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istance Spectrum Interpretation of Turbo Codes 
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Abstract- The performance of Turbo codes is addressed by 
examining the code's distance spectrum. The "error floor" that 
occurs at moderate signal-to-noise ratios is shown to be a conse- 
quence of the relatively low free distance of the code. It is also 
shown that the "error floor" can be lowered by increasing the size 
of the interleaver without changing the free distance of the code. 
Alternatively, the free distance of the code may be increased by 
using primitive feedback polynomials. The excellent performance 
of Turbo codes at low signal-to-noise ratios is explained in terms 
of the distance spectrum. The interleaver in the Turbo encoder 
is shown to reduce the number of low-weight codewords through 
a process called "spectral thinning." This thinned distance spec- 
trum results in the free distance asymptote being the dominant 
performance parameter for low and moderate signal-to-noise 
ratios. 

Index Terms-Turbo codes, convolutional codes, distance spec- 
trum. 

I. INTRODUCTION 
HE DISCOVERY of Turbo codes and the near-capacity 
performance reported in [l]  has stimulated a flurry of 

research efforts to fully understand this new coding scheme 
[2]-[43]. Initially greeted with some skepticism, the original 
results were independently reproduced by several researchers 
[6], [7], [lo]-[13], and [30]. Subsequently, recent research on 
Turbo codes has focused on understanding the reasons for their 
outstanding performance [SI, [9], [161 [221-[241, [281. 

At this point, there are two fundamental questions regard- 
ing Turbo codes. First, does the iterative decoding scheme 
presented in [I] always converge to the optimum solution? 
Second, assuming optimum or near-optimum decoding, why 
do the Turbo codes perform so well? In this paper, we address 
the second issue in a semitutorial manner by examining the 
distance spectrum of Turbo codes. In doing so, we will draw 
on the work of several research groups involved with Turbo 
codes [6]-[9], [12]-[14], [18]-[24]. Due to the intense interest 
in this subject, many results involving Turbo codes have 
been developed independently by others and the reader is 
encouraged to peruse the references for an alternative point 
of view. In particular, the recent papers by Benedetto and 
Montorsi [8], [9] were the first to offer a comprehensive picture 
of Turbo codes. 
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Fig. 1. 
MFD convolutional code 

Simulatlon results for a(37,21,65536) Turbo code and a (2,1,14) 

The simulated performance of a rate 1/2 Turbo code with 
the same parameters as in [l] is shown in Fig. 1 along with 
simulation results for a rate R = 1/2, memory U = 14, 
convolutional code. The comparison f these simulation results 
raises two issues regarding the performance of Turbo codes. 
First, what is it that allows Turbo codes to achieve a bit 
error rate (BER) of at a signal-to-noise ratio (SNR) of 
Eb/No = 0.7 dB, which is only 0.7 dB from the Shannon 
limit? Second, what causes the "error floor" [lo], [13], that 
is, the flattening of the performance curve, for moderate to 
high SNR's? Here, we endeavor to explain the performance 
of Turbo codes, and thus address these two issues, in terms of 
the code's distance spectrum. We do not attempt to address the 
many interesting questions concerning the iterative decoding 
method (see, e.g., [15], [26], [42], and [43]), i.e., we assume 
that an optimum or near-optimum decoder is available. 

In order to explain their performance in terms of the free 
distance and the distance spectrum, we will examine the 
codeword structure of Turbo codes in detail. Here, the free 
distance is defined to be the minimum Hamming weight of 
all possible codewords and the error coefficient is the total 
number, or multiplicity, of free-distance codewords. The goal 
is to use specific examples to elucidate the key structural 
properties that result in the near-capacity performance of Turbo 
codes at BER's around lo-'. As will be seen, this effort leads 
to an explanation that applies to Turbo codes and also lends 
insight into designing codes in general. Throughout the paper, 
Turbo codes are compared to a maximum free-distance, rate 
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Fig. 2. 
encoders (ho (D)  = 1 + D 2 , h l ( D )  = D )  and without punctunng. 

Block diagram of a Turbo encoder with two identical constituent 

R = 1/2, memory L/ = 14, i.e., a (2, I, 14), convolutional code 
to emphasize the differences in performance and structure. 
Techniques for analyzing the performance of Turbo codes 
using Iransfer functions and related methods may be found 
in [6], [9], and [221. 

The paper begins with a detailed examination of the struc- 
ture of codewords in a Turbo code in Section 11. This leads to 
the calculation of the free distance of a particular Turbo code 
and an explanation for the “error floor” in its performance 
curve. In Section 111, the distance spectrum of “average” Turbo 
codes is considered and a theory called spectral thinning is 
introduced and used to explain the performance of Turbo codes 
at low SNR’s. The idea of spectral thinning is then formalized 
in Section IV through the use of random interleaving. Finally, 
some conclusions are drawn concerning the distance spectrum 
of Turbo codes and the consequences of this on the design of 
codes in general. 

11. THE FREE DISTANCE OF TURBO CODES 

constituent encoders have parity-check polynomials ho and 
hl and whose interleaver IS of length N as an (ho ,h l ,N)  
Turbo code. 

For example, consider the Turbo encoder shown in Fig. 2, 
where each constituent encoder is a (2 ,1,2)  encoder with 
parity-check polynomials ho(D) = 1 + 0’ and h l ( 0 )  = D ,  
where D is the delay operator [44]. For purposes of illustration, 
assume a pseudorandom interleaver of size N = 16 bits which 
generates a (1 + D2,  D ,  16) Turbo code. The interleaver is 
realized as a 4 x 4 matrix which is filled sequentially, row 
by row, with the input bits 5,. Once the interleaver has been 
filled, the input sequence to the second encoder, x:, is obtained 
by reading the interleaver in a pseudorandom manner until 
each bit has been read once and only once. The pseudorandom 
nature of the interleaver in this example is represented by a 
permutation 

II16 = {6,14,4,7,11,8,3,5,9,13,0,2,12,1,10,15} 

which implies x& = Z 1 5 , Z i  = xlo, and so on. 
If the input sequence is 

x = (x1.5. ..XI)} = {0,1,0,1,0,0,0,0,0,0,0,1,0,0,0,1)  

and the interleaver is represented by the permutation lII16, then 
the input sequence to the second encoder is 

d = rI1fj(x) = (0, 1, 1, 0, 0, 0, 0, 0, 0, 0,1,0,1,0,0,0}.  

