 4 and Lemma 5 to finite bipartite graphs with higher

vertex degrees. As mentioned before, for general degree

distributions, results on enumeration of asymptotic bipartite

graphs were published by Brendan McKay and his co-authors

[15], [17]. Table I shows the number of special partitions for

ℓ = 2 . . . 32. The number of standard partitions (the partition

function) can be found by a recursion resulting from the

pentagonal number theorem [16]. To our knowledge, there

exists no such recursion for special partitions. The number

of bipartite graphs under the assumptions of Lemma 4 and

Lemma 5 is found in Table II for a graph half-size up to 8.

Finally, we are ready to state and prove the first theorem on

stopping sets enumeration.

1, 1, 2, 2, 4, 4, 7, 8, 12, 14, 21, 24, 34, 41, 55, 66, 88, 105, 137,
165, 210, 253, 320, 383, 478, 574, 708, 847, 1039, 1238, 1507

Table I: Sequence of the number of special partitions of the

integer ℓ, for ℓ = 2 . . . 32. Special partitions are described

in Definition 10. The sequence for standard partitions can be

found in [59].

ℓ 2 3 4 5 6 7 8

xℓ 1 6 90 2040 67950 3110940 187530840

yℓ 0 45 816 22650 888840 46882710 3199593600

Table II: Number of bipartite graphs not including length-2

cycles from Lemma 4 and Lemma 5.

In the sequel, the open interval between two real numbers

a and b will be denoted]a, b[,

]a, b[= {x ∈ R : a < x < b}.

Theorem 2: Let CP be a product code [n1, k1, d1]q ⊗
[n2, k2, d2]q built from row and column MDS component

codes, where the alphabet size q is greater than max(n1, n2).
Let τw be the number of stopping sets of size w. We write

τw = τa + τb, where τa counts obvious stopping sets and

τb counts non-obvious stopping sets. Under (type-II) iterative

algebraic decoding and for d1 = d2 = d ≥ 2, stopping sets

are characterized as follows:

• For w < d2,

τa = τb = 0.

• For w = d2,

τa =

(

n1

d

)(

n2

d

)

, τb = 0.

• For w ∈]d2, d(d+ 1)[,

τa = τb = 0.

18

• For w = d(d + 1),

τa =

(

n1

d

)(

n2

d+ 1

)

+

(

n1

d+ 1

)(

n2

d

)

,

τb = (d+ 1)!

(

n1

d+ 1

)(

n2

d+ 1

)

.

• For w ∈]d(d+ 1), d(d+ 2)[.
Let us write w = d2 + d+ λ, where λ ∈ [1, d− 1].

τa = 0,

τb = (d+ 1− λ)!

(

d+ 1

λ

)2(
n1

d+ 1

)(

n2

d+ 1

)

.

• For w = d(d + 2),

τa =

(

n1

d

)(

n2

d+ 2

)

+

(

n1

d+ 2

)(

n2

d

)

,

τb = (d+ 1)2
(

n1

d+ 1

)(

n2

d+ 1

)

+
∑

2r0+r1=d

(

d+ 1

r0

)(

d+ 1− r0
r1

)

(d+ 2)!

2r2

[(

n1

d+ 1

)(

n2

d+ 2

)

+

(

n1

d+ 2

)(

n2

d+ 1

)]

+ xd+2

(

n1

d+ 2

)(

n2

d+ 2

)

,

where
∑

2r0+r1=d is a summation over r0 and r1, both

being non-negative and satisfying 2r0 + r1 = d, r2 =
d+1− r0− r1, and xd+2 is determined from Lemma 4.

• For w = (d+ 1)(d+ 1)

τa =

(

n1

d+ 1

)(

n2

d+ 1

)

,

τb =
∑

2r0+r1=d+1

(

d+ 1

r0

)(

d+ 1− r0
r1

)

(d+ 2)!

2r0

[(

n1

d+ 1

)(

n2

d+ 2

)

+

(

n1

d+ 2

)(

n2

d+ 1

)]

+ yd+2

(

n1

d+ 2

)(

n2

d+ 2

)

,

where yd+2 is determined from Lemma 5.

Proof: For w satisfying d2 ≤ w ≤ (d + 1)2, the

admissible size of R(S) varies from d2 up to (d + 2)2

as given by Lemma 2. All cases stated in the theorem

shall use the following sequence of R(S) listed in the

order of increasing size ℓ1ℓ2: d2, d(d + 1), d(d + 2),
(d+ 1)2, (d+ 1)(d+ 2), and (d+ 2)2. For these rectangular

supports, the stopping set weight also has six cases to be

considered, where w takes the following values (or ranges) in

increasing order: w = d2, w ∈]d2, d(d + 1)[, w = d(d + 1),
w ∈]d(d+ 1), d(d+ 2)[, w = d(d+ 2), and w = (d+ 1)2.

• The case w < d2.

Consider a stopping set of size w < d2. Its rectangular

support R(S) has size ℓ1ℓ2 ≥ w. All columns should

have a weight greater than or equal to d, we find that

w ≥ dℓ2. Similarly, all rows must have a weight greater

than or equal to d, then w ≥ dℓ1. By combining the two

inequalities, we find w2 ≥ d2ℓ1ℓ2 ≥ d2w, so we get

w ≥ d2 which is a contradiction unless these stopping

sets do not exist, i.e. τw = 0 for w < d2 under type II

iterative decoding.

• The case w = d2.

We use similar inequalities as in the previous case. We

have w = d2 ≥ dℓ2 because column decoding must fail.

We obtain ℓ2 ≤ d. In a symmetric way, w = d2 ≥ dℓ1
because row decoding must fail. We obtain ℓ1 ≤ d. But

R(S) cannot be smaller than S, i.e. we get ℓ1 = d and

ℓ2 = d. We just proved that all stopping set of size d2

are obvious. Their number is given by choosing d rows

out of n1 and d columns out of n2.

• The case d2 < w < d(d+ 1).
Given that ℓ1ℓ2 ≥ w > d2, we get ℓ1 ≥ d and ℓ2 ≥ d
since the support R(S) is larger than a d × d rectangle,

the latter being the smallest stopping set as proven in the

previous case. Take ℓ1 = d, then ℓ2 ≥ d + 1 because

w > d2. The weight of each column must be at least d
giving us w ≥ dℓ2 ≥ d(d + 1), which is a contradiction

unless τw = 0. For ℓ1 > d, the same arguments hold.

• The case w = d(d+ 1).

– The smallest R(S) is d × (d + 1) or (d + 1) × d.

According to Lemma 3, we have β = 0. All these

stopping sets are obvious. Their number is
(

n1

d

)(

n2

d+ 1

)

+

(

n1

d+ 1

)(

n2

d

)

.

– R(S) has size d(d+ 2). Each column must have at

least d erasures. Then S can only be obvious with

weight d(d + 2) which contradicts w = d(d + 1).
Hence, this size of rectangular support yields no

stopping sets, τw = 0 in this sub-case.

– R(S) has size (d+1)(d+1). Let β be the number of

zeros in R(S), β = (d+1)2−w = d+1. All these

stopping sets are found by considering the (d + 1)!
permutations where a unique 0 is placed per row and

per column. Then, the binomial coefficient must be

multiplied by (d+1)! which yields the τb announced

in the theorem for w = d(d+ 1).
– R(S) has size (d+ 1)(d+ 2). The number of zeros

is β = (d + 1)(d + 2) − w = 2d + 2. Then β >
d+2 = (ℓ1 − d)ℓ2 which contradicts Lemma 3. We

get τw = 0 in this sub-case. The same arguments are

valid for larger rectangles.

• The case d(d+ 1) < w < d(d+ 2).
Let us write w = d2 + d + λ, where λ ∈ [1, d − 1].
We consider below three sub-cases corresponding to

admissible sizes of R(S).

– The smallest R(S) is d×(d+2) or (d+2)×d. Take

the rectangle of size d× (d+2). Each column must

have at least d erasures. Then S can only be obvious

with weight d(d+ 2) which is outside the range for

w in this case. Hence, this size of the rectangular

19

support yields no stopping sets, τw = 0 in this sub-

case.

– R(S) has size (d+1)×(d+1). The number of zeros

is β = (d+ 1)2 − w = d+ 1− λ, where β ∈ [2, d].
Put the zeros in R(S) not exceeding one per column

and not exceeding one per row. The enumeration of

these stopping sets is given by selecting the β rows

and the β columns, then filling all β×β permutation

matrices in the zero positions. Hence, given that
(

d+1
β

)

=
(

d+1
λ

)

, we get for this sub-case

τw = β!

(

d+ 1

λ

)2(
n1

d+ 1

)(

n2

d+ 1

)

.

All corresponding stopping sets are not obvious (the

rank is greater than 1).

– R(S) has size (d+1)(d+2). The number of zeros is

β = (d+1)(d+2)−w = 2d+2−λ ∈ [d+3, 2d+1].
Then β > d + 2 = (ℓ1 − d)ℓ2 which contradicts

Lemma 3. In a similar way, it can be proven that

τw = 0 in the sub-case R(S) with size (d+ 2)2.

• The case w = d(d+ 2).
The admissible rectangular support can have four sizes:

d(d+2), (d+1)(d+1), (d+1)(d+2), and (d+2)(d+2).

– R(S) has size d(d + 2). According to Lemma 3,

we have β = 0. All these stopping sets are obvious.

Their number is
(

n1

d

)(

n2

d+ 2

)

+

(

n1

d+ 2

)(

n2

d

)

.

– R(S) has size (d+ 1)(d+ 1). We have β = 1. The

number of these stopping sets is

(d+ 1)2
(

n1

d+ 1

)(

n2

d+ 1

)

.

– R(S) has size (d+1)(d+2). The number of zeros is

β = d+2. Each column must have a unique zero and

each row cannot have more than two zeros. Let ri be

the number of rows containing i zeros, i = 0, 1, 2.

Then r0 + r1 + r2 = d + 1 and β = 2r2 + r1, so

the constraint is 2r0 + r1 = d. Given a stopping

set satisfying this constraint, a permutation can be

applied on the (d + 2) columns to create another

stopping set. But a row with two zeros creates two

identical columns, so the number of stopping sets

should be divided by 2r2 , where r2 = d+1−r0−r1.

The number of stopping sets in this sub-case is

∑

2r0+r1=d

(

d+ 1

r0

)(

d+ 1− r0
r1

)

(d+ 2)!

2r2
[(

n1

d+ 1

)(

n2

d+ 2

)

+

(

n1

d+ 2

)(

n2

d+ 1

)]

.

– R(S) has size (d+ 2)(d+ 2). We have β = 2d+ 4
reaching the upper bound in Lemma 3. R(S) must

have two zeros in each column and two zeros in

each row. A first group of these stopping sets can be

enumerated by building R(S) with two zero length-

(d + 2) diagonals (to be folded if not the main

diagonal) and then applying all row and column per-

mutations. This generates all Hamiltonian bipartite

graphs with d+2 left vertices and d+2 right vertices,

their number is

((d+ 2)!)
2

2(d+ 2)
,

as known from Lemma 4. In fact, the full exact

enumeration of stopping sets in this case is already

made by Lemma 4 and its proof, just take ℓ = d+2.

Then, in this sub-case, the number of stopping sets

is given by

xd+2

(

n1

d+ 2

)(

n2

d+ 2

)

.

