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ABSTRACT: Turbo codes are the most exciting and potentially important 
development in coding theory in many years. They were introduced in 
1993 by Berrou, Glavieux and Thitimajshima [l], and claimed to achieve 
near Shannon-limit error correction performance with relatively simple 
component codes and large interleavers. A required Eb/N,  of 0.7 dB was 
reported for BER of and code rate of 1/2 [l]. However, some im- 
portant details that are necessary to reproduce these results were omitted. 
This paper confirms the accuracy of these claims, and presents a complete 
description of an encodeddecoder pair that could be suitable for PCS ap- 
plications. We describe a new simple method for trellis termination, we 
analyze the effect of interleaver choice on the weight distribution of the 
code, and we introduce the use of unequal rate component codes which 
yields better performance. Turbo codes are extended to encoders with 
multiple codes and a suitable decoder structure is developed, which is 
substantially different from the decoder for two-code based encoders. 

I. INTRODUCTION 
Coding theorists have traditionally attacked the problem of designing 
good codes by developing codes with a lot of structure which lends to 
feasible decoders, although coding theory suggests that codes chosen “at 
random” should perform well if their block size is large enough. The 
challenge to find practical decoders for “almost” random, large codes has 
not been seriously considered until recently. Perhaps the most exciting 
and potentially important development in coding theory in recent years 
has been the dramatic announcement of “Turbo-codes” by Berrou et al. 
in 1993 [l]. The announced performance of these codes was so good that 
the initial reaction of the coding establishment was deep skepticism, but 
recently researchers around the world have been able to reproduce those 
results [3]- [4]. The introduction of turbo-codes has opened a whole new 
way of looking at the problem of constructing good codes and decoding 
them with low complexity. 

These codes are claimed to achieve near Shannon-limit error correc- 
tion performance with relatively simple component codes and large inter- 
leavers. A required &,/No of 0.7 dB was reported for BER of [l]. 
However, some important details that are necessary to reproduce these 
results were omitted. The purpose of this paper is to shed some light on 
the accuracy of these claims, and to present a complete description of an 
encodeddecoder pair that could be suitable for PCS applications, where 
lower rate codes can be used. 

For example, in multiple-access schemes like CDMA the capacity 
(maximum number of users per cell) can be expressed as C = & + 1, 
where 17 is the processing gain and E, , /N,  is the required signal-to-noise 
ratio to achieve a desired bit error rate (BER) performance. For a given 
BER, a smaller required E b / N o  implies a larger capacity or cell size. 
Unfortunately, to reduce Eh/  No it is necessary to use very complex codes 
(e.g. large constraint length convolutional codes). In this paper, we design 
turbo codes suitable for CDMA and PCS applications that can achieve 
superior performance with limited complexity. For example, if a (7,1/2) 
convolutional code is used at BER=10-3, the capacity is C = 0.5q. 
However, if two (5,1/3) punctured convolutional codes or three (4,1/3) 
punctured codes are used in a turbo encoder structure, the capacity can 
be increased to C = 0.817 (with 192-bits and 256-bits interleavers which 
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correspond to 9.6 Kbps and 13 Kbps with roughly 20ms frames). Higher 
capacity can be obtained with larger interleavers. Note that low rate codes 
can be used for CDMA since an integer number of chips per coded symbol 
is used and bandwidth is defined mainly by chip rate. 

Three new contributions are reported in this paper: a new simple 
method for trellis termination, the use of unequal rate component codes 
which results in better performance, and the development of decoders for 
multiple-code encoders - the original turbo decoder scheme operates in 
serial mode, while for multiple-code encoders we found that the decoder 
for the whole turbo code based on the optimum MAP rule must operate 
in parallel mode, and we derived the appropriate metric as illustrated in 
Sec. 111. 

11. PARALLEL CONCATENATION OF CONVOLUTIONAL 
CODES 

The codes considered in this paper consist of the parallel concatenation 
of multiple convolutional codes with random interleavers (permutations) 
at the input of each encoder. Fig. 1 illustrates a particular example that 
will be used in this paper to verify the performance of these codes. The 

Figure 1: Example of encoder with three codes 

encoder contains three recursive binary convolutional encoders, with M I ,  
M2 and M3 memory cells respectively. In general, the three component 
encoders may not be identical. The first component encoder operates 
directly on the information bit sequence U = (u1. . . . , U N )  of length N ,  
producing the two output sequences y l r  and ylp. The second component 
encoder operates on a reordered sequence of information bits u2 produced 
by an interleaver n2 of length N ,  and outputs the sequence y2,,. Similarly, 
subsequent component encoders operate on a reordered sequence of in- 
formation bits u j  produced by interleaver nj and output the sequence yjp. 

