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Abstract

We design powerful low-density parity-check (LDPC) codes with iterative decoding for the block-

fading channel. We first study the case of maximum-likelihood decoding, and show that the design

criterion is rather straightforward. Since optimal constructions for maximum-likelihood decoding do

not perform well under iterative decoding, we introduce a new family of full-diversity LDPC codes

that exhibit near-outage-limit performance under iterative decoding for all block-lengths. This family

competes favorably with multiplexed parallel turbo codes suitable for nonergodic channels.
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I. INTRODUCTION

The block-fading (BF) channel model was first introduced in [18], and further elaborated upon

in [2] (see also [1, p. 98 ff.]). This is a realistic and convenient model for a number of channels

affected by slowly varying fading, and, as observed for example in [6], is especially relevant

in wireless communications involving slow time–frequency hopping (e.g., cellular networks and

wireless Ethernet) or multicarrier modulation using orthogonal frequency division multiplexing

(OFDM). The design of error-control codes for BF channels offers a challenging problem,

which differs greatly from its counterparts referred to additive white Gaussian noise (AWGN)

or independent-fading channels (see [6] for a summary of recent results). The main reason

for this major difference stems from the fact that in BF channels the random channel gains

remain constant during a block of symbols (see below for additional details and definitions),

and take independent values from block to block. As a result, while the word-error probability

in independent-fading channels depends on the Hamming distances between code words, in BF

channels it depends on a new parameter, the blockwise Hamming distance. Since codes exhibiting

a large minimum Hamming distance may not have a large blockwise Hamming distance, codes

that are good when used on the independent-fading channel may not be as good for a BF channel.

In addition, over independently faded channels permutations of the symbols cause no variation of

the code performance, but this property does not hold on the BF channel. Thus, if an off-the-shelf

code, designed for the independent-fading channel, is used for transmission over the BF channel,

it is important to carefully select the best permutation of its symbols. Finally, one must consider

that the BF channel is nonergodic. As a consequence, to determine the information-theoretical

rate limit which cannot be surpassed by the word error probability of any coding scheme, one

cannot use channel capacity, but rather outage probability [1], [2], [18]. Classical random-like

codes, designed to approach ergodic capacity, cannot generally approach the ideal performance

limits of BF channels, and hence code designs suited to the nonergodic nature of the channel

are called for. This paper is devoted to this design problem.

Two main parameters that determine the error rate of coded BF channels for high signal-

to-noise (SNR) ratios are the diversity order and the coding gain. The former determines the
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slope of the error-rate curve as a function of the SNR on a log-log scale1. Since the error

probability of any coding scheme is lower-bounded by the outage probability, the diversity order

is upper-bounded by the intrinsic diversity of the channel, which reflects the slope of the outage

limit. When maximum diversity is achieved by a code, the coding gain yields a measure of

SNR proximity to the outage limit. The maximum achievable diversity order with discrete input

constellations is given by the Singleton bound [6], [13], [16], and codes achieving the Singleton

bound are termed blockwise maximum-distance separable (MDS). Blockwise MDS codes are

outage-achieving over the (noiseless) block-erasure channel [9], but may not achieve the outage-

probability limit on noisy BF channels. As a matter of fact, as shown in [6], blockwise MDS

codes are necessary, but not sufficient to approach the outage probability of the channel.

Recent code designs for BF channels include near-outage schemes based on a suitable permu-

tation of parallel turbo codes [3]–[5]. Multiplexers for convolutional, turbo and repeat-accumulate

codes [3], [6], [13] appeared one decade after the analysis of random and periodic interleaving

of convolutional codes on the block-erasure channel [15]. Random ensembles of low-density

parity-check codes (LDPC) designed for ergodic AWGN channels [11], [21], in spite of the

excellent decoding threshold of their irregular structures, do not have full-diversity, and hence

exhibit a poor performance over a BF channel. Decoding thresholds of LDPC code ensembles

over ergodic BF channels have been studied [12]. Unfortunately, these codes are not designed

to be blockwise MDS, and therefore fail to achieve the outage limit in the nonergodic setup.

In this work, we introduce a new family of blockwise MDS LDPC codes, the root LDPC codes,

based on a special type of checknode that we call rootchecks 2. Under iterative message-passing

decoding, they achieve the outage-probability limit on block-erasure channels, and they perform

close to that limit on Rayleigh BF channels. This paper is organized as follows. Section II

introduces the channel model and the relevant notations. LDPC codes with full diversity under

Maximum Likelihood (ML) decoding are discussed in section III. Our new family of LDPC codes

suited for iterative decoding is further described. Section V analyzes their density evolution in the

presence of block fading. Conclusions are finally drawn in Section VI. Complementary support

1The diversity order is exactly the asymptotic slope for Rayleigh fading, while for other fading distributions it is only
proportional to the slope. See [17], [25] for details. In this paper we shall restrict our attention to Rayleigh fading.

2We hasten to observe that our definition of rootchecks can also be formulated in terms of stopping sets, as defined in [8]
(see Definition 1.1 and Lemma 1.1) and in Section 3.22 of [22] in the context of binary erasure channels. Since the context is
quite different in this paper, we deem it more natural to use our concept of rootchecks here.
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Fig. 1. Codeword representation for a BF channel with nc = 2. The fading gains α1, α2 are independent between themselves and
among codewords.

material is shown in the Appendices.

II. CHANNEL MODEL AND NOTATION

We consider codewords of N binary digits transmitted on a BF channel, where nc independent

fading gains (whose values form the channel state) affect each codeword. The length N is a

multiple of nc, with ` , N/nc denoting the number of bits per fading block. The received signal

when symbol xi is transmitted is given by

yi = αjxi + zi (1)

where yi ∈ R, i = 1 . . . N , and j = 1 + [(i − 1)/`], with [r] denoting the integer part of a real

number r. The non-negative real number αj is the fading gain at block j, j = 1 . . . nc. The

symbols xi are chosen from a BPSK alphabet, xi = ±√Es, where Es is the average energy per

symbol. The noise samples are i.i.d. with zi ∼ N (0, σ2), σ2 = N0/2. We assume perfect channel

state information (CSI) at the receiver, and channel gains which are i.i.d. Rayleigh-distributed

from block to block and from codeword to codeword. Thus, when the information rate is R bits

per channel use, the average SNR per symbol is given by γ = Es/N0, and the average SNR per

bit is Eb/N0 = γ/R. Fig. 1 illustrates the channel model for nc = 2 and ` = N/2.

In this work, we focus on linear binary codes C(N,K)2 with block length N , dimension K,

and rate R = K/N ≤ 1/nc ≤ 1/2. The code C is defined by an L × N parity-check matrix

H (Fig. 2), or, equivalently, by the corresponding Tanner graph [1]. This has L single-parity

checknodes. It is assumed that H has full rank L, so that R = 1− L/N .
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S1 S2

H =

N

L ≥ N/2H1 H2

Fig. 2. Parity-check matrix notations for a block-fading channel with nc = 2. The L − N/2 extra rows are added in order to
enhance the coding gain of a full-diversity code.

Let us recall that the diversity order attained by C is defined as [19] [23]

d = − lim
γ→+∞

log(Pew)/ log(γ), (2)

where Pew is the word error probability at the decoder’s output. Thus, the diversity order d

depends on the decoding algorithm.

Definition 1 An error-correcting code is said to have full diversity if d = nc.

The word error probability of a code with full diversity nc decreases as 1/γnc at high SNR [1],

[19], [23], [25]. For a given codeword c ∈ C, we define the blockwise Hamming weight vector

(ω1(c), . . . , ωnc(c)), where ωj(c) is the Hamming weight of coded bits affected by fading αj .

Under maximum likelihood decoding, it is well known [3], [6], [13] that the diversity order is

determined by

d = min
c∈C−{0}

|{ωj(c) 6= 0}|. (3)

In words, the integer d is the minimum number of blocks that have non-zero Hamming weight.

We refer to d as the blockwise minimum Hamming distance. Qualitatively, this implies that an

ML decoder of C will be able to decode correctly in presence of d − 1 deep fades, which one

can think of as block erasures.
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We also define the minimum blockwise Hamming weight as

ω? = min
c∈C−{0}

min
j=1...nc

(ωj(c)). (4)

Having ω? > 0, i.e. nonzero weight in all blocks, implies that d = nc under ML decoding. Under

these conditions, the pairwise error probability can be upper bounded by [13] [3]

P (0→ c) ≤ 1

2

nc∏
j=1

1

1 + ωj(c)γ
≈ 1

2γnc
∏nc

j=1 ωj(c)
, (5)

where the right approximation is valid at high SNR. The quantity
∏

j ωj(c) is referred to as the

coding gain. Since
∑

j ωj(c) is constant for a given codeword c, then increasing ω? would lead

to a higher coding gain.

The diversity order attained by C admits a Singleton-like bound [1], [6], [13], [16]

d ≤ 1 + bnc(1−R)c. (6)

Consequently, R = 1/nc is the highest achievable rate for a full-diversity code.

The instantaneous mutual information of a block-fading channel depends on channel real-

ization [23]. Such a quasi-static channel is not information stable [24]. Therefore, its Shannon

capacity is zero since there is a non-vanishing probability that the decoder makes a word error.

In the limit of large block length, this probability is the information outage probability, defined

as [2], [18]

Pout(γ,R) , P{I(γ,α) < R} (7)

where I(γ,α) is the instantaneous input–output mutual information between the input and output

of the channel, defined as

I(γ,α) ,
1

nc

nc∑
i=1

IAWGN(γα2
i ), (8)

with IAWGN(s) the input–output mutual information of an AWGN channel with SNR per symbol

equal to s. The BF channel is also commonly referred to as nonergodic since, for finite values

of nc, I(γ,α) is a non-constant random variable.

The information outage probability Pout(γ,R) is a fundamental lower bound on the word error
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rate for sufficiently large word length. Therefore, any code approaching Pout(γ,R) should have

a word-error probability that, as N increases, becomes independent of the code length [4], [6].

Unless stated otherwise, we shall focus our study on a coding rate R = 1
2

(or just slightly

smaller than 1
2
) and a nonergodic Rayleigh fading channel with nc = 2 blocks per codeword, as

depicted in Figs. 1 and 2. However, most of our results can be easily generalized to R = 1
nc

.

III. FULL-DIVERSITY LDPC CODES UNDER ML DECODING

In this section, we study LDPC codes in the presence of BF under ML decoding. As we shall

see, the design of full-diversity LDPC codes under ML decoding is rather straightforward. We

recognize that ML decoding is unfeasible in practice; however, it yields valuable insight into

code structures suitable for nonergodic channels. The main result of this section is that, under

iterative decoding, ML-designed full-diversity codes fail to guarantee diversity due to badly

located pseudo-codewords.

Following the notations defined in the previous section, the L×N parity-check matrix H is

written in the form H = [H1 | H2], where the left and right parts H1, H2 are L × N/2. The

vector space generated by the N/2 left columns is denoted S1. Similarly, S2 is the vector space

generated by the N/2 right columns. Recall that the addition of redundant rows does not modify

the code neither its Hamming weight distribution. Therefore, as stated in Section II, H can be

assumed to have full rank L without any loss of generality.

Proposition 1 A binary code C with rate R ≤ 1
2
, i.e. L ≥ N/2, has full diversity if and only if

H1 and H2 are both full-rank.

Proof: If dimS1 = N/2, then a nonzero codeword cannot have its support on H1, because

all columns in H1 are independent. Hence, ω2 > 0 for all nonzero codewords. Similarly, ω1 > 0

when dimS2 = N/2. Finally, ω1 > 0 and ω2 > 0 for all nonzero codewords, which yields

ω? > 0.

The full-rank property of the above proposition was first observed in [10]. Its extension to

coding rate 1/3 with H = [H1 | H2 | H3] can be obtained by imposing that the matrices

[H1 | H2], [H1 | H3], and [H2 | H3] all have full rank. Generalization to any rate R = 1
nc

is

straightforward.
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Proposition 2 Consider a binary code C with rate R = 1/2, and hence with L = K = N/2. If

C has full diversity, then ω? = 1.

Proof: If C has full diversity, then dimS1 = dimS2 = N/2. Any column from H1 can

then be written as a linear combination of columns from H2. This is also valid for any column

belonging to H2. Hence, nonzero codewords with ωi = 1 exist for both i = 1 and i = 2 if the

coding rate is exactly equal to 1/2.

The minimum blockwise Hamming weight must be increased in order to improve the coding

gain of C. Proposition 2 states that to achieve this, one must decrease the coding rate. The next

proposition shows that adding just one extra row is enough to improve ML decoding by moving

from ω? = 1 to ω? = 2.

Proposition 3 There exists a binary code C of rate R = 1/2− 1/N that has full diversity with

ω? = 2.