• The case w = (d+ 1)(d+ 1).
The admissible rectangular support can have three possi-

ble sizes (d+1)(d+1), (d+1)(d+2), and (d+2)(d+2).

– R(S) has size (d + 1)(d + 1). We have β = 0, i.e.

R(S) = S. The number of these obvious stopping

sets is (

n1

d+ 1

)(

n2

d+ 1

)

.

– R(S) has size (d+1)(d+2). We have β = d+1. A

column ofR(S) should contain at most one zero and

a row should contain at most two zeros. Let ri be the

number of rows containing i zeros, i = 0, 1, 2. Then

r0+r1+r2 = d+1 and β = 2r2+r1, so the constraint

is 2r0 + r1 = d+ 1. Given a stopping set satisfying

this constraint, a permutation can be applied on the

(d+ 2) columns to create another stopping set. The

number of stopping sets in this sub-case is

∑

2r0+r1=d+1

(

d+ 1

r0

)(

d+ 1− r0
r1

)

(d+ 2)!

2r2

[(

n1

d+ 1

)(

n2

d+ 2

)

+

(

n1

d+ 2

)(

n2

d+ 1

)]

,

where r2 = r0.

– R(S) has size (d+2)(d+2). β = 2d+3 which is less

than the upper bound in Lemma 3. These stopping

sets are equivalent to bipartite graphs considered in

Lemma 5. Then, in this sub-case, the number of

stopping sets is given by

yd+2

(

n1

d+ 2

)(

n2

d+ 2

)

.

From the proof of Theorem 2, in the case w = d(d+ 2) with

a (d + 1) × (d + 2) rectangular support, the enumeration of

stopping sets is directly converted into enumeration of trivial

bipartite graphs defined by: a- ℓ left vertices and a left degree

0, 1, or 2, and b- ℓ+1 right vertices all of degree 1. Similarly,

the proof for the case w = d(d+ 2) with a (d+ 1)× (d+ 2)
rectangular support is directly related to the enumeration of

bipartite graphs with one edge less.

For d1 6= d2, a very long theorem on stopping sets

enumeration is found in the arXiv version of this paper. In

20

the current paper, we refer to both theorems in the cases

d1 = d2 and d1 6= d2 when citing Theorem 2, From a stopping

set perspective, our enumeration theorems match Tolhuizen’s

results on weight distribution for a weight less than d1d2+d2
[64]. Our theorems found stopping sets that are only obvious

for w in the range [d1d2, d1d2 + d2[. For any weight w,

there exists an equivalence in support between codewords

and obvious stopping sets (thanks to Proposition 3, to be

presented in Section VI-B). Trivial lower and upper bounds

of the number of obvious weight-w product code codewords

are

(q − 1)τw ≤ Aw ≤ 1{τw 6=0}Aw.

For non-obvious stopping sets and non-obvious codewords,

establishing a clear relationship is still an open problem. This

is directly related to solving the weight enumeration beyond

d1d2+max(d1, d2). In the special case d1 = d2 = d, Sendrier

gave upper bounds of the number of erasure patterns for a

weight up to d2 + 2d− 1 [58].

VI. CODE PERFORMANCE IN PRESENCE OF ERASURES

Iterative decoding performance of CP = C1⊗C2 is studied

in presence of channel erasures, with and without edge color-

ing. The iterative decoder makes row and column iterations

where the component decoder of Ci can be an algebraic

erasure-filling decoder (limited by di − 1) or a maximum-

likelihood decoder of Ci. As stated in Section V-A, type II

and type III stopping sets are identical because the non-binary

codes C1 and C2 are MDS. The word error probability of the

iterative decoder is denoted by PGew. The product code can

also be decoded via an ML decoder, i.e. maximum likelihood

decoding of CP based on a Gaussian reduction of its parity-

check matrix. The word error probability under ML decoding

of CP is denoted by PML
ew .

A. Block erasures

Consider the block-erasure channel CEC(q, ǫ). The N sym-

bols of a codeword are partitioned into M blocks, each block

contains symbols associated to edges in G with the same color.

The CEC(q, ǫ) channel erases a block with a probability ǫ.
The block is correctly received with a probability 1−ǫ. Erasure

events are independent from one block to another. We say that

a color is erased if the associated block of N/M symbols is

erased. Assume that G is endowed with a double-diversity edge

coloring φ (i.e. L(φ) = 2) as defined in Corollary 1. Then, on

the block-erasure channel CEC(q, ǫ), for a rate satisfying

1−
2

M
< R ≤ 1−

1

M
, (45)

we have

ǫ2 ≤ PML
ew ≤ PGew ≤

M
∑

i=2

(

M

i

)

ǫi(1− ǫ)M−i. (46)

Since φ has a double diversity, there exist two colors among

the M colors such that the iterative decoder must fail if

both colors are erased. This explains the upper bound of PGew
in (46). The upper bound is valid for any rate less than the

maximal achievable rate for double diversity, i.e. 1− 1
M

. Now,

since R > 1 − 2
M

, the ML decoder for CP cannot attain

a diversity L = 3 otherwise the block-fading/block-erasure

Singleton bound would be violated. Consequently, the ML

decoder of CP can only reach L = 2 and so there exists a

pair of erased colors that cannot be solved by the ML decoder.

