
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 1, JANUARY 2005 101

Interleavers for Turbo Codes Using Permutation
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Abstract—In this paper, a class of deterministic interleavers for
turbo codes (TCs) based on permutation polynomials over is
introduced. The main characteristic of this class of interleavers
is that they can be algebraically designed to fit a given compo-
nent code. Moreover, since the interleaver can be generated by a
few simple computations, storage of the interleaver tables can be
avoided. By using the permutation polynomial-based interleavers,
the design of the interleavers reduces to the selection of the coeffi-
cients of the polynomials. It is observed that the performance of the
TCs using these permutation polynomial-based interleavers is usu-
ally dominated by a subset of input weight 2 error events. The
minimum distance and its multiplicity (or the first few spectrum
lines) of this subset are used as design criterion to select good per-
mutation polynomials. A simple method to enumerate these error
events for small is presented.

Searches for good interleavers are performed. The decoding per-
formance of these interleavers is close to S-random interleavers for
long frame sizes. For short frame sizes, the new interleavers out-
perform S-random interleavers.

Index Terms—Integer ring, interleaver, permutation polyno-
mial, turbo codes (TCs), weight spectrum.

I. INTRODUCTION

ATYPICAL turbo code (TC) [1] is constructed by parallel
concatenating two convolutional codes via an interleaver.

The design of the interleaver is critical to the performance of the
TC, particularly for short frame sizes. Interleavers for TCs have
been extensively studied in [2]–[6]. They can in general be sep-
arated into two classes: random interleavers and deterministic
interleavers.

The basic random interleavers permute the information bits in
a pseudorandom manner. It was demonstrated in [1] that near-
Shannon limit performance can be achieved with these inter-
leavers for large frame sizes. The S-random interleaver pro-
posed in [2] is an improvement to the random interleaver. The
S-random interleaver is a pseudorandom interleaver with the re-
striction that any two input positions within distance cannot
be permuted to two output positions within distance . Under
this restriction, certain short error events in one component code
will not be mapped to short error events in the other component
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code. Further improvements to the S-random interleaver have
been presented in [3], [4]. In [3], an iterative decoding suitability
(IDS) criterion is used to design two-step S-random interleavers.
In [4], multiple error events are considered. These improved in-
terleavers have a better performance than S-random interleavers,
especially for short frame sizes.

TCs using random interleavers require an interleaver table to
be stored both in the encoder and the decoder. This is not de-
sirable in some applications, especially when the frame size is
large or many different interleavers have to be stored [7]. De-
terministic interleavers can avoid interleaver tables since inter-
leaving and de-interleaving can be performed algorithmically.

The simplest deterministic interleavers are block interleavers
[8] and linear interleavers [6]. For some component codes
and very short frame sizes, block and linear interleavers, with
properly chosen parameters, perform better than random inter-
leavers. However, for medium to long frame sizes, they have a
high error floor [6] and random interleavers are still better.

In [6], quadratic interleavers have been introduced. Quadratic
interleavers are a class of deterministic interleavers based on a
quadratic congruence. For , it can be shown that

is a permutation of for odd . Then the
quadratic interleaver is defined as

which means that the data in position is interleaved to position
, for all . The quadratic interleavers perform well.

Even though they are not as good as S-random interleavers, it
is claimed in [6] that they achieve the average performance of
random interleavers. Due to this characteristic, in the simula-
tions in Section V, in addition to S-random interleavers, we will
compare our proposed interleavers to quadratic interleavers in-
stead of the average of many randomly generated interleavers.

Recently, some other deterministic interleavers have been
proposed. In [9], dithered relative prime (DRP) interleavers are
used. A good minimum distance property can be achieved for
short frame size cases by carefully selecting the parameters
of the interleaving process. In [10], monomial interleavers are
used, which are based on a special permutation polynomial
in the form of over a finite field. This class of interleavers
can also achieve a similar performance as random interleavers.
However, since the permutation polynomials are over a finite
field, the frame size can only be a power of a prime.
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In this paper, we will propose another class of deterministic
interleavers. These interleavers are based on permutation poly-
nomials over the ring of integers modulo , . By carefully
selecting the coefficients of the polynomial, we can achieve
a performance close to, or in some cases, even better than
S-random interleavers.

It has been observed that a subset of error events with input
weight , being a small positive integer, usually dominates
the performance, at least when the frame size is not very short.
The parameter selection of the permutation polynomial is based
on the minimum distance or the first few spectrum lines of this
subset. For small , we present a simple method to find these
error events. This helps to reduce the complexity of searching
for good permutation polynomial-based interleavers given the
component code.

The paper is organized as follows. In Section II, we briefly
review permutation polynomials over . Interleavers based
on permutation polynomials are introduced in Section III. The
minimum distance and the spectrum based analysis are given in
Section IV. Simulation results are shown in Section V, and fi-
nally, we draw our conclusions in Section VI.

II. PERMUTATION POLYNOMIALS OVER

Given an integer , a polynomial

where and are nonnegative integers, is said
to be a permutation polynomial over when permutes

. In this paper, all the summations and mul-
tiplications are modulo unless explicitly stated. We further
define the formal derivative of the polynomial to be a poly-
nomial such that

(1)

For the special case that , the necessary and sufficient
condition for a polynomial to be a permutation polynomial is
shown in [11]. It is repeated in the following theorem.

Theorem 2.1: Let
be a polynomial with integer coefficients. is a permutation
polynomial over the integer ring if and only if 1) is odd,
2) is even, and 3) is even.

For the more general case , where is any prime
number, the necessary and sufficient condition is derived in [12].

Theorem 2.2: is a permutation polynomial over the in-
teger ring if and only if is a permutation polynomial
over and modulo for all integers .

For example, let and . Then
, , and , which im-

plies that is a permutation polynomial over . The
formal derivative of is , which
is a nonzero constant for all in . Thus, Theorem 2.2 is sat-
isfied and is a permutation polynomial over .

It can be easily verified that when , the necessary
and sufficient condition in Theorem 2.2 reduces to the form in

Theorem 2.1. However, since in many of our design examples
we use , we keep Theorem 2.1 for its simplicity.

For general , we also have a necessary and sufficient con-
dition for a polynomial to be a permutation polynomial, which
is summarized in the following theorem.

Theorem 2.3: For any , where ’s are dis-
tinct prime numbers, is a permutation polynomial modulo

if and only if is also a permutation polynomial modulo
, .
Proof: First we prove the necessity.

Let be a permutation polynomial over . For any

So .
Assume that is not a permutation polynomial over .

Then there exist , such that

Then

So a total of numbers are mapped to . This

cannot be true since is a permutation polynomial modulo
and it can map exactly numbers to .

Next, we prove the sufficiency. Let and be coprime.
Let be a permutation polynomial both modulo and

. Assume that is not a permutation polynomial modulo
. Then there exist and such that

and . Define ,
and , . Since

, we have
and . Since is a permutation
polynomial modulo and , we must have

and . By the Chinese Remainder Theorem
[13], this implies that , which contradicts
the assumption. Thus, is also a permutation polynomial
modulo .

Using this theorem, checking whether a polynomial is a per-
mutation polynomial modulo reduces to checking the poly-
nomial modulo each factor of .

For , we can use Theorem 2.1 to check if the polyno-
mial is a permutation polynomial, which is a simple test on the
coefficients. For general , we must use Theorem 2.2, which
cannot be done by simply looking at the coefficients. In the fol-
lowing, we will derive some simple check criteria for some sub-
classes of permutation polynomials.

If we limit the polynomials to be of second degree, we have
the following corollary.

Corollary 2.4: A second degree polynomial of the form
is a permutation polynomial over if and

only if and .
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Proof: When , this corollary is a special case of
Theorem 2.1. So we only need to consider the case that

. In order to prove the corollary, we only need to check the
conditions in Theorem 2.2.

Let be a permutation polynomial over , then from
the second condition in Theorem 2.2, the formal derivative

modulo for all . Let ,
the second condition implies that . Assume

, then is coprime to and permutes
. This implies that there exists a certain such that

, which contradicts the condition. Thus, .
On the other hand, if both and

are satisfied, then can be reduced to modulo
, which is a permutation polynomial. The formal derivative

. The conditions for Theorem 2.2 are satisfied
and is a permutation polynomial over .

Another class of permutation polynomials over can be
“generated” using permutation polynomial over

, where is a prime number. This is summarized in the
following corollary.

Corollary 2.5: If is a permutation polynomial
over for prime , define , where

, then is a permutation
polynomial over .

Proof: Since is a permutation polynomial
over for prime , we must have . Since

, then and
is a permutation polynomial over . The formal derivative

Then . Both of the two
conditions in Theorem 2.2 are satisfied.

To simplify the notations in the paper, we need to introduce
some definitions.

Definition 2.6 (Base): For , we define the
base of to be the vector .

Definition 2.7 (Order of ): For , we define
the order of to be the vector .

With respect to , for any given number , we can write it in
the form , where the ’s are the elements in

and is coprime to for any .

Definition 2.8 (Order of With Respect to ): We
can define the order of (with respect to ) by

.

The elements of any order vectors must be nonnegative. We
also define to be . For example, if

, then and . If
, then and

. If , then and
. In this paper, by default, the orders

of all numbers are with respect to .
Since our computations are modulo , we need to define a

special comparison of orders. First, we define the comparison of

orders in each dimension. Given with base and order ,
for two numbers and , their orders are and , respectively.
Basically, the comparison for the th elements in and is
based on the result of comparison of and modulo .
More precisely, we define if both of them are not
less than . Otherwise, define the ordering of and
by their numerical ordering.

Based on the comparisons of orders in each dimension, we
can define comparisons of orders. We define if

for all . We define if and for at least one
, . Other comparisons like , , and

are similarly defined. Note that by the above definition,
the order is a partial ordered set. does not imply

. We further define strictly less than , denoted by
, to be the case that for all . Strictly greater than

is similarly defined.
We also define some operations on orders. The summation

and subtraction of orders are defined to be element-wise. How-
ever, since orders must be nonnegative, subtraction
is only defined when . Other operations like
and are also defined to be element-wise.

Orders of numbers have some useful properties.

Property 2.9: If , then .

Property 2.10: If divides , let , then .

Property 2.11: Let , then .

The proofs for these properties are simple. Furthermore,
when , if , then . This result is not as
trivial as the previous ones and we will give a simple proof. Let

and . By the definition
of order, and are coprime to all ’s. Since

(2)

and is positive for all . Since is coprime to all
’s, the term

is also coprime to all ’s. Thus, we can observe from (2) that
.

III. PERMUTATION POLYNOMIAL-BASED INTERLEAVERS

An interleaver needs to permute the numbers in
. This is exactly what a permutation

polynomial can do. For example, when , polynomial
satisfies the conditions in Theorem 2.1

and is a permutation polynomial over . If we interleave
to , then the sequence will be

interleaved to .
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Fig. 1. Different interleavers of length 256. (a) Random, (b) S-random,
(c) quadratic, (d) permutation polynomial based, P (x) = 8x + 3x.

In general, if a polynomial is a permutation polynomial
over , then an interleaver based on this permutation polyno-
mial can be defined as

In Fig. 1, plots of some interleavers are shown. In these
plots, the -axis is the input bit position and the -axis is the
output bit position. Comparing random and S-random inter-
leavers (Fig. 1(a) and (b)), it can be observed that the points
in S-random interleaver are distributed more uniformly in the
plane. This property can help to avoid short error events in one
component code to be interleaved to short error events in the
other component code. Fig. 1(c) is for the quadratic interleaver.
It resembles the random interleaver in the way that we can
also observe irregularity in the density of points in the plane.
Fig. 1(d) corresponds to an interleaver generated by the permu-
tation polynomial . The density of points in
the plane is also not uniform. This characteristic is similar to
random and quadratic interleavers. We can also observe that
there are some periodic patterns in the plot. This regularity does
not necessarily imply a bad performance, which can be better
explained by considering the input weight error events.

An input weight error event is defined as an error event with
two information bits in error. Each input weight error event of
a TC corresponds to one input weight error event in each of
the two component codes. We know that in TCs using random
interleavers, input weight error events decide the effective free
distance and further decide the performance of the code in the
error floor region (high signal-to-noise ratio (SNR) [14]. For
permutation polynomial-based interleavers, this type of error
events is also an important factor. An input weight error event
in the first component code can be represented by .
(The pair indicates the locations of the two ’s in the error event.)
These two positions will be interleaved to and

Fig. 2. �(x; 3) for different interleavers of length 256. (a) Random,
(b) S-random, (c) quadratic, (d) permutation polynomial based, P (x) =
8x + 3x.

in the second component code. The distance between and
is denoted by

If we fix , we can plot with respect to . We are interested
in points where and are close to each other. When
we talk about points near , we mean points close to
the line from both above and below (near the top of the plot).

For , the distance ’s for interleavers in Fig. 1
are shown in Fig. 2. Fig. 2(a)–(d) is for random, S-random,
quadratic, and permutation polynomial-based interleavers, re-
spectively. The plots for random and quadratic interleaver are
very similar and look random. At first glance, the plot for the
S-random interleaver is also similar to Fig. 2(a) and (c). But after
a closer look, one can notice that there are no points near the

line. This is because for this S-random interleaver
with , since , for all . For
a permutation polynomial-based interleaver, the is very
regular. All the points are uniformly located along a few equally
separated horizontal lines. Similar to the S-random interleaver,
if the coefficients in are carefully chosen, there are no
points near the line. The remaining problem is how
to select good coefficients. This is discussed in Section IV.

IV. PERMUTATION POLYNOMIALS SEARCH

Interleavers based on different permutation polynomials have
different performances. We are interested in finding the best per-
mutation polynomial for a given component code and a given
frame size. For a fixed frame size , the only variables are the
degrees and the coefficients of the permutation polynomials.

In this paper, we will focus on second-degree polynomials
. The first reason for this selection is

to have the lowest possible complexity. A first-degree polyno-
mial (linear interleavers) is the simplest one
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among all permutation polynomials. However, as shown in [6],
linear interleavers have very bad input weight error event char-
acteristics, causing a high error floor at medium to long frame
size cases. This leaves the second-degree polynomial the next
in the chain. Another reason to consider second-degree poly-
nomials is their relatively easy analysis. This will be shown in
Sections IV-A–C.

Notice that the constant term just corresponds to a cyclic
rotation in the interleaved sequence. It does not appear in the
conditions for to be a permutation polynomial and it does
not affect the performance of the concatenated system if we dis-
regard boundary effects. Therefore, we can simply let it be zero
and consider polynomials of the form .

In this section, we will use the minimum distance (or the first
few spectrum lines) of a subset of error events of the TC as a
criterion to select the coefficients of the polynomials. Namely,
we will only consider some error events with an input weight

. Although these error events do not cover all possible error
events, due to the structure of the permutation polynomial-based
interleavers, these error events have high multiplicity and the
performance of the TC is usually dominated by them, especially
when the frame size is not very short. The benefit of limiting
to this subset is that these error events are relatively easy to be
found and counted. The minimum distance for the limited set is
usually close to the real minimum distance and can be used as
an upper bound. We can also find the true minimum distance or
the first few spectrum lines of the TC using the method in [15].
However, the complexity of doing this is relatively high.

In this paper, we assume that for each of the component con-
volutional codes, a tail-biting trellis [16] is used. The end of
the trellis is directly connected to the start of the trellis and no
flushing bits are used. For tail-biting trellises, a cyclic shift of an
error event in one component code is also an error event. Fur-
thermore, it is possible that an error event starts near the end of
the trellis and wraps over to the head of the trellis. Due to this
phenomenon, we say that the error events are modulo .

The tail-biting assumption is used to simplify our analysis.
By using this assumption, we can ignore any boundary effects
due to termination, which helps in finding and counting the error
events we are interested in. Unfortunately, since we are using
systematic recursive convolutional codes as component codes,
a tail-biting trellis does not always exist [17]. Some form of
termination has to be used. Some modulo error events will
be broken by termination and the termination itself may intro-
duce some extra error events. If we still find and count the error
events modulo , some error will be introduced. However, the
proportion of the modulo error events broken by termina-
tion is very small and the low-weight error events introduced
by the termination are usually of low multiplicities. Therefore,
when the frame size is not very short, the modulo error events
dominate the performance. We can still count the error events
modulo and ignore the error introduced in the weight spec-
trum estimation.