Proof: The proof is based on the special parity-check matrix structure shown in Fig. 3

where H2 is a full-rank matrix whose columns have odd Hamming weight (the identity matrix,

for example). Let now H1 be such that its first column is the all zero vector, and the remaining

N/2− 1 columns are all even-weight and full-rank.

Next, we show that the ω? corresponding to this construction is 2. Clearly the first (leftmost)

N/2 columns of H and the last (rightmost) N/2 columns of H have full rank, so that we have

ω? ≥ 1.

None of the first N/2 columns of H can be a linear combination of the last N/2 columns of

H , due to the 1 in the last position of each of the first columns. None of the last N/2 columns

of H can be a linear combination of the first N/2 columns of H , because columns of H2 have

odd weight and any linear combination of columns of H1 has even weight.

These last statements imply that ω? ≥ 2.

The rate reduction necessary to achieve ω? = 2 is negligible for large code length N . If we

now require ω? = 3, the following result holds:

Proposition 4 Consider a binary code C with rate R ≤ 1/2. The code has ω? = 3 only if

R ≤ 1/2− (1/N) log2(1 +N/2).
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Fig. 3. ML-designed full-diversity LDPC code with ω? = 2.

Proof: Recall that S2 denotes the linear span of the set of columns of H2. Consider the

1 +N/2 sets consisting of S2 together with its translates h1 + S2 for all columns h1 of H1. No

two of these sets can intersect, otherwise either a column of H1, or a sum of two columns of

H1, equals a sum of columns of H2, which would imply the existence of a codeword of weight

at most 2 on the first N/2 positions. Therefore we must have 2L ≥ (1 +N/2)2N/2.

Proposition 5 There exists a full-diversity binary code with ω? ≥ 3 and R = 1/2−(1/N)2 log2(N/2+

1).

Proof: The code has the parity-check matrix of Fig. 4. The presence of a Hamming code

whose minimum distance is 3 rules out a blockwise Hamming weight equal to 2.

It is interesting to simulate iterative decoding of LDPC codes that are full-diversity for ML

decoding, i.e. with ω? ≥ 1, and results are shown in Fig. 5, for nc = 2 and the (3, 6) ensemble.

The code used is of the type guaranteed by Proposition 1, i.e. is simply chosen so that H1 and

H2 are full-rank. We see that this structure does not help the iterative decoder and that the code

actually has diversity 1 for iterative decoding and not diversity 2 guaranteed by Proposition 1

for ML decoding. The performance is the same as that of randomly chosen (3, 6) LDPC code

(not shown in the figure). This effect is caused by the pseudo-codewords [14] whose support

is restricted to H1 or H2, and hence have a minimum blockwise pseudo-weight equal to zero
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Fig. 4. ML-designed full-diversity LDPC code with ω? ≥ 3.

when belief propagation is applied.

To simulate ML decoding of this code we have used a “genie-aided” iterative decoder: this

is an iterative decoder that considers that it has correctly decoded if there is no residual error

in the positions corresponding to H1 or to H2. This is because we argue that if a suboptimal

decoder is able to correct all errors in one block of positions, then the ML decoder should be able

to remove all residual errors, because there is no codeword whose support belongs to a single

block. Similarly, to simulate the case ω∗ = 3 guaranteed by Proposition 4, we have considered

that the “genie-aided” decoder has correctly decoded if the number of residual errors in one

position is less than 3.

Figure 5 shows therefore that the structures investigated in this section do not improve the

performance of belief propagation. To achieve this we have to introduce a new LDPC design:

this is the object of the following section.

IV. FULL-DIVERSITY LDPC CODES FOR ITERATIVE BELIEF PROPAGATION DECODING

The results presented at the end of Section III show that, if iterative decoding is used, the

design criteria derived under the assumption of ML decoding are irrelevant. In this section, we

proceed to design LDPC codes with the stipulation of iterative decoding. Our design is based

on a graphical representation [1], [22], which is then translated into a matrix description. We

then analyze the construction by means of log-ratio probability-density evolution.
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Fig. 5. Rate 1/2 ML-designed LDPC codes with iterative decoding on a Rayleigh block-fading channel with nc = 2. The thick
solid line corresponds to the outage probability with BPSK inputs, the dotted lines with ∗ markers corresponds to the ML-designed
code with iterative decoding, the dotted lines with � markers corresponds to the ML-designed code with ω? = 1 using a genie ML
decoder and the dotted lines with + markers corresponds to the ML-designed code with ω? = 3 using the genie ML decoder. The
genie ML curves show the performance of a decoder that knows whether errors occur in positions corresponding to H1 or H2.

A. A limiting case: block-erasure channels

We illustrate our solution to the design problem by referring to a limiting case. Specifically,

observe that, if the fading coefficients αi belong to the set {0,+∞}, the BF channel becomes a

block-erasure channel [9], [15]. This corresponds to the large SNR regime. The reader is referred

to Fig. 6, where the outage boundaries are illustrated (see [4] for more details).

In our approach, we need to find a graph whose topology yields full diversity. For simplicity,

we illustrate the case of the (3, 6) LDPC ensemble with nc = 2 (generalizations to other degree
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distributions and rates will be treated infra). Fig. 7 shows the notation employed in this section.

Two examples of local graphs whose diversity is not guaranteed are shown in Fig. 8. The

checknodes defining an LDPC code are single-parity check codes, and hence they cannot tolerate

more than one erased bit. For example, if α1 = 0 then the checknodes in Fig. 8 are not able to

recover the erased bit, because it is connected to bitnodes which are also erased, because they

are subject to the same fading coefficient. Notice also that the design must be symmetric, i.e.,

any analysis with respect to α1 is valid for α2, and hence permuting the order of the two fading

gains should yield an equivalent design.

The two unique local graphs that guarantee full diversity in the presence of block erasures

are exhibited in Fig. 9. The immediate consequence is the definition of rootchecks. We start by

building a regular (3, 6) structure where bitnodes have degree 3 and checknodes have degree 6,

next we generalize to any (λ(x), ρ(x)) degree distribution [21]. A checknode Φ connected to

bits ϑ1, ϑ2, . . . , ϑ6 is written as Φ(ϑ1, ϑ2, . . . , ϑ6).

