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1 Introduction

This document is dedicated to the design and performance analysis of bit-interleaved coded
modulations for multiple antenna channels, i.e., multiple-input multiple-output (MIMO)
channels. Channel coding techniques for MIMO channels, commonly known as space-time
coding, can be classified into four major categories:

e Multi-dimensional trellis coded modulations (TCM) [42][39].

This category includes Ungerboeck-like coded modulations and the simple case of a classi-
cal convolutional code where each trellis transition is associated to one channel use.

e Space-time block coding (STBC).

The latency of STBC is minimal compared to other techniques. This category includes
orthogonal and quasi-orthogonal designs (OD and QOD) [40][27] and the simple technique
proposed by Alamouti [2].

e Multilevel coding (MLC) for multiple antennas.

Since the original work by Imai and Hirakawa [26][46], it has been demonstrated that MLC
can be applied to any type of channels, i.e., scalar and vector channels. In MIMO channels,
different levels for coding are defined on QAM symbols fed at the channel input or directly
on the binary labels of those symbols.

e Bit-interleaved coded modulations.

Combining the original ideas by Zehavi [49][16], Berrou & Glavieux [7], a coded modulation
is built by cascading a convolutional code, a pseudo-random interleaver, a QAM symbol
mapper and a MIMO channel. The receiver starts by an APP detection of the multiple
antenna channel followed by a SISO decoding of the convolutional code. The latter pro-
cedure is iterated a finite number of times, where the convolutional code extrinsics are fed
back as a priori information to the APP detector [12][37].

2 System model and parameters

Most of digital transmission systems can be modeled by a lattice sphere packing [19][1][15].
As a non-exhaustive list we cite multiple antenna (MIMO) channels, synchronous code divi-
sion multiple access, inter-symbol interference channels, etc. In the sequel, we will focus on
bit-interleaved coded modulations (BICM) transmitted on MIMO channels [22][39]. The
receiver is supposed to perform soft-input soft-output (SISO) iterative detection and de-
coding. Our study may be easily adapted to any system that allows a lattice representation.

We consider an ergodic frequency non-selective Rayleigh fading channel with n, transmit
antennas and n, reception antennas. It is assumed that n; = n, for simplicity reasons.
Each reception antenna is perturbed by an additive white complex Gaussian noise 7;,
j =1...n,, with zero mean and variance 2Ny. The channel path connecting antenna ¢ to
antenna j has a complex Gaussian distributed gain h;;, where E[h;;] = 0, E[|h;;|*] = 1,
i=1...n;and j =1...n,. Here, the symbol E[.] denotes mathematical expectation. The



MIMO channel coefficients h;; are supposed to be statistically independent. As usual, the
MIMO channel will be represented by its n, x n, matrix H = [h;;].

The two following classical channel models are considered hereafter:

e Ergodic (non-static) fading channel: the channel matrix H changes from one
symbol period to another. We say that the channel coherence time is 7T, = 1.

e Block fading (quasi-static) channel: the channel matrix H is constant during a
burst of length 7., > 1, e.g., T.on, = 100.

The channel input-output relation is

y=2zH+n (1)

where y € C", and the channel input z € C™ is defined as z = (z1,...,2,,). The
symbols z; belong to an M-QAM constellation [33].The transmitter structure is illustrated
in Fig. 1. The information binary elements are encoded by a rate R, convolutional code.
The coded bits {c;} are randomly interleaved and fed to a M-QAM mapper (M = 2™)
that generates z. The spectral efficiency of the system is R, x m x n; bits per channel use,
or equivalently, R. x m bits/sec/Hz.
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Figure 1: Classical transmitter model (BICM)

An iterative joint detection and decoding receiver is based on the exchange of soft values
between the SISO QAM-detector and the SISO convolutional decoder. The SISO detector
computes the extrinsic probabilities £(c;) via a classical sum product expression including
the conditional likelihoods p(y/z) and the a priori probabilities 7(c,) fed back from the SISO
decoder. The SISO detector computes the extrinsic information, which corresponds to the
extrinsic probability that the j*® coded bit equals 1, as given in the following normalized
marginalization:

2
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where ) is the Cartesian product (M-QAM)™, i.e., the set of all vectors z generated
by the QAM mapper, || = 2™, The subset Q(c, = 1) is restricted to the vectors z
where the [*! bit is equal to 1. By exploiting the trellis structure of the code, the SISO
decoder computes the soft values (a posteriori and extrinsic probabilities) for the coded
bits using the Forward-Backward algorithm [3]. The information exchange between inputs
and outputs of the two blocks is shown on Fig. 2.
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Figure 2: Joint detection and decoding system

Consider the iterative detection and decoding process of the BICM transmitted on the
multiple antenna channel as illustrated in Fig. 1 and 2. Assume that extrinsic information
associated to such a process is converging toward a limit. The best limit corresponds to the
ideal situation where the extrinsic information is perfectly reliable, i.e, 7(c) = ¢p € {0, 1}.
This is called the genie situation. The expression of the detector soft value, when the a
priori is fed back by a genie, is easily obtained from (2):

o—lly—zH]1? /2N

§(ce) = (3)

e-lly—zH12/2N0 4 o= |lv=2"H]|" /20

where z¢ is produced by complementing the ¢** bit in the binary labeling of z. Obviously,
from the definition of £(c;) in (2), the binary element in the ¢ position is equal to 1
(respectively 0) in z (respectively z° ). In this case, the system is equivalent to a multidi-
mensional binary modulation BSK with signaling alphabet {z, Ze} transmitted on a 1 X n,
single input, multiple output (SIMO) channel. We are interested in evaluating the error
probability P, at the detector output when the genie is active. This error probability is
directly related to the decision making on £(c;). By conditioning on the channel state H
and the transmitted QAM vector z, we can write

Penz = Ee[P (|€(ce) — i 2 0.5)] (4)



The symbol F;[.| denotes mathematical expectation over the position ¢ of the coded
bit. Then, using (3) and (4), we can express P, with a classical inequality including H, z
and 7:

P.=Ep. [P (||(z = 2H +n[| < [In]])] (5)
which is equal to
_ Gz — 2 H|”
Pe - EH,Z,Z Q 4N0 (6)

The norm ||(z — ZZ)HH2 is calculated from

Ny 2

Iz = 29| =>"

u=1

nt
(Zv - Z_UZ) hvu

v=1

(7)

We can remark that the performance of the system at the input of the decoder, when
the apriori feedback at the input of the detector is perfect, is the average probability of the
Q| x m x n; equivalent BSKs with distance d(z,z) on a n; x n, MIMO channel. If z and
z! belong to the same antenna, which is generally the case, this leads to the performance
evaluation of a BSK modulation on a 1 x n, MIMO channel.

3 Transmitter study and design

3.1 BSK performance on 1 x n, MIMO channel

All the performance presented in this document lie on the performance of a Binary Shift
Keying (BSK) on a 1 xn, MIMO channel. The BSK is defined by two equiprobable symbols
z and Z, their euclidean distance is defined by d(z,z). Without loss of generality, let us
suppose the symbol z to be transmitted, the received symbol y is given by

y = zh+n. (8)

where h is column vector defining the 1 X n, MIMO channel.
We define the distance d(z, z) = Hz — ZZH. The quadratic distance between the two symbols

filtered by the channel is d(z, Z)*||h||?>. The squared Euclidean norm ||A||* has a central
x? distribution with degree 2n,, the real gaussian random variables have zero mean and
variance 1/2 :

1 Ny — bt
Py (r) = m-T e, r>0 (9)

The noise is white gaussian distributed, the symbols equiprobable, so we can deduce :
P, = ® (d(z,2)?) (10)
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The function ®(.) is defined as:

@@@@ﬂ:ﬂ{@ ‘wfﬁmw} (11)

The error probability P, can be calculated in a closed-form expression as on a 2n,-
diversity Rayleigh fading channel (see chap.14 in [33]). The general expression given in
(10) becomes:

. 1 Ny B 1 k
1+8No/d(z,2)? m‘1<7%-1+k:> L ey
0

P.=® (d(z,2)%) = 5

(12)

3.2 Space-Time Code optimization for BICM-ID

Time spreading matrices such as Space-Time codes or Rotations are used to exploit di-
versity on fading channels spreading the symbols in time and space. In a MIMO channel,
the n; transmit and n, reception antennas create the transmission and reception diversity,
respectively. When spreading the symbols over different symbol times, the transmitter
generates a time diversity. The maximum diversity achievable for such a system is equal
to the product of the three diversity. We will see later the conditions that allow to observe
the maximum diversity.

Clearly, the transformation has to be full rank to exhibit full-diversity. Indeed, a non-full
rank transformation is equivalent to a reduction of the number of reception antennas. An
other proposition to be verified by the spreading matrix is the norm conservation...