A. Input Weight Error Events

Long random interleavers can be approximated by uniform
interleavers, which is a probabilistic device that interleaves a
given input position to any possible output positions with an

Fig. 3. Input weight 2m error events.

equal probability [14]. Using the uniform interleaver model,
for very high-SNR region, the decoding performance has been
shown to be dominated by input weight error events. The min-
imum distance associated with input weight error events is
called effective free distance [2] and has been used as a de-
sign criterion to select component codes to have a good error
floor performance.

Permutation polynomial-based interleavers are not random.
In some sense, they cannot be well approximated by a uniform
interleaver. So considering the effective free distance may not
be enough. For example, for a linear permutation polynomial

, by carefully selecting the parameter , the effec-
tive free distance can be designed to be very large. However, as
analyzed in [6], for a certain type of input weight error events,
the corresponding Hamming distance is small. Furthermore, the
number of these input weight error events is proportional to
the length of the frame, and cannot be controlled by selecting .
At least for a medium to high channel SNR, the performance is
dominated by these input weight error events.

We can think of the permutation polynomial-based in-
terleavers as generalizations to the linear interleavers. It is
observed that the most frequent error events are of input weight

where , just like in the linear case. However,
the number of these error events can be controlled by selecting
the parameters and . Given the component codes, we can
find parameters pairs with a good performance.

A typical input weight error event is shown in Fig. 3.
This error event is composed of input weight error events
(represented by dashed line segments) in each component code
and these error events are interconnected via the interleaver
(solid lines). In the figure, the th input weight error event in
the first component code begins at and has length .
The th input weight error event in the second component
code has length . Each input weight error event can
be represented by a pair of integers indicating the starting
and ending positions in the corresponding trellis. Since we
use the same systematic recursive convolutional code for both
component codes, all ’s and ’s are multiples of the cycle
length of the convolutional code. Here, the cycle length
is defined as the cycle of the output of the encoder when the
input sequence is . For example, for the recursive
convolutional code with generating polynomial (from
now on, we will use the simple octal notation, for this
example), with the previously mentioned input, the output
sequence is . There is a cycle of

in the output and the cycle length . The cycle
length equals the length of the shortest input weight error
event minus . We define error pattern to be the length
vector .
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For this input weight error event, we have

(3.1)

(3.2)

(3.3)
...

(3. )

(3. )

(3. )

For such an input weight error event to be formed, all these
equations need to be satisfied. There are a total of vari-

ables in these equations. Among these variables, the ’s
take value from to and both ’s and ’s are multiples
of the cycle length . We will only consider ’s and ’s to be
small multiples of since large values are associated with large
Hamming distances.

To simplify the process of finding the error event, we will
convert (3) to a form that is easier to analyze. This is done by
computing . Using (3) and after some
manipulations, we have

(4)

or simply

(5)

Of course, (5) by itself is not a necessary and sufficient condition
for such an input weight error event to appear. It needs to
be combined with any out of equations in (3). This set
of equations will be used in the rest of the paper to check for an
input weight error event.

Given an error pattern, if the first-order error events do
not overlap, the Hamming distance of the error event can be
uniquely decided. This can be better explained by an example.
Assume the component code is the recursive code. The
cycle length is . Since all ’s and ’s are multiples of

, they are in the common form of . Let the input be .
Then the output is

(6)

which is the summation of shifted versions of the output se-
quence with an input . The weight of the output sequence
of the input is . (It does not include the ’s at the

two ends). Then the weight of the output with the input
is . The total output weight for the error event is

(7)

which contains the weight in both recursive component codes

( or ) and the weight of the sys-
tematic bits . For other component codes, only the term
is different.

When some of the first-order error events overlap, the cor-
responding Hamming distance is smaller than computed using
(7) and can only be computed when all , , and are known.
However, when is small, the number of such error events is
small and can be ignored for the same reason that we ignore the
boundary effect. In the following part of the paper, we will just
use (7) to compute the Hamming distance of an error pattern.

B. Search for Good Interleavers Using Effective Free Distance

Although for deterministic interleavers, large does not
guarantee a good performance, small is usually associated
with a bad performance. We can use as a simple criterion to
rule out bad permutation polynomials.

In this subsection, we are interested in constructing inter-
leavers that do not map a short input weight error event in
one component code to another short input weight error event
in the other component code.

For random interleavers and quadratic interleavers, we have
no control over the input weight error events. We can at best
state that the probability for such error events to appear goes to
zero as the interleaver size goes to infinity. For S-random inter-
leavers, by definition, input weight error events with length
less than in both component codes can be avoided. Typically,
an S-random interleaver with can be found with
reasonable complexity [2].

When , an S-random interleaver will map to
where . But for a given component code, there

are input weight error events only for some values of , namely,
those that are multiples of the cycle length. Thus, in this sense,
some of the ability of S-random interleaver is wasted. Using a
permutation polynomial-based interleaver, we can select coeffi-
cients such that we only avoid input weight error events tai-
lored for a given component code. In this way, we may break
even larger input weight error events.

Let us restrict ourselves to polynomials of the form
. By Corollary 2.4, is a permutation

polynomial if none of the elements in vector (order of ) is
zero, and the vector (order of ) is an all-zero vector.

Let be the length of the input weight error event in
the first component code. Then must be a multiple of the cycle
length . Let the order of be . Then the length of input weight

error event in the other component code minus is

(8)

The coefficient of is , which, by Property 2.9, has
order . For , the first
term of (8) is where . Each of
these values is taken times. If we plot this term with respect
to , we have horizontal lines. The last two terms in (8)
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are not related to . So they provide an offset to the horizontal
lines. This justifies the plot of in the form of Fig. 2(d).

To avoid short input weight error events, when is a small
multiple of , we prefer all that are also multiple of
to be far away from zero. In order to achieve this, we require
the vector to be relatively large, so that there are fewer hor-
izontal lines in the plot and we will be able to select
the coefficients to move the far away from zero. Since

is relatively large, we are only interested in the first line of
either above or below zero. Their distances to zero can

be represented by

(9)

Given , , and , we define , where
and are multiples of , and use it as a criterion to select

good interleavers. For a given component code, can be com-
puted from . However, in the search for permutation poly-
nomial-based interleaver based on comparing effective free dis-
tances, the cycle length is the only information we need to know
about the component code.

Before doing a search for good and , it is useful to limit
their ranges. This can be achieved by using the following two
lemmas.

Lemma 4.1: For input weight error event analysis, if we
write as , we can assume .

Proof: From the assumption, is coprime to . By (9),
for permutation polynomial , (9) becomes

For another permutation polynomial , (9)
becomes

Compute

(10)

If is a factor of , since is coprime to , is odd and
is even. Then the right-hand side of (10) has an order

at least . If is not a factor of , the right-hand
side of (10) has an order at least and the computation
is modulo . In both these cases

This implies that and have the same input weight
error events, only their locations are different. From this point

of view, these two polynomials are equivalent.

Lemma 4.2: For input weight error event analysis, given
, we only need to consider such that .

Proof: We will use the result of Lemma 4.1 and let
.

Let . Then can be written as
. We have

(11)

which implies that .

TABLE I
COMPARISON OF L FOR b = 16 WITH DIFFERENT a.

TC WITH 5=7 OR 7=5 COMPONENT CODE

When is not a factor of , the above is sufficient for the
proof. When is a factor of , from the previous proof, without
loss of generality, we can assume . Let

. Then

(12)

and . This finishes our proof.

For a given and a fixed , according to the previous two
lemmas, we can calculate and select good parameters.
For example, for the code, the cycle length is . For
the code, the cycle length is . For , ,
and . If we fix , which corresponds to ,
the search results are shown in Table I.

For a frame size of , simulation results for TCs with
component code and component code are shown in Figs. 4
and 5, respectively. The orderings of the performance are the
same as given by the criterion.

Once is fixed, it seems that the effective free distance is
a simple way to select good and for the permutation poly-
nomial. However, the effective free distance alone does not pro-
vide enough information to select . For example, it can be seen
from (9) that the larger the , the better the opportunity to se-
lect a good to achieve larger effective free distances. But from
computer simulations, it can be observed that the best perfor-
mance of the permutation polynomial increases with up to a
certain degree. Then it starts to decrease. In order to explain this
and find more accurate ways to select the parameters, we need
to investigate higher input weight error events.

C. Higher Input Weight Error Events

We know that input weight error events are important
for permutation polynomial-based interleavers. In order to find
the minimum distance of this subset of error events, we need
to check these error events for small . (Large is usually
associated with large Hamming distance as shown in (7).)

As mentioned in the previous sections, for an input weight
error event, among the variables ( , , and for

) that describe the error event, of them are in-
dependent. One way to find the error event is first to fix the error
pattern and then enumerate . Given
the error pattern and , all other can be computed using any

out of equations in (3). Finally, these values can
be applied to the unused equation in (3) or (4) to verify if they
form a valid error event.

Since permutation polynomial-based interleavers are highly
structured, we show next that it is not necessary to enumerate
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Fig. 4. TC with 5=7 component code. Frame size 1024. Second degree permutation polynomial-based interleaver (fix b = 16, different a).

Fig. 5. TC with 7=5 component code. Frame size 1024. Second degree permutation polynomial-based interleaver (fix b = 16, different a).

all from to . On the contrary, checking the range
from to is enough. Assume we have an error
event as shown in Fig. 3. Each equation in (3) has the form

(13)

In the first component code, if we cyclicly shift all endpoints
of the first-order error events by any number , we still have a
valid input weight error event under the tail-biting assump-
tion. On the other side of the interleaver, after the cyclic shift,
(13) becomes

(14)

When

(15)

and the interleaved points in the second component code also
form a valid input weight error event. The smallest that
satisfies is . To summarize,
the input weight error events have a cyclic structure. If we
cyclicly shift all endpoints of the error event in the first
component code by multiples of , we will still have
a valid input weight error event for the entire TC. Thus,
in searching for error events, it is sufficient to enumerate all
from to . When is small, this method
is efficient.
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For large frame sizes, is usually large, making
it time-consuming to enumerate . It is interesting to directly
solve for given the error pattern . In
order to do this, we prefer to write the constraints of the input
weight error event with the given error pattern into a single
equation.

In Section IV-A, an input weight error event is defined by
(5) and equations in (3). Since we fix and , there are
nonlinear equations and variables . How-
ever, in order to solve directly, we would like to transform
these equations to a single equation with only one variable,

. In other words, we need to apply equations in (3) to
(5) and cancel , . In order to do this, we need to
be able to solve the following problem: given , , , and , if

, write as a function of .
Before proceeding, we need some more definitions. Given a

permutation polynomial and a fixed , define
a sequence such that

... (16)

Then recursively define ,
, , etc. Note that all and
are a function of , , and .

We have the following theorem.

Theorem 4.3: Given , , and , has the same
order for all . If the order of is denoted as , then

and for , which
implies that

for all

The proof for this theorem is given in the Appendix.
Since the order of is strictly increasing with respect to ,

it will eventually be larger than . If is the largest number
such that , then . By the def-
inition of , is a constant for all ’s. This result
is summarized in the following corollary.

Corollary 4.4: For given , , and , if is the largest
number such that , then is a constant
for all .

Note that is a function of , , , and . When the param-
eters are not clear from the context, we will explicitly write
as a function, such as .