This explains the lower bound in (46). The reader can easily

verify that

lim
ǫ→0

logPML
ew

log ǫ
= lim

ǫ→0

logPGew
log ǫ

= L = 2. (47)

The slope of Pew versus the erasure probability ǫ in a double-

logarithmic scale is equal to 2. Under the stated constraint

on R, the upper bound in (46) is the exact expression of

the outage probability on a block-erasure channel valid for

q-ary codes with asymptotic length [27]. For double-diversity

edge colorings found by DECA in Examples 3 and 4, PGew
equals its upper bound in (46). These examples achieve the

outage probability although a code may perform better than

the outage probability at finite length. For these colorings

where M = 4, the error probability on CEC(q, ǫ) behaves

like PGew = 6ǫ2 + O(ǫ3). One possible interpretation of this

behavior is: the optimization of η(φ) (equivalent in some sense

to minimizing ρ(φ)) pushed the performance of edge colorings

found by the DECA algorithm as far as possible from the lower

bound ǫ2. As can be observed in Figures 6 and 7, all rows and

all columns include the four colors. When any two colors out

of four are erased, the iterative decoder will completely fail

without correcting a single supersymbol. A double-diversity

edge coloring guarantees that all stopping sets are covered

by at least two colors but it cannot cover all stopping sets

with three colors or more otherwise we get L = 3 which

contradicts R > 1− 2
M

. Fortunately, these product codes are

diversity-wise MDS and the second code in Example 4 has

the maximal coding rate for double diversity. In the sequel,

we will see that these codes also perform well in presence of

independent erasures.

B. Independent erasures

Consider the i.i.d. erasure channel SEC(q, ǫ). The N sym-

bols of a codeword are independently erased by the channel.

A symbol is erased with a probability ǫ and is correctly

received with a probability 1 − ǫ. Edge coloring has no

effect on the performance of CP on the SEC(q, ǫ) channel.

Before studying the performance on the SEC(q, ǫ), following

Examples 6 & 7 and Theorem 2, we state an obvious result

about obvious stopping sets in the following proposition.

Proposition 3: Let CP = C1 ⊗ C2 be a product code with

non-binary MDS components. All obvious stopping sets are

supports of product code codewords.

Proof: Consider an ℓ1 × ℓ2 obvious stopping set. Its

rectangular support is R(S) = R1(S) × R2(S). We have

ℓ1 ≥ d1 and ℓ2 ≥ d2. From Proposition 2, there exists a

column codeword x = (x1, x2, . . . , xn1
) ∈ C1 of weight ℓ1

with support R1(S) × {j1}, where j1 ∈ R2(S). Similarly,

there exists a row codeword y = (y1, y2, . . . , yn2
) ∈ C2 of

weight ℓ2 with support {i1} × R2(S), where i1 ∈ R1(S).

21

Now, the Kronecker product of x and y satisfies X (x⊗y) = S.

Corollary 5: Consider a product code CP = C1 ⊗ C2

with non-binary MDS component codes. Assume the symbols

of CP are transmitted over a SEC(q, ǫ) channel. Then, for

ǫ ≪ 1, the error probabilities satisfy PGew ∼ PML
ew .

Proof: On the SEC(q, ǫ), the word error probabilities are

given by [56],

PML
ew =

N
∑

i=d1d2

Ψi(ML)ǫi(1 − ǫ)N−i, (48)

where Ψi(ML) is the number of weight-i erasure patterns

covering a product code codeword, and

PGew =
N
∑

i=d1d2

Ψi(G)ǫ
i(1− ǫ)N−i, (49)

where Ψi(G) is the number of weight-i erasure patterns cover-

ing a stopping set. Of course, here we refer to stopping sets in

the non-compact graph G, i.e. in the n1×n2 product code ma-

trix. Next, since N is fixed (asymptotic length analysis is not

considered in this paper) we write PML
ew = Ψd1d2

(ML)ǫd1d2+
o(ǫd1d2) and PGew = Ψd1d2

(G)ǫd1d2 + o(ǫd1d2). From Propo-

sition 3, we get the equality Ψd1d2
(G) = Ψd1d2

(ML) and so

we obtain limǫ→0 P
G
ew/P

ML
ew = 1.

The erasure patterns can be decomposed according to

the size of the covered stopping set. The coefficient Ψi(G)
becomes Ψi(G) =

∑i

w=d1d2
Ψi,w(G), where Ψi,w(G) is the

number of weight-i patterns covering a stopping set of size

w. It is clear that Ψw,w(G) = τw. For small i − w, Ψi,w(G)
can be approximated by

∑

A

(

N−A
i−w

)

τw,A, where τw,A is the

number of stopping sets of size w having |R(S)| = A. For

w ≤ d1d2 + d1 + d2 + 1, the area A is bounded from above

by the product ℓ01× ℓ02 from Lemma 2. Numerical evaluations

of Ψi(G) are tractable for very short codes (N ≤ 25)

and become very difficult for codes of moderate size and

beyond, e.g. N = 144 and N = 224 for the [12, 10]⊗2 and

the [14, 12] ⊗ [16, 14] codes respectively. For this reason,

expressions (48) and (49) are not practical to predict the

SEC(q, ǫ) performance of product codes with significant

characteristics.

For PGew, thanks to Theorem 2, a union bound can be easily

established. Indeed, we have

PGew = Prob(∃S covered)

≤
∑

w

Prob(∃S : |S| = w,S covered),

leading to

PGew ≤ PU (ǫ) =

N
∑

w=d1d2

τwǫ
w. (50)

From Theorem 2, the union bound PU (ǫ) for the [12, 10, 3]⊗2q

product code is

PU (ǫ) =48400ǫ9 + 6098400ǫ12 + 23522400ǫ13 + 17641800ǫ14

+ 1754335440ǫ15+ 9126691200ǫ16 + o(ǫ16).

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

0.05 0.10 0.15 0.20 0.25 0.30 0.35

P
ro

ba
bi

lit
y

of
 E

rr
or

 a
fte

r
D

ec
od

in
g

Channel Erasure Probability

Pew, Iterative alg. decoding

Pes, Iterative alg. decoding

Pew, ML decoding

Pes, ML decoding

Union bound on Pew (iterative)

Union bound on Pes (iterative)

Figure 11: Product code [12, 10]⊗2q , no edge coloring. Word

and symbol error rate performance for iterative decoding

versus its union bound and ML decoding.