Let us define n; the number of complex dimensions of the spreading matrix S. The integer
s = ng/ny is called the spreading factor of the transformation, it gives the number of time
symbols that are mixed together.

In Space Time Code Theory, we use to consider block fading channels, i.e. we have ¢ chan-
nel observations for one spreading Matrix, the channel stay constant during s/c channel
use. The equivalent n;.s X n,..s channel matrix is defined by a bloc diagonal matrix which
elements are the observed channel matrices H;,i € [1..c|] each repeated s/c times.

H:dzag{ Hl,...,H]_ ,HQ,...,HQ,...,HC,...,HC}

370 "

(13)

We will first consider the ergodic case when ¢ = s and derive the condition that ensure
maximum diversity, under these conditions, the genie performance is independent of the
choice of the matrix S. Then we will consider the general case of block fading MIMO
channel with parameter c.



3.2.1 Space Time codes for the Ergodic MIMO channel

When the channel changes at each channel use, i.e. when ¢ = s, it is said to be ergodic. In
this case, the channel matrix when using a n;.s X n,.s spreading matrix is block diagonal
H = diag{H,...,H,}, of which diagonal elements are the MIMO channel matrices of
the s consecutive time period. Equivalently, z = {z1,..., 25} is a vector built from the
concatenation of the s consecutive n;-length vectors. We build x the noiseless filtered
vector, ) the noise vector and y the received vector in the same manner.

We can now write :
y=2SH +n (14)

First, we can remark that if s = 1, the elements of the matrix H' = SH are centered
complex gaussian distributed with variance 1, indeed

m;; = Z Sikaj ~ N (0, Z S?k) (15)
k=1 k=1

and from the energy conservation proposition of the transformation, we have Y * | s2 = 1.
In this case, the spreaded MIMO channel can be seen as an other realization of a simple
MIMO channel, the s = 1 spreading matrices are unusefull in terms of asymptotic perfor-
mance.
We will calculate the performance of this system at the output of the detector when the
apriori feedback is perfect and when s > 1. Let us consider the /-th coded bit ¢, of the
transmitted vector z. Without loss of generality (see the section on multi dimensional
mappings), we consider here that z and z° belong to the same QAM symbol indexed by
the integer 7. We can deduce 7 from

) l

i = ’Vm-‘ (16)

In the whole document, all the integers ¢ are defined this way. For a given z € ) and
£ € [1..m.ny], let us consider

Ng Mg 2
Iz = )SHI? = d(z 223 3 siwhon (7)
u=1 |v=1
The matrix H is block diagonal, the size of each block is n; x n,, we have
s—1 n, N 2
Iz — 2)SH|? = d(z, 292 |SHIP = d(2, 292> S 1Y Siprimihous (18)
t=0 u=1 |v=1

where h__, make reference to the coefficients of the ¢-th channel observation, i.e. h;;: =
Pittngj+tn,- We can remark that

ng

R
Vt € [08 - 1],Vu € [1"nr]a Z 3i,v+t.mhv,u,t ~ N (07 5 z_; ‘Si,v+t.m‘2) (19)

v=1



The distribution of ||S;H||* is a generalized chi-square composed by n, gaussian distri-
butions. The variance of these gaussian distributions are not equal in most of the cases,
that is why closed form expressions are not available. In the general case there are s
different variance values, each being the variance of n, gaussian distributions. It is very
important to remark that two spreading transformations A and B satisfying the same norm
proposition

¢ g
Vi € [0"8 - 1]7 Z ‘aiﬂ)—H-nt‘Q = Z |bi,’U+t-nt|2 (20)
v=1 v=1

lead to the same genie performance, i.e. the same coded performance when the system
converges to the optimal fixed point. Moreover, if one of these norm is equal to 0, the system
performance loose one degree of diversity, the matrices leading to such non-optimality are
not considered here.

We can derive a first construction proposition:

proposition 1: If all the norms of the 1/s-th parts of the lines of a n¢.s x n,.s
spreading matrix are equal, the maximum diversity n, s is observed at the
output of the detector of a BICM-ID on a n; x n, MIMO channel.

In this case, when V¢ € [0..s — 1,37 |S;yttn|*> = 1/s, the considered distribution is
chi-square with degree 2.n,.s and parameter n;/(2n;) = 1/(2s).

(sr)™ "
p||SlH||2(T) = m.s.e 3 T 2 0 (21)

We can see the distributions of the norms of the equivalent BSKs on Fig 3,4 and 5. As
an example of transformation verifying the norm proposition for every value of s, we have
cyclotomic rotations since |s;;|? = 1/n,.

If we set the noise variance to Ny calculated for the n, reception antennas, let us consider
the law of the modulus of a line of an ergodic MIMO channel with s.n, reception antennas,
with noise variance normalization s. Ny due to the s.n, reception antennas, p, . |12/(s.5o) ()
we can observe the equality

Pysi |2 /No (T) = S-Pllhgny [12/(5-N0) (8:7) = Pty 12/ (T) (22)

We can observe that we have the same reception diversity and performance between an
ergodic channel with n, reception antennas and time spreading factor equal to s and an
ergodic channel with s.n, reception antennas and no time spreading.

3.2.2 Quasi-static MIMO channel

In the case when the spreading matrix only see ¢ = 1 channel observation, the same fixed
ng X n, matrix Hy = h,, is applied to the vectors V¢ € [0...5—=1],  {Sitng-- -, Si(t+1)me )}
we can write

2

s—1 n, nt s—1 n,
I = SHI? = (s 22 S50 1S siwsenbon| =522 S 1Gl2 (23)
t=0 u=1 |v=1 t=0 u=1
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Figure 3: Law of the norm of the equivalent BPSK

with Gt,u = thzl Sz’,v—l—t.nthv,u-

The law of ||(z — 2°)SH||? is a chi-square-like distribution of the norm of the set of
correlated gaussian Gi,. If we want to observe the maximal diversity, we have to choose
the matrix S properly. We can first remark that

V(t, ') € [0..s — 1, V(u,v) € [0.,])?, u#u' = E[GruGy ] =0 (24)

because the elements of two different column of H; are uncorrelated.

let us consider the case when u = ' :
(Z Si ,w+t.ng 'u u) (Z S; o+t g 'u u) ] (25)

Since Vv # o', F [hv,uh;’u] = 0 we obtain the new proposition

V(t,t',u), E [GruGy

n
\Vl(t, t,, u), E [Gt’u :’,U] = 0 -~ z Si,’l)+t-nt8;<,v+t’_nt = O (26)

v=1
proposition 2: If the 1/s-th parts of the lines of a ny.s X n,.s spreading ma-
trix are orthogonal with equal norm, the maximum diversity n, * s is observed
at the output of the detector of a BICM-ID on a quasi-static n; x n, MIMO
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Figure 4: Law of the norm of the equivalent BPSK

channel.

For example, we can take a n; X n; rotation matrix © and concatenate s of this lines
to form a n;.s-length vector which satisfies the proposition 2. Here we see again that we
must have s < nt.

In the case when proposition 2 is satisfied, the distribution is equal to the one described
in eq (21), hence we have the same performance as a an ergodic MIMO channel with n,
reception antennas ans a time spreading factor s, and the same performance as an ergodic
MIMO channel with s.n, reception antennas.

3.2.3 Block fading MIMO channel

In the general case, when a spreading matrix encounters ¢ channel observations, the same
matrix H,, is applied to the vectors V¢ € [1...5/c|, {Siv+(w.s/ctt)mes - - - 1 Sisot(won/e+t).(ne+1)—1 }

we can write
c—1 sfe—=1 ny

I(z = 2)SH|? = d(z, 29> > 1Gruwl’ (27)

w=0 t=0 wu=1

where Giuw = D 0" 1 Siw+(w.s/c+t)n Pouw have a gaussian distribution. Again, we can
remark that for two different values of w or u the gaussian distributions are uncorrelated
since they are summation of independent gaussian variable belonging to different channel

9
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Figure 5: Law of the norm of the equivalent BPSK

observations or different columns of one channel observation matrix. The decorrelation
criterion becomes :

ng

V(t, t,, u, U)), E [Gt,u,w :’,u,w} =0« Z 3i,v+(w.n/c+t).ntSZU—F(w.n/c—l—t’).nt =0 (28)

v=1

We remark here that we can consider the block fading MIMO channel as an ergodic channel
composed of ¢ channel observations, each of these channel observations being a quasi-static
channel of one n; x n, MIMO channel observation repeated s/c times.

Proposition 3 :

For the construction of a space time code for BICM-ID on n; X n, block fading
channels with c different channel observations and a time spreading factor
equal to s, we can apply a (s/c.ng X s/c.ny) space time spreading matrix that
maximize the diversity for quasi-static channels (proposition2) on the time
symbols that observe the same channel, and then apply a general (s.n; X s.ny)
space time spreading matrix that maximizes the diversity for ergodic channels
(propositionl).