Definition 2 Let ϑ be a binary element transmitted on fading α1. A type-1 rootcheck for ϑ is a

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+
+
+
+
+
+
+
+
+

+
+ +

++++

+

+

+++

+

+

++++++++++
+

ergodic
line

bad
code

good
codeoutage

bound block-erasure
channel

block-erasure
channel

Fig. 6. Outage boundaries in the fading plane for a BF channel with nc = 2. To approach the outage limit, one should: (a) Reduce
the gap on the ergodic line, which requires an excellent decoding threshold, and (b) Reduce the gap at infinity, which requires a
full-diversity code (MDS) on a block-erasure channel.
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checknode Φ(ϑ, ϑ1, . . . , ϑ5) where all bits ϑ1, . . . , ϑ5 are transmitted on fading α2.

Type-2 rootchecks are defined similarly.

variable node on 

variable node on 

variable node on 

variable node on 

α2

α2

α1

α1 connected to a rootcheck

connected to a rootcheck

check node 

Fig. 7. Notations for graph representation.

Using Definition 2, consider a length-N , rate-1/2 LDPC code. Information bits are split

into two classes: N/4 bits (tagged 1i) are transmitted on α1, while N/4 bits (tagged 2i) are

transmitted on α2. Parity bits are also partitioned into two sets, say 1p and 2p. Finally, we

connect all information bits to rootchecks in order to guarantee full diversity when word error

probability is measured on those bits. The protection of parity bits is abandoned. This design

produces the bipartite Tanner graph drawn in Fig. 10(a). Its extension to rate 1/3 is portrayed in

Fig. 11. Integers labeling edges indicate the degree of a node along those edges. The structure of

H for a root-LDPC code is directly derived from its Tanner graph, and is shown in Fig. 10(b).

The N/4 × N/4 identity matrix is written twice in connections 1i ↔ 1c and 2i ↔ 2c. Two

all-zero N/4×N/4 submatrices prohibit any edge of type 1p↔ 1c and 2p↔ 2c. The other 4

submatrices are all sparse, H1i and H2i are random sparse matrices of Hamming weight 2 per

row and per column. Similarly, H1p and H2p are random sparse matrices of Hamming weight 3
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Fig. 8. Two examples of bad configurations under belief propagation decoding on a block-fading channel.

Φ

ϑ1 ϑ5

ϑ

Φ

ϑ1 ϑ5

ϑ

ϑ2 ϑ3 ϑ4ϑ4ϑ3ϑ2

Fig. 9. The two unique good configurations (rootchecks) under belief propagation decoding on a block-fading channel.

per row and per column.

An irregular version of a root-LDPC code can be built from a left degree distribution λ(x) and

a right degree distribution ρ(x) by appropriately modifying the weight distribution of the 4 sub-

matrices H1i, H2i, H1p, and H2p. Equivalently, the degree distribution changes the distribution

of edges connected to non-rootchecks in the Tanner graph. Irregularity has no influence on the

diversity order because rootchecks are maintained. Irregularity should enhance the coding gain

by pushing the code boundary near the outage capacity limit on the ergodic line.

Proposition 6 Consider a rate-R = 1/2 root-LDPC code with degree distribution (λ(x), ρ(x))

transmitted on a block-erasure channel with nc = 2. Then, under iterative message passing

decoding, the root-LDPC code has full-diversity.
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(a) Tanner graph.

1
1

1

1

0

1
1

1

1

0

H =

1p 2p

1c

2cH1i H1p

H2i H2p
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(b) Parity-check matrix.

Fig. 10. Tanner graph and parity-check matrix for a regular (3,6) root-LDPC code of rate 1/2. An irregular structure (λ(x), ρ(x))
can be easily plugged on edges connected to non-root checknodes.

Proof: The two fading coefficients α1 and α2 are independent and take two possible values

{0,+∞}. Examining the Tanner graph of Fig. 10(a), we observe that the only outage event

occurs when α1 = α2 = 0 (both blocks erased). Indeed, when α1 = 0 and α2 = +∞, it is

straightforward to see that information bits 1i are determined using rootchecks 1c. Similarly,

when α1 = +∞ and α2 = 0, information bits 2i are determined using rootchecks 2c.

On a block-erasure channel, let ε be the probability that αi be equal to 0. From the proof
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Fig. 11. Tanner graph for a regular (4,6) root-LDPC code of rate 1/3. The introduction of any (λ(x), ρ(x)) irregularity is
always possible on edges connected to non-root checknodes.

of Proposition 6 above, we find that the word error probability of a root-LDPC code is ε2.

As shown in [9], this is precisely the outage probability of the channel, and therefore, full-

diversity blockwise MDS codes are outage achieving in the block-erasure channel. As remarked

in [9], blockwise MDS codes are necessary, but not sufficient to achieve the outage limit in

noisy channels. In the following, we study the behavior of root-LDPC over general Rayleigh BF

AWGN channels.
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B. The general case

Now we study the general case of Rayleigh BF. Some simple facts about 4th-order χ2

distributions are reviewed in Appendix I. In the sequel, we use the notations of Appendix I

to analyze the diversity metric in log-ratio messages.

Proposition 7 Consider a rate-1/2, (λ(x), ρ(x)) root-LDPC code transmitted on a Rayleigh

block-fading channel with nc = 2. Then, under iterative belief propagation decoding, the root-

LDPC code has full-diversity.

Proof: As indicated in the design of a root-LDPC code before Proposition 6, the diversity

order of a root-LDPC code does not depend on its left or right degree distribution. This can also

be proved via the evolution trees in the next section. Thus, we restrict this proof to a regular

(3, 6) LDPC. The extension to the irregular case is straightforward.

Let Λa
i , i = 1 . . . δ− 1, denote the input log-ratio probabilistic messages to a checknode Φ of

degree δ. The output message Λe for belief propagation is

Λe = 2 th−1

(
δ−1∏
i=1

th
(

Λa
i

2

))
(9)

where th(x) denotes the hyperbolic-tangent function. Superscripts a and e stand for a priori

and extrinsic, respectively. In order to simplify the proof, we will show that a suboptimal belief

propagation decoder is able to achieve diversity order 2. Therefore, if a suboptimal decoder

achieves full diversity, the optimal decoder also achieves full diversity. Consider the min–sum

decoder. The output message produced by a checknode Φ is now approximated by

Λe = min(|Λa
i |)

δ−1∏
i=1

sign(Λa
i ) (10)

a) First decoding iteration: We first study the output after one decoding iteration. We

assume that the all-zero codeword has been transmitted. The channel crossover probability

associated with fading αj , j = 1, 2, is

εj = Q
(√

2γα2
j

)
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The channel message for a bit ϑ transmitted over fading coefficient α is

Λ0 = log

(
p(y|ϑ = 0, α)

p(y|ϑ = 1, α)

)
=

2αy

σ2
=

2

σ2
(α2 + αz) (11)

where y = α+ z and z ∼ N (0, σ2) (assuming Es = 1). At the first decoding iteration, all input

messages Λa
i in (10) have an expression identical to (11).