The interleaver is a pseudo-random block scrambler defined by a permu- 
tation of N elements with no repetitions: a complete block is read into 
the the interleaver and read out in a specified (fixed) random order. The 
same interleaver is used repeatedly for all subsequent blocks. Figure 1 
shows an example where a rate r = 1 / n  = 1 /4 code is generated by three 
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component codes with M I  = M2 = M3 = M = 2, producing the outputs 
Yil 11, Y i p  = U .  &?Olga, Yz,, = U2’gh/ga ,  and y3,, = U 3 .  gb/ga, where 
the generator polynomials g, and go have octal representation (7)octal and 
(5)octal, respectively. Note that various code rates can be obtained by 
proper puncturing of y ip ,  y2,, and y3,,. The design of the constituent 
convolutional codes, which are not necessarily optimum convolutional 
codes, IS still under investigation. It was suggested in [SI that good codes 
are obtained if g b  is a primitive polynomial. 
Trelliis Termination - We use the encoder in Fig. 1 to generate a 
(n(N t- M ) ,  N) block code, where the M tail bits of code 2 and code 3 
are not transmitted. Since the component encoders are recursive, it is not 
sufficient to set the last M information bits to zero in order to drive the 
encoder to the all zero state, i.e. to terminate the trellis. The termination 
(tail) st:quence depends on the state of each component encoder after N 
bits, which makes it impossible to terminate both component encoders 
with just M bits. This issue has not been resolved in previously proposed 
turbo code implementations. Fortunately, the simple stratagem illustrated 
in Fig. 2 is sufficient to terminate the trellis at the end of the block. (The 
specific code shown is not important). Here the switch is in position “A” 
for the first N clock cycles and is in position “B” for M additional cycles, 
which will flush the encoders with zeros. The decoder does not assume 
knowledge of the M tail bits. The same termination method will he used 
for all encoders. 

lnpi - 

xP 

Figure 2: Trellis Termination 

Weight Distribution - In order to estimate the performance of 
a code it is necessary to have information about its minimum distance, 
weight distribution, or actual code geometry, depending on the accuracy 
required for the bounds or approximations. The challenge is in finding 
the pairing of codewords from each individual encoder, induced by a 
particular set of interleavers. Intuitively, we would like to avoid joining 
low-weight codewords from one encoder with low-weight words from 
the other encoders. In the example of Fig. 1, the component codes have 
minimum distances 5,2 and 2. This will produce a worst-case minimum 
distance of 9 for the overall code. Note that this would be unavoid- 
able if the encoders were not recursive since, in this case, the minimum 
weight word for all three encoders is generated by the input sequence 
U = (00. . . 0000100 . . . 000) with a single “l”, which will appear again 
in the other encoders, for any choice of interleavers. This motivates the 
use of recursive encoders, where the key ingredient is the recursiveness 
and not the fact that the encoders are systematic. For our example, the 
input sequence U = (00.. . 00100100 . .  ,000) generates a low weight 
codeword with weight 6, for the first encoder. If the interleavers do not 
“break” this input pattern, the resulting codewords weight will be 14. In 
general weight-2 sequences wilh 2 + 3t zeros separating the 1’s would 
result in a total weight of 14 + 1st if there were no permutations. 

With permutations before the second and third encoders, a weight- 
2 sequence with its 1’s separated by 2 + 3r l  zeros will be permuted 
into two other weight-2 sequences with 1’s separated by 2 + 3t, zeros, 
1 = 2, 3, where each tl is defined as a multiple of 113. If any tl is not 
an integer, the corresponding encoded output will have a high weight 
because then the convolutional code output is non-terminating (until the 
end of the block). If all t, ’s are integers, the total encoded weight will be 

14+2 E;=, t i .  Thus, one of the considerations in designing theinterleaver 
is to avoid integer triplets (tl , t z ,  t 3 )  that are simultaneously small in all 
three components. In fact, it would be nice to design an interleaver to 
guarantee that the smallest value of E:=, ti (for integer t i )  grows with the 
block size N .  

For comparison we consider the same encoder structure in Fig. 1, ex- 
cept with the roles of ga and gb reversed. Now the minimum distances 
of the three component codes are 5 ,  3, and 3, producing an overall min- 
imum distance of 11 for the total code without any permutations. This 
is apparently a better code, but it turns out to be inferior as a turbo code. 
This paradox is explained by again considering the critical weight-2 data 
sequences. For this code, weight-2 sequences with 1 + 2tl zeros sepa- 
rating the two l’s  produce non-terminating output and hence low-weight 
encoded words. In the turbo encoder, such sequences will be permuted 
to have separations 1 + 2ti, i = 2, 3, for the second and third encoders, 
where now each ti is defined as a multiple of 1/2. But now the total 
encoded weight for integer triplets (tl,  t2. t3) is 11 +E;=, ti. Notice how 
this weight grows only half as fast with ti as the previously calcu- 
lated weight for the original code. If E;=, ti can be made to grow with 
block size by proper choice of interleaver, then clearly it is important to 
choose component codes that cause the overall weight to grow as fast as 
possible with the individual separations t i .  This consideration outweighs 
the criterion of selecting component codes that would produce the highest 
minimum distance if unpermuted. 

There are also many weight-n, n = 3 , 4 ,  5, ..., data sequences that 
produce terminating output and hence low encoded weight. However, as 
argued below, these sequences are much more likely to be broken up by the 
random interleavers than the weight-2 sequences and are therefore likely 
to produce non-terminating output from at least one of theencoders. Thus, 
turbo code structures which have low minimum distances (if unpermuted) 
due strictly to higher-weight input sequences are often superior to other 
turbo codes with higher unpermuted minimum distances that are caused 
by weight-2 input sequences. 