In these conditions, the maximum diversity at the output of the detector for a given s and ¢
is s/c.n..c = s.n, where s/c < ny;. The maximal diversity that can be achieved is obtained
in the case when s/c = ny, in this case the diversity at the output of the detector is c.ns.n,.
Let us suppose that a codeword of the BICM see N, different channel observations, the

10



interleaver of the BICM should ensure that the blocks of s consecutive time period should
see min(ny, N.) to ensure maximum diversity at the output of the detector.

3.2.4 Construction of an optimized Space Time Block Code for BLOCK Fad-
ing MIMO channels

Let us consider a nt X n, block fading MIMO channel with time spreading factor equal
to s and c different channel observations per spreading matrix. Cyclotomic rotations are
very useful complex rotation with an algebraic construction [11]. Thanks to proposition 1,
2 and 3, we can deduce the following construction points :

e Let us define = a n,; X ng cyclotomic rotation matrix. Its coefficients are defined by

By = \/%e:vp (2j7r(u ~1) (@‘1(12713) + “n_s 1)) (29)

where ®(.) is the Euler’s function.

e Let us define a n; x n; rotation matrix ©®). We can express

Lngr 1 Mg/emy? """ s/eny

AW dzag(@gl’,...,@(“’) oW @(“’)) (30)

which is a s/c.ny x s/c.n; diagonal matrix containing the concatenation of the s/c
first lines of ).

o Let A = diag (Ag), e, Ag)>, an optimum ng X ng space time code for BICM-ID

can be expressed by
S=ZA (31)

We can choose Yw,©®) = © equal to a cyclotomic rotation, in this case, the diagonal
coefficients of A are given by :

Vw € [0,¢c—1],Vt € [0,s/c — 1],Vv € [1,n4],
v—1 (32)
Av—{—(w.s/c—l—t) = €exp (2]7Tt (W + n_t))

Finally, the coefficients of S are given by :

Vu € [1,n,], Yw € [0,¢ —1],Vt € [0,s/c — 1],Vv € [1, ny],
Su,v—f—(w.s/c—f—t)nt = \/Lnfsexp (2]7'(' [(U - ].) (‘3_1%2”8) + 1171—|—(w>;ss/c—|—t)*m> +1 ( 1(2nt _1)])

11



3.3 Application to mapping optimization in joint detection and
decoding systems

3.3.1 Independent labeling on each antenna

We will consider here the classical situation when a 2-dimensional (complex) labeling is
applied on each antenna independently. Let us assume that the coded bit ¢, is transmitted
on the i*" antenna. Then, (z — %) has only one non-null component in the i*® position.
Thanks to (7), we have ||(z — 2)H|| = d(z, 2°). || ;|| where h; is the i-th row of H. In the
sequel, the integer i should be considered as a function of the integer ¢, it can be calculated
by the following expression

1= [ﬁ-‘ (34)

m
Hence, (12) leads to

m.n¢

mnt \Q| ZZ@ (35)

2€Q =1
The asymptotic expression of P, when Ny — 0 is:

— 2N\ ™
TL,« CMQ
where agq is defined by a harmonic mean:

m.nt
1

o = mong. ‘Q| ZZ d(z, Zz o (37)

We can calculate the asymptotic gain of labehng Qs with respect to labeling €2; as follows:

Gaings ~ 10log,, (0‘92) (38)

a0,
Here, we can see that asymptotic gain only depends on the distance distribution of the
equivalent BSKs. We can for example compare two M-QAM mappings together or a
M-QAM mapping with a M-PSK mapping.

3.3.2 Multi-dimensional labellings

When we consider 2-dimensional labellings, the asymptotic gain optimization is limited by
the m x n; distances of 2-dimensional vectors. Clearly, vectors with more dimensions would
lead to higher asymptotic gains, that is why we consider here multi-dimensional labellings.
Let us define n,,,4, the number of antennas linked by the labeling and consider the ¢-th bit
that belongs to the i-th group of antenna. The integer 7 is deduced from ¢ thanks to the

expression
14
1= [ -‘ (39)
M- Nmap
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Then the vector (z — z%) has n;/nq, non-null components in positions 4, = 4 t0 iymee =
i+ n¢/Nmap — 1. In this conditions,

2

I=2H[ =3 3 (20— 25k (40)
u=1 [|v=tmin
Let us remark that .
3" (20— 25w ~ N(0,02) (41)

V=Lmin

where

imaz

Z |20 — = —d(z, 74)? (42)

V=lmin

The bit error probability expression is similar to (35)

m.nt

mnt \Q| ZZ@ (43)

Z€Q £=1

3.3.3 Mapping optimization

The two points z and z¢ define a binary shift keying constellation BSK. We obtain a set
of BSK modulations for each mapping. Each BSK is associated to the complementation
of a bit. For example, the Gray mapping and its associated BPSKs are represented in Fig.
6-a. A similar illustration for Ungerboeck mapping is presented in Fig. 6-b.

The function ®(d?) defined in (11) is a decreasing function of d?, so maximizing the
BSK distance improves the constellation mapping. Asymptotically, the mapping figure of
merit is agq defined in (37). For example, the genie performance of 16-QAM with Gray
labeling and minimal euclidean distance 2.0 is

24 8
ray = —®(4 o 44
aray = 35 2(4) + 55 2(36) (44)

and the genie performance of 16-QAM with Ungerboeck labeling is

P,

P, ungerboeck = é [4D(4) + 8D(8) 4 8P(16) + 8P(32) + 49(36)] (45)

We can calculate the asymptotic gain of the Ungerboeck mapping on a 1x1 MIMO channel:
ungerovoec 224

101ogy, <M) = 10log,, (—) = 3.37dB (46)
gray 103

This proves the well known result on single antenna Rayleigh fading channel where Unger-
boeck labeling gives better performance than Gray labeling at high SNR under iterative
joint detection and decoding. We can conclude that the error probability with genie on
&(cp) is equal to the average of the error probabilities of the embedded BSKs on the 1 X n,

13



Mean | Variance | Maximum
MIMO 1x1, nmap=1 | 3.15 0.35 7.10
MIMO 2x2, nmap=1 | 2.39 0.28 7.27
MIMO 2x2, nmap=2 | 5.65 0.04 6.75
MIMO 4x4, nmap=1 | 1.43 0.13 7.15
MIMO 4x4, nmap=2 | 3.59 0.04 4.94
MIMO 4x4, nmap=4 | 8.33 ile-3 8.57

Table 1: Statistics of random mappings

MIMO channel, the latter being equivalent to a generalized Rayleigh fading (Nakagami)
channel with parameter n,.. The closed-form expression of the genie performance on MIMO
ny X n, channels and the asymptotic gain expression (38) are very useful when designing
binary mappings because of the low complexity of the search procedure. In the case of
16-QAM constellation, we can determine numerically the probability distribution of the
asymptotic gain of a randomly selected binary mapping, taking the Gray mapping as ref-
erence. On Fig. 7, we can see the asymptotic gain distribution on 1 x 1 and 2 x 2 MIMO
channels. Two types of mappings are shown. The first type denoted by nmap = 1 is a
2-dimensional binary mapping, i.e., same mapping on all transmit antennas. The second
type denoted by nmap = 2 corresponds to a 4-dimensional binary mapping including both
transmit antennas.

We listed in Table 1 the mean, variance and maximum asymptotic gain found by our search
procedure. We randomly selected a large number (but not exhaustive) of 16-QAM map-
pings. In the case of 1 x 1 channel, the best mapping found gives an asymptotic gain of
7.1dB. This mapping is represented on Fig. 6-c and has no evident symmetry properties.
When increasing the mapping dimensionality (nmap > 1), it is possible to increase the
minimum Euclidean distances of the embedded BSKs. This explains why the statistical
mean of the asymptotic gain improves for nmap > 1.

3.4 Computer simulations

Fig. (8-a) shows the performance at the output of the detector when a non-recursive non-
systematic (7,5) rate 1/2 convolutional code is used on a 1 x 1 Rayleigh fading channel.
The BICM pseudo-random interleaver size is 20000 bits. The number of soft-input soft-
output detection and decoding iterations is 5. The three mappings compared are Gray,
Ungerboeck and the optimized mapping. At high SNR, the performance under iterative
detection and decoding attains the genie performance given in (35). The SNR threshold
where the genie lower bound is reached depends on the quality of extrinsic information fed
back from the SISO decoder and the binary mapping. Notice also that the improvement
of the error rate at high SNR damages the performance at very low SNR.

14



Fig. (8-b) shows the bit error rate (BER) of the same system measured at the output of
the SISO decoder. If we consider a BER equal to 3.6e-3 at the input of the decoder, we
observe a BER equal to 1le-5 at its output. Once the genie bound is reached, the signal-
to-noise ratio offset at the detector output between two mappings is preserved after SISO
decoding. This can be easily checked by comparing Fig. (8-a) and (8-b).

These figures confirm that Gray mapping is the worst mapping at high SNR (i.e., when the
performance is close to the genie performance). On the other hand, Gray mapping is the
best mapping for low SNR. We deduce that the genie expression in (35) can be applied to
optimize QAM mapping when using error-correcting codes working at high signal-to-noise
ratio.

However, when using powerful error-correcting codes, e.g., a BER greater than 0.1 at the
input of the decoder is sufficient to attain very low BER at its output, the Gray mapping is
the best mapping. In this case, the first detection-decoding iteration has to be as efficient
as possible. These results are confirmed on Fig. (9-a) and (9-b) where a parallel turbo code
is used. The rate 1/2 turbo code constituent is the recursive systematic (7,5) convolutional
code.

On Fig. 10, we compare the simple (7,5) convolutional code with Gray mapping, Unger-
boeck and optimized mapping (nmap = 1) to the rate 1/2 turbo code with Gray mapping
on 2 X 2 MIMO channel. We can see that the optimized mapping and convolutional code
performs approximately 1.2dB from the turbo code for a BER equal to 1e-5.

On Fig. ref (11),the same comparison is made on a 4 x 4 MIMO channel with the Gray
mapping, an optimized nmap = 1 mapping and an optimized nmap = 4 mapping with
rate one half repetition code. The interleaver size is about 100000 bits. Surprisingly, the
simple convolutional code combined with our 16-QAM optimized mapping performs close
to the parallel turbo code. The gap is less than 1.0 dB at 10~°. When using the optimized
nmap = 4 mapping, too powerful codes leads to late convergence, that is why we chose to
combine it with a repetition code. Surprisingly, the gain obtained after convergence is not
so bad when taking into account the correction capacity of the code, with the advantage
of the high complexity reduction of the soft decoder.
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Figure 6: Three mappings of 16-QAM constellation.
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4 Receiver study and design

4.1 Lattice representation of MIMO channels

Lattice theory [19] is a powerful mathematical tool to represent the channel geometrically
and help us understand better its behavior in order to design a good modulator and its
corresponding demodulator.

Since multi-dimensional QAM constellations are subsets of Z", we can write z € Z?". Let
ns denote the dimension of the real Euclidean space,

Neg=2xXn;=2xXn, (47)

The equality x = zH is now extended to the real space R" to get

x=zM,x e R, 2z € Z" (48)

Therefore, the MIMO channel output y = x + n is obtained by perturbing a lattice
point z with additive white noise 1. A lattice A is a discrete subgroup of R, i.e., it is
a Z-module of rank n,. In (48), the lattice A is generated by the ns x n, real matrix M,
which is derived from the channel matrix H by the following simple expression

§Rh11 %hll - . %hlnr %hlnr
—Shy1 Rhyy .. =Shi,, Rhg,
e ... —Shy Rhy (49)
Rhp,1  Shpa oo Rhpn,  Shpn,

—Shp,1 Rhpa o - oo —Shpn, Rhpgn,
The matrix M is called lattice generator matriz. Geometrically, the point = belongs to a
discrete infinite set of points satisfying a group structure, i.e., a real lattice A. When 2z
is restricted to a finite QAM integer constellation, then = belongs to a finite lattice con-
stellation denoted by (. For example, if n, = n, = 8 antennas and m = 4 (16-QAM), the
constellation ¢ at the MIMO channel output has 2™ = 23%(~ 4) billion points ! Each
point in ¢ has a binary label of 32 bits. These bits are usually generated by an error
correcting code such as a convolutional code or a turbo code.
Before combining an error-correcting code with a digital modulation for use on a MIMO
channel, we first analyze the main parameters of the lattice A associated to multiple an-
tenna channels. Such a geometrical analysis is complementary to the one made by infor-
mation theory concerning Shannon capacity of MIMO channels.

Let P, be the set of points that satisfies

Py={zeR'/z=aM, acl0...1]"} (50)
Py is called the fundamental parallelotope of A (Figure 12).
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Figure 12: Lattice parameters

The first lattice parameter to be considered is the fundamental volume vol(A), which
represents the volume of the fundamental parallelotope defined by

vol(A) = |det(M)| = +/det(Q) (51)

where the Gram matrix G defining the quadratic form Q(z) associated to the lattice is
related to M by

G=MM',|lz|]> = 2G2' =Q(2) = ) _ gijziz; (52)
tj
The second lattice parameter is the minimum Fuclidean distance dpmin(A) defined by

dBmin(A) = ?f}‘% |[p1 = pa|| P1,p2 € A, pl # p2 (53)

The problem of computing dgmn(A) is hard (it is NP-complete). Thus, we suggest
three different methods to get an estimation of the minimum Euclidean distance in A:

1. The lines of M are a Z-basis for A. Read the n, Euclidean norms in the lattice
basis and keep the minimum. This yields an upper bound on dgm,(A). In practice,
equivalently, we search for the minimum on the Gram matrix diagonal.

2. Reduce the basis M by finding another lattice basis with shorter vectors. We suggest
here to use the efficient LLL reduction algorithm ([30]). This yields a tight upper
bound on dgmin(A).

3. Find the exact minimum distance by enumerating lattice points inside a sphere cen-
tered on the origin, then take the minimal norm of a nonzero point. We suggest the
application of Short vectors algorithm ([32]) to determine the exact value of g (A).
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Number | d%,.;.(exact) | d%,...(LLL) | d%,...(Gram) v(dB) v(dB) < 0
of antennas mean/variance mean/variance mean/variance mean/variance Percentage
2 0.979/0.542 | 0.979/0.543 | 1.250/0.687 | -1.10/2.04 78.1
4 1.607/0.576 | 1.608/0.579 | 2.182/0.803 | -0.65/1.42 66.9
8 3.867/1.004 | 3.875/1.019 | 4.488/1.272 | 40.76/0.75 17.1
16 9.719/2.231 | 9.734/2.274 | 9.770/2.309 | +1.98/0.59 1.15

Table 2: Main lattice parameters of the MIMO channel (first table).

Number | d%, . (evact < LLL) | d%, . (LLL < Gram) | d%,..(exact < Gram)
of antennas Percentage Percentage Percentage
2 0.19 40.02 40.07
4 0.92 61.60 61.86
8 3.18 53.82 54.67
16 2.36 4.79 5.64

Table 3: Main lattice parameters of the MIMO channel (second table).

Of course, the three methods above are listed in increasing order of complexity. As shown
later in this study, the estimation of dgm:,(A) helps to accelerate the Sphere Decoder
algorithm ([45]) used to find the maximum likelihood (ML) lattice point.

Given the lattice minimum distance and its fundamental volume, it is possible to derive
the normalized squared minimum distance, called fundamental gain, given by

Cmin (1)
A) = Emin 54
f}/( ) 'UOl(A)Q/nS ( )
Usually, the fundamental gain is expressed in decibels, v45 = 10logio(y). A lattice

sphere packing is non-dense if 7,5 < 0, i.e., the lattice is less dense than the cubic integer
lattice Z7. When v45 > 0, the dense lattice is associated to a good MIMO channel that may
perform better than an AWGN single antenna channel. Such a performance comparison
should also take into account the kissing number of A ([19]) which is completely random
and difficult to estimate in a multiple antenna channel. Nevertheless, the three main
parameters mentioned above are sufficient to understand the geometrical behavior of A.
Tables 2 and 3 present the main parameters of a MIMO lattice and some statistics related
to these parameters.

As expected, the lattice minimum distance increases with the number of antennas. In-
deed, the channel diversity order is proportional to the number of antennas. The percentage
of dense lattices is surprisingly high, especially for 8 and 16 antennas. This suggests a per-
formance extremely close to the Gaussian channel when n; = n, is large. If the channel
matrix H is known by the transmitter, then it is possible to make a water-filling approach
where the information instantaneous rate is proportional to y(A).
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Two important results can be deduced from Table 3:

1. The LLL reduction algorithm is extremely efficient in finding the minimum distance
of a MIMO lattice. The failure percentage varies from 0.19% to 3.18% only.

2. The simplest method (method 1 based on the diagonal of the Gram matrix) seems also
quite efficient for a large number of antennas, (only 5.64% failure with 16 antennas).

Finally, Figures 13, 14, 15 and 16 give more details about the distribution of dgm,(A) and
v(A) versus the number of antennas. Note that in Figure 16, in the case of 16 antennas,
is limited to -1dB for non-dense lattices and upper bounded by 4dB for dense lattices. For
comparison, we recall that n, = n, = 16 antennas correspond to a lattice in R3? for which
some known structured dense lattices have a fundamental gain equal to 6dB.

o8 ! ' J T T T T
A N 7777777777777777777 """"""""""" - 2 antennas ———— 7777777777777777777 7777777 B
8 antennas ----%----

16 antennas RSN S

PDF
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2

Figure 13: Distribution of the exact minimum squared distance d%,,; ..
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Figure 14: Distribution of d%,,,. estimated from the Gram matrix.

4.2 Accelerated sphere decoding algorithm

A lattice point © € A(H) represents the signal received after a transmission over a MIMO
channel. Here A(H) = A(M) refers to the real lattice of rank n, generated by M, or
equivalently by H. A maximum likelihood lattice decoder applied to the received point
y = = + n determines the nearest lattice point to y, i.e., it minimizes ||y — z||. A very
efficient algorithm to find the closest point in a lattice when observing y is the sphere
decoder [44, 45]. The main idea of this algorithm is to enumerate the points of the lattice
that belong to a sphere centered on y and to calculate the distances between them. The
point that minimizes the distance is called the closest point. If no point is found, the radius
of the sphere have to be enlarged. Each time a point is found, the radius of the sphere can
be reduced to the distance of this new point, which limits the number of points enumerated
but still ensures the closest point criterion. The complexity of the sphere decoder depends
on many points, as a non-exhaustive list, we cite the strategy of enumeration of the points
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Figure 15: Comparison of different estimations of dy, .. for 4 antennas.

belonging to the sphere, the choice of the sphere radius and some complexity reductions
that can be made in some particular cases, for example finite constellation. Two lattice
decoding strategies are known in the literature :

e The Sphere Decoder based on Pohst strategy[32] was applied by Viterbo and Boutros
(VB) [45] to digital communications. The key idea is to enumerate lattice points
inside an ellipsoid in the integer space that corresponds to a spherical search region
in the real space. The search complexity is sensitive to the choice of the initial radius.

e The Sphere Decoder based on Schnorr-Euchner strategy[35] was applied by Agrell,
Eriksson,Vardy and Zeger (AEVZ) in [1]. The key idea is to view the lattice as
laminated hyperplanes and then start the search for the closest point in the nearest
hyperplane. A search radius can be specified in order to limit the search region to a
sphere.
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Figure 16: Distribution of the fundamental gain (dB) in the MIMO channel.

The choice of the initial radius of the sphere is in general made by considerations on the
noise or the lattice properties.

Recently, studies supported by computer simulations showed that AEVZ is two to four
times faster than VB in finding the nearest point in a completely random lattice perturbed
by uniformly distributed noise[1]. The factor 4 in speed ratio is measured after applying
basis reduction like LLL (Lenstra-Lenstra-Lovasz [30]) or KZ (Korkine-Zolotareff [28]). For
simplicity and in order to decode MIMO systems with a relatively large number of anten-
nas (e.g., up to 16 transmit and 16 receive antennas), we exclude basis reductions from
our study (even if the complexity of basis reduction is negligible if performed once in a
frame as for block fading channels) because some complexity reductions, using the finite
constellation properties, cannot be used with basis reduction.
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A discrete subset ¢ of A is called a constellation. For example, all the points z €
{M-QAM}" belong to a n-dimensional M-QAM [33] constellation of Z". In digital com-
munication finite systems which may be modeled by a lattice, the input of the channel z
often belongs to a constellation in Z" and thus, its noiseless output = belongs to a finite
constellation in A. Finding the ML point is equivalent in finding the closest point in this
constellation.

Based on the following arguments:

e In MIMO systems, the sphere decoder is used to decode a finite lattice constellation
and not an infinite lattice. Implementing the constellation boundaries in the VB
method, dramatically increases its speed compared to the AEVZ method.

e The lattice is perturbed by an additive gaussian noise and not an uniformly dis-
tributed noise. In the VB method, the initial search radius can be related to both
the noise statistics and the lattice minimum distance in a way that drastically reduces
its search complexity.

Hence, our accelerated sphere decoder is an AEVZ decoder that takes into account the
QAM constellation boundaries by modifying the bounds of its internal counters, which
have only been made for VB enumeration strategy. The algorithm of the sphere decoder
with the Schnorr Euchner strategy and the modification of the bounds is presented below.

Also, our accelerated sphere decoder starts searching inside a radius judiciously chosen.
Fig. 18 and Fig. 17 shows the bit error rate performance of the accelerated sphere decoder
with up to 16 antennas and QPSK and 16-QAM, respectively. In the case of 16-QAM
and 16 x 16 MIMO, the lattice constellation ¢ has 2% points. Even though, the acceler-
ated sphere decoder succeeded relatively fastly in finding the ML point in the whole range
1071...107° of BER.

Sphere Decoder: Schnorr-Euchner strategy with bounds on the constellation:
on next page.
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Sphere Decoder: Schnorr-Euchner strategy with bounds on the con-
stellation

Input. A received point y, the generator matrix M (n x n) of the lattice, the radius r
of the sphere, and the bounds z,,;, and z,,,, of the constellation.

Output. The ML point z,,;, belonging to the constellation and its distance to y

Step 1. (Pre-processing) Compute the Gram matrix G = M M7 and the Cholesky’s
reduction {Q, R} = Cholesky(G). R is upper-triangular. Compute R' = R~}
and M* = M1

Step 2. (Initialization) Set bestdist < 12, k <+ n, disty < 0, e, < yM', z, <
lexk] 2 < maz(zk, Zmin),2k < MAN(2k, Zmaz) compute p = (exr — 2x)/(RL.)
stepg < sign(p)

Step 3. Compute newdist < disty + p?, if newdist < bestdist and k # 1 then go to 4
else go to 5 endif

Step 4. compute fori =1,...,k—1e; 1; < ex;—pR:, decrease k, set disty < newdist,
2k < [exk) 2k < Max(2k, Zmin),2k < MIN(2k, Zmaz), Stepr < sign(p) endif, go
to 3

Step 5. if newdist < bestdist then set Z < z, bestdist < newdist, else if kK = n then
return Z and terminate, else increase k, endif, compute z; < 2z + stepg,if
2k < Zmin OT Zk > Zmag then stepy < —stepy — sign(stepy),zx < 2z + stepy
endif, if 2y < Zmin OF 2k > Zimag then go to 5, endif, p < (ex, — 21)/ Ry, Stepy, <
—stepy, — sign(stepy) , go to 3

4.3 Soft output list decoding of a lattice constellation

Since there are n; symbols emitted per channel use and m bits by symbol of the 2™ —QAM
we have m.n, bits per channel use. Let c; represent the j-th coded bit, j = 0..m.n, — 1.
Next we present how to find soft values for the coded bits from the observation y at the
receive antenna array. The detector has two inputs: the received symbol y and the apriori
probabilities on the coded bits 7(c;). The two outputs of the detector are the a posteriori
probabilities APP(c;) and the extrinsic probabilities £(c;) of the coded bits. We take for
convention that the APP is the probability that the corresponding coded bit equals 1.
Usually, to computes soft output, an exhaustive marginalization which take into account
all the possible emitted symbols has to be processed. However, in this work, for complexity
issues, this marginalization is limited to some points well chosen in a list.

4.3.1 Exhaustive APP detector

In this section, we present how to find soft values about the coded bits from the received

signals based on the exhaustive list of the 2™™ possible vectors ¢* = {c},... ¢, .1}, =

0..2mm™~1 We calculate the extrinsic probability £(c;) and a posteriori probability APP(c;)
of each coded bit ¢;, from the exhaustive list. The APP is equal to
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Performance of the accelerated sphere decoder (ML) - QPSK constellation
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Figure 17: Bit error rate of a QPSK on a flat Rayleigh MIMO channel.

V= (el = PWlE)T(e)
APP(c)) = p(c;ly) = T Vj=0.m.mn —1 (55)

where 7(c;) is the a priori probability of the coded bit ¢;. Moreover if we define the
extrinsic probabilities at the output of the list by £(c;) = p(y|c;), we have

APP(cj) x m(c;).&(c;) Vj=0.mmn — 1. (56)

We can calculate the conditional probability £(c;) = p(y|c;) by marginalizing the joint
density of probability of the coded bits and the observation, with the hypothesis of mutual
Independence of the received signal y, given the coded bits c;. We define

O(c;)={¢:¢;=¢;, Vi#jée{0,1}} (57)
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Performance of the accelerated sphere decoder (ML) - 16-QAM constellation
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Figure 18: Bit error rate of a 16-QAM on a flat Rayleigh MIMO channel.

i.e. all the vectors of {0,1}™" with their j-th bit fixed to the value ¢;. The set
contains all possible emitted vectors which corresponds to the exhaustive list. To sim-
plify the notations when we write ¢ € (), we make reference to the vector of coded bits
{coy---,Cmm,—1} and when we write z € 2, we make reference to the vector of QAM
symbols {zg, ..., zn,_1} corresponding to c.

Recall that &(c;) = p(y|c ), so that:

6(61) = ZQ(CJ-) p (ya Coy-- -, cj—la Cj—f—l: ERI ) cm.nt—1|cj)
= ZQ(CJ') b (y‘COa ceey Cm.ntfl) H,,«;,gj 7T(cr)
s—1
= ZQ(CJ-) HZ:O P (Yqlco, - - - s Cmns—1) Hr:,éj 7(cr).

Since the additive noise is white and GGaussian, we can express the conditional density
of probability p(y,|co, - - -, ¢m—1) by
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2
ng—1
1 [0 ! zimig |

p(yq|60a R Cm.nt—l) = 902 e 202 (58)
1 e 1 7 e Sig ||
p(ylco,-- s emm—1) = 2%026 o= 2mo? H € 207 (59)
q=0

where the m;;’s are the coefficients of the generator matrix M of the lattice and z the
symbols emitted corresponding to the coded bits {co, - -, Cm.n,—1}- To solve the problems
of proportionality in (56), we normalize the extrinsic or APP probabilities to find the soft
output of the decoder as

§le;=1)
() =T el =0) (o0
Hence, the final equation is
llv=="2]|?
Sy | (¢ ) Ty nle)
£(c)) = (61)

> en [(6%> Hr?ﬁj’ﬁ(cr)]

4.3.2 Limitation of the likelihood

For systems whose equivalent lattice dimension is too important, the exhaustive marginal-
ization becomes too complex. For example, a 2 x 2 MIMO requires a marginalization of
2% points by channel use, and a 8 x 8 MIMO requires a marginalization of 254 points by
channel use. We propose to limit the marginalization to the points belonging to a list £.
The approximated soft value becomes

=22
ZZ’EQ(CjZI)OS [(e 2 ) Hr;éjﬂ-(cT):|

_lly—zM|?

Scone | (5 ) ()]

We observe that the soft outputs depend both on the geometrical configuration when
considering the likelihoods, and on the apriori probability configuration, which can be given
by a decoder. In (61), some of the likelihoods are negligible. Let us suppose that all the
points the likelihood of which is not negligible belong to a list £:

£(cj) =

(62)

Vi g Vieg | [ i < 1 ly—em? (63)
z z e 252 e 202
’ T 2102 2mo?

The geometrical limit that separates these likelihoods is a sphere centered on the re-
ceived point which justifies the construction of a non exhaustive list with the points of a
sphere. The choice of the sphere radius determines the performance and the complexity of
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the corresponding soft-in soft-out detector and is the main difficulty of the solution pre-
sented by the authors. Indeed, the random nature of the channels implies a non stability
in the list size. Another difficulty appears in the case of bursty channels, the list directly
depends of the received point ¥, which necessitates the reconstruction of the list for each
new received point, i.e., at each symbol time. Indeed, even if the channel is constant, the
noise varies continuously, so do y.

4.3.3 A shifted spherical list

Once the ML point is found, and in the case of an ergodic channel, we choose to center the
list on the ML point instead of centering it on the received point. Clearly, the marginal-
ization (62) does not give the same results since the points in the list are different. We
make the approximation that the output of the marginalization is quasi-equal to the output
when the sphere is centered on the received point. Indeed, to compute efficient soft values,
the radius of the sphere must be relatively high, and the points that will differ in the list
are near the surface of the sphere, so they have the smallest likelihoods. In Fig. 19, we
clearly see the advantages of the ML center when compared with the received point center.
Indeed, when the received point is outside the constellation, which has a high probability
when considering a large number of dimensions, the sphere centered on the received point
enumerates a large number of lattice points to find a small number of constellation points.
When the sphere is centered on the ML point, the number of listed points is reduced and
the high likelihood points are taken into consideration.

oy

Figure 19: Comparison between the sphere centered on the ML point and the sphere
centered on the received point y.

Since a classical SD finds in a lattice the closest point to a noisy received point, some
changes have to be made to the SD algorithm to extend it to a soft-output sphere de-
tector: the radius of the sphere is not reduced during the search like presented before,
every point found in the intersection of the sphere and the constellation is stored, together
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with its distance to the received point. A double Pohst recursion is used to enumerate
the points. Indeed, the first classical recursion is needed to check all lattice points at a
squared distance less than the radius of the sphere centered on the ML point. We added a
parallel second recursion to compute with a reduced complexity the distances between the
enumerated points and the received point y (see step 3 in the description of the algorithm).

Spherical list enumeration

A received point y, a point of the lattice x, the generator matrix M(n X n)
Input. of the lattice, the radius r of the sphere, and the bounds z,,,, and of the
constellation.
A list £ of points of the lattices that belong to the sphere, a list of the distance
between y and each point of the list.
(Pre-processing) Compute M~!, G = MM?" and the Cholesky’s reduction
Step 1. {Q,R} = Cholesky(G). R is upper-triangular. Compute ©v = zM~" and
p=yM".
(Initialization) Set d® < r?, T, < 12, T¢ « r% For j = 1,..,n set S; < u;,

Output.

Step 2. Sg<—pj,i<—nandu<—0

Compute L,y — max ({\/Ti/qii + SZ-J ,zmm) and 2 —
Step 3.

min (’V_ V ﬂ/q“ + SZ-‘ J Zmaz) -1

Increase z;, If z; > L; if i > 1 compute & < u; — z; and &4 < p; — z;,

compute T;_y « T; — qii(S; — z;)? and T2, < T2 — ¢4(S? — 2z;)%,compute
Step 4. Si 1 — Ui +Z?:1 gi—1,;€; and S¢; + pi_y +Z?:1 qi_l,j{f}i, decrease 7 and go

to Step 4, endif, else compute d? < r2 — T+ ¢11 (S — 21)?, store z and d in £,
increase u and go to Step 4, endif, endif , else if = n terminate else increase
17 and go to Step 4, endif, endif

Instead of centering the sphere on the ML point, we can evaluate it with classical sub-
optimal methods to reduce the complexity of the system. As a non exhaustive list, we cite
some known methods that can be implemented as an alternative to the sphere decoder:

e Zero Forcing (ZF) with or without a hard decision.
e Minimum Mean Square Equalizer (MMSE) with or without a hard decision.
e Interference Cancellation with or without ordering (MMSE or ZF).

Until the end of this document, we only discuss the case when the sphere is centered
on the ML point, the above simplifications can be applied in most of the cases.
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4.3.4 Choice of the radius

The choice of the sphere radius R for this list sphere decoder is as important as the choice
of the radius for the conventional SD. Having too many points in the sphere heavily slows
down the detection while not having enough points degrades significantly the performance.
In this section, some properties of lattices are exploited to determine a sphere radius that
guaranties a stability in the number of points in the list. Let us assume we want to find NV,
points to create a list centered on the origin 0. We make the approximation that the volume
of a sphere containing N, points is equal to the volume of N, fundamental parallelotopes.
Hence, the radius R of a sphere that contains about N, points is well approximated by

1
N, x vol(A)\ "
R=(2— """V 64
() (®4)

where vol (A) is the fundamental volume of the lattice and V}, is the volume of a unitary
sphere in dimension n:

n/2 7.{.7'1,/2 .
™ TN N pair
‘fn _ _ o n/2)! 65
L(n/241) { 2" 1S/2((n—1)/2)! n impair (65)

n!

This method of choosing the radius is quite stable in a lattice when N, is high.
When considering a constellation, the intersection between the sphere and the constellation
significantly diminishes the number of selected points. Depending on the position of the
ML point in the constellation, the number of enumerated points varies. Fig. 20 shows a
situation where 13 points are enumerated in the lattice and only 7 points in the constella-
tion.

Figure 20: The loss of points in the list in the case of constellations

We can adjust the sphere radius taking into account the number of hyperplanes ng,,
the ML point belongs to. The number of expected points NN, is multiplied by «[ns,,|, an
expansion factor of the list size which depends on n4,,. Indeed, the more the number of
hyperplanes the ML point belongs to, the less the points in the list. For example, the
choice afi] = [i/2] + 1 gives good results.

The number of listed points is also influenced by the lattice geometry. The more dense the
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lattice, the more stable the list. Indeed, the side effects are less important. To take into
account this property, we could use the fundamental volume 7(A) and add a pre-correction
of the expected number of points to the list radius. The problem of finding d%, .. is NP
complex, that is why we approximate it by the minimum of the diagonal of the Gram
matrix. We will call g2, (A) this quantity and g the approximation of the fundamental

gain of A:

_ g?nin(A)
’YG(A) - |det(M)|2/ns

We then use a simple criterion for an additional expansion p of the number of points:

(66)

{ 16(A)dB >y = iy = i (67)
16(A)AB > 75 = jiy = pia

E.g., we take v = 3dB, v, = 6dB, u; = 4, us = 16.

Finally, the new radius is given by

. <a[nhyp] %ty X N, X det (G))i (68)

Va

If the number of points in the list is too small, we can reenumerate the points in a
larger sphere, for example by multiplying the radius by 1.5.

4.3.5 Complexity reduction for block fading channels

Let us define Ny the number of symbols in a code word. In the case of an ergodic
channel, we have to store Ny, lists to calculate the observations on all coded bits before
giving them to the observation input of the SISO decoder. In the case of a block fading
channel, the channel remains unchanged during the block. Thanks to the lattice structure,
we can find the points in the sphere centered on the origin of the lattice and translate them
to find the points in the sphere centered on x,,7. This invokes the translation invariance
of the lattice (cf Fig. 21).

In the list, we store ng points belonging to the constellation with their labeling. For
each channel use, the noise changes, so the distances to the received point have to be
reprocessed. A less efficient version only takes into account the distance to the ML point,
so the distances are processed once at the beginning of each block.

We can also enumerate a larger list and sort it with the distance to the origin. This
can be seen as a list of concentric spheres. If the first sphere leads to a list which is too
small, we consider the second sphere and so on (see Fig. 22).

4.3.6 Applications to iterative detection and decoding of BICM

In this section, we illustrate the application of the new soft detector to BICM on MIMO.
The symbols z; belongs to an M-QAM constellation. The transmitter structure is illus-
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Figure 21: Translation invariance of the lattice

Figure 22: A concentric list of spheres

trated in Fig. 23. The information binary elements are encoded by a rate R, convolutional
code. The coded bits {c,} are randomly interleaved and fed to a QAM mapper (M = 2™)
that generates z. The spectral efficiency of the system is R. X m X n; bits per channel
use, or equivalently, R. x m X n; bits/sec/Hz. An iterative joint detection and decoding
receiver is based on the exchange of soft values between the SISO QAM-detector and the
SISO code decoder. The SISO detector computes the extrinsic probabilities £(c,) via the
classical sum product expression (62) including the conditional likelihoods p(y/z) and the
a priori probabilities 7 (c,) fed back from the SISO decoder. By exploiting the trellis struc-
ture of the code, the SISO decoder computes the soft values (a posteriori probabilities and
extrinsics) for the coded bits using the Forward-Backward algorithm [3]. The information
exchange between inputs and outputs of the two blocks is shown on Fig. 4.3.6.

When there is only one symbol representing one bit in the list, the observation is either
1 or 0. In that case there is no point in the constellation with the other symbol, which can
cause calculus inconsistency when marginalizing. For example, in Fig. 25, if we consider
that the a priori of the first bit is equal to 0.0, the SISO decoder fails because there is no
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Figure 24: Exhaustive List Decoder

point corresponding to a first bit equal to 0 in the list. Without loss of generality, we will
consider this case until the end of this section.

A first solution to solve the inconsistency problem is to replace the APP of the consid-
ered bit by the minimum among the contributions in the list, (62) becomes

) _ly=2"m]?
MmN eQ(c;=1)Ng ((e 20° ) Hr;éj W(Cr)) -|

Jy— = p]|?

D rea(e—1)ne [ <€_|2"2) [T, W(Cr)}

Another solution is to consider the worst case when the nearest point with the consid-
ered bit equal to 0 is at the surface of the sphere. In this case, we consider the sphere
radius to calculate its likelihood. The corresponding apriori probability , of this virtual
point can be chosen in different ways:

-1

€(cj) = |1+ (69)

e By an average case when all apriori probabilities equal 0.5:
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Figure 25: Situation leading to inconsistency

7, = 0.5™™ 1 (70)

e By the worst case when the point is of higher a priori probability:

my = [ [ max{r(c;), 1= m(cr)} (71)

T#j

With this method, (62) becomes

-1
R2
~ Ty-€ 202

£(e) = |1+ (72)

L=z

Zz’EQ(CjZI)OS [(e —2"2_) Hr;éj W(Cr)]

Another efficient way to reduce inconsistency calculus problems is to apply a ceiling
on the soft values exchanged between the blocks. A first ceil with parameter ¢, is applied
to soft values given by the soft decoder to the detector, i.e., a priori probabilities for the
detector:

. m(cj) < €c = m(c;) + €
V7,
m(cj)) >1—e. = m(cj) 1 —¢
The same method can be applied at the output of the detector with parameter ¢;, but

it is preferable to apply the ceiling during the computation of the a priori probabilities
product

(73)

Initialization a; <~ 1 — ¢
for r =0tom x n; and r # j, aj < o X w(c,), 0 < max{e;, €}

Indeed, we can see that the perfect, but problematic, case when o; = 1 is solved by
initializing o;; to 1 — ¢. During the computation, if the current product becomes inferior
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to ¢, a ceiling is done, which limits the calculation distortion.

At the end of the computation, o gives an estimation of the product of the a priori proba-
bilities in the computation (72). The parameters ¢, and €. can for example be chosen equal
to 1075.

4.4 Applications of the spherical list to MIMO channel mutual
information computation

4.4.1 MIMO Mutual information computation

The capacity C of a channel and its mutual information I(z;y) between its input z and
output y are two essential quantities that are necessary to compute when designing optimal
performance systems. Indeed, for a given coding Rate ., they give a lower bounds on the
signal to noise ratio E,/Ny. The capacity C' of a MIMO channel has been established in
([41]), z is a complex gaussian entries vector:

0 = 5 o (1t (14 ") ) -

The mutual information between the constellation point z and the output symbol of
the channel y is given by

I(zy) = mn — oo Z/ (y/2)logs (Z (p(/yz/)z))dy (75)

This quantity can be computed, like (74), by a Monte-Carlo simulation:

I(z;9) = mny — E, gy {1092 <%) }

We have the choice to make the expectation over z, H and 7 separately or jointly. The
best results will be given by the first expectation but will need longer time. We will take
into account here some symmetries of the channel that permits to limit the complexity of
the first expectation process.

Let us define:
— Z)p 0 Zz’ p(y/zl)p(zl)
/ 2 p/2)p(e)ios (=) )

The average mutual informatlon (we suppose a non-stationnary channel) is given by

(76)

[(Z:Y) = By (In(Z = Y = y)) = /H p(H) S f(e, H)dH (78)

The evaluation of this mutual information with a separated expectation Monte-Carlo
method is prohibitive when we consider more than 2 antennas in emission and reception

41



and a 16-QAM modulation (this expectation needs 2™ x Ny x N, random samples where
Ny is the number of samples for the channel and N, is the number of samples for the noise).
We can use a property of the channel to simplify the evaluation of this mean. Indeed, the
phase of each entry of a MIMO channel is uniformly distributed. We consider two points
z and 2’ that only differ with their phase :

2= {z) = 20€’?, ... 2, = zn, €%} = ¢z (79)
Where the matrix ¢ is diagonal defined by
¢ = diag{e’®} (80

The phase of each entries of the matrix H is uniformly distributed, so p(H (p, ¢)) =
p(H(p)):

~—

/H p(H) f (2, H)dH = / /¢ P(H(p)) (2, H(p, 8))ddp (81)
F( H(p,8)) = f(z, H(p, &) (82)

= /H p(H)f(z,H)dH = /H p(H)f(<', H)dH (83)

Figure 26: Modulos of a 16QAM constellation

We can replace all the points that have the same module configuration by a single
“virtual point”, for example on Fig. 26 we can see that only 3 “virtual points” have to
be taken into account in the sum over z. The point of modulo v/2 have a weight equal to
4, the point of modulo /10 has a weight equal to 8 and the point of modulo /18 has a
weight equal to 4.

We consider the weights N,(z) to be the number of points that have the same module
configuration than z. For example, when we consider 2 antennas in emission with a 16-
QAM constellation, we only have to consider 32 points instead of 162. Let Q be the set
of points that are sufficient to calculate the mutual information, €2 € A, where A is the
constellation.

The mutual information is now given by
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I(Z;Y) = log,2™™ —

ant/ /ZN p(y/2)logs (Z (p(//) ))dde (84)

Y 2eQ

We can estimate this mutual information with a Monte-Carlo simulation, with N,
realizations of the noise, Ny realizations of the channel.

1 all il Y, € HI /2o
I1(Z:Y)=m.n; — N, z .
(Z3Y) = mn — S N < Vi ;; b(2) ;ZOQQ e—llv—=HI?/2No (8)

Nonetheless, the numerator of the logarithm is computed by an exhaustive marginal-
ization of the 2™™ symbols 2’ of the constellation €2, which limit simulations to m.n; < 8
(for example 16-QAM on MIMO 4x4 is unfeasible).

4.4.2 Bounds with the spherical list

We can limit the complexity of the marginalization only taking into account the points
in a well chosen subset of the constellation, for example the spherical list £ of radius R
centered on the received point described before. Each point 2z’ at the outside of the sphere
has its likelihood upper bounded by the likelihood p(y/zs) of a point z, lying at the surface
of the sphere:

_exp(—R*/2Ny)
p(y/zs) - \/m
There are (|Q2| — |£|) points that do not belong to the list £, where |2 and | £| represent

the cardinals of €2 and £, respectively. We can express upper and lower bounds to the
numerator of the logarithm in (75):

> p(y/z) <D ply/z) <D ply/2) + (19 - 12]) ply/2) (87)

zeL z€Q z€L

(86)

This leads to upper and lower bounds to I(z;y):

' 2! Q—1g]). Zs
) = o~ Buy (o (Bessrortyanimnaseo)

re P/ (88)
I(zy) < mns = By {logs (225575 }

We have already seen in the list detector section that the list centered on the received
point y is not as controllable as the list on the ML point. Indeed, the radius of the sphere
can be corrected before the enumeration of the points depending on the situation of the
ML point in the constellation. Nevertheless, we do not have again an upper bound on
the mutual information I(z;y) when considering the substitution of the likelihoods of the
missing points by the likelihood p(y/zs). For example, in Fig. 27, we can see that the
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Figure 27: Illustration on how to approximate I(z;y)

x9 point’s likelihood is lower than the x; point’s one, the likelihood of the missing points
cannot be upper bounded.

An other important quantity that can be used in BICM is the mutual information
between the ith coded bit ¢; and the received symbol y. This mutual information is
calculated from the equation

I(cz,y) —1— Ez,Hm {1092 (1 T Zz 'eQ(c;) (y/z) ) } (89)

Zz”EQ(ci) (y/zll)

Where Q(c;) represents the subset of points of the constellation which ith bit is equal
to ¢;. Again, we can use a spherical list to limit the complexity and derivate the bounds
(87) to calculate the upper and lower bounds of I(c;, y) when £ is centered on the received
point y:

P es@) P/2 )= 1L@)))-p(y/ 2s)
H(zy) 21— E.ny {l0g2 ( = z)pg,-ﬂes(c-)p(y/Z’) - >}

/ 90)
Ezleg(a-)P(y/z ) (

. < —_ 1
I(z;y) <1-—E, u, {l092 (zzleg(%)p(y/z%(n|—2(ci)|).p(y/zs)

4.5 Computer simulations and numerical results

We can use any existing code but the more complex to interface with the detector are con-
catenated codes because of the iterative processing in the decoding procedure. We have
chosen to present turbo-codes, the use of other types of error-correcting codes is straight-
forward. Let us consider a rate R = k/n = 1/2 turbo code whose constituent codes are
two (1,5/7) RSC convolutional codes. The output of each code is punctured by a factor
2. This encoding is depicted on Fig. 28. We define L = 3 the constraint length of the
constituent codes. The information bits are grouped into blocks of length R.m.T,,;, where
k = 1. The tail bits of the two RSCs are not punctured but interleaved. The length of the
blocks of coded bits is ny;.m.T.,. The effective rate of the code is R, = Z:ne-m-Tcont2. (L=1)-n

nt.m.Teop
We use an interleaver to break the memory of the code before mapping the coded blts
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{co;---,Cnymm,, }- The channel is a MIMO channel that can be ergodic or not, with white
complex Gaussian noise 7, we suppose here n, = n, = 2.n, antennas in emission and re-
ception to simplify the notations. The (n, X n;) channel complex matrix G is supposed to
have independent, zero-mean Gaussian entries with variance 1/2. Equivalently, each entry
of G has uniformly distributed phase and Rayleigh distributed magnitude, with expected
magnitude square equal to unity. This models a Rayleigh fading channel with enough sep-
aration within the receiving antennas and transmitting antennas to achieve independence
in the entries of G. A Gray code and an n;-dimensional M-QAM constellation are used to
map the coded bit flow into points of the constellation. The spectral efficiency of the system
is m = logo M bits per 2-dimension. Each modulated point corresponds to a length-m.n;
vector of coded bits. A scheme of the transmission system is presented on Fig. 23. In this
section, we present how to iteratively decode the received signals with probabilities calculus

on the exhaustive list of the 2" possible vectors: Vi = 1..2™™ ¢ = {c},... ¢, . 1}
There is a probability exchange between the list decoder and the turbo-code decoder. The
letter [ affects a variable concerning the list decoder, c affects a variable concerning the
decoder. We calculate the extrinsic probability & and a posteriori probability (APP,) of
each coded bit ¢;, from the list. By marginalizing the conditional density of probability, we
can find the & value of each coded bit and place it at the input of a SISO decoder for the
RSC code, these & = obs. values are now named observations. We use a SISO decoder to
calculate the AP P, values of the information bits. A hard decision on the AP P, values of
the information bits provides an output of the system. At the first iteration, we do not have
any information on the coded bits, the a priori probabilities 7, are all equal to 1/2. We can
use an iterative method to improve the performance of the above system by re-injecting
the extrinsic probabilities £, as new a priori probabilities 7; in the marginalization of the
list. We can see this system in the Fig. 4.3.6. The connexions between the three SISO
decoders (one for the list and one for each RSC) are described in Fig. 29.

Finally, Figure 30 shows the achievable information rate for 4 x 4 multiple antenna channel
with 16-QAM input alphabet. The mutual information value of 8.0 bits per channel use
yields a minimum achievable signal-to-noise ratio equal to 4.0dB. The capacity limit with
a Gaussian input at 8.0 bits per channel use is 3.7 dB. Figure 30 illustrates two scenarios:
1- A target list size N, = 1000. The effective list size was distributed between N,(min) =
256 and N.(maz) = 2300 with an average equal to 1000. 2- A target list size N, =
60000 ! The effective list size was distributed between N,(min) = 4000 and N.(maz) =
26000 with an average equal to 10000. It is clear that mutual information evaluation is
useful at high coding rates (R, > 1/2) where its value diverges from the gaussian input
capacity. A reduced size list is sufficient in this region. Similarly, Figure 31 shows the
achievable information rate for 8 x 8 multiple antenna channel with 16-QAM input. Figure
32 illustrates the performance of the 4-state parallel turbo code described above. The
BICM interleaver size is 20000 and 100000 coded bits respectively. The total number of
performed detection/decoding iterations in the BICM receiver is 25. The two different list
constructions are also presented, the list centered on y and the list centered on ;7. The
performance curve to the most left shows a BER of 1075 at 1.25dB from capacity limit

45



under the constraint of a 16-QAM input.
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Figure 28: Parallel turbo encoder scheme.
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Figure 29: Sequencing of iterative detection and decoding of a Turbo code.
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nt=nr=4 antennas, listsize=1000/60000, min=256/4000
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Figure 30: Mutual information evaluation for 4 x 4 MIMO with 16-QAM
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nt=nr=8 antennas, listsize=200000/400000, min=10000/65000
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Figure 31: Mutual information evaluation for 8 x 8 MIMO with 16-QAM
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Figure 32: Performance for 4 x 4 MIMO with 16-QAM, 100000 coded bits interleaver,
4-state turbo-code
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5 Conclusions and perspectives

We made an extensive study and a profound analysis of bit-interleaved coded modulations
(BICM) considered as space-time codes for multiple antenna channels. On the receiver
side, we were able to achieve the following:

e Establishment of a genie bound performance at the detector output.

e Acceleration of the sphere decoder algorithm by taking into account the finite con-
stellation boundaries.

e Invention of a new soft-output sphere decoder where the candidates spherical list is
centered around the maximum likelihood point.

e Evaluation of constrained capacity on multiple antenna channels.
On the transmitter side, we were able to achieve the following:
e Optimization of the binary mapping used in QAM constellations.
e Invention of a multi-dimensional mapping from the genie bound.
e Establishment of new design criteria for space-time block codes via the genie bound.
e Construction of a new-space time code from cyclotomic rotations.

We believe that this document contains unprecedented results on channel coding for mul-
tiple antennas, e.g., the 1.25dB distance to capacity with 4 transmitting and 4 receiving
antennas while transmitting a 16-QAM modulation (see section 4.5). The main conclusion
that we state from our results is “BICM is a universal space-time code”.

Finally, we would like to encourage researchers in this field since many problems are still
open. Especially, let us mention the influence of cycles distribution on BICM performance
under iterative detection and decoding for finite size interleavers. This problem, if resolved,
will help to explain many mysterious phenomena in turbo coding (including LDPC codes
on gaussian channels) with and without multiple antennas.
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