The trellis diagrams for both constituent encoders with these 
inputs are shown in Fig. 3.  The corresponding unpunctured 
panty sequences are 

Y1 = { O , O ,  b o ,  0, 0,0, 0,0,  0,0,  0 ,1 ,0 ,1 ,0> 

In order to find the free distance of a Turbo code, it is 
necessary to understand the basic structure of the encoder and 
the resulting codewords. A typical Turbo encoder consists of 
the parallel CO~CZitenatiOn of two or more, usually identical, 
rate 1/2 encoders, realized in systematic feedback form, and 
an interleaver. This encoder structure is called a parallel 

and 

y2 -- {1,1,0,0,0.  0 ,0 ,0 ,0 ,0,0,  1,0,0,0,0}. 

The resulting codeword has Hamming weight 

d = ~ ( x )  + w(yl) + w(y2) = 4 + 3 + 3 = 10 
concatenation because the two encoders operate on the same 
set of input bits, rather than one encoding the output of 
the other. A block diagram of a Turbo encoder with two 
constituent convolutional encoders is shown in Fig. 2. For the 
remainder of the paper, only Turbo encoders with two identical 
constituent convolutional encoders are considered, though the 
conclusions are easily extended to the general case. 

The interleaver is used to permute the input bits such that 
the two encoders are operating on the same set of input bits, 
but different input sequences. Thus the first encoder receives 
the input bit xx and produces the output pair (xi,y:) while 
the second encoder receives the input bit x: and produces the 
output pair (xi, yz). The input bits are grouped into finite- 
length sequences whose length N equals the size of the 
interleaver. Since both the encoders are systematic and operate 
on the same set of input bits, it is only necessary to transmit the 
input bits once and the overall code has rate 1/3. In order to 
increase the overall rate of the code to l /2 ,  the two parity 
sequences {yl} and (y2} can be punctured by alternately 
deleting y1 and y2. We will refer to a Turbo code whose 

without puncturing, when: ~ ( x )  is the Hamming weight of 
the sequence x. If the code is punctured beginning with g:, 
then the resulting codeword has weight d = 4 + 3 + 2 = 9. 
If, on the other hand, the puncturing begins with y:, then the 
punctured codeword has Hamming weight 4 + 1 = 5. 

Finding the free distance of a Turbo code is complicated 
by the fact that Turbo encoders are time-varying due to the 
interleaver. That is, if 2 =: Dz,  then 9’ = Dy’, but 2’ # Ox’ 
(with high probability) and y2 # Dy2. (Here, we only consider 
delays of a finite length sequence z for which no ones are lost.) 
Continuing the example, if 2 = D z ,  then 

2 = rI&) = {O,O,  0 ,0 ,0 ,0 ,0 ,1,0,1,0,0,0,1,0,  l} 

y’ = {0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0}.  

and 

Thus time-shifting the input bits results in codewords that 
differ in both the bit positions of the ones and overall Ham- 
ming weight. The variation in the weights of codewords 
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Flg. 3.  Trellis diagrams for a codeword in the (1 + D2, D ,  16) Turbo code. 

corresponding to time-shifted input sequences is magnified by 
puncturing. 

This simple example illustrates several important points 
concerning the structure of the codewords. First, because the 
pseudorandom interleaver permutes the input bits, the two 
input sequences z and x’ are almost always different, though 
of the same weight, and the two encoders will (with high 
probability) produce parity sequences of different weights. 
Second, it is easily seen that a codeword may consist of a 
number of distinct error events in each encoder, where an 
error event is a path in the trellis that diverges from the all- 
zero state and then remerges with the all-zero state within 
a finite number of branches. Note that since the constituent 
encoders are realized in systematic feedback form a nonzero 
tail of v bits is required to return the encoder to the all-zero 
state. Thus since at least one nonzero bit is required to start 
an error event, all error events are associated with information 
sequences of weight 2 or greater [8]. 

Finally, with a pseudorandom interleaver it is highly un- 
likely that both encoders will be retumed to the all-zero state 
at the end of the codeword, even when the last u bits of the 
input sequence z are used to force the first encoder back to 
the all-zero state. This is due to the fact the two encoders will 
with high probability end up in different states and thus require 
two different 11 bit tails. It is highly unlikely that the u-bit tail 
for the first encoder will be interleaved by a pseudorandom 
interleaver to the correct tail for the second encoder. 

If neither encoder is forced back to the all-zero state, i.e., 
no tail is used, then the sequence consisting of N - 1 zeroes 
followed by a one is a valid input sequence x to the first 
encoder. For some interleavers, this x will be permuted to 
itself and x’ will be the same sequence. In this case, with 
puncturing, the weight of this codeword and the free distance 
of the code will be at most two. Note that this codeword is 
caused by an information sequence of weight one. Thus forcing 
the first encoder to return to the all-zero state insures that every 
information sequence has at least weight two and eliminates 
the possibility of a weight-two codeword. For this reason, it 

is common to assume that the first 
to the all-zero state by appending 

The ambiguity of the final state 
been shown by simulation to 
degradation for large interleavers 1121, [30]. For these reasons, 
it will be assumed in the remainder of the paper that the first 
encoder is forced to return to the all-zero state and that the final 
state of the second encoder is unknown. Special interleaver 
structures that result in both encoders returning to the all-zero 
state are discussed in [31], [32], [34]-[36]. 

A. PerSomnce Bounds 
In order to make clear the distinction between Turbo codes 

and convolutional codes, it is useful to consider these codes as 
block codes. To this end, the input sequences are restricted 
length N ,  where N corresponds to the size of the interleaver 
in the Turbo encoder. With finite-length input sequences of 
length N ,  a (2,1, v) convolutional code may be viewed as a 
block code’with 2N codewords of length Z(v + 

The bit error rate (BER) performance of a lutional 
code with maximum-likelihood (ML) decoding on an additive 
white Gaussian noise (AWGN) channel can be upper-bounded 
using a union bound technique by [12] 

where w, and d, are the information weight and total Ham- 
ming weight, respectively, of the ith codeword. Collecting 
codewords of the same total Hamming weight and defining 
the average information weight per codeword as 

where w d  is the total information weight of all codewords 
of weight d and Nd is the total number, or multiplicity, of 
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codewords pf weight d, yields 

where dfsee is the free distance of the code. (In this develop- 
ment, the multiplicity Nd includes codewords due to multiple 
error events for d 2 2dfree). 

For large enough N, if a convolutional code has N: 
codewords of weight d caused by information sequences x 
whose first one occurs at time 0, then it also has N: codewords 
of weight d caused by the information sequences Dx, N j  
codewords of weight d caused by the information sequences 
D2x, and so on. Thus as the length of the information 
sequences increases, we have 

and 

where W: is the total information weight of all codewords 
with weight d which are caused by information sequences 
whose first one occurs at time 0. Thus the bound on the BER 
of a convolutional code with ML decoding becomes 

which is the standard union bound for ML decoding. For this 
reason, efforts to find good convolutional codes for use with 
ML decoders have focused on finding codes that maximize the 
free distance Clfree and minimize the number of free-distance 
paths Ngee for a given rate and constraint length. 

The performance of a Turbo code with maximum-likelihood 
decoding can also be bounded using the union bound of (2) .  
However, in the Turbo encoder the pseudorandom interleaver 
maps the input sequence IC to IC’ and the input sequence Dx to 
a sequence z” that is different from Dz’ with high probability. 
Thus unlike convolutional codes, the input sequences x and 
Dx produce different codewords with different Hamming 
weights. For Turbo codes with pseudorandom interleavers, 
N d w d  is much less than N for low-weight codewords. This 
is due to the pseudorandom interleaver which, with high 
probability, maps low-weight parity sequences in the first 
constituent encoder to high-weight parity sequences in the 
second constituent encoder. Thus for low-weight codewords 

<<1 NdGd 

N 
where 

Nd - 
N (4) 

is called the effective multiplicity of codewords of weight d. 
The effect of the interleaver size on the multiplicity is also 
studied in [7]-[9]. 

B. Asymptotic Performance 

For moderate and high signal-to-noise ratios, it is well 
known that the free-distance term in the union bound on the 
bit error rate performance dominates the bound [44]. Thus for 
Turbo codes the asymptotic performance approaches 

where Nfree is the multiplicity of free-distance codewords 
and Gfsee is the average weight of the information sequences 
causing free-distance codewords. The expression on the right- 
hand side of (5) and its associated graph is called thefree- 
distance asymptote, Pfree, of a Turbo code. 

An algorithm for finding the free distance of Turbo codes is 
described in [28]. This algorithm was applied to a Turbo code 
with the same constituent encoders, puncturing pattern, and 
interleaver size N as in [l] and a particular pseudorandom 
interleaving pattern. The parity check polynomials for this 
code are ho = D4+D3+D2+D+l and hl = D4+l,  or ho = 
37 and hl = 21 using octal notation. This (37,21,65536) code 
was found to have Nfree = 3 paths with weight dfree = 6. Each 
of these paths was caused by an input sequence of weight 2 
and thus l?ifsee = 2. Though this result was for a particular 
pseudorandom interleaver, it is true for most pseudorandom 
interleavers with N = 615536. This is consistent with the 
conclusions in [6] and [8] in which the performance of Turbo 
codes is averaged over all possible pseudorandom interleavers. 

For this particular Turbo code, the free distance asymptote 
is given by 

Pf,,, = 65536 Q (E) 
where the rate loss due to the addition of a 4-bit tail is ignored 
and 

3 
- Nfree __ - ___ 

TJ 65536 
is the effective multiplicity. The free-distance asymptote is 
shown plotted in Fig. 4 along with simulation results for this 
code using the iterative decoding algorithm of [l]  with 18 
iterations. From Fig. 4, it can clearly be seen that the simula- 
tion results do in fact approach the free-distance asymptote for 
moderate and high SNR’s. Since the slope of the asymptote is 
essentially determined by the free distance of the code, it can 
be concluded that the “error floor” observed with Turbo codes 
is due to the fact that they have a relatively small free distance 
and consequently a relatively flat free-distance asymptote. 

Further examination of (5) reveals that the manifestation 
of the “error floor” can be manipulated in two ways. First, 
increasing the length of the interleaver while preserving the 
free distance and the miultiplicity will lower the asymptote 
without changing its slopl: by reducing the effective multiplic- 
ity. In this case, the performance curve of Turbo codes does not 
flatten out until higher SNR’s and lower BER’s are reached. 
Conversely, decreasing the interleaver size while maintaining 
the free distance and multiplicity results in the error floor being 
raised and the performance curve flattens at lower SNR’s and 
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Simulation results for a (37,21, N )  Turbo code with varying inter- 

higher BER's. This can be seen in the simulation results shown 
in Fig. 5 for the (37,21, N )  Turbo code with varying N.  If 
the first constituent encoder is not forced to retum to the all- 
zero state and the weight 2 codewords mentioned earlier are 
allowed, then the error floor is raised to the extent that the 
code performs poorly even for large interleavers. Thus one 
cannot completely disregard free distance when constructing 
Turbo codes. 

If the size of the interleaver is fixed, then the "error 
floor" can be modified by increasing the free distance of the 
code while preserving the multiplicity. This has the effect 
of changing the slope of the free-distance asymptote. That 
is, increasing the free distance increases the slope of the 
asymptote and decreasing the free distance decreases the slope 

of the asymptote. It has been shown in [8], [24], [28], and 
[29] that for a fixed interleaver size, choosing the feedback 
polynomial to be a primitive polynomial results in an increased 
free distance and thus a steeper asymptote. An argument to 
support the use of primitive feedback polynomials in Turbo 
codes is presented in Section IV. 

C. Comparison to the (2,1,14) Code 
The role that the free distance and effective multiplicity play 

in determining the asymptotic performance of a Turbo code 
is further clarified by examining the asymptotic performance 
of a convolutional code. The free-distance asymptote of a 
convolutional code is given by the first term in the union bound 
of (3). The maximum free distance (MFD) (2,1,14) code 
whose performance is shown in Fig. 4 has df,,, = 18, Nice = 
18 and Wk,, = 137 [45]. Thus the free-distance asymptote 
for this code is 

/ I - 1  

Pfree = 137Q ( d l 8  2,) 
which is also shown in Fig. 4. 

As expected, the free-distance asymptote of the (2,1,14) 
code is much steeper than the free-distance asymptote of the 
Turbo code due to the increased free distance. However, be- 
cause the effective multiplicity of the free-distance codewords, 
given by (4), of the Turbo code is much smaller than the 
multiplicity of the (2,1,14) code, the two asymptotes do 
not cross until Eb/N, = 3.5 dB. At this &/No, the BER 
of both codes is less than which is lower than the 
targeted BER of many practical systems. Thus even though 
the (2,1,14) convolutional code is asymptotically better than 
the (37,21,65536) Turbo code, the Tu 
the error rates at which many systems 

D. A Turbo Code with a Rec 

To emphasize the importance of using a pseudorandom 
interleaver with Turbo codes, we now consider a Turbo code 
with a rectangular interleaver. Turbo codes with rectangular 
interleavers have also been considered in [2], where the 
effect of the interleaver on the free distance of the code 
is discussed. The same constituent encoders and puncturing 
pattern as in [l] are used in conjunction with a 120 x 120 
rectangular interleaver. This rectangular interleaver is realized 
as a 120 x 120 matrix into which the information sequence x is 
written row by row. The input sequence to the second encoder 
x' is then obtained by reading the matrix column by column. 
A 120 x 120 rectangular inte er implies an interleaver size 
of N = 14400 and thus this (37,21,14400) Turbo code. 

Using the algorithm described in [28], this code was found 
to have a free distance of dfree = 12 with a multiplicit? of 
Nfree = 28900. For this code, each of the free-distance paths is 
caused by an information sequence of weight 4, so Gfree = 4. 
The free-distance asymptote for this code is thus given by 



PEREZ et el.: A DISTANCE SPECTRUM INTERPRETATION OF TURBO CODES 1703 

1CL 

10” 

E 10” 

5 a 
10.~ 

10‘~ 

-Simulations 
O-OFree Distance Asymptote 

0.0 0.5 1.0 15 2.0 2 5  
E& (W 

Fig. 6.  Simulation results and the free-distance asymptote for the 
(37,%1,14400) Turbo code with a 120 x 120 rectangular interleaver. 

The free-distance asymptote is plotted in Fig. 6 along with 
simulation results using the iterative decoding algorithm of 
[l] with 18 iterations. This figure clearly shows that the free- 
distance asymptote accurately estimates the performance of 
the code for moderate and high EblNo’s. 

This code achieves a bit error rate of at an Eb/No of 
2.7 dB and thus performs 2 dB worse than the (37,21,65536) 
Turbo code with a pseudorandom interleaver even though it 
has a much larger free distance. The relatively poor perfor- 
mance of the (37,21,14400) Turbo code with a rectangular 
interleaver is due to the large multiplicity of dfree paths. This 
results in an effective multiplicity of 

which is much larger than the effective multiplicity of the 
(37,21,65536) Turbo code. We now show that the large mul- 
tiplicity is a direct consequence of the use of the rectangular 
interleaver and that, furthermore, increasing the size of the 
interleaver does not result in a significant reduction in the 
effective multiplicity of the free-distance codewords. 

The free-distance paths in the Turbo code with the rectan- 
gular interleaver are due to four basic information sequences 
of weight 4. These information sequences are depicted in 
Fig. 7 as they would appear in the rectangular interleaver. The 
“square” sequence in Fig. 7a) depicts the sequence 

2 = ~ ~ ~ ~ 0 ~ 0 ~ 0 ~ ~ ~ 0 5 9 4 ~  1,0,  0,0, 0,1,  ow 

where 0594 denotes a sequence of 594 consecutive zeroes 
and 0, represents a sequence of zeroes that continues to the 
end of the information sequence. In this case, the rectangular 
interleaver maps the sequence z to itself and therefore 2’ = z. 
The sequence II: results in a parity sequence y1 from the 
first constituent encoder which, after puncturing, has weight 
4. Similarly, the input sequence 5’ = z results in a parity 
sequence y2 from the second constituent encoder which, after 

puncturing, also has weight 4. The weight of the codeword is 
then Clfree = 4+4+4 = 12. By counting the number of distinct 
positions in which these “square” sequences can appear in the 
rectangular interleaver, we can find the multiplicity of the free- 
distance codewords. Since the “square” sequence in Fig. 7a) 
can appear in (m- 5) x (n- 5) = 13225 distinct positions 
in the rectangular interleaver, and in each case z’ = z and a 
codeword of weight dfree = 12 results, this results in 13225 
free-distance codewords. Note that for every occurrence of the 
“square” sequence to result in a codeword of weight 12 the 
weight of both parity sequences must be invariant to which 
is punctured first. 