An information bit ϑ of class 1i has Λ0 = 2
σ2 (α2

1 + α1z0). It also receives 3 messages Λe
i ,

i = 1 . . . 3 from its 3 neighboring checknodes. The total a posteriori message corresponding to

ϑ is Λ = Λ0 + Λe
1 + Λe

2 + Λe
3. Let Λe

1 be the extrinsic message generated by the rootcheck of

class 1c connected to ϑ. The error rate Pe(1i) on class 1i is given by the negative tail of the

density of Λ messages. The addition of Λe
2 + Λe

3 to Λ0 + Λe
1 cannot degrade Pe(1i) because the

convolution with the density of messages from non-rootchecks can only physically upgrade the

resulting density. Thus, it is sufficient to prove that message Λ0 + Λe
1 brings full diversity. The

expression of Λe
1 is found by applying (10). Input messages to the rootcheck are negative with

probability ε2. Then

Λe
1 = S1

2

σ2
(α2

2 + α2z1)

where

S1 =
∑
i even

(
4

i

)
εi2(1− ε2)4−i −

∑
i odd

(
4

i

)
εi2(1− ε2)4−i

We obtain

Λe
1 = (1− 2ε2)

4 2

σ2
(α2

2 + α2z1)

The partial a posteriori log-ratio message becomes

Λ0 + Λe
1 =

2

σ2

(
α2

1 + (1− 2ε2)
4α2

2

)
+ α1z0 + (1− 2ε2)

4α2z1)

The embedded metric Y = α2
1 + (1− 2ε2)

4 α2
2 guarantees full diversity. At high SNR (i.e., when

Eb/N0 → +∞), Y behaves exactly as α2
1 + α2

2.

b) Further decoding iterations: As can be seen from the decoding tree of a bitnode 1i in

Fig. 14, the diversity order 2 is maintained after the first iteration. Indeed, at the input of the

rootcheck, information bits of class 2i have already full diversity and parity bits 2p bring always

a term proportional to α2
2. Due to the particular structure of root-LDPC codes, the density of
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message Λ0 + Λe
1 can only be improved with respect to the first iteration. Hence, full diversity

is preserved.

The proof of the previous proposition is based on showing that the information bits have

diversity 2. In the following, we examine the diversity of the parity bits. A parity bit ϑ of class

1p has Λ0 = 2
σ2 (α2

1 + α1z0). It also receives 3 messages Λe
i , i = 1 . . . 3 from its 3 neighboring

checknodes all of class 2c. The total a posteriori message of ϑ is Λ = Λ0 + Λe
1 + Λe

2 + Λe
3.

Now let us determine the nature of Λe
i based on input messages to a checknode Φ of class 2c

as illustrated in Figures 10(a) and 15. The node Φ is not a rootcheck. We need to determine the

metric Y embedded in its output message. In the case α2 ≤ α1 (this happens with probability

1/2), it can be shown that, after one decoding iteration, the extrinsic message produced by Φ

satisfies

Λe
i =

S
2
σ2 (α2

2 + α2z) with probability G4 ≥ 1
16

S 2
σ2 (α2

1 + α1z) with probability 1−G4 ≤ 15
16

where the function G is defined in Appendix II. On the contrary, when α2 ≥ α1, it can be shown

that

Λe
i =

S
2
σ2 (α2

2 + α2z) with probability G4 ≤ 1
16

S 2
σ2 (α2

1 + α1z) with probability 1−G4 ≥ 15
16

We conclude that, for parity bits, with a probability greater than 1
2
× 15

16
, the output message has

diversity order one. In spite of the presence (with a nonzero probability) of diversity-2 messages,

the error probability of parity bits will be dominated by weak messages with diversity 1. The

above arguments are still valid for further decoding iterations.

Recall now that under ML decoding the coding gain is controlled by the quantity ω? which is

the minimum blockwise Hamming weight defined in (4). Under iterative decoding we now use

ω? to refer to the analogous quantity min(a, b) defined in Appendix I which controls the coding

gain in the same way. We conclude this section by analyzing the behavior of this ω? in the case

R = 1/2.

Corollary 1 A root-LDPC code with R = 1/2 satisfies ω? = 1 under iterative belief propagation

decoding.

May 19, 2010 DRAFT



20

Proof: Consider an information bit ϑ of class 1i. Let δb ≥ 2 be the degree of ϑ. At high

SNR, the log-ratio message produced by its rootcheck has an embedded metric α2
1+α2

2. Consider

the δb − 1 non-root checknodes connected to ϑ. Since parity bits of class 1p dominate the error

probability at the input of 2c checknodes, then its metric will be α2
1. Finally, the a posteriori

log-ratio message associated to ϑ will contain a metric of the type δbα2
1 + α2

2. Hence, the ω?

parameter under iterative decoding is 1.

In Fig. 12, we illustrate the performance of the (3, 6) root-LDPC ensemble. As we observe,

the performance is similar for all ranges of N , and it is also close to the outage probability

of the channel. This effect was first observed with blockwise-concatenated codes and repeat-

accumulate codes in [6], and then in [3]–[5] for parallel turbo codes. For large N this effect

is due to the threshold behavior of good codes, i.e., for a given channel realization, the code

has a SNR threshold (independent of N ) below which the decoder cannot decode successfully.

Hence, whenever this threshold is larger than the SNR γ, the decoder will make an error for

sufficiently large word length [6]. This is considered in more detail in the following section,

where the analysis of the word error probability under iterative decoding for large N is done

using density evolution.

V. DENSITY EVOLUTION IN PRESENCE OF BLOCK FADING

The evolution of message densities [20], [22] under iterative decoding is described through six

evolution trees for a binary root-LDPC code. The evolution trees represent the local neighborhood

of a bitnode in an infinite-length code whose graph has no cycles. Figs. 13, 14, and 15 show

the local neighborhoods of classes 1i and 1p. Similar evolution trees can be drawn for classes

2i and 2p. Full diversity in the presence of fading is guaranteed, thanks to messages 1c → 1i

(respectively, 2c → 2i) as indicated in the proof of Proposition 7. Irregularity is defined in the

standard way [21] through the polynomials λ(x) and ρ(x). Root-LDPC ensembles are a special

case of multi-edge-type LDPC codes [22]. Nevertheless, we do not use the compact notation

of multi-edge-type codes as in Chapter 7 of [22]. Indeed, root-LDPC codes have two specific

properties which are not found in general ensembles:

• Nodes associated to information bits are clearly distinguished from those associated to parity

bits. For each channel state, two classes must be created in order to separate parity nodes
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Fig. 12. Regular (3,6) root-LDPC codes with iterative decoding on a Rayleigh block-fading channel with nc = 2. Word-error
rate is measured on information bits. The thick solid line corresponds to the outage probability with BPSK, the dotted lines with
× markers correspond to N = 200, the dotted lines with � markers correspond to N = 2000 and the dotted lines with markers ∗
correspond to N = 20000.

from information nodes.