If the in Corollary 4.4 is found, for all , .
Furthermore, if for all , the is known, all

can be computed for all using the definitions of .
For example, , ,
etc. For the simplicity of the expressions, we will use to
represent when the context is clear. When needs to be
specified, we will use the notation .

Now we have the tool to find the relationship between and
when we know . This is summarized in the

following theorem.

Theorem 4.5: For given , , and , if ,
then

(17)

We provide a sketch for a proof of this theorem. For the pa-
rameters given, we can compute all for .
From Corollary 4.4, we know is a constant. Then we can
recursively compute , , etc., using their def-
initions. All these computations are a summation of a series.
Finally, we can compute for all . Then by the definition
of , .

If we define when , then (17) can be written
as

(18)

Since is always an integer, will always be integer
valued. However, it may not be a polynomial of . This is be-
cause may not be an integer. Since we do not know much
about polynomials with fractional coefficients, it is preferred to
somehow transform to an integer valued polynomial.

Given , define . can be written as

Each term of is in the form of . Since ,

is also an integer and it is either equal to or coprime to .

The order of is always a zero vector. Then the product
is also an integer and it is either or is coprime to . If we
multiply by , then we have . Since

it has a factor of and is an integer and
its order is . Next consider for .
Since

(19)

As we have shown previously, both

and

are integers. Then for is also an integer. Its
order is still .
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Using this result, it can be easily seen that is a
polynomial of with integer coefficients. This property will be
used in the following parts.

1) Finding the Error Event by Solving Equations: Using
Theorem 4.5, given an input weight error pattern

, searching for error events
with the error pattern can be transformed into solving a poly-
nomial equation.

An error event can be formed if (4) holds. Applying the result
of Theorem 4.5 to the first equations in (3), we have

...

(20)

Applying (20) in (4), in general, we have a polynomial equation
of . For a general polynomial equation, the complexity to find
the solutions or even find the number of solutions is high [13].
However, we have simpler methods to deal with polynomials
associated with input weight error events for small . In
this subsection, we will only consider and .

The input weight error pattern is the simplest case. Here
(20) is not used and (4) reduces to

(21)

This is a linear polynomial of in the form

(22)

We know that (22) has a solution if and only if . If
this condition is satisfied, we can divide (22) by . The result
is a first-degree permutation polynomial modulo and
there is a unique solution. If is the solution modulo ,
all for any are solutions to (22) modulo .
Then, for (22), there are exactly solutions. In most cases,
we are only interested in the Hamming distance of the error
event and the multiplicity for such a Hamming distance. It is
not necessary to find out the exact location of the error event.
So instead of solving (22), what we need to do is just check
if . If true, then we add the multiplicity of to
the corresponding spectrum line. The Hamming distance of the
error event is directly decided by its error pattern using (7).

Equation (4) is more complex for the cases. How-
ever, we can show that, under some mild conditions, at least for

and , (4) can still be transformed to a permuta-
tion polynomial when (20) is applied. For larger , we conjec-
ture that the same is also true. Here, we do not consider larger

cases in our minimum distance computation for they usually
correspond to larger Hamming distances. We will satisfy our-
selves by proving the cases for input weights and .

For the input weight case, using (20), (4) becomes

(23)

Collecting terms with respect to , it becomes

(24)

This is a polynomial of with possibly fractional coefficients.
For , we can find the in Corollary 4.4. Then multiply (24)
by . From the analysis in the previous part, the result is a
polynomial with integer coefficients in the form of

(25)

where

(26)

and are integers and is a polynomial of . Further-
more, since is either or is coprime to , multiplying by

will not change the solutions for (24).
Now, let us check the order of terms in (26). We have shown

that the order of is for . If
we expand the third term of to a polynomial of , all the
coefficients should have an order at least . If

, . Since all the elements in
are positive, is strictly less than the order of the orders of all
terms in . By Corollary 2.5, the polynomial of formed
by is a permutation polynomial modulo .

In order to apply Corollary 2.5 to case, we require that

(27)

Since we are interested in small Hamming distance error events,
and are usually small, which implies that is also

small. The above condition is usually satisfied.
Given an error pattern , first we need to verify

that (27) holds. (In our search, we have never observed a case
when this does not hold). Then similar to the input weight
case, we only need to check if for the error pattern.
If it is true, error events with this error pattern exist. If we
are only interested in the spectrum, we do not need to solve the
equation and only and need to be computed for
the error pattern.

For the input weight error event, we can use the same pro-
cedure as for the input weight error event analysis. Equation
(4) will be finally reduced to the same form as in (25). Similar
to the input weight case, a factor needs to be multiplied to
the equation to transform it into a polynomial with integer co-
efficients. Here . Then in (25)

and the coefficients of have orders at least equal to
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The condition to apply Corollary 2.5 is that

(28)

This is usually the case when ’s are small. Then

is a permutation polynomial modulo . As in the input
weight case, we can compare and to see if error events
with such an error pattern exist and find the multiplicities of the
error events. If one is only interested in the spectrum, there is no
need to solve the equation and only , , ,

need to be computed for the given error pattern.
2) Upper Bounds on : From input weight error event

analysis, we have the result that, given , the larger the , the
larger the flexibility we have to choose good interleavers and the
better the performance. But from simulations, we can observe
that the best possible performance for permutation polynomial
interleaver grows with up to a certain value. Then the perfor-
mance degrades again. We can use Theorem 4.5 to find some
simple upper bounds for .

a) Upper bound on from input weight error events:
We start from (25). When , assuming condition (27)
holds, then when , if a solution of exists for (25),
an error event exists for the given error pattern starting at the .

One special case is that, for some error pattern, every from
to is a solution. This will lead to a spectrum line with

high multiplicity, which may dominate the performance even if
it is not the minimum distance. Let us consider and

. Then and in (26) become
and , respectively. It is easy to see that

. All coefficients in have a larger order than . If
(which contains the case that some elements in are

larger than the corresponding elements in numerically), then
(25) becomes an all-zero polynomial. Trivially, every possible

is a solution to the polynomial.
This special case places an upper bound for such that we

require that has at least one element larger than the corre-
sponding element in .

An interesting special case exceeding this upper bound is
, which implies that . The permutation

polynomial reduces to a linear interleaver. Now the error event
can be described as

(29)

It is easy to see that when and , (29) trivially
holds. Obviously, every is a solution. This is exactly why
a linear interleaver has many input weight error events and
cannot work well at medium to long frame sizes.

b) Upper bound on from input weight error events:
For the input weight error event case, we also start from (25).
Assuming the condition (28) holds, then

(30)

(31)

where , and the coefficients of
have higher order than . We are still interested in the

error pattern that every is a solution.
We discovered that the error patterns of the form

are critical. (Since we require
and to avoid some double counting, many other
critical error patterns are equivalent to this one). The error
pattern that corresponds to the smallest Hamming distance is
when and .

For this error pattern, we have .
Then and reduce to

(32)

(33)

In order to proceed, we need two lemmas.

Lemma 4.6: has order .
Proof: Let and , where

. By the definition of , we know
and . Define , then . Since

, we have

(34)

Rewriting it as a polynomial of , we have

(35)

which is a permutation polynomial of and the solution for
has the same order as the term . The order of , or ,
is known by Theorem 4.3 to be . Thus, has an order

.

Lemma 4.7: has an order at least
.

Proof: Assume we have , , , and such that

(36)

(37)

(38)

(39)

Then and . Define
and . Then

. Applying this in (37) and (39), we have

(40)

This is a permutation polynomial of . From the previous
lemma, we know has an order . Then in the
constant term in (40), both and have an order

and the other terms have higher orders. So the
order of is at least . Stronger results may exist
but this is sufficient for our current purpose.

Now we return to (32). The order of and can be found
using the above two lemmas. is at least and

is at least . When each element in is not
larger than the corresponding element in , both

and are zero modulo and all ’s are solutions to the
equation. This can serve as another upper bound for .

This upper bound in is not stringent. If the error pattern
corresponds to a large enough Hamming distance, then even
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though the multiplicity is high, the effect in the performance
can be low. As shown in (7), the Hamming distance of the error
event is . For example, for the recursive code,

. The Hamming distance is . For the recursive code,
, the Hamming distance is and for the recursive

code, and the Hamming distance is . Sometimes, for
a code with a large cycle length, this upper bound on can be
relaxed.

3) Range of and to Search: In order to search for good
second-degree permutation polynomials for the interleaver, we
need to select the range of and to be searched. It is shown in
Lemmas 4.1 and 4.2 that, for input weight error events, if
is fixed, we can pick and consider from to .
Unfortunately, for general error events, we only have a similar
result for the range of .

Theorem 4.8: For second-degree permutation polynomial-
based interleavers, we only need to consider in the range be-
tween and .

Proof: Consider and
. Assume we have an error event of input weight

for the code using based interleaver. The positions of
the errors are at in the first component code
and in the second component code.
Consider the code based on . Assume there are errors at

in the first component code. Then

is a shift of by . Thus, the same error
event can be found in a code using both interleavers. The only
difference is that the error positions are cyclicly shifted to the
left by in the first component code and by in the second
component code. The spectrums of the two codes are the same.

For input weight error events, in general, we have to search
all and all for given . This is tedious. However,
it can be shown that under some conditions, we can still use the
limited ranges of given in Lemma 4.1. More precisely, we only
need to consider . This is equivalent to showing
that, under some conditions, if we replace by , the same error
pattern exists in both cases with the same multiplicity.

If we replace by in (25), it becomes

(41)

Since ’s are functions of and , in and , will
be used instead of . However, and have the
same order.

Showing that the same error pattern exists in both cases, it is
equivalent to showing that (25) and (41) have the same number
of solutions for the error pattern. This is further equivalent to
show that and . One sufficient
condition for this to happen is both

or (42)

(43)

and

or (44)

(45)

TABLE II
BEST PERMUTATION POLYNOMIALS FOR DIFFERENT

COMPONENT CODES. FRAME SIZE 256

The inequalities (43) and (45) are used to guarantee that the or-
ders of and are dominated by and , respec-
tively, when and . In the following analysis, we
assume that these conditions are satisfied.

When , applying this to (26), we have

and

Then . If ,
. If (45) holds, .

In both these cases, and no solution exists for (25).
The same result can be derived for (41).

When and (43) holds, .
Let us compute

(46)

The two terms in (46) have orders at least
and , respectively. They are both higher than
the . Since the difference between and has higher order
than , . Thus, we proved that can
be limited to the ranges in Lemma 4.1 when conditions in (43)
and (45) hold.

For input weight error patterns, a similar sufficient condi-
tion can be derived. However, the form of the sufficient condi-
tion becomes very complex and will therefore be omitted.

Although not all input weight and error patterns satisfy
these sufficient conditions, it seems that most of the error pat-
terns that correspond to the first few spectrum lines do. Further-
more, in our permutation polynomial search, it can be observed
that extending to more general and usually cannot generate
significantly better permutation polynomials. Therefore, in our
search for the polynomials using input weight error events
spectrum, we will only consider and .

V. RESULTS

Given the frame size and the component code, our search
for good permutation polynomial-based interleavers is basically
an enumeration of and for the polynomial. First we need to
enumerate . From the analysis in Section IV, should be
relatively large but bounded by some constraints due to some
special input weight and error events. Once we fix , we
let and enumerate all the is in the range specified in
Theorem 4.8. In this section, we will present some examples for
the polynomial search for different component codes.
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Fig. 6. TC with 7=5 code. Frame size 256.

Fig. 7. TC with 5=7 code. Frame size 256.

We consider six different systematic recursive component
codes shown in the first column of Table II. Their corresponding
cycle lengths are from to , respectively. In this section, we
will only consider frame sizes . Then and all
the orders are scalars.

For the frame size , the best permutation poly-
nomials found for the TC using these component codes are
shown in Table II. The corresponding minimum distance of
the input weight error events and its multiplicity are also
shown. Computer simulation results comparing with S-random
interleaver and quadratic interleaver are shown in Figs. 6–11.

In all these simulations, the permutation polynomial-based
interleavers perform better than quadratic interleavers, which
have a similar performance as the average of random inter-
leavers. Comparing to S-random interleaver, the permutation
polynomial-based interleavers also have a better performance
for both bit-error rate and frame-error rate.

We also find the best permutation polynomial-based inter-
leavers for TC with recursive component codes at frame
sizes and . They are based on polynomials

and , respectively. The simu-
lation results are shown in Figs. 12 and 13. For very long frame



114 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 1, JANUARY 2005

Fig. 8. TC with 37=21 code. Frame size 256.

Fig. 9. TC with 21=37 code. Frame size 256.

sizes, the performance of permutation polynomial-based inter-
leavers are not as good as the S-random interleavers but much
better than quadratic interleavers.

VI. CONCLUSION

In this paper, we introduced permutation polynomial-based
interleavers for TCs. This is a class of deterministic interleavers,
and the interleaving (de-interleaving) can be done using a simple
arithmetic computation instead of a table lookup. Given the pa-
rameters of the generator polynomial for the interleaver, we can
use polynomial solving to find the minimum distance (or the

first few spectrum lines) of an important subset of error events,
which can be used to well approximate the real minimum dis-
tance. Based on the approximated minimum distance, a limited
search for good interleavers has been performed. The new in-
terleaver is compared with the S-random interleaver and the
quadratic interleaver. For short frame sizes, good interleavers
that outperform the S-random interleavers have been found. For
long frame sizes, the permutation polynomial-based interleavers
have a performance close to the S-random interleavers. The new
interleavers outperform quadratic interleavers (which are known
to have a similar performance as random interleavers) for all
frame sizes.
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Fig. 10. TC with 37=25 code. Frame size 256.

Fig. 11. TC with 23=35 code. Frame size 256.

APPENDIX

PROOF OF THEOREM 4.3

In this appendix, we prove Theorem 4.3. Induction is exten-
sively used in the proof.

Theorem 4.3 claims that, for fixed , , and

1) has the same order for all ,
2) , and
3)

for (47)

which implies

for (48)

These can be proved by using induction on .
As the first step of the induction, we need to show that

has an order and has an order . By
definition
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Fig. 12. TC with 5=7 code. Frame size 1024.

Fig. 13. TC with 5=7 code. Frame size 16384.

(49)

we have

(50)

Applying this to , we
have

(51)

which is a permutation polynomial of and has the
same order as . Since and

is a permutation polynomial, the order of is .

Then by (51), the order of is . From the
definition of , we have

(52)

As has an order and has an order ,
which is strictly larger than , must also have order .
By alternately using (51) and (52), we can show that all
have an order and all have an order .

Next, we need to find the order of using the order of
.

Starting from (51), we can define
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and using , ,
, we can inductively show that

has the form of

(53)

where is a term that contains , but
not , and ’s are integers defined for and

. For convenience, for all other and , we define
.

We can verify that (51) satisfies (53) with .
For , we have

(54)

where , and

for (55)

It can be verified that .

The term in (54) satisfies

(56)

It contains , but not . Thus, we proved
that (53) is true for all .

By regarding (53) as a second-degree polynomial of ,
it is easy to see that all are permutation polynomials and

has the same order as the term .
Before finding the orders of all ’s, we need to derive a

compact expression for .
From (51), . We can use (56) to inductively

compute . For example

(57)

... (58)

It can be observed that

(59)

where forms a matrix. If we define
, (59) can be written in

a matrix form

(60)

Inductively, we can show that when

and for other and , if we define and if

(61)

It can be verified that and satisfy

(59). Applying (59) in (56)

(62)
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otherwise.

(64)

where ’s are matrices for . Define to
be a vector such that

Then

(63)

More precisely, see (64) at the top of the page. It is straight-
forward to check that (61) satisfies (64). So we proved that

satisfies (59).
Now we can find the order of all ’s. Note that at this

step of the induction, the orders of
are known and satisfy (47) and (48).

We claim that the order of is decided by the first term
of (59), . From the previous step in the induction,
we know

Then the first term of (59) has an order
. It is enough to show that all other terms have larger order.

Consider the th column of , the first nonzero element is
. For

is an integer. This implies that is a multiple of and
. Also, since and , we know

the order of and by the previous steps of the induction
and for . Combining these two results,
we can see that in (59) the order of term
is strictly larger than the order of for

. Then, in order to find the order of , we only
need to consider the first term in (59) and terms in the form

for . By (48), the first
term has an order

The term in the form of has an order

which is strictly larger than the order of the first term. Thus, the
order of the first term in (59) is the order of , which is

(65)

This concludes our proof.
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