The “rectangular” sequences in Fig. 7b) and c) also result 
in weight 12 codewords. For these two sequences, the weight 
of one of the parity sequences is affected by whether or not it 
is punctured first and only every other position in which the 
“rectangular” sequences appear in the interleaver results in a 
codeword of weight dfree = 12. Thus the sequences in Fig. 7b) 
and c) each result in 0.5( fi - 10) x (fi - 5) = 6325 free- 
distance codewords. For the “square” sequence in Fig. 7d), 
the weight of both parity sequences is affected by which is 
punctured first and only one out of four positions in which 
this “square” sequence appears in the interleaver results in a 
codeword of weight dfree = 12. Consequently, this “square” 
sequence results in 0 . 2 5 ( n -  10) x (fi- 10) = 3025 free- 
distance codewords. Summing the contributions of each type 
of sequence results in a total of Nf,,, = 28900 codewords of 
weight dfree = 12. 

It is tempting to try to improve the performance of a Turbo 
code with a rectangular interleaver by increasing the size of the 
interleaver. However, all of the information sequences shown 
in Fig. 7 would still occur in a larger rectangular interleaver, 
so the free distance cannot be increased by increasing N .  
Also, since the number of free-distance codewords is on the 
order of N, increasing the size of the interleaver results 
in a corresponding increase in Nf,,, such that the effective 
multiplicity Nfree/N does not change significantly. Without 
the benefit of a reduced effective multiplicity, the free-distance 
asymptote, and thus the “error floor,” of Turbo codes with 
rectangular interleavers is not lowered enough for them to 
manifest the excellent performance of Turbo codes with pseu- 
dorandom interleavers for moderate BER’ s. Attempts to design 
interleavers for Turbo codes generally introduce structure to 
the interleaver and thus destroy the very randomness that 
results in such excellent performance at low SNR’s. 

111. THE DISTANCE SPECTRUM or; TURBO CODES 

In the previous section, it was shown that the “error floor” 
observed in the performance of Turbo codes is due to their 
relatively low free distance. It is now shown that the out- 
standing performance of Turbo codes at low SNR’s is a 
manifestation of the sparse distance spectrum that results when 
a pseudorandom interleaver is used in a parallel concatenation 
scheme. To illustrate this the distance spectrum of an “average” 
(37,21,65536) Turbo code is found and its relationship to the 
performance of the code is discussed. The distance spectrum 
of the “average” Turbo code is then compared to the distance 
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These positions must be even. I These positions must be odd. 

0 0 0 0 0 0 0 0  

Flg. 7. 
rectangular interleaver 

Portions of the interleaver and information sequences resulting in free-distance codewords for a (37,21,14400) Turbo code with a 120 x 120 

spectrum of the (2,1,14) code. An “average” Turbo code is 
one whose properties have been averaged over all possible 
pseudorandom interleavers as in [8]. By doing this, the analysis 
of Turbo codes given in [8] and the algorithm for finding the 
distance spectrum given in [28] are simplified. 

Using the algorithm described in [28], an “average” 
(37,21,65536) Turbo code was found to have the following 
distance spectrum 

d Nd w d  

6 4.5 9 
8 11 22 
10 20.5 41 
12 75 150 

where Nd is the total number of codewords of weight d and 
W d  = NdZUd is the total information weight of all codewords 
of weight d. The distance spectrum information for a particular 
distance d is referred to as a spectral line. This data can be 
used in conjunction with the bound of (2) to estimate the 
performance of the code. In addition, by plotting each term 
of (2) the contribution of each spectral line to the overall 
performance of the code can be estimated. 

The performance of a particular (37,21,65536) Turbo code 
is shown in Fig. 8 along with curves showing the contribution 
of each spectral line for an “average” Turbo code with the same 

interleaver length. This cl ows that the contribution to 
the code’s BER by the hi stance spectral lines is less 
than the contribution of the free-distance term for Eb/No’s 
greater than 0.5 dB. (The higher distance spectral lines become 
important, though, as capacity is approached.) Thus the free- 
distance asymptote dominates the performance of the code 
not only for moderate and high EblNo’s, but also for low 
EblNo’s. We characterize ce spectra for which this is 
true as sparse or spectral1 

A. Comparison to the (2,1,14) CO 

The ramifications of a sparse-distance spectrum are made 
evident by examining the distance spectrum of convolutional 
codes. The (2,1,14) convolutional code introduced in Section 
I1 has the following distance spectrum: 

d N: w: 
18 33 187 
20 136 1034 
22 835 7857 
24 4787 53994 
26 27941 361762 
28 162513 2374453 
30 945570 15452996 
32 5523544 99659236 
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dense distance spectrum of convolutional codes also accounts 
for the discrepancy between the real coding gain at a particular 
SNR and the asymptotic coding gain calculated using just the 
free distance [44]. 

Thus it can be concluded that the outstanding performance 
of Turbo codes at low signal-to-noise ratios is a result of the 
dominance of the free-distance asymptote, which in turn is a 
consequence of the sparse-distance spectrum of Turbo codes, 
as opposed to spectrally dense convolutional codes. Finally, 
the sparse-distance spectrum of Turbo codes is due to the 
structure of the codewords in a parallel concatenation and the 
use of pseudorandom interleaving. . 