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

0.05 0.10 0.15 0.20 0.25 0.30

P
ro

ba
bi

lit
y

of
 E

rr
or

 a
fte

r
D

ec
od

in
g

Channel Erasure Probability

Pew, Iterative alg. decoding

Pes, Iterative alg. decoding

Pew, ML decoding

Pes, ML decoding

Union bound on Pew (iterative)

Union bound on Pes (iterative)

Figure 12: Product code [14, 12]q⊗[16, 14]q, no edge coloring.

Word and symbol error rate performance for iterative decoding

versus its union bound and ML decoding.

The performance of this code on the SEC(q, ǫ) channel is

shown in Figure 11. We used the standard finite field of size

q = 256. The union bound for the symbol error probability

PGes is derived by weighting the summation term in (50) with

w/N , i.e. PGes ≤
∑N

w=d1d2

w
N
τwǫ

w. As observed in the plot of

Figure 11, the union bound is sufficiently tight. Furthermore,

the performance of the iterative algebraic row-column decoder

is very close to that of ML decoding in the whole range of

ǫ. For small ǫ, the curves are superimposed as predicted by

Corollary 5.

The union bound PU (ǫ) for the [14, 12, 3]q ⊗ [16, 14, 3]q
product code is

PU (ǫ) =203840ǫ9 + 44946720ǫ12 + 174894720ǫ13

+ 131171040ǫ14 + 17839261440ǫ15

+ 126887941180ǫ16+ o(ǫ16).

22

The performance of this code on the SEC(q, ǫ) channel is

shown in Figure 12. Similar to the previous code, the union

bound is tight enough and iterative decoding performs very

close to ML decoding. Finally, let us interpret these results

from a finite-length information theoretical point of view [45].

The SEC(q, ǫ) of Shannon capacity log2(q)(1 − ǫ) behaves

exactly like a BEC(ǫ) of capacity (1 − ǫ) but erasures in

the SEC occur at the symbol level instead of the binary

digit level. Finite-regime BEC bounds from [45] are directly

applicable to our product codes over the SEC(q, ǫ). The BEC

channel dispersion is V = ǫ(1−ǫ) and its maximal achievable

rate is given by [45], Theorem 53,

R = (1− ǫ)−

√

V

n
Q−1(Pew) +O(

1

n
), (51)

where n is the code length, Q(x) is the Gaussian tail function,

ǫ is the channel erasure probability, and Pew is the target

word error probability. The next table shows how good is the

proposed product code based on MDS components.

Coding Rate R Erasure Prob. ǫ
for ǫ = 0.15 for R = 0.75

Polyanskiy-Poor-Verdú 0.794 : Pew = 1.0 · 10−2 0.189
[14, 12]q ⊗ [16, 14]q 0.750 : Pew = 1.0 · 10−2 0.150
Regular-(3, 12) LDPC 0.750 : Pew = 2.9 · 10−2 0.135

Table III: Finite-length performance of the [14, 12]q⊗[16, 14]q
product code. The value of ǫ in the third column is given for

Pew = 10−2 at all rows.

C. Unequal probability erasures

In communication and storage systems, erasure events of

unequal probabilities may occur. In order to observe the

effect of a double-diversity coloring on the performance in

multiple erasure channels, we define the SEC(q, {ǫi}
M
i=1).

On this channel, symbol erasure events are independent but

the probability of erasing a symbol is ǫi if it is associated to

an edge in G with color φ(e) = i. The union bound is easily

modified to get

PGew ≤ PU (ǫ1, . . . , ǫM), (52)

where

PU (ǫ1, . . . , ǫM) =

N
∑

w=d1d2

∑

w1, . . . , wM

:
∑

iwi = w

τ(w1, . . . , wM)

M
∏

i=1

ǫwi

i .

(53)

The coefficient τ(w1, . . . , wM) is the number of stopping sets

of size w =
∑M

i=1 wi, where i symbol edges have color i,
i = 1 . . .M . Clearly, the coefficients τ(w1, . . . , wM) depend

on the edge coloring φ. For double-diversity colorings and

M ≥ 2, these coefficients satisfy the following property:

For any stopping set S such that |S| = w, τ(w1, . . . , wM)
does exist for

∑M
i=1 wi = w and wi > 0 only, i.e. no weak

compositions of w are authorized by φ.

Hence, the product code should perform well if one of the

ǫi is close to 1 and the remaining ǫi are small enough.

The extreme case is true thanks to double diversity yield-

ing PU (0M−1, 11) = 0, where (0M−1, 11) represents all

vectors with all positions at 0 except for one position set

to 1. Figure 13 shows the performance of [12, 10]⊗2q on the

SEC(q, {ǫi}
M
i=1) channel with M = 4 colors. The edge

coloring is the double-diversity coloring produced by the

DECA algorithm and drawn in Figure 6. The expression of

PU (ǫ1, . . . , ǫM) is determined by stopping sets enumeration

as in Theorem 2. Details are omitted and the very long

expression of PU (ǫ1, . . . , ǫM) is not shown. The special case

ǫ1 = ǫ2 = ǫ3 is considered and the performance is plotted as

a function of ǫ4. For a fixed ǫ1, double diversity dramatically

improves the performance with respect to ǫ4.

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

W
or

d
E

rr
or

 P
ro

ba
bi

lit
y

Channel Erasure Probability (epsilon4)

epsilon1=0.002 (Union Bound)
epsilon1=0.010 (Union Bound)
epsilon1=0.050 (Union Bound)
epsilon1=0.050 (Monte Carlo)
epsilon1=0.100 (Union Bound)

No Coloring

Figure 13: Product code [12, 10]⊗2q with double-diversity edge

coloring. Word error rate performance versus ǫ4, for iterative

decoding on the SEC(q, {ǫi}
4
i=1) channel with ǫ1 = ǫ2 = ǫ3.

