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Analyzing the Turbo Decoder Using the Gaussian
Approximation

Hesham El Gamal, Member, IEEE,and A. Roger Hammons, Jr., Member, IEEE

Abstract—In this paper, we introduce a simple technique
for analyzing the iterative decoder that is broadly applicable to
different classes of codes defined over graphs in certain fading
as well as additive white Gaussian noise (AWGN) channels. The
technique is based on the observation that the extrinsic infor-
mation from constituent maximum a posteriori (MAP) decoders
is well approximated by Gaussian random variables when the
inputs to the decoders are Gaussian. The independent Gaussian
model implies the existence of an iterative decoder threshold that
statistically characterizes the convergence of the iterative decoder.
Specifically, the iterative decoder converges to zero probability
of error as the number of iterations increases if and only if the
channel 0 exceeds the threshold. Despite the idealization
of the model and the simplicity of the analysis technique, the
predicted threshold values are in excellent agreement with the
waterfall regions observed experimentally in the literature when
the codeword lengths are large. Examples are given for parallel
concatenated convolutional codes, serially concatenated convolu-
tional codes, and the generalized low-density parity-check (LDPC)
codes of Gallager and Cheng–McEliece. Convergence-based
design of asymmetric parallel concatenated convolutional codes
(PCCC) is also discussed.

Index Terms—Convergence-based design, graphical codes, itera-
tive decoding, low-density parity-check (LDPC) codes, turbo codes.

I. INTRODUCTION

ONE of the main reasons behind the impressive perfor-
mance achieved by graphical codes such as parallel con-

catenated convolutional code(s) (PCCC) is the elegant iterative
decoding algorithm with the exchange of soft information be-
tween successive iterations. Recently, it has been shown that this
iterative decoding algorithm is an instance of Pearl belief prop-
agation in Bayesian networks [1]. Whereas belief propagation
is known to converge to the maximuma posteriori(MAP) solu-
tion for graphs without loops, relatively little progress has been
achieved to date in understanding the theoretical behavior of the
algorithm on graphs with loops, especially as a suboptimal de-
coder for codes having such graphical representation [1].

The rediscovery of Gallager’s low-density parity-check
(LDPC) codes [2] and Wiberg’s work on the graphical repre-
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sentation of convolutional codes [3] were two important steps
toward generalizing the structure behind PCCC to what is now
known as graphical codes. Over the past five years, different
constructions for regular graphical codes have been proposed
including serially concatenated convolutional codes(s) (SCCC)
[4], trellis constrained codes [5], and the high-rate graphical
codes proposed by Cheng and McEliece [6]. Interestingly, none
of these codes succeeded in providing performance superior
to the originally proposed turbo construction of Berrouet al.
[7] in the low signal-to-noise ratio (SNR) region. This result
is somehow at odds with the fact that some of these codes
(e.g., SCCC) offer better distance spectrum than turbo codes
[4]. Quite recently, a tighter upper bound on the probability
of error of PCCC and SCCC at SNR below the channel cutoff
rate was developed [8]. The new bound confirmed that SCCC
would achieve superior performance to PCCC at low SNRs if
maximum-likelihood decoding were possible. In this paper,
we develop an idealized mathematical model of the iterative
decoder, representative of the case in which codeword block
sizes are large, that predicts a limit on performance in the low
SNR regime due to convergence issues; empirically, this limit
is an accurate indication of the “waterfall” region observed for
large block lengths.

This paper is based on a simple but powerful technique orig-
inally developed by the first author in his Ph.D. dissertation
[9] to evaluate the convergence characteristics of the iterative
decoder for various graphical codes. The mathematical treat-
ment given here is new as is the use of the tool as an aid to
convergence-based code design. Independently and at roughly
the same time as [9], Richardson and Urbanke [10] developed
a rigorous method of analysis for iterative decoding of LDPC
codes. Their approach entails computation of density functions
as they evolve from one iteration to the next and makes use of
the concentration theorem of Lubyet al. [11] to make rigorous
the asymptotic assumption of loop-free operation. The density
evolution approach was later argued to be applicable to turbo
codes [12], [13]. The main thrust of our work is the analysis and
design of general graphical codes with emphasis on PCCC. The
analysis technique proposed in this paper is simpler to evaluate
than the technique of Richardson and Urbanke and, as we will
show later, provides insights into the decoder operation that we
believe would be difficult to extract using the density evolution
approach. Furthermore, despite the idealization of the mathe-
matical model and the simplicity of the analysis technique, the
close agreement between its predictions and the simulation re-
sults available in the literature, including [10], is striking. As
part of the review process for the initial submission of this paper,
one of the reviewers pointed us to Stephan ten Brink’s work
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Fig. 1. Cumulative density function of the sum-product algorithm output.

[14], where a similar approach, based on mutual information to
analyze the turbo decoder convergence, was used. In contrast to
our work, no attempt was made in [14] to prove the existence of
convergence thresholds.

The rest of this paper is organized as follows. In Section II, the
mathematical model for the iterative decoder is developed and
basic theorems regarding convergence characteristics of the ide-
alized decoder are proven. The application of the proposed con-
vergence analysis technique to various graphical codes is dis-
cussed in Section III. In addition to an analysis of code designs
available in the literature, which demonstrates the utility and
accuracy of the new technique, we also present in this section
an interesting new code designed based on convergence con-
siderations that improves upon prior state of the art. Section IV
discusses extensions to slow and fast-fading channels. The last
section presents a few concluding remarks.

II. M ATHEMATICAL MODEL FORDECODERCONVERGENCE

Iterative decoding on graphs can be viewed as a multistage
decoding operation where soft information is exchanged
between the different stages. The algorithm performed in
each iteration can be either the sum-product or the min-sum
algorithm [3]. It was shown in [3] that the soft-output Viterbi
(SOVA) and the maximum MAP decoding algorithms are direct
applications of the min-sum and the sum-product algorithms
to trellis-based codes. It was observed in [3] and [15] that, if
inputs to either decoding algorithm are independent Gaussian
random variables, then the output can be tightly approximated
by a Gaussian random variable. In fact, it was pointed out in [3]
that the Gaussian approximation can he helpful in analyzing

the performance of turbo codes. As shown in this section,
the independent Gaussian approximation allows for complete
characterization of the turbo decoder convergence in terms of a
single parameter: the extrinsic information SNR.

The accuracy of the Gaussian approximation has been val-
idated experimentally for different classes of graphical codes.
Fig. 1 compares the cumulative density function (cdf) of the ex-
trinsic information produced by the sum-product algorithm for
a check node of an LDPC code with four independent Gaussian
inputs and the cdf of a Gaussian random variable with the same
mean and variance. Figs. 2 and 3 show bit-error rate (BER)
scatter diagrams (predicted versus measured) for the extrinsic
information produced by the ensemble of all rate-eight-state
and 16-state constituent MAP decoders, respectively, under the
independent Gaussian assumption. These scattering diagrams
were generated by feeding independent Gaussian intrinsic and
extrinsic information with different SNRs to the decoders. The
predicted BERs were computed from the output extrinsic infor-
mation’s measured SNR assuming a Gaussian distribution [i.e.,

SNR ]. The average relative errors in the predicted
BERs are 1.4% and 1.8% for the eight-state and 16-state de-
coders, respectively.

In this paper, we only consider the sum-product algorithm.
This choice is motivated by the equivalence of the sum-product
algorithm to MAP decoding for codes with loop-free graphical
representations [3]. In this context, we define a constituent code
as one having a loop-free graphical representation and, there-
fore, we assume that the constituent codes are decoded by a
soft-input/soft-output (SISO) MAP decoder. The model devel-
oped in this section is intended to cover graphical codes that
enjoy some symmetry in their structure (e.g., regular LDPC



EL GAMAL AND HAMMONS, JR.: ANALYZING THE TURBO DECODER 673

Fig. 2. Scattering diagram of the Gaussian approximation predicted BERs versus measured BERs for eight-state codes.

Fig. 3. Scattering diagram of the Gaussian approximation predicted BERs versus measured BERs for 16-state codes.
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codes, symmetrical turbo codes, symmetrical trellis-constrained
codes); however, with minor modifications, the proposed tech-
nique can be extended to handle certain irregular codes. In Sec-
tion III, the necessary modifications required to model the it-
erative decoding of asymmetric parallel concatenated convolu-
tional codes and serially concatenated convolutional codes are
described. No attempt is made to analyze irregular LDPC codes
since these codes are relatively well understood due to the re-
cent work by Richardsonet al. [10], [16].

In our model, each symbol is processed byidentical con-
stituent decoders at decoding stepand each constituent decoder
processes the information forsymbols. The th constituent
decoder accepts intrinsic information

(log-likelihood values associated with the channel variables)
and extrinsic information

(log-likelihood values supplied by the other constituent
decoders at the previous decoding step for use asa priori
information) and produces updated extrinsic information for
the symbols. The vector

comprises the extrinsic information produced by the other
constituent decoders for the binary data variableduring the
th decoding step.

The extrinsic information is the additional likelihood in-
formation produced by the th constituent decoder beyond that
provided by the channel measurementanda priori informa-
tion . In particular

After the th decoding step, the best estimate foris given
by

where

(1)

The BER associated with is the probability that
. The constituent MAP decoders are optimal in that no de-

coding rule for the constituent decoders is capable of producing
a smaller .

The statistical behavior of the MAP decoder is determined
by the statistical distribution of the input variables. For the
additive white Gaussian noise (AWGN) channel, the intrinsic
information are Gaussian random variables. Also for

the AWGN channel, it has been observed experimentally that
the extrinsic information variables are also approximately
Gaussian. For randomly interleaved codes of sufficiently long
codeword length, it is reasonable to assume that the loops in the
bipartite graph describing the code can be made relatively long,
so that the extrinsic information is approximately independent
over some number of decoding steps. In the case of LDPC
codes, Richardson and Urbanke [10] (following work by Luby
et al. [11]) prove that the loop-free assumption holds in an
asymptotic sense that enables a rigorous convergence analysis
for these codes. In the case of turbo codes, however, the
loop-free assumption has only heuristic justification.

Motivated by the fact that SNR is a simple sufficient statistic
for Gaussian random variables, we formalize the Gaussian and
loop-free assumptions as follows.

Independent Gaussian Assumption: The random se-
quences

are jointly Gaussian and statistically independent in the
sense that any finite collection of theand are jointly
Gaussian and pairwise independent.

For each Gaussian random variablewith mean and vari-
ance , we associate a SNR SNR . Under the in-
dependent Gaussian assumption, the behavior of the constituent
MAP decoder is completely determined by the SNRs of the
input variables; and the bit-error probability is completely
determined by the SNR of the output log-likelihood ratio .
By symmetry of the general decoder model, the SNR of the ex-
trinsic information is the same for all . Since the con-
stituent encoders are statistically equivalent, we will simplify
the notation hereafter by dropping the subscriptin reference
to the extrinsic information.

The following proposition follows from the fact that the con-
stituent MAP decoder is optimal.

Proposition 1: Under the independent Gaussian assumption,
the SNR and SNR are nondecreasing functions of
the input SNRs SNR and SNR for and

. Furthermore, SNR (and, thus,
) as if and only if SNR as .

Proof: Consider two scenarios in which only the SNR for
input variable is different. Let SNR SNR denote the
two different values of signal- to-noise ratio forwith corre-
sponding output SNR and SNR , respectively.

For either scenario, the constituent MAP decoder must pro-
duce the smallest possible value of BER. Thus, we must have
SNR SNR . Otherwise, for the scenario with
SNR , a decoder strategy in which noise is injected to reduce
the SNR to SNR before performing MAP decoding would
yield a smaller BER than optimal MAP decoding. This contra-
diction shows that SNR is a nondecreasing function of the
input SNRs as claimed.

The constituent MAP decoder forms the linear combination
(1) of the log-likelihood information , , and to pro-

duce the decision statistic yielding the smallest BER. For
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Gaussian random variables, the optimal linear combination pro-
ducing the highest SNR (and hence lowest BER) is (up to a pro-
portionality constant) the weighted sum

(2)

where the coefficient is the mean-to-vari-
ance ratio of random variable. Thus, under the independent
Gaussian assumption, the decision statistic is a scaled ver-
sion of . [Note that this implies that the values are equal.
This is similar to [16] in which for Gaussian log-likelihood ra-
tios, one has as a consequence of the consistency
condition that the probability density function (pdf) of log-like-
lihood ratio messages must satisfy . Hence,

.]
It is well known that the SNR of is the sum of the SNRs

of each term. We therefore conclude that the value of SNR
changes in the same direction as the value of SNR . Hence,
SNR is also a nondecreasing function of the SNRs of the
other input variables. Likewise, SNR if and only if
SNR .

Given intrinsic information having a common SNR, we
can now view the essential action of the constituent decoders
as enhancing the SNR of the extrinsic information. In this
regard, let denote the SNR of the extrinsic information

associated with after the th decoding step, where
SNR represents the decoder initial condition. Then, the

sequence evolves recursively

By the independence assumption, the functionis the same for
all decoding steps.

By the Heine–Borel property, the sequence ei-
ther has an accumulation point or is unbounded

. Since, by the previous proposition, the sequence
is nondecreasing, it must in fact converge to from below.
Thus, .

Proposition 2: is a nondecreasing function of. Thus,
if for some , then for all ; and,
conversely, if for some , then for all

.
Proof: Let . Since is a nondecreasing function

of both arguments, we have

Thus,

Taking the supremum overyields the desired result

If the threshold is finite for some input SNR ,
then, by Proposition 1, the bit-error probability foris bounded
away from no matter how many decoding iterations are per-
formed. Conversely, if is infinite, Proposition 1 implies that
the bit-error probability converges toas the number of itera-
tions goes to infinity.

Thus, the behavior at one input SNR determines the behavior
for all smaller or larger values of input SNR [depending on
whether or ]. Since , the supremum

(3)

is well-defined and serves as a fundamental threshold deter-
mining the convergence of the iterative decoder under the in-
dependent Gaussian assumption.

Summarizing these results, we have the following proposi-
tion.

Proposition 3: If , then . If , then
. Thus, under the independent Gaussian assumption,

the iterative decoder converges with zero error probability if the
input SNR is greater than, but converges with nonzero error
probability if the input SNR is less than.

Proposition 3 allows for a complete characterization of the
turbo decoder convergence properties using a simple technique.
It is sufficient to characterize the extrinsic information SNR
input/output relation of the basic constituent decoder(s) to deter-
mine if the turbo decoder will converge or not at any . The
characterization is possible either through approximate numer-
ical analysis or, more accurately, through simple Monte Carlo
simulation. In this paper, we will rely on the simulation ap-
proach to benefit from its accuracy. The simulation required
in this case is much simpler than the iterative decoder simula-
tion. Here, to obtain the input/output relation at each intrinsic
SNR, we only need to simulate one constituent decoder, as-
suming symmetry, with Gaussian extrinsic and intrinsic inputs
and measure asingle parameter: the output extrinsic informa-
tion SNR. Then, the convergence threshold is evaluated from the
input/output characteristics of the extrinsic information SNR as
described in Section III. This demonstrates the simplicity of our
technique compared to the density evolution approach where the
pdf is estimated at each step. As shown in Section III, for all of
the major classes of codes admitting iterative decoding via con-
stituent MAP decoders, the thresholdis found experimentally
to be finite and greater than zero. Indeed, for almost all known
graphical codes of suitably large codeword length,is found to
correspond to the sharp “waterfall region” of the performance
characteristic.

It is worth noting that the thresholddepends on the structure
of theconstituent codesrather than that of the composite code.
Thus, for the class of graphical codes obtained by certain con-
catenation of interleaved convolutional codes, analysis based on
the independent Gaussian assumption indicates that the water-
fall region determined by is not a function of the code weight
spectrum and thus cannot be improved by turbo code interleaver
optimizations aimed at improving the weight spectrum. Rather,
the waterfall region is determined more by how amenable the
constituent codes are to iterative decoding.
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Fig. 4. Extrinsic information SNR input/output relations for Berrou’s 16-state.

III. A PPLICATION TODIFFERENTCODE CONSTRUCTIONS

In this section, we analyze in detail the effect of the itera-
tive decoder convergence characteristics on the performance of
various graphical codes. Our primary focus will be PCCC, al-
though representative examples for SCCC and regular LDPC
codes will also be discussed to emphasize the broad applica-
bility of the proposed technique. For all of the cases considered,
the convergence results predicted by the proposed technique are
within a very small fraction of a decibel from the simulation
results reported in the literature [4], [17], [6], [2]. The PCCC
results constitute an exhaustive study of rate-and - sym-
metric codes with four, eight, and 16-state constituent codes.
Based on these convergence results, we design an interesting
asymmetric PCCC that outperforms the asymmetric code pro-
posed by Takeshitaet al. [18] in the waterfall region.

A. Symmetric PCCC

For simplicity, we consider the classical turbo code [7] con-
sisting of two identical constituent encoders. The extension to
multiple PCCC is straightforward.

The analysis technique is best illustrated through a detailed
example. Consider the rate- PCCC built from the 16-state
convolutional code with transfer function

originally introduced by Berrou [7]. Due to symmetry of the
code construction, it is sufficient to study the input/output
characteristic of the constituent decoder. Fig. 4 shows the SNR
input/output relation for the extrinsic information from the
MAP decoder for this constituent code as a function of different
bit-energy-to-noise ratio . In the figure, the symbols

denote measured SNRs obtained via simulation by inverting
the observed BER using the Gaussian-function, whereas
the various dashed and solid lines represent curve fits. Since
the input extrinsic information to one constituent decoder is
an interleaved version of the other decoder output, the turbo
decoder will converge asymptotically to after a
sufficient number of iterations if and only if the constituent
decoder characteristicdoes notintersect the (In Out) line; the
intersection point is the finite accumulation point, and hence,
the nonexistence of the intersection point implies that .
From the figure, it is clear that the decoder will converge to

for and 0.7 dB; but, for
and 0.5 dB the probability of error will be bounded away from
zero even if the number of iterations is unbounded. Therefore,
a coarse estimate for the convergence threshold predicted by
the independent Gaussian assumption is that it lies between 0.5
and 0.6 dB.

A more precise threshold can be calculated from the obser-
vation that the extrinsic information SNR input/output relation
is locally quadratic (true to a high degree for all PCCC that we
have studied), allowing the minimum signed distance between
the SNR characteristic and (In Out) line to be accurately de-
termined analytically. The minimum signed distances (so-called

-metrics) are plotted in Fig. 5 as a function of input .
The convergence threshold is the value for which the

-metric is and is easily determined by interpolation (the
curves are again locally quadratic). From Fig. 5, a more pre-
cise threshold for the Berrouet al.code is 0.57 dB.