• On a fading channel the root-LDPC ensemble is designed to ensure full diversity for

information bits only. Hence, what mainly matters in Density Evolution is the convergence

analysis of messages associated to information bits, mainly messages 1i→ 2c and 2i→ 1c.

This second property can be thought as an unequal error protection because parity bits will

exhibit an average error probability with a single diversity order.

The following notations are used, where the superscript m is an integer denoting the decoding

iteration order:
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1 1

2i 1i 1p 2i 1i 1p

2c 2c

1i

1c

ρ̃(x) ρ̃(x)

λ̊(x)

fe ge fe ge

qm+1
1 (x)

µ1(x)

Fig. 13. Local neighborhood of bitnode 1i. This tree is used to determine the evolution of messages 1i→ 1c.

• qm1 (x) and qm2 (x): Probability density functions of log-ratio messages on the edges 1i→ 1c

and 2i→ 2c respectively. See Fig. 13.

• fm1 (x) and fm2 (x): Probability density functions of log-ratio messages on the edges 1i→ 2c

and 2i→ 1c respectively. See Fig. 14.

• gm1 (x) and gm2 (x): Probability density functions of log-ratio messages on the edges 1p→ 2c

and 2p→ 1c respectively. See Fig. 15.

• Let X1 ∼ p1(x) and X2 ∼ p2(x) be two independent real random variables. The den-

sity function of X1 + X2 obtained by convolving the two original densities is written as

p1(x)⊗p2(x). The notation p(x)⊗n denotes the convolution of p(x) with itself n times. The

expression λ(p(x)) represents the density function
∑

i λi p(x)⊗i−1.

• Let X1 ∼ p1(x) and X2 ∼ p2(x) be two independent real random variables. The density

function p(y) of the variable Y = 2 th−1(th(X1

2
) th(X2

2
)) obtained through a checknode is

written as p1(x)� p2(x) and is called R-convolution [22]. The notation p(x)�n denotes the

R-convolution of p(x) with itself n times. The expression ρ(p(x)) represents the density

function
∑

i ρi p(x)�i−1.
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1

1

2i 1i 1p 2p

2c 1c

1i

2c

ρ̃(x) ρ̊(x)

2i

λ̃(x)

µ1(x)

fm+1
1 (x)

fe ge fe ge

Fig. 14. Local neighborhood of bitnode 1i. This tree is used to determine the evolution of messages 1i→ 2c.

The polynomial λ(x) is replaced by λ̃(x) each time an edge is isolated at the input of a

bitnode. In addition, the polynomial ρ(x) is replaced by ρ̃(x) each time an edge is isolated

at the input of a checknode. Also, the degree distribution of bitnodes and checknodes from

a node perspective will be denoted by λ̊(x) and ρ̊(x) respectively. For regular ensembles, it

is obvious that λ̊(x) = λ(x), ρ̊(x) = ρ(x), λ̃(x) = λ(x)/x, and ρ̃(x) = ρ(x)/x. Now, let

db and dc denote respectively the maximum left degree and the maximum right degree in the

Tanner graph. If the original degree distribution polynomials are written as λ(x) =
∑db

i=2 λi x
i−1

and ρ(x) =
∑dc

j=2 ρj x
j−1, then a straightforward edge counting in the Tanner graph leads to

the general expressions of polynomials involved in the multi-edge-type structure of root-LDPC

ensembles:

λ̊(x) = d̄b

db∑
i=2

λi/i x
i−1, ρ̊(x) = d̄c

dc∑
j=2

ρj/j x
j−1, (12)

and

λ̃(x) =
d̄b

d̄b − 1

db−1∑
i=1

i λi+1/(i+ 1) xi−1, ρ̃(x) =
d̄c

d̄c − 1

dc−1∑
j=1

j ρj+1/(j + 1) xj−1. (13)
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1 1

2i 1i 1p 2i 1i 1p

2c 2c

1p

2c

ρ̃(x) ρ̃(x)

λ(x)

gm+1
1 (x)

µ1(x)

fe ge fe ge

Fig. 15. Local neighborhood of bitnode 1p. This tree is used to determine the evolution of messages 1p→ 2c.

where d̄b = 1/
∑db

i=2 λi/i is the average degree of bitnodes and d̄c = 1/
∑dc

j=2 ρj/j is the

average degree of checknodes. Keeping the above notations in mind, we can now state the

density evolution equations for root-LDPC codes.

Proposition 8 Consider a nonergodic BF channel with nc = 2. For fixed fading coefficients

(α1, α2), the six density evolution equations of a (λ(x), ρ(x)) root-LDPC code are, for all m,

qm+1
1 (x) = µ1(x)⊗ λ̊ (qm2 (x)� ρ̃ (fe f

m
1 (x) + ge g

m
1 (x)))

fm+1
1 (x) = µ1(x)⊗ λ̃ (qm2 (x)� ρ̃ (fe f

m
1 (x) + ge g

m
1 (x)))⊗ ρ̊ (fe f

m
2 (x) + ge g

m
2 (x))

gm+1
1 (x) = µ1(x)⊗ λ (qm2 (x)� ρ̃ (fe f

m
1 (x) + ge g

m
1 (x))) ,

where the multi-edge-type fraction is

fe = 1− ge =
d̄b − 1

2d̄b − 1
,

and µ1(x) is the Gaussian density at the output of the channel with fading α1. The other three

similar density evolution equations are obtained by permuting the two fading gains.
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Proof: Let us carefully examine the set SE of edges connecting 1i and 1p to 2c as in

in the Tanner graph of Fig. 10(a) that illustrates a regular root structure. For general irregular

structures, the integers 2 and 3 indicating the number of edges should be replaced by degree

distribution polynomials defined in (12) and (13), as clearly illustrated in the evolution trees in

Figures 13,14, and 15. We have SE = S1i

⋃
S1p, with |S1p| is the number of 1p− 2c edges and

|S1i| =
∑

i(λi|S1p|/i)(i− 1) is the number of 1i− 2c edges. Next, introduce the fraction fe as

fe =
|S1i|

|S1i|+ |S1p| =

∑
i(i− 1)λi

i∑
i(i− 1)λi

i
+ 1

=
d̄b − 1

2d̄b − 1
.

Now, the six density evolution equations can be directly derived from local neighborhoods of

bitnodes in the graphical representation of the root-LDPC code. For example, as shown in

Fig. 14, the message fm+1
1 (x) is obtained by convolving the channel output density µ1(x) with

the outgoing message density from the set of 2c checknodes and then convolving with the single-

edge density produced by 1c checknodes. Before applying the transformation ρ̃() through 2c

checknodes and the transformation ρ̊() through 1c checknodes, input messages must be averaged

via fe fm1 (x) + ge g
m
1 (x) and fe fm2 (x) + ge g

m
2 (x) respectively.

In the special case of regular root-LDPC ensembles, i.e. λ(x) and ρ(x) are monomials, density

evolution will be described by four equations only since λ(x) = λ̊(x) implies that gm1 (x) = qm1 (x)

and gm2 (x) = qm2 (x), ∀m. A result on the ergodic threshold of regular ensembles follows.

Proposition 9 Consider an (ergodic) AWGN channel (i.e., assume α1 = α2 = 1). Under iterative

decoding, a regular (λ(x), ρ(x)) root-LDPC code has the same decoding threshold as a random

regular (λ(x), ρ(x)) LDPC code.

Proof: With the two fading gains equal to unity, the six evolution trees degenerate into a

single tree, and all densities become identical: qm1 (x) = qm2 (x) = fm1 (x) = fm2 (x) = gm1 (x) =

gm2 (x) for any decoding iteration m. Thus, density evolution of a regular root-LDPC code reduces

to a classical density evolution of a random code given by pm+1(x) = µ(x)⊗λ(ρ(pm(x))), where

p0(x) = µ(x).

For irregular ensembles on the ergodic channel (α1 = α2 = 1), we have three distinct message

densities qm1 (x) = qm2 (x), fm1 (x) = fm2 (x), and gm1 (x) = gm2 (x). It is difficult to determine the
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root-LDPC threshold as a function of the random ensemble threshold. Many numerical examples

undertaken by the authors showed that there may be a slight loss in signal-to-noise ratio, about

1 or 2 hundredths of a decibel. Surprisingly, in some irregular root-LDPC ensembles, there may

be a slight gain in the ergodic threshold, about a couple of tenths of decibel. Thus, it should be

possible to design root-LDPC codes for the block fading channel that are also efficient in the

absence of fading. The irregular code given at the end of this section is one such example.

A good ergodic threshold (i.e. an irregular LDPC structure) is also necessary to achieve near-

outage performance on a non-ergodic channel. Refer again to the outage boundary representation

in the fading plane of Fig. 6. Let α0 be the fading value defined by the intersection of the BPSK

outage boundary and the ergodic line. For rate 1/2, this intersection point satisfies Ib(α2
0Eb/N0) =

1/2, where Ib(x) , IAWGN(Rx) is the average mutual information on an AWGN channel with

a binary input and an SNR per bit equal to x.

Let αth denote the fading value defined by the intersection of the LDPC code outage boundary

and the ergodic line. Then we have

α2
th =

Eb
N0

∣∣∣
th

Eb
N0

,

where Eb
N0

∣∣∣
th

is the decoding threshold of the LDPC code over the ergodic AWGN channel.

Finally, we obtain

αth = α0

√√√√ Eb
N0

∣∣∣
th

I−1
b (1

2
)

= α0

√
∆

where ∆ in the signal-to-noise ratio gap separating the decoding threshold and the capacity limit

on the Gaussian channel. To better understand the gain due to irregularity illustrated in Fig. 16,

we evaluate the ratio αth/α0.

• For the regular (3,6) LDPC ensemble, the threshold is 1.10 dB over the Gaussian channel

(ergodic line). Hence, αth/α0 = 1.11.

• For an irregular root-LDPC ensemble having a threshold of 0.38dB over the Gaussian

channel (ergodic line), we get αth/α0 = 1.022.

Using the best irregular code proposed in [21] with a threshold of 0.25 dB, we obtain αth/α0 =

1.007. Hence, with αc/α0 close to 1, the area between the outage capacity boundary and the

code outage boundary is decreased in the neighborhood of the ergodic line. However, this does
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not ensure that, the code outage boundary would be close to the outage capacity boundary in

the critical region between the ergodic line and the block-erasure channel. Therefore, in order to

approach the outage probability limit, a full-diversity capacity-achieving code is necessary, but

may not be sufficient. The numerical optimization of an ensemble degree distribution in order

to fully match the BPSK outage boundary is outside the scope of this paper. Nevertheless, we

describe below an irregular ensemble with excellent performance on the block-fading channel.

Before completing this section with the irregular root-LDPC example, let us briefly describe

how Proposition 8 is used to estimate the asymptotic performance.

Let us assume that the root-LDPC ensemble is well defined, i.e., the pair (λ(x), ρ(x)) is given.

Thanks to Proposition 8, for a fixed fading pair (α1, α2) it is possible to determine whether the

bit error probability converges to 0 or not. We refer to the event where the bit error probability

does not converge to 0 by Density Evolution Outage (DEO). Thus, at a fixed SNR, it is possible

to determine the probability of a Density Evolution Outage PDEO by averaging over a sufficient

number of fading instances. Now, it is possible to write the word error probability of the ensemble

as

Pew = Pew|DEO × PDEO + Pew|CONV × (1− PDEO), (14)

where Pew|DEO is the word error probability given a DEO event and Pew|CONV is the word error

probability when DE converges. It is obvious that Pew|DEO = 1. On the other hand, Pew|CONV

depends on the speed of convergence of density evolution and the population expansion of the

ensemble with the number of decoding iterations [7]. For any root-LDPC ensemble, we will

simply use the following inequality directly derived from (14),

PDEO ≤ Pew.

Thus, the performance estimated via density evolution is a lower bound for the word error

probability.