IV. SPECTRAL THINNING 
In this section, the observations made concerning the dis- 

tance spectrum and spectral thinning of Turbo codes is formal- 
ized from the point of view of random interleaving. Random 
interleaving was introduced in [6]-[9] to develop transfer func- 
tion bounds on the average performance of Turbo codes and 
to explore issues of code design. Here, random interleaving 
is used to explore the effect of the interleaver on the distance 
spectrum of the code. In order to simplify the notation and 
discussion, only nonpunctured Turbo codes are considered 
explicitly. The extension to punctured codes is straightforward 
and may be found in [28]. 

The fundamental idea of random interleaving is to consider 
the performance of a Turbo code averaged over all possible 
pseudorandom interleavers of a given length. For a given 
N ,  there are N !  possible pseudorandom interleavers and, 
assuming a uniform distribution, each occurs with probability 
1/N!. Let a particular interleaver map an information sequence 
2 of weight w to an information sequence x’, also of weight 
w. Then there are a total of w!(N - w)! interleavers in the 
ensemble of N !  interleavers that perform this same mapping. 
Thus the probability that such a mapping occurs and hence 
that the codeword that results from the input sequences x and 
2’ occurs, is 

Fig. 8. Performance of a (37,21,65536) Turbo code decomposed by spec- 
tral line. 

1 0.0 1.0 2.0 3.0 w!(N  - w)! - 
EdNo (dB) 

Fig. 9. Performance of the (2,1,14) MFD convolutional code decomposed 
by spectral line. 

as reported in [45]. When comparing the distance spectrum 
of a convolutional code and a Turbo code, it is important to 
remember that for a convolutional code Nd N x N j  for 
the low-weight codewords. Fig. 9 shows the performance of 
this code and the contribution of each spectral line from the 
bound of (3) .  

I[n this case, the contribution of the higher distance spectral 
lines to the overall BER is greater than the contribution 
of the free-distance term for &/No’s less than 2.7 dB, 
which corresponds to BER’s of less than The large 
SNR required for the free-distance asymptote to dominate the 
performance of the (2,1,14) code is due to the rapid increase 
in the path multiplicity for increasing d. We characterize 
distance spectra for which this is true as spectrally dense. The 

Following [8], define the input redundancy weight enumer- 
ating function (IRWEF) of a systematic code as 

w z  

where Aw,z is the number of codewords of weight d = w + z 
generated by input sequences of weight w and parity sequences 
of weight z .  The goal is now to develop a relationship between 
the codewords in the constituent encoders and Aw,z for the 
Turbo code and to see how that relationship changes with the 
size of the interleaver. 

Recall from Section I1 that a Turbo codeword is essentially 
the combination of a codeword from the first constituent 
encoder plus a codeword from the second constituent encoder. 
A codeword of weight d l  = w + z1 from the first constituent 
encoder caused by an information sequence x of weight w 
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is composed of n 1  error events of total length 11. To avoid 
difficulties in counting codewords when the second constituent 
encoder is left unterminated, we consider different orderings 
of the same error events as distinct cases. The ordered set of 
n 1  error events in the first encoder is denoted by S I .  The 
information sequence x that results in the set S 1  is mapped 
by a particular interleaver to the information sequence d, also 
of weight w, which is then encoded by the second constituent 
encoder. This results in a codeword of weight d 2  = w + 252, 

with the ordered set S 2  consisting of 122 error events of total 
length 12. 

For example, Fig. 3 depicts a codeword of weight dl = 
4 + 3 = 7 in the first constituent encoder caused by an 
information sequence of weight w = 4 and composed of 
n 1  = 2 error events of total length ll  = 5 + 3 = 8. For 
the interleaver described in Section 11, x is mapped to an x’ 
that results in a codeword of weight dz = 4 + 3 = 7 in the 
second constituent encoder consisting of nz = 2 error events 
of total length 12 = 3 + 3 = 6. Thus this S 1  and S 2  result in a 
codeword of weight 10 and a single contribution to A4,6 of the 
Turbo code for this particular interleaver. Averaged over the 
ensemble of interleavers of length N ,  a set SI with information 
weight w and parity weight 251 and a set S 2  with information 
weight w and parity weight ,252 will contribute a fraction 

1 
(7) 

to the enumerating function coefficients A,,,,+Z2 of an “av- 
erage” Turbo code. 

Because the sequence of zeros connecting any two distinct 
error events has no effect on the weight of the information 
sequence or the parity sequence, there are 

ways that the ordered set S 1  of n 1  error events can be arranged 
such that their contribution to A,,,,+,, is not changed. This 
is simply the number of ways in which n 1  distinct error events 
can be arranged in a sequence of length N while maintaining 
the order in which they appear. Similarly, if the codeword in 
the second constituent encoder ends in the all-zero state, then 
the ordered set S2 will make 

(9) 

contributions to AW,Zl+z2. However, because the second en- 
coder is not guaranteed to return to the all-zero state, it is 
possible that the last of the nz error events is not actually an 
error event, but instead ends in a nonzero state. In this case, 
the last error event cannot be moved and the set S 2  makes 

contributions to AW,Z1+Z2. 

The contribution to the distance spectrum of a Turbo code 
due to any pair of ordered sets S 1  and S 2 ,  averaged over the 
ensemble of pseudorandom interleavers, can now be computed 
using (7)-(10). If the codeword in the second constituent en- 
coder happens to end in the all-zero state, then the contribution 
of an SI and SZ to AW,Z1+Z2 is given by 

f N  - 11 + n l )  ( N  - 12 + n 2 )  

n2 

If the codeword in the second constituent encoder does not 
end in the all-zero state, then the contribution to Aw,,l+,2 is 
given by 

The expressions in (1 1) and (12) can now be used to explore 
the effect of changing the interleaver size on the distance 
spectrum of an “average” Turbo code. 

Since we are primarily concemed with low-weight 
codewords in the distance spectrum, we assume that N >> 
n1, n 2 , Z 1 ,  and 12. If this is not true, then SI and S 2  either 
contain a large number of short error events or a few long 
error events. In both cases, it is very unlikely that the result 
is a codeword of low weight. With this assumption, (11) can 
be approximated by 

where, without loss of generality, it is assumed that nl 2 n 2 .  

Since each error event is caused by an information sequence 
of weight at least two, w 2 2nl. The behavior of (13) for 
increasing N can be broken down into three cases: 

1) n 1  > nz: 
The exponent of N is strictly negative and the contribu- 
tion to 

2) n1 = nz and w > 2 n 1 :  
The exponent of N is strictly negative and the contribu- 
tion to AW,Z1+ZZ decreases as N increases. 

3 )  n1 = n 2  and w = 2721: 

The exponent of N is exactly zero and the contribution 
to AW,,1+Z2 converges to a finite value as N increases. 

decreases as N increases. 

For N >> 721,722, I I ,  and 12,  (12) can be approximated by 

where w 2 2nl. However, since the tail in the second encoder 
may be caused by an information sequence of weight I, we 
also have w 2 2 n 2  - 1. The behavior of (14) for increasing 
N can be broken down into three cases: 

1) n 1  > n 2 :  

Since w 2 2 n 1 ,  the exponent of N is strictly nega- 
tive and the contribution to A,2,,+,z decreases as N 
increases. 
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2 )  n1 = 722: 

Again, since w 2 2n1, the exponent of N is strictly 
negative and the contribution to Aw,rl+zz decreases as 
N increases. 

3 )  n1 < n2: 

Since w 2 2n2 - 1, the exponent of N is strictly 
negative and the contribution to Aw,zl+zz decreases as 
N increases. 

The following lemma can now be stated. A similar result 
was proven in [9]. 

Lemma 1: Given a Turbo code based on two systematic 
feedback encoders and a pseudorandom interleaver of length 
N in which the first encoder is assumed to be forced back 
to the all-zero state, the contribution of two ordered sets of 
error events S1 and S2 with the same information weight 
to the distance spectrum of the Turbo code, averaged over 
all pseudorandom interleavers of length N ,  converges to a 
nonzero constant as N -+ 03, if and only if 

1) S2 leaves the second encoder in the all-zero state; 
2 )  S1 and S2 contain the same number of error events; 
3 )  each error event in S1 and S2 is caused by a weight two 

information sequence. 
In all other cases, the contribution goes to zero as N -+ 00. 

For each term AW,% in the input redundancy weight enu- 
merating function of a Turbo code there is a finite number 
of pairs of sets S1 and S2 that contribute to it. If either set 
contains a long error event, then it is possible that that pair 
will be excluded for small interleavers. As the interleaver size 
increases, eventually all pairs of sets will be allowed and 
any further increase in N will not result in additional pairs 
of sets contributing to A,,z. Also, as N -+ cm, A,,% will 
be determined by pairs of SI and S2 that satisfy the three 
conditions of Lemma 1, and thus each A,+ will converge 
to a finite value. Since each spectral line is a finite sum of 
A, terms, each spectral line converges to a finite value as 
the interleaver size increases. 

The convergence of each spectral line to a finite value as 
the size of the interleaver increases results in spectral thinning. 
That is, for small interleavers there may be pairs of sets SI 
and S2 that do not satisfy the conditions of Lemma 1, but 
which contribute to the multiplicity of a low-weight spectral 
line. As the size of the interleaver increases the number of 
these aberrational sets decreases until the spectral line reaches 
its final value as determined by Lemma 1. This process of 
spectral thinning is represented graphically in Fig. 10, which 
depicts the thinning of low-weight codewords as the size of the 
interleaver increases for hypothetical distance spectra. It is this 
thinning of the distance spectrum that enables the free-distance 
asymptote of a Turbo code to dominate the performance for 
low SNR and thus to achieve near-capacity performance. 

A. Primitive Polynomials and Free Distance 
We now consider the ramifications of Lemma 1 with respect 

to the free-distance codewords of a Turbo code. That is, what 
does Lemma 1 imply about the information sequences that 
generate the free-distance codewords in an “average” Turbo 
code? 

N Large 

Hamming Distance, d 

Fig. 10. 
leaver size. 

Graphical representation of spectral thinning for increasing inter- 

For an “average” Turbo code, Lemma 1 states that as 
the size of the interleaver increases each spectral line is the 
result of contributions only from pairs of ordered sets of 
error events in which each error event is caused by a weight- 
two information sequence. It is reasonable to expect that the 
free-distance spectral line will be among the first spectral 
lines to converge to its final value. Thus for reasonably large 
interleavers, the free distance will be determined by the sets S1 
and Sa satisfying the conditions of Lemma 1. Let s1 and sa be 
any pair of error events caused by a weight-two information 
sequence that results in a minimum-weight parity sequence in 
the first and second constituent encoders, respectively. Note 
that there may be more than one such pair of minimum-weight 
error events for the constituent encoders. 

A free-distance codeword in an “average” Turbo code 
must be the result of sets SI and 52 that consist of only 
those minimum-weight error events s1 and sa, respectively. 
Furthermore, since each additional error event in either SI and 
S2 adds weight to the codeword, S1 and S2 must each contain 
only one minimum-weight error event. (If each error event 
does not add weight, then a weight-two information sequence 
exists that generates a zero weight parity sequence and the 
free distance of the code would be 2.) Thus the free-distance 
codewords of an “average” Turbo code are caused by weight- 
two information sequences, provided the interleaver is large 
enough. 