Using our analysis technique, we conducted an exhaustive
search for symmetric rate- and - PCCC with conver-
gence thresholds less than or equal to 0 and 0.7 dB, respectively
(i.e., within 0.5 dB from the Shannon limit for binary signaling).
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Fig. 5. TheH-metric for Berrou’s 16-state code.

TABLE I
CONSTITUENT CODES FORSYMMETRIC RATE-1=3 16-STATE PCCCWITH CONVERGENCETHRESHOLDS� 0 dB

We restricted our search to constituent codes having at most
states and feedback polynomial of the form

The rate- PCCC are obtained from the rate- PCCC by
periodically puncturing the output of the constituent codes as
described in [7]. Tables I and II report the octal representation
of the generator polynomials for best constituent codes, from
a convergence point of view, found in our search. For rate-
PCCC, all the constituent codes are 16-state with nonprimitive

feedback polynomials. On the other hand, for the rate-case,
two eight-state codes with primitive feedback polynomial ex-
hibit convergence thresholds within 0.5 dB from the capacity
limit. Since primitive feedback polynomials are advantageous
with respect to high SNR asymptotic performance [18], [19],
Table III provides a survey of the convergence thresholds for
the best rate- primitive PCCC available in the literature.
These results suggest that the eight-state code chosen for
the third-generation wireless standards achieves the best perfor-
mance tradeoff both for rate- and - codes [20] (i.e., the
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TABLE II
CONSTITUENT CODES FORSYMMETRIC RATE-1=2 16-STATE PCCCWITH CONVERGENCETHRESHOLDS� 0.7 dB

TABLE III
CONVERGENCETHRESHOLDS FORBEST PRIMITIVE SYMMETRIC RATE-1=3 PCCC

code has a primitive feedback polynomial and its convergence
thresholds are among the best for both rate-and - codes).

Figs. 6 and 7 compare the convergence thresholds obtained
by our technique with simulation results for rate- PCCC
with various block lengths.1 In Fig. 6, we report simulation
results for the primitive four-state and eight-state codes in
Table III, whereas in Fig. 7 we compare the 16-state PCCC
with the best convergence threshold with the primi-
tive 16-state PCCC with the best distance spectrum
[21]. For the 65 536 block lengths, all codes achieve
BER within less than 0.1 dB from the predicted convergence
thresholds. This small offset is similar to that shown in [16]
for the irregular LDPC codes with 1 000 000 block length. It is
also shown that the relative performance between the different

1In all our simulations we assumed random interleaving and 18 decoding it-
erations.

codes in the waterfall region is very close to the convergence
analysis prediction even for relatively small block lengths.

The extrinsic information SNR transfer characteristic also
provides useful information regarding rates of convergence (im-
provement in BER as a function of the number of iterations).
In [7], Berrouet al.observed that the performance of a certain
four-state PCCC was better than their powerful 16-state PCCC
in the first few iterations but ultimately failed to converge to
small probability of error with increasing numbers of iterations.
This behavior is readily explained by the SNR input/output char-
acteristics for the two codes shown in Fig. 8. From the figure, it
is clear that the iterative decoder will converge at 0.7
dB only for the 16-state code since the SNR input/output rela-
tion of the four-state code intersects the (InOut) line. Note
that the improvement in the extrinsic information output SNR
is higher for the four-state decoder at relatively small input ex-
trinsic information SNRs, while the situation is reversed in favor



EL GAMAL AND HAMMONS, JR.: ANALYZING THE TURBO DECODER 679

Fig. 6. Comparison between simulation results and convergence thresholds for one primitive four-state and one primitive eight-state codes.

Fig. 7. Comparison between simulation results and convergence thresholds for the best waterfall 16-state code and the best error floor 16-state code.

of the 16-state decoder at higher input extrinsic information
SNRs. Thus, there will be more improvement in performance

in the early decoding iterations of the four-state PCCC. How-
ever, this code will ultimately fail to converge to .



680 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 2, FEBRUARY 2001

Fig. 8. Extrinsic information SNR input/output relations for the 16-state and four-state codes atE =N = 0.7 dB.

B. Asymmetric and Irregular PCCC

In [19], it was argued that symmetric PCCC should be built
using constituent codes with primitive feedback polynomials
because of their favorable asymptotic performance in the “error
floor” region. However, it was observed through simulation
that primitive PCCC exhibit relatively poorer performance in
the “waterfall” region compared to other known nonprimitive
PCCC [18]. This phenomenon was validated by our results
in the previous section which show that the best symmetric
PCCC from a convergence point of view have nonprimitive
feedback polynomials. In [18], Takeshitaet al.proposed a new
construction for asymmetric PCCC that uses one primitive
and one nonprimitive constituent code. Their proposed code
was shown through simulation to “split” the performance of
the corresponding codes both in the waterfall and error floor
regions [18].

It is not necessary to make this compromise, however, as
it is possible to design better asymmetric codes using conver-
gence threshold analysis. For example, let us take the primitive
16-state code with best convergence threshold as the first of the
constituent codes. This is the code from Table III with
a convergence threshold of 0.096 dB (the same primitive code
used by Takeshitaet al.). Fig. 9 shows the extrinsic information
SNR input/output relation for this code at 0 dB. From
the figure, it is clear that if a genie were to provide the iterative
decoder with extrinsic information having SNR in the
first iteration only, the symmetric PCCC built from this 16-state

constituent code would converge to the desired . This
is predicted by the extrinsic information characteristic of Fig. 9
and can be easily verified through simulation. This says that,
if there were a way in the initial iterations to aid this 16-state
in avoiding the intersection point, the PCCC would eventually
reach the desired zero error convergence point. In the previous
section, we noted that carefully chosen codes with different
memory size exhibit different rates of convergence. This ob-
servation suggests that the second constituent code should be
chosen to yield high-quality extrinsic information in the input
SNR range where the 16-state is close to the (InOut) line.
This second code will then help bootstrap the convergence of the
iterative decoder. The best eight-state code found in our search
that suits this requirement has the transfer function .

A slightly different analytical approach is required to find
the convergence threshold for asymmetric PCCC. It is no
longer sufficient to compare the extrinsic information SNR
input/output relation of one constituent code with the (In
Out) line. To analyze asymmetric PCCC convergence, the
extrinsic information SNR input/output relations of both de-
coders are evaluated. To determine whether the turbo decoder
will converge or not at any particular , the extrinsic
information SNR input/output relations of the two decoders are
plotted on reverse axes (i.e., the input axis of one decoder is the
output axis of the other decoder and vice versa). Based on the
independent Gaussian model, it is easy to see that the asym-
metric PCCC decoder will converge to with sufficient
number of iterations if and only if the two characteristics do
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Fig. 9. Extrinsic information SNR input/output relation for the primitive 16-state code atE =N = 0 dB.

not intersect. The rest of the procedure is the same as that used
for symmetric PCCC.

The convergence threshold for the new asymmetric code is
found to be 0.066 dB. This threshold is superior to that of both
the symmetric 16-state and the symmetric eight-state PCCC
built from the two constituent codes. The simulation results in
Fig. 10 confirm that the asymmetric code is superior to both
16-state and eight-state symmetric codes in terms of perfor-
mance in the waterfall region. This result is rather unexpected
in that it indicates that good asymmetric codes can be obtained
by mixing the constituent codes from two inferior symmetric
codes.

Fig. 11 compares the performance of three codes: the new
asymmetric code, the asymmetric code of Takeshitaet al., and
the symmetric code with the best convergence threshold from
Table I. The relative performance of the three codes in the
waterfall region is in excellent agreement with the convergence
threshold analysis. The three codes converge to BER
within 0.2 dB from their convergence thresholds, respectively,
at this particular frame size (16 384). The new asymmetric
code offers performance improvement over the current state
of the art. The new code outperforms the asymmetric code
of Takeshitaet al. in the waterfall region. Its convergence
threshold is 0.162 dB lower than that of the best symmetric
primitive 16-state PCCC, listed in Table III, and is within 0.086
dB of the convergence threshold of the best symmetric PCCC
in Table I. Due to the strength of the primitive constituent code,
the new asymmetric code also avoids the very poor asymptotic
performance of the symmetric nonprimitive codes as shown in
Fig. 11.

A first step toward the design of irregular PCCC was taken
by Frey and MacKay [22] in which they allowed the symbol
nodes to have variable degrees. However, their construction
was limited by having a single constituent code [22]. Al-
lowing more than one constituent code, with possibly different
constraint lengths, would provide for additional degrees of
freedom in the design, perhaps making it possible to optimize
the degree sequences of both the symbol and check nodes to
yield better convergence characteristic in the waterfall region.
We are currently in the process of investigating irregular codes
designed in this fashion.

As a final note, it is clear from Fig. 12 that the same rela-
tive performance predicted by the convergence threshold anal-
ysis holds in the waterfall region for a relatively small block
size 1024. This observation contrasts the case of irregular LDPC
codes constructed by optimizing the degree sequences for both
the symbol and check nodes to allow for better convergence
characteristics of the iterative decoder [16]. The performance
of an exemplary rate- code constructed using this technique
was shown to be within 0.1 dB from the Shannon limit with a
block length of 1 000 000. For small block lengths, however, the
performance of regular PCCC was shown to be still superior to
irregular LDPC codes [16]. Therefore, irregular PCCC hold the
promise of achieving superior performance to irregular LDPC
codes for small and large block lengths.

C. SCCC

For PCCC, the constituent codes produce parity symbols that
are not shared or exchanged; hence, the constituent decoders
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Fig. 10. Simulation results for the new asymmetric code and the two symmetric codes built from the eight-state and 16-state constituent codes.

Fig. 11. Simulation results for the new asymmetric code, Takeshitaet al.asymmetric code, and the 16-state code with the best convergence threshold with 16 384
frame length.

produce extrinsic information for the data symbols only. The
situation is different in the SCCC case. In the SCCC encoder,
the parity symbols added by the outer code are multiplexed with

the data symbols, and the output stream is then interleaved and
encoded by the inner code. At the receiver, the inner constituent
decoder provides extrinsic information for both the data and the
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Fig. 12. Simulation results for frame length 1024.

Fig. 13. Eight-state SCCC extrinsic information SNR characteristics:E =N = �0.5 dB.

outer code’s parity symbols each iteration, while the outer con-
stituent decoder provides extrinsic information for the data sym-
bols only.

To account for the asymmetry in the operation of the two con-
stituent decoders, the analytical approach used for asymmetric

PCCC is required to analyze the SCCC convergence. The ex-
trinsic information SNR input/output relations of both the inner
and outer decoders are evaluated first. For the outer decoder,
the input extrinsic information is added to the intrinsic infor-
mation of both the data and parity symbols, whereas the input
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TABLE IV
CONVERGENCETHRESHOLDS FORREGULAR LDPC CODES

Fig. 14. Eight-state serially concatenated convolutional code extrinsic information SNR characteristics:E =N = 0 dB.

extrinsic information to the inner decoder is added only to the
intrinsic information of the data symbols. To determine whether
the turbo decoder will converge or not at any particular ,
the extrinsic information SNR input/output relations of the inner
and outer decoders are plotted on reverse axes. As an example,
we consider the rate- SCCC using the eight-state constituent
codes studied in [17]. Figs. 13 and 14 show the extrinsic infor-
mation SNR input/output relations of the inner and outer de-
coders at 0 dB and 0.5 dB, respectively.
From these diagrams, it is clear that the decoder will converge
at 0 dB and will not converge at 0.5 dB.
The result is in excellent agreement with the simulation results
presented in [17], where the decoder was shown to converge
at 0.25 dB. It is also clear from the figures that the 0.25-dB
margin was only chosen for demonstration purposes.

D. Gallager LDPC Codes

In Gallager’s regular LDPC codes, each data or parity symbol
has the same degree (i.e., connected to exactly check
nodes in the bipartite graph). For a ratecode, the degree of
each check node is . Therefore, each constituent decoder
has inputs. In the iterative decoder, each symbol is es-
timated by different and independent decoders. Each check
node calculates each symbol output extrinsic information from
the other inputs. The input extrinsic information to any
decoder is obtained from the other outputs. Table IV
shows the convergence thresholds for several LDPC codes ob-
tained through our technique and the density evolution tech-
nique [10], respectively. In all the cases considered, the differ-
ence between the two estimated is within 0.15 dB.
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TABLE V
CONVERGENCETHRESHOLDS FORCHENG AND MC ELIECE HIGH-RATE CODES

Cheng and McEliece introduced their higher rate version
of Gallager’s LDPC codes in [6]. The difference between this
coding scheme and the LDPC codes is that each parity symbol
is involved in only one check equation. Hence, in the bipartite
graph, the parity nodes and the check nodes are the same. The
authors’ expectation in [6] was that increasing the connectivity
degree would improve the distance spectrum and, hence, the
performance. They found that the effect of increasing the
connectivity degree is to lower the error floor and shift the
waterfall threshold to a higher SNR. While the improvement in
the weight spectrum is supported by the improved asymptotic
performance at high SNRs, the degradation in the waterfall
region with increasing connectivity was not explained.

The iterative decoder for Cheng–McEliece codes is easily ac-
commodated in the general decoder model and analyzed via the
independent Gaussian assumption technique. Assuming that the
degree of each data node is, and the code rate is, then
the degree of each parity/check node is and each con-
stituent decoder will have inputs. The iterative decoder
in this scheme is different from Gallager’s LDPC decoder in one
major aspect. Unlike the former codes case, the constituent de-
coders provide extrinsic information for the data symbols only.
Hence, the parity symbols will be coupled with intrinsic infor-
mation only. However, similar to Gallager’s LDPC codes, the
extrinsic information for the information symbols is obtained
from the other decoders. Taking that into account, the
convergence points predicted under the independent Gaussian
assumption for codes with different connectivity degreesare
reported in Table V.