VII. CONCLUSIONS

Non-binary product codes with MDS components are stud-

ied in this paper in the context of iterative row-column

algebraic decoding. Channels with both independent and block

erasures are considered. The rootcheck concept and associated

double-diversity edge colorings were described after introduc-

ing a compact graph representation for product codes. For

solving erased symbols, an upper bound of the number of

decoding iterations is given as a function of the graph size

and the color palette size M . We proposed a differential

evolution edge coloring algorithm to design colorings with

a large population of minimal rootcheck order symbols. The

complexity of this algorithm per iteration is o(Mℵ), where ℵ
is the differential evolution parameter. Then, stopping sets are

defined in the context of MDS components and a relationship

is established with the graph representation of the product

code. A full characterization of these stopping sets is given up

to a weight (d1+1)(d2+1). The performance of MDS-based

product codes with and without double-diversity coloring is

analyzed. In addition, ML and iterative row-column algebraic

decoding are proven to coincide at small channel erasure

probability. Original results found in this paper are listed in

Section I-B.

23

A complete enumeration of product code codewords is still

an open problem in coding theory. Following the enumeration

of bipartite graphs in Section V-D (see also Table I) and

following the DECA algorithm that aims at improving η(φ)
in Section IV-B, two open problems can be stated.

• In number theory. There exists no recursive or closed form

expression for the special partition function, i.e. the number

of special partitions of an integer. Also, in a way similar

to the Hardy-Ramanujan formula, the asymptotic behavior

is unknown for the number of special partitions. Special

partitions are introduced in Definition 10.

• In graph theory and combinatorics. Consider a matrix of

size H ×W and a coloring palette of size M . For simplicity,

assume that H ·W is multiple of M . A matrix entry is called

edge. A color is assigned to each edge in the matrix. All M
colors are equally used. A matrix edge/entry (i, j) of color c is

said to be good if it is the unique entry with color c either on

row i or on column j. The number of good entries is denoted

by η(φ), see also (19). Given the matrix height H , width W ,

and the palette size M , find the maximum achievable number

of good entries η(φ) over the set of all edge colorings φ. A

simpler problem would be to find an upper bound of η(φ).

ACKNOWLEDGMENT

The work of Joseph J. Boutros was supported by the Qatar

National Research Fund (QNRF), a member of Qatar Foun-

dation, under NPRP project 5-401-2-161 on layered coding.

The authors would like to thank Dr. Mireille Sarkiss, from

CEA-LIST Paris, for her precious support. The authors are

also grateful to the anonymous reviewers for their valuable

comments that helped in improving the paper presentation.

REFERENCES

[1] N. Abramson, “Cascade decoding of cyclic product codes,” IEEE Trans.

on Comm. Technology, vol. 16, no. 3, pp. 398-402, June 1968.
[2] M. Alipour, O. Etesami, G. Maatouk, and A. Shokrollahi, “Irregular prod-

uct codes,” IEEE Information Theory Workshop, pp 197-201, Lausanne,
Sept. 2012.

[3] D. Augot, M. El-Khamy, R.J. McEliece, F. Parvaresh, M. Stepanov, and
A. Vardy, “Algebraic list decoding of Reed-Solomon product codes,”
Algebraic and Combinatorial Coding Workshop, pp. 210-213, Sept. 2006.

[4] E. Arıkan, “Channel polarization: A method for constructing capacity
achieving codes for symmetric binary-input memoryless channels,” IEEE
Trans. Inf. Theory, vol. 55, no. 7, pp. 3051-3073, July 2009.

[5] S.B. Balaji, G.R. Kini, and P.V. Kumar, “A bound on rate of codes with
locality with sequential recovery from multiple erasures,” Dec. 2016,
preprint, arXiv:1611.08561v3.

[6] S. Benedetto and G. Montorsi, “Unveiling turbo-codes: some results
on parallel concatenated coding schemes,” IEEE Trans. on Inf. Theory,
vol. 42, no. 2, pp. 409-428, March 1996.

[7] C. Berrou and A. Glavieux, “Near optimum error correcting coding
and decoding: Turbo-codes,” IEEE Trans. on Communications, vol. 44,
pp. 1261-1271, Oct. 1996.

[8] R.E. Blahut, Algebraic codes for data transmission, Cambridge University
Press, 2003.

[9] B. Bollobás, Modern graph theory, Springer, 1998.
[10] J.J. Boutros, O. Pothier, and G. Zémor, “Generalized low density

(Tanner) codes,” IEEE Intern. Conf. on Comm. (ICC), vol. 1, pp. 441-445,
Vancouver, June 1999.

[11] J.J. Boutros, G. Zémor, A. Guillén i Fàbregas, and E. Biglieri, “Full-
diversity product codes for block erasure and block fading channels,”
Information Theory Workshop, pp. 313-317, Porto, May 2008.

[12] J.J. Boutros, G. Zémor, A. Guillén I Fàbregas, and E. Biglieri, “Gen-
eralized low-density codes with BCH constituents for full-diversity near-
outage performance,” IEEE Intern. Symp. on Inform. Theory (ISIT),
pp. 787-791, Toronto, July 2008.

[13] J.J. Boutros, “Diversity and coding gain evolution in graph codes,”
Information Theory and Applications Workshop, pp. 34-43, San Diego,
Feb. 2009.

[14] J.J. Boutros, A. Guillén i Fàbregas, E. Biglieri, and G. Zémor, “Low-
density parity-check codes for nonergodic block-fading channels,” IEEE

Trans. Inf. Theory, vol. 56, no. 9, pp. 4286-4300, Sept. 2010.

[15] E.R. Canfield and B.D. McKay, “Asymptotic enumeration of inte-
ger matrices with constant row and column sums”, Combinatorics,
arXiv:math/0703600, revised June 2009.

[16] J.H. Conway and R.K. Guy. The Book of Numbers. New York: Springer-
Verlag, pp. 94-96, 1996.

[17] C. Greenhill and B.D. McKay, “Asymptotic enumeration of sparse
nonnegative integer matrices with specified row and column sums,”
Advances in Applied Mathematics, vol. 41, pp. 459-481, 2008, revised
April 2012.

[18] C. Di, D. Proietti, I.E. Telatar, T.J. Richardson, and R.L. Urbanke,
“Finite-length analysis of low-density parity-check codes on the binary
erasure channel,” IEEE Trans. Inf. Theory, vol. 48, no. 6, pp. 1570-1579,
Jun. 2002.

[19] A.G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh, “A survey on
network codes for distributed storage,” IEEE Proceedings, vol. 99,
pp. 476-489, March 2011.

[20] P. Elias, “Error-free coding,” IRE Trans. Inf. Theory, vol. 4, no. 4, pp. 29-
39, Sept. 1954.

[21] M. El-Khamy and R.J. McEliece, “Iterative algebraic soft-decision list
decoding of Reed-Solomon codes,” IEEE Journal on Selected Areas in

Communications, vol. 24, no. 3, pp. 481-490, March 2006.

[22] K.S. Esmaili, L. Pamies-Juarez, and A. Datta, “CORE: Cross-object
redundancy for efficient data repair in storage systems,” IEEE Big Data,
pp. 246-254, Oct. 2013.

[23] D.F. Freeman and A.M. Michelson, “A two-dimensional product code
with robust soft-decision decoding,” IEEE Trans. Comm., vol. 44, no. 10,
pp. 1222-1226, Oct. 1996.

[24] R.G. Gallager, Low-density parity-check codes, Ph.D. thesis, Massachus-
sets Institute of Technology Press, 1963.

[25] P. Gopalan, V. Guruswami, and P. Raghavendra, “List decoding tensor
products and interleaved codes,” SIAM J. Comput., vol. 40, no. 5,
pp. 1432-1462, Oct. 2011.

[26] P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin, “On the locality of
codeword symbols,” IEEE Trans. Inf. Theory, vol. 58, no. 11, pp. 6925-
6934, Nov. 2012.

[27] A. Guillén i Fàbregas, “Coding in the block-erasure channel,” IEEE
Trans. Inf. Theory, vol. 52, no. 11, pp. 5116-5121, Nov. 2006.

[28] A. Guillén i Fàbregas and G. Caire, “Coded modulation in the block-
fading channel: Coding theorems and code construction,” IEEE Trans.
Inf. Theory, vol. 52, no. 1, pp. 91-114, Jan. 2006.

[29] V. Guruswami and M. Sudan, “Improved decoding of Reed-Solomon
and algebraic-geometry codes,” IEEE Trans. Inf. Theory, vol. 45, no. 6,
pp. 17571767, June 1999.

[30] T. Helleseth, T. Klove, and O. Ytrehus, “Generalized Hamming weights
of linear codes,” IEEE Trans. Inf. Theory, vol. 38, no. 3, pp. 1133-1140,
May 1992.

[31] J. Jiang, K.R. Narayanan, “Iterative soft decoding of Reed-Solomon
codes,” IEEE Communications Letters, vol. 8, no. 4, pp. 244-246,
April 2004.

[32] R. Knopp and P.A. Humblet, “On coding for block fading channels,”
IEEE Trans. Inf. Theory, vol. 46, no. 1, pp. 189-205, Jan. 2000.

[33] F.R. Kschischang, Product Codes, J.G. Proakis (ed), Wiley encyclopedia

of telecommunications, pp. 2007-2012, vol. 4, Hoboken, NJ, 2003.

[34] F.R. Kschischang, B.J. Frey, and H.-A. Loeliger, “Factor graphs and the
sum-product algorithm,” IEEE Trans. Inf. Theory, vol. 47, pp. 498-519,
Feb. 2001.

[35] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels,
R. Gummadi and S. Rhea, H. Weatherspoon, W. Weimer, C. Wells,
and B. Zhao, “Oceanstore: An architecture for global-scale persistent
storage,” 9th Int. Conf. on Architectural Support Programm, pp. 190-201,
Cambridge, Massachusetts, 2000.

[36] S. Kudekar, T. Richardson, and R.L. Urbanke, “Spatially coupled
ensembles universally achieve capacity under belief propagation,” IEEE

Trans. Inf. Theory, vol. 59, no. 12, pp. 7761-7813, Dec. 2013.

[37] S. Kudekar, M. Mondelli, E. Sasoglu, and R. Urbanke, “Reed-Muller
codes achieve capacity on the binary erasure channel under MAP decod-
ing,” arXiv:1505.05831v1, 2015.

[38] S. Kumar and H.D. Pfister, “Reed-Muller codes achieve capacity on
erasure channels,” arXiv:1505.05123v2 , 2015.

24

[39] A. Lapidoth, “Convolutional codes and finite interleavers for the block
erasure channel,” Mobile Communications Advanced Systems and Com-

ponents, Lecture Notes in Computer Science, Springer Berlin Heidelberg,
vol. 783, pp. 113-120, May 2005.

[40] S. Lin and D.J. Costello, Error control coding, Prentice Hall, 2nd edition,
2004.

[41] F.J. MacWilliams and N.J.A. Sloane, The theory of error-correcting
codes, North-Holland, 1977.

[42] E. Malkamaki and H. Leib, “Evaluating the performance of convolu-
tional codes over block fading channels,” IEEE Trans. Inf. Theory, vol. 45,
no. 5, pp. 1643-1646, July 1999.