Weight Distribution with Random Interleavers -NOW 
we briefly examine the issue of whether one or more random interleavers 
can avoid matching small separations between the 1’s of a weight-2 data 
sequence with equally small separations between the 1’s of its permuted 
version(s). Consider for example a particular weight-2 data sequence 
(. . . 001001000 . . 1) which corresponds to a low weight codeword in each 
of the encoders of Fig. 1. If we select randomly an interleaver of size 
N,  the probability that this sequence will be permuted into another se- 
quence of the same form is roughly 2/N (assuming that N is large, 
and ignoring minor edge effects). The probability that such an unfor- 
tunate pairing happens for at least one possible position of the original 
sequence (. . .001001000.. .) within the block size of N,  is approxi- 
mately 1 - (1 - 2/N)N x 1 - e-*. This implies that the minimum 
distance of a two-code turbo code constructed with a random permuta- 
tion is not likely to be much higher than the encoded weight of such 
an unpermuted weight-2 data sequence, e.g. 14 for the code in Fig. 1. 
(For the worst case permutations, the dmin of the code is still 9, but these 
permutations are highly unlikely if chosen randomly). By contrast, if 
we use three codes and two different interleavers, the probability that 
a particular sequence (. , .001001000., .) will be reproduced by both 
interleavers is only (2/N)2. Now the probability of finding such an un- 
fortunate data sequence somewhere within the block of size N is roughly 
1 - [l - ( 2 / N ) ’ I N  % 4,”. Thus it is probable that a three-code turbo 
code using two random interleavers will see an increase in its minimum 
distance beyond the encoded weight of an unpermuted weight-2 data 
sequence. This argument can be extended to account for other weight- 
2 data sequences which may also produce low weight codewords, e.g. 
(. . .00100(000)‘1000. . .), for the code in Fig. 1. For comparison, let 
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us consider a weight-3 data sequence such as (. . . 001 1100. . ,) which 
for our example corresponds to the minimum distance of the code (using 
no permutations). The probability that this sequence is reproduced with 
one random interleaver is roughly 6 / N 2 ,  and the probability that some 
sequence of the form (. . ,001 1100. . .) is paired with another of the same 
form is 1 - (1 - 6 / N 2 ) N  x 6 / N .  Thus for large block sizes, the bad 
weight-3 data sequences have a small probability of being matched with 
bad weight-3 permuted data sequences, even in a two-code system. 

For a turbo code using q codes and q - 1 random interleavers this 
probability is even smaller, 1 - [l - (6 /N2)9-  ‘1” : (+ )q- * .  This 
implies that the minimum distance codeword of the turbo code in Fig. 1 
is more likely to result from a weight-2 data sequence of the form 
(, . .001001000 . . .) than from the weight-3 sequence (. . ,001 1100. . .) 
that produces the minimum distance in the unpermuted version of the 
same code. Higher weight sequences have even smaller probability of 
reproducing themselves after being passed through a random interleaver. 

For a turbo code using q codes and q - 1 interleavers, the probability 
that a weight-n data sequence will be reproduced somewhere within the 
block by all q - 1 permutations is of the form 1 - [ 1 - (/?/N“-’)q-‘]N, 
where f i  is a number that depends on the weight-n data sequence but does 
not increase with block size N .  For large N ,  this probability is propor- 
tional to (l/N)“q-“-q, which falls off rapidly with N ,  when n and q are 
greater than two. Furthermore, the symmetry of this expression indicates 
that increasing either the weight of the data sequence n or the number of 
codes q has roughly the same effect on lowering this probability. 

In summary, from the above arguments we conclude that weight-2 data 
sequences are an important factor in the design of the component codes, 
and that higher weight have decreasing importance. Also, increasing the 
number of codes may result in better turbo codes. More accurate results 
and derivations are discussed in [6].  

The minimum distance is not the most important quantity of the turbo 
code, except for its asymptotic performance, at very high E!,/N,. At mod- 
erate SNRs, the weight distribution for the first several possible weights 
is necessary to compute the code performance. Estimating the complete 
weight distribution of these codes for large N and fixed interleavers is still 
an open problem. However, it is possible to estimate the weight distribu- 
tion for large N for random interleavers by using probabilistic arguments. 
(See [4] for further considerations on the weight distribution). 
I n t e r l e a v e r  Design - Interleavers should be capable of spread- 
ing low-weight input sequences so that the resulting codeword has high 
weight. Block interleavers, defined by a matrix with U, rows and U, 

columns such that N = ur x U,, may fail to spread certain sequences. For 
example, the weight 4 sequence shown in Fig. 3 cannot be broken by a 
block interleaver. In order to break such sequences random interleavers 
are desirable. (A method for the design of interleavers is discussed in [3] ) .  
Block interleavers are effective if the low-weight sequence is confined to 
a row. If low-weight sequences (which can be regarded as the combina- 
tion of lower weight sequences) are confined to several consecutive rows, 
then the U, