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Abstract 
We build a class of pseudo-random error correcting codes, 
called Generalized Low Density codes (GLD), from the in- 
tersection of two interleaved block codes. GLD codes per- 
formance approaches the channel capacity limit and the 
GLD decoder is based on simple and fast SISO (Soft In- 
put - Soft Output) decoders of smaller block codes. GLD 
codes are a special case of Tanner codes and a general- 
ization of Gallager’s LDPC codes. It is also proved by 
an ensemble performance argument that these codes are 
asymptotically good in the sense of the minimum distance 
criterion. The flexibility in selecting the parameters of 
GLD codes makes them suitable for small and large block 
length forward error correcting schemes. 

construct GLD codes. 
In the sequel, we restrict our description of GLD codes 

to their matrix representation. As explained in the next 
section, the GLD class is obtained from the intersection of 
two or more interleaved subcodes. The subcodes of length 
N are a direct sum of N/n constituent codes. 

GLD codes exhibit an excellent performance on both 
AWGN and Rayleigh channels and present a high BER 
slope at high SNR due to their large minimum distance. 
The decoding algorithm is based on a SISO (Soft Input 
- Soft Output) decoding of the small constituent code 
and has a very low complexity. The decoding time can 
be dramatically reduced when the SISO decoders of the 
N/n constituent codes are executed in parallel. It is also 
proved that GLD codes are asymptotically good in the 
sense of the minimum distance criterion. 

1 Introduction 
2 Structure of the GLD code 

We build a class of pseudo-random error correcting codes 
(called GLD codes) by generalizing Gallager’s construc- 
tion of low density parity check codes (LDPC) [l]. Each 
parity check equation of an LDPC code ( N ,  K )  is replaced 
by the parity check matrix of a small linear code (n ,k)  
called the constituent code. 

LDPC codes are usually defined by their parity check 
matrix, but they can also be described with a bipartite 
graph. The left part of the graph contains the code sym- 
bols and the right one contains the parity check nodes. A 
parity check node is associated to the trivial parity check 
code (n,n - 1). This representation of LDPC codes has 
been used by Sipser and Spielman [2] to study the influ- 
ence of the graph expansion on the code parameters. 

The graphical representation of block codes has been 
first exploited and generalized by Tanner [3]. Tanner 
codes based on a bipartite deterministic graph are ob- 
tained by replacing the (n,n - 1) code associated to one 
parity check node with a less trivial constituent code 
(n,  k ) .  Thus, building a Tanner code on a random graph 
(instead of a deterministic one) is a second method to 

Figure 1 shows the parity check matrix H of an LDPC 
code ( N ,  K )  with length N = 12 and rate R 2 1/4. The 
matrix H is the concatenation of J = 3 submatrices. The 
first submatrix H1 of size 3 x 12 defines a subcode by 
the direct sum of three parity check codes (n, n - 1) with 
n = 4. The whole matrix H is obtained by concatenating 
HI, H2 = r l (H1)  and H3 = 7rz(H1), where 7r1 and 7 r ~  are 
two pseudo-random column permutations. This example 
can be generalized to build any LDPC code ( N ,  K )  using 
J - 1 permutations. Gallager showed that LDPC codes 
are asymptotically good when J 2 3. He also described 
an iterative decoding algorithm which is the ancestor of 
turbo decoding [4] and he exploited the low density of 
the parity check matrix to reduce the decoder complexity 
when computing the a posteriori probabilities. 

Each line of the LDPC matrix H is a parity check equa- 
tion defined by the (n,  n - l )  parity code. We replace this 
line by n - k lines including one copy of the parity check 
matrix Ho of a constituent code Co(n, k ) .  This operation 
is depicted on Figure 2. The first submatrix produces the 
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N == 12 
< : - - - - - - - - - - - - - - - - - - -  -> 

-> <-- - - - n = 4  

1 1 1 1 0 0 0 0 0 0 0 0  

0 0 0 0 1 1 1 1 0 0 0 0  

0 0 0 0 0 0 0 0 1 1 1 1  

- 

0 0 0 1 0 1 0 1 0 0 1 0  

0 0 1 0 0 0 1 0 1 1 0 0  

1 1 0 0 1 0 0 0 0 0 0 1  

0 
I 
I 
I 
I 
I 
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I N - K  
I 
I 
I 

3 Ensemble Performance 
Without loss of generality, we restrict the theoretical 
study in this section to the case of a two levels GLD :ode 
based on the binary BCH code C0(7,4). It is shown how 
to compute the average weight distribution of the gen- 
eralized low density code, and the latter is proved to be 
asymptotically good. We also consider a BSC chanel  
with a transition probability 0 < p < 112 and find the 
maximal value of p for which Pew + 0 when N is large. 

I 
I 

0 0 1 0 1 0 1 0 0 1 0 0  I 3.1 Weight distribution and asymptot ical 

Let us start by computing the average weight distribdtion 
of the ensemble of GLD codes built with c0(7,4) and 
a random column permutation 7 r .  In other words, the 

I performance 
1 0 0 0 0 0 0 0 1 0 1 1  I 

L, - 

0 1 0 1 0 1 0 1 0 0 0 0  0 
J == 3 submatrices 

~i~~~~ 1: ~~~~~l~ of an LDPC matrix with J = 3 levels. weight coefficients are obtained by averaging over all the 
possible interleavers 7r .  The moment-generating function 

direct sum of N / n  identical codes Co(n, I C ) .  The matrix 
H has J submatrices derived by interleaving the columns 
of the first submatrix. This type of parity check matrices 
H defines the class of GLfD codes. Thus, a GLD code C is 
the intersection of J subc,odes Cj,  i.e. C = nj"=, Cj where 
Cj+l = 7rj  (Cl) for j = 1..  . J - 1, and C1 = CO @ .  . .@CO. 
If CO has a rate T = k / n ,  the total rate of the GLD code 
is R = 1 - J( 1 - T )  when the permutations 7rj  are random. 
Note that it is not possible to define the GLD code as a 
serial (neither parallel, nor hybrid) concatenation of two 
or multiple constituent codes. 

In our study, we considered binary GLD codes with 
only J = 2 levels (the total rate is R = 2r - 1) based on 
binary Hamming codes. As shown in the next section, we 
need only J = 2 (i.e. one interleaver) to make the GLD 
code asyniptotically good. For practical applications, ef- 
ficient GLD codes can be built from primitive, shortened 
or extended binary BCH codes. 

g(s )  of CO is given by : 

1 + 7e3S + 7e4' + e7s 
16 g(s>  = 

The first subcode C1 of length N is the direct sum 
Hence, it.s moment- of N / n  independent codes CO. 

generating function G(s) is simply a power of g(s )  : 

G(s) = g(s)N/n = &(l)ees  
e 

where Q(f2) is the probability that a vector of weight f2 be- 
longs to C1. Since the total number of codewords in C1 is 
(2k)N/n, then the average number in C1 of codewords of 
weight f2 is N I ( [ )  = 2("ln)Q(!). Exploiting the fac; that 
C1 and C2 = n(C1) are totally independent, the F'roba- 
bility that a vector of weight f2 belongs to C = C1 n C2 
can be written as : 

/ 

Finally, the average number of codewords in C having 
weight e is : 

- 2(2kN/74Q(f2)2 
N(f2) = ( y ) x P(f2) = (1) 

By using exactly the same bounding technique as in 
[l], i . e .  upper bounding each of the coefficients &(e)  with 
G(s)e-", and after applying the extended Stirling ap- 
proximation (valid for large N ) ,  we get an upper bound Figure 2: Structure of a GLD parity check matrix ( J  = 2). 
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Figure 3: The exponent function B(X) versus the nor- 
malized weight A. The low density code is built from the 
(7,4) Hamming code. 

on the average number of codewords of weight e in the 
GLD code (we omit the details) : 

N(e) 5 C ( X , N )  x 

where X = l / N  is the normalized weight. 

follows : 
The two functions C(X, N )  and B(X) are expressed as 

C(X, N) = J27rNX(1 - A) x e1/(12NX(1--X)) 

2 
n 

B(X) = H(X)  - - [ P ( s )  + k log21 + 2sX 

where H(X)  is the natural entropy function and p(s)  = 
log(g(s)). The upper bound has been optimized and the 
optimal value of s is related to the weight by X = p ' ( s ) / n ,  
where p'(s) is the derivative of p ( s )  relative to s. 

The exponent function B(X) is sketched in F i g u G  
Asymptotically, when N 4 00, the average number N(C) 
of codewords of weight C goes to zero if B(X) > 0. The first 
value of X €10.. . l /2[  corresponding to a sign transition 
gives us a lower bound on the minimum distance S(C) = 
dmin(C)/N of the GLD code. As seen in Figure 3, 6 2 
0.186. Thus, C is asymptotically good with dmin 2 
0.186N and R = 1/7. Note that the Gilbert-Varshamov 
bound gives SO = HT1(l - R) = 0.281. 

3.2 BSC channel threshold 
Now, let us compute the maximal value of p for which the 
word error probability Pew of an ML decoder goes to zero 
when N is arbitrarily large. An upper bound on Pew is 
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Figure 4: The exponent function E ( p )  versus the BSC 
channel transition probability p.  The low density code is 
built from the (7,4) Hamming code. 

obtained by assuming that a decoding error occurs when 
at least half of the codeword non zero symbols are covered. 
If j denotes the channel error weight, e the weight of a 
codeword and i the number of covered non zero bits, we 
have the following upper bound : 

When N is largenough,  an expression similar to the 
upper bound on N(e) can be found for Pew. After some 
algebraic manipulations, we get (details omitted) : 

pew 5 D ( N , ~ )  x e-NE(p) 

where the exponent function E(p)  is given by : 

B(X) + H ( p )  - Xl0g2 - (1 - X)H(- 
1 - X  - 

Figure 4 shows E(p)  versus p .  From this curve, we 
conclude that an ML decoder for this GLD code achieves 
Pew -+ 0 if p < 0.277 (not far from 0.281 given by the 
BSC channel capacity). 

4 Bounds on minimum distance 
and error probability 

In this section, we check that GLD codes are asymptot- 
ically good by giving an upper bound for the minimum 
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Figure 5: Upper bounlds based on (3) for GLD Codes of 
two different constituent codes 

distance derived from the weight distribution in expres- 
sion (1). Secondly, we present an average bound for the 
bit error probability when maximum likelihood decoding 
is used. 

Using ( l ) ,  it is easy ___ t.0 numerically compute the average 
distance distribution N(!)  of any GLD code C from the 
moment, generating function g ( s )  of the constituent code 
Co. Then from the following inequality 

D 

e=i 

we compute an upper bound for the minimum Hamming 
distance of C by taking the right hand side of (2) equal 
to  1. So, we have : 

where A is the smallest integer such that 

(3) 

Figure 5 shows this bound A calculated for two sets 
of GLD codes. The first one is based on the (20,15,3) 
constituent code, a (31,26,3) shortened BCH code. The 
second one is based on the (24,18,4) constituent code,a 
shortened (32,26,4) BICH code. Both of them are two- 
level, rate 112 GLD codes. The granularity of the curves 
is due to the floor function in (3) and to  the fact that the 

length of a GLD code is a multiple of the constituert code 
length. The average minimum distance of these codes is 
clearly a linear function of their length. - 

The average distance distribution N(!) can also he used 
for computing the bit error probability of h4L decoding. 
Actually, the interleaver acts on all coded bits, E O  that 
they are equally protected. Thus, we can write the follow- 
ing Union-Bound (UB) for a transmission over an AWGN 
channel : 

peb 5 - e x - N ( I )  x -erfc (fig) (4) N 2 e= 1 

where Eb/No is the signal-to-noise ratio per information 
bit and R the GLD code rate. It is also possible tcl derive 
an improved bound as presented in [5], based on t.ne Gal- 
lager’s bound, which is tighter for low SNR. Both bounds 
are presented and compared to simulation results on Fig- 
ure 6. 

5 Decoding scheme 
Gallager presented in [l] an iterative decoding scheme for 
LDPC codes. This algorithm computes iteratively the 
probability of each coded bit given a set of received chan- 
nel observations that becomes larger with the it eration 
steps. The goal is to  estimate the a posteriori proba- 
bility, namely the probability of the coded bits given all 
received samples. This algorithm looks very similar to the 
one proposed in 141 for the well known turbo codes1 and 
may be considered as the ancestor of all turbo dxoding 
techniques. 

GLD codes are decoded using the same idea. Fbr each 
bit, we compute its probability given the received sam- 
ples and considering that it belongs only to the first sub- 
code C1. Exploiting the fact that a subcode is composed 
of N / n  independent constituent codes CO, this can be 
done using N / n  simple Soft-Input Soft-Output (SISO) 
decoders working in parallel on every constituent code. 
This first step generates for each coded bit an ‘ ‘a  posteri- 
or?’ probability and an extrinsic probability. The latter 
is fed through the interleaver to the second step as an a 
priori information for the SISO decoders working; on the 
constituent codes of C,. This process is iterated on each 
subcodes : C1 -+ CZ -+ ‘ .  . -+ CJ -+ C1 -+ . . . 

6 Simulation results 
Two GLD codes have been tested for an additive white 
Gaussian noise channel (AWGN). The modulation is a 

‘It can be shown that turbo codes can be described as i particu- 
lar case of GLD codes, where the interleaver acts only on in ’ormation 
bits. 
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Figure 6: Simulated performance and analytical bounds 
of the GLD code built from the (15 , l l )  Hamming code, 
length N = 420, total rate R = 0.466, AWGN channel. 

BPSK with symbols equal to f m ,  where Eb is the 
average energy per information bit. We used the forward- 
backward algorithm [6] on the syndrome trellis of the con- 
stituent codes as a SISO decoder for our iterative scheme. 

The first code, suitable for mobile radio transmissions 
or small frame systems, has length N = 420, and K = 
196. Its constituent code is the (15,11,3) BCH code, and 
it is a two-level GLD code. Its performance is shown in 
Figure 6 for different iteration steps, and compared to 
the Union Bound and the improved bound described in 
section 4. 

The second code, suitable for deep space communica- 
tions or image transmissions, has length N = 65534. Fig- 
ure 7 shows its BER versus the decoding iteration number. 
This code achieves zero error probability at 1.8dB with a 
rate R = 0.67. Its performance is 0.72dB away from the 
capacity limit (1.08dB for R = 0.67 and a BPSK input). 
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