The detrimental effect of increasing the connectivity degree
on the ability of the turbo decoder to converge to the ML so-
lution is clear from the table. Since the performance in the low
SNR region is largely determined by the decoder convergence,
the predicted convergence points explain the degradation in per-
formance observed in [6].

IV. EXTENSION TO FADING CHANNELS

Available research [10] on the behavior of iterative decoding
thus far has not considered the fading channel scenario. In
this section, we extend our convergence analysis to certain
frequency nonselective slow and fast Rayleigh fading models;
the extension to Rician channels is straightforward. Perfect
channel state information is assumed to be available at the
receiver.

A. Quasi-Static Fading Channels

In this model, the fading amplitude is constant across one
code word and is independent from one codeword to the next.

Hence, fading causes the effective SNR to vary from one code-
word to the next according to the distribution of the square
of the fading amplitude. From the AWGN analysis, it is clear
that the iterative decoder will converge for a particular code-
word with a fixed fading amplitude if and only if the effective
SNR for this codeword exceeds the convergence threshold. Let

be the fading amplitude, be the transmitted symbol en-
ergy-to-white-noise ratio, and be the minimum symbol
energy-to-white-noise ratio required for iterative decoder con-
vergence in the AWGN channel. Then, the frame error proba-
bility for the quasi-static Rayleigh fading channel is given by

(4)

The importance of this result is twofold. First, it provides a
simple and general technique of characterizing the performance
of graphical codes over slow-fading channels. Second, it shows
that the performance of graphical codes in slow-fading channels
is largely determined by the iterative decoder convergence char-
acteristics at high as well as low SNRs. This suggests that, for
slow Rayleigh-fading channels, it is more important to optimize
for decoder convergence than code weight spectrum.

B. Fast-Fading Channels

For the fast-fading channel, each symbol is multiplied by a
different and statistically independent Rayleigh fading ampli-
tude. In this case, we modify the independent Gaussian assump-
tion so that, even though the channel variables are no longer
Gaussian, the extrinsic information variables are still assumed
to be Gaussian. Under this model, Proposition 1 is still true. Es-
sentially, the same proof shows that the SNRs of the decision
statistic and the extrinsic information are both non-
decreasing functions of the input SNRs, and the one SNR in-
creases to infinity if and only if the other does. But, since the
decision statistic is no longer Gaussian, it no longer imme-
diately follows as in the AWGN case that as
SNR or SNR .

To repair that part of the proof, we note that

where is arbitrary and

By conditioning on , we can apply Proposition 2.1 to show
that as the extrinsic SNR SNR

. Thus, we can make by first choosing
so that and then choosing SNR sufficiently
large so that . This establishes the de-
sired result that as SNR [and
hence as SNR ].

The rest of the analysis in Section II regarding the existence
of thresholds and then follows exactly as in the AWGN
case. Empirically, it is found that the Rayleigh-fading conver-
gence threshold is also finite and nonzero. For example, in
[23], Hall et al.noted that the performance of PCCC in the fast
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Rayleigh-fading channel exhibits a waterfall behavior similar
to that in the AWGN case but with a larger threshold value.
Our analysis based on the independent Gaussian assumption
as modified for the Rayleigh-fading channel predicts threshold
values in excellent agreement with the simulation results of
[23].

V. CONCLUSION

The main result established in this paper is that the perfor-
mance of graphical codes in the low SNR region is governed
by the convergence characteristics of the iterative decoder inde-
pendent of the distance spectrum of the code. Thus, traditional
optimization of the code parameters with respect to the distance
spectrum will not in general improve the performance in the
low SNR region. To improve the performance in this region,
different optimization should be considered to allow for better
convergence characteristics of the turbo decoder. This explains,
for example, why more sophisticated code constructions such
as SCCC which aim to improve asymptotic code performance
do not outperform Berrou’s original construction in the low
SNR region. The simple method developed in this paper to ana-
lyze the iterative decoder convergence is based on the Gaussian
approximation and yields very accurate results compared with
the literature. Based on the insights obtained from such anal-
ysis, we presented an interesting construction for asymmetric
PCCC that enjoys a favorable performance in the waterfall re-
gion. This construction provides a new ingredient to add to Frey
and MacKay irregular PCCC design [22] and improves upon
the asymmetric code proposed by Takeshitaet al. [18]. Finally,
we extended our analysis to fast- and slow-fading channels. The
fast-fading scenario turns out to be very similar to the AWGN
case in which decoder convergence characteristics determine the
waterfall threshold, while the performance at high SNR is gov-
erned by the code weight spectrum. In contrast, for slow-fading
channels, the performance of graphical codes is largely deter-
mined by the decoder convergence characteristics for all input
SNRs.
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