[43] F. Oggier and A. Datta, “Coding techniques for repairability in net-
worked distributed storage systems,” Foundations and Trends in Commu-

nications and Information Theory, vol. 9, pp. 383-466, 2013.

[44] G.C. Onwubolu and D. Davendra, Differential evolution: a handbook for

global permutation-based combinatorial optimization, Springer, 2009.

[45] Y. Polyanskiy, H.V. Poor, and S. Verdú, “Channel coding rate in the finite
blocklength regime,” IEEE Trans. Inf. Theory, vol. 56, no. 5, pp. 2307-
2359, May 2010.

[46] N. Prakash, V. Lalitha, and P.V. Kumar, “Codes with locality for
two erasures,” CoRR, vol. abs/1401.2422, 2014. [Online]. Available at
arXiv:1401.2422v2, 2014.

[47] R. Pyndiah, “Near-optimum decoding of product codes: Block turbo
codes,” IEEE Trans. Comm., vol. 46, no. 8, pp. 1003-1010, Aug. 1998.

[48] D. Rankin and T.A. Gulliver, “Asymptotic performance of product
codes,” IEEE International Conference on Communications, pp. 431-435,
Vancouver, June 1999.

[49] K.V. Rashmi, N.B. Shah, D. Gu, H. Kuang, D. Borthakur, and K. Ram-
chandran, “A solution to the network challenges of data recovery in
erasure-coded distributed storage systems: A study on the Facebook
warehouse cluster,” Proc. USENIX HotStorage, June 2013.

[50] S.R. Reddy and J.P. Robinson, “Random Error and Burst Correction by
Iterated Codes,” IEEE Trans. Inf. Theory, vol. 18, no. 1, pp. 182-185,
Jan. 1972.

[51] T.J. Richardson and R.L. Urbanke, Modern coding theory, Cambridge
University Press, 2008.

[52] E. Rosnes and O. Ytrehus, “Turbo decoding on the binary erasure
channel: Finite-length analysis and turbo stopping sets,” IEEE Trans. Inf.

Theory, vol. 53, no. 11, pp. 4059-4075, Nov. 2007.

[53] E. Rosnes, “Stopping set analysis of iterative row-column decoding of
product codes,” IEEE Trans. Inf. Theory, vol. 54, no. 4, pp. 1551-1560,
April 2008.

[54] A. Sarwate, “Soft decision decoding of Reed-Solomon product codes,”
EECS 229B Final Project Report, May 2005.

[55] M. Schwartz, P.H. Siegel, and A. Vardy, “On the asymptotic performance
of iterative decoders for product codes,” IEEE International Symposium

on Information Theory, pp. 1758-1762, Sept. 2005.
[56] M. Schwartz and A. Vardy, “On the stopping distance and the stopping

redundancy of codes,” IEEE Trans. Inf. Theory, vol. 52, no. 3, pp. 922-
932, March 2006.

[57] A. Sella and Y. Be’ery, “Convergence analysis of turbo decoding of
product codes,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 723-735,
Feb. 2001.

[58] N. Sendrier, “Codes correcteurs d’erreurs à haut pouvoir de correction,”
Thèse de Doctorat de l’Université Paris 6, in French, Dec. 1991.

[59] N.J.A Sloane, The On-Line Encyclopedia of Integer Sequences. See
sequence A000041 at oeis.org/A000041.

[60] R.P. Stanley, Enumerative combinatorics, Cambridge Univ. Press, vol. 1,
2nd edition, 2012.

[61] R. Storn and K. Price, “Differential evolution - A simple and efficient
heuristic for global optimization over continuous spaces,” Journal of

Global Optimization, vol. 11, pp. 341-359, 1997.
[62] R.M. Tanner, “A recursive approach to low complexity codes,” IEEE

Trans. Inf. Theory, vol. 27, no. 5, pp. 533-547, Sept. 1981.
[63] J.-P. Tillich and G. Zémor, “Optimal cycle codes constructed from

Ramanujan graphs,” SIAM J. Discrete Mathematics, vol. 10, no. 3,
pp. 447-459, 1997.

[64] L.M.G.M. Tolhuizen, “More results on the weight enumerator of product
codes,” IEEE Trans. Inf. Theory, vol. 48, no. 9, pp. 2537-2577, Sept. 2002.

[65] D.N.C. Tse and P. Viswanath, Fundamentals of Wireless Communica-

tion, Cambridge University Press, 2005.
[66] W.M.C.J. Van Overveld, “Multiple-burst error-correcting cyclic product

codes (Corresp.),” IEEE Trans. Inf. Theory, vol. 33, no. 6, pp. 919-923,
Nov. 1987.

[67] D.P. Varodayan, “Investigation of the Elias product code construction
for the binary erasure channel”, B.A.S. Thesis, University of Toronto,
Dec. 2002.

[68] S. Wainberg, “Error-erasure decoding of product codes (Corresp.),” IEEE

Trans. on Inf. Theory, vol. 18, no. 6, pp. 821-823, Nov. 1972.
[69] V.K. Wei, “Generalized Hamming weights for linear codes,” IEEE Trans.

Inf. Theory, vol. 37, no. 5, pp. 1412-1418, Sept. 1991.
[70] L.-J. Weng and G. Sollman, “Variable redundancy product codes,” IEEE

Trans. on Comm. Technology, vol. 15, no. 6, pp. 835-838, Dec. 1967.
[71] S.B. Wicker and V.K. Bhargava, eds., Reed-Solomon Codes and their

Applications. New York: IEEE Press, 1994.
[72] J.K. Wolf, “On codes derivable from the tensor product of check

matrices,” IEEE Trans. Inf. Theory, vol. 11, no. 2, pp. 281-284, April
1965.