Therefore we have the following Lemma. 
Lemma 2: For an “average” Turbo code, as the size of the 

interleaver N approaches 03: 

1) the free distance codewords are caused by information 
sequences of weight 2; 

2)  the free distance of an “average” Turbo code is maxi- 
mized by choosing constituent encoders that have the 
largest output weight for weight-two information se- 
quences. 

Based on this lemma, we now present an intuitive argument 
showing that choosing the feedback polynomial ho(D) in a 
(2 ,1,  v) systematic feedback encoder to be a primitive polyno- 
mial maximizes the output weight for weight-two information 
sequences. It follows that the free distance of an “average” 
Turbo code is maximized by using a primitive polynomial 
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as the feedback polynomial in the constituent encoders. This 
result was independently derived in [9] using the transfer 
function of an “average” Turbo code. 

The generator matrix of a (2,1,  v) systematic feedback 
encoder is given by ? 

where hl ( D )  and ho (0) are referred to as the feedforward and 
feedback polynomials, respectively, and ho ( D )  is of degree 
v. Since only information sequences of weight 2 are being 
considered, the systematic output contributes weight 2 to the 
overall codeword weight for all the encoders being considered. 
Therefore, only the weight contributed by the parity sequence, 
that is, 

needs to be maximized. Furthermore, since we are concerned 
only with the choice of ho(D), h l (D)  is assumed to be a 
polynomial such that ho(D) and h l (D)  are relatively prime. 
(There is empirical evidence that the choice of both polyno- 
mials can affect the performance of the code [28], [30], but 
we will not address that issue in this paper.) 

Let 1 + D K ,  for some finite K ,  be the shortest input 
sequence of weight 2 that generates a finite-length codeword. 
The resultant parity sequence is 

Since y(D) is of finite length, hl(D)/ho(D) must be periodic 
with period K.  Increasing the period K increases the length 
of the shortest weight 2 input sequence that generates a finite- 
length codeword and therefore increases the length of that 
codeword. Intuitively, one would expect that increasing its 
length would result in the codeword gaining weight. That is, 
on average, half of the added bits would be ones. 

A strictly proper rational function of two polynomials, like 
hl(D)/ho(D),  is periodic with period K 5 2” - 1. The 
period is maximized, that is, K = 2” - 1, when ho(D) is a 
primitive polynomial. Since the free distance of an “average” 
Turbo code is determined by information sequences of weight 
2, for sufficiently large interleavers the free distance will be 
maximized by maximizing K. Therefore, choosing ho ( D )  to 
be a primitive polynomial will result in a larger free distance 
for an “average” Turbo code. 

To test this, we compare a (37,21,400) Turbo code which 
has K = 5 and free distance dfree = 6 to a (23,35,400) 
Turbo code. Both codes are punctured as in [ 11. The feedback 
polynomial ho = 23 in the second Turbo code is a primitive 
polynomial of degree v = 4 and thus l/ho has a period 
of K = 2” - 1 = 15. The free distance of this Turbo 
code was found to be dfree = 10 [12], [28]. Fig. 11 shows 
simulation results for these two codes using the iterative 
decoding algorithm of [ 11 with 18 iterations. As expected, 
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Fig. 11. Simulation results for a (37,21,400) Turbo code and a 
(23,35,400)  primitive Turbo code. 

the second Turbo code pe 
SNR’s because its free d 
the increased free distance. 

s better at moderate and high 
asymptote is steeper due to 

V. CONCLUSIONS 

The excellent performance of Turbo codes may be explained 
in terms of the distance spectrum of the code. The “error floor” 
observed in simulations of Turbo codes is a manifestation of 
the free-distance asymptote. Since Turbo codes have re 
low free distances, the free-distance asymptote has a s 
slope, and thus the performance curves flatten out at m 
to high SNR’s. The “error floor” may be lowered by increasing 
the size of the interleaver for a fixed free distance, that is, by 
reducing the effective multiplicity of the code. A 
fixed interleaver lengths, the performance may 
for moderate and high SNR’s by increasing the free distance. 
Choosing primitive polynomials as the feedback polynomials 
in the constituent encoders usually results in an increased free 
distance. 

The exceptional performance of Turbo codes at low SNR’s 
is due to the sparse distance spectrum and the resultant 
ability of the code to follow the free-distance asymptote at 
moderate to low SNR’s. The use of systematic feedback 
encoders and pseudorandom interleavers results in spectral 
thinning, in which information sequences which generate low- 
weight parity sequences from the first constituent encoder are 
interleaved with high probability to information sequences 
that generate high-weight parity sequences in the second 
constituent encoder. Spectral thinning i s  enhanced by increas- 
ing interleaver lengths. For very large interleavers, spectral 
thinning results in a sparse distance spectrum in which the first 
several spectral lines are determined solely by input sequences 
of weight two. Thus spectral thinning results in few low-weight 
codewords and a large number of codewords of “average” 
weight. This is very similar to the type of distance spectrum 
achieved by “random-like’’ codes [4]. 
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In a more philosophical light, Turbo codes remind us 
that information-theoretical arguments imply that long block 
lengths, but not necessarily large free distances, are required to 
achiieve capacity at moderate BER’s. Thus like convolutional 
codes, Turbo codes are a class of codes that achieve long block 
lengths, but without the corresponding increased density of 
the distance spectrum common to convolutional codes, and 
for which a practical, albeit nontrivial, decoding algorithm 
exists. In addition, Turbo codes are time-varying due to the 
pseudorandom interleaver, and the time-varying structure is 
essential in achieving the thin distance spectrum that results in 
near-capacity performance at moderate BER’s. This suggests 
that some effort should be made to find other classes of 
time-varying codes, and decoding algorithms, that have thin 
distance spectra, rather than just large free distances. Finally, 
since, in fact, long block lengths are required to achieve near- 
capacity performance at moderate BER’s, only modest coding 
gaire will be achievable in systems that use relatively short 
block lengths. 

141 
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