Finally, we illustrate in Fig. 16 some performance results of an irregular rate-1/2 LDPC

ensemble with the following degree distribution:

λ(x) = 0.285486x+ 0.313850x2 + 0.199606x7 + 0.201058x14, ρ(x) = x6. (15)
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On an ergodic Gaussian channel, the threshold of a random ensemble based on the above degree

distribution is 0.63dB. The root-LDPC ensemble based on the same degree distribution has a

better threshold equal to 0.38dB. The results shown in Fig. 16 can be compared to those of the

best parallel turbo codes on block fading channels reported in [3] [4]. Our proposed root-LDPC

codes compete favorably with turbo codes since the performance is within a 2dB gap from the

outage probability limit. Notice that the range of signal-to-noise ratio on fading channels is 10

times larger than the standard scale of turbo and LDPC codes on ergodic Gaussian channels.

Consequently, a 2dB gap on the non-ergodic channel is comparable to a 0.2dB gap on the

Gaussian channel.
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Fig. 16. Iterative decoding on a block-fading channel with nc = 2. Density evolution of irregular root-LDPC and and its
finite length performance. The irregular ensemble defined by (15) is also compared to a regular (3,6) ensemble and to the outage
probability with BPSK.

VI. CONCLUSIONS

We have studied LDPC codes in the block-fading channel under both ML and iterative

decoding. We have shown that constructions designed for ML decoders fail to guarantee diversity
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under iterative decoding. Driven by this restriction, we have introduced the new family of root-

LDPC codes, which achieve full diversity under iterative decoding. We have shown both finite-

and infinite-length performance, and we have illustrated how the error-rate performance of root-

LDPC is close to the outage probability limit and almost insensitive to the block-length. This

makes root-LDPC codes attractive for slowly-varying wireless communications scenarios.
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APPENDIX I

CODING GAIN OF A 4TH-ORDER UNBALANCED χ2 DISTRIBUTION

Here we limit our description to a diversity order of 2, but all results are easily extendable

to rate-1/nc coding on a channel with diversity order nc. In the context of ML decoding, the

Euclidean distance between two codewords is proportional to ω1α
2
1 + ω2α

2
2. As fading αi have

a Rayleigh density, their squares are exponentially distributed, i.e., pα2
i
(x) = e−x. The latter is a

central χ2 distribution of order 2 with parameter σ2 = 1/2 [19]. Diversity 2 is achieved with a

χ2 distribution of order 4. Hence, a full-diversity code must satisfy ω1 > 0 and ω1 > 0 in order

to get the order-4, χ2 distributed, metric ω1α
2
1 + ω2α

2
2. Once maximum diversity is guaranteed,

the maximization of the product ω1ω2 increases the coding gain.

The above simple facts are still valid in the context of iterative probabilistic decoding. Let

Λ be the a posteriori probability log-ratio of a binary element. Achieving full diversity under

iterative decoding is equivalent to letting Λ behave as the metric Y = aα2
1 + bα2

2, where a

and b are two positive real numbers. The energy of Y is normalized, a + b = 1. The exact

mathematical expression relating Λ to Y depends on the type of iterative algorithm used for

decoding, e.g., Λ ∝ Y + ν where ν is an additive noise. To understand the influence of the

product ab on the performance, one should study the error probability associated with Y , i.e.

P (Y < T ) = F (a, b, T ). When a = b = 1/2, the order-4 χ2 distribution is balanced, and its

probability density function is

pY (y) = 4ye−2y (16)

When a 6= b = 1 − a, the order-4 χ2 distribution is unbalanced, and its probability density

function is

pY (y) =
(e−y/a − e−y/b)

2a− 1
(17)

The expression of P (Y < T ) = F (a, b, T ) is obtained after integrating pY (y). The diversity

order and the coding gain embedded in Y appear when T � 1. For a balanced χ2 distribution,

we have

F (a, b, T ) = 1− e−2T (1 + 2T ) = 2T 2 + o(T 2) (18)
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For an unbalanced χ2 distribution, we obtain

F (a, b, T ) = 1− ae−T/a − be−T/b
2a− 1

=
T 2

2ab
+ o(T 2) (19)

In Fig. 17, the performance function F (a, b, T ) is plotted versus γ = 1/T on a double logarithmic

scale for different values of a and b. The slope is always 2 (i.e., F (a, b, T ) ∝ 1/γ2) for all

positive values of a and b. The function F degenerates to T + o(T ) when b = 0 (diversity

order equal to 1 instead of 2). Notice also that an unbalanced χ2 distribution with a = 3/4 and

b = 1/4 generates a coding loss about 0.65 dB. This loss is slightly higher (about 0.75 dB) when

considering P (Λ < 0) for Λ ∝ Y + ν since additive noise depends on the fading coefficients as

shown in Section IV.
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Fig. 17. Coding gain and diversity order of Y = aα2
1 + bα2

2 (χ2 of 4th order) where α1 and α2 are Rayleigh distributed.
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Fig. 18. A 3D plot of G = Pr(|X2| < |X1|) versus α1 and α2 for a variance σ2 = 1/10.

APPENDIX II

THE BIDIMENSIONAL CUMULATIVE DENSITY FUNCTION G = Pr(|X2| < |X1|)
Consider two real independent Gaussian random variables X1 ∼ N (α2

1, α
2
1σ

2) and X2 ∼
N (α2

2, α
2
2σ

2). We define the multivariate function G(α1, α2, σ
2) , P(|X2| < |X1|). The G

function is given by the integral expression

G = 1−
∫ ∞

0

dt√
2πα2

1σ
2

(
e
− (t−α2

1)2

2α2
1σ

2 + e
− (t+α2

1)2

2α2
1σ

2

)(
Q

(
t− α2

α2σ

)
+Q

(
t+ α2

α2σ

))
(20)

where Q(x) is the Gaussian tail function. A 3D plot of G is illustrated in Fig. 18. The main

properties of G are:
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• G(α, α, σ2) = 1/2 for all σ2 > 0.

• G is a non-decreasing function of α1 and a decreasing function of α2. Hence, G ≤ 1/2 if

α1 ≤ α2 and G ≥ 1/2 if α2 ≤ α1.

• For fixed σ2 and α2, G→ 1 as α1 → +∞.

• For fixed σ2 and α1, G→ 0 as α2 → +∞.
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[4] J. J. Boutros, A. Guillén i Fàbregas, and E. Calvanese Strinati, “Analysis of coding on non-ergodic channels,” 2005

Allerton Conference on Communication, Control, and Computing, Monticello, Illinois, Sept. 2005. Downloadable from

www.josephboutros.org.

[5] J. J. Boutros, G. M. Kraidy, and N. Gresset,”Near outage limit space-time coding for MIMO channels,” Inaugural ITA

Workshop, UCSD, San Diego, California, Feb. 2006. Downloadable from www.josephboutros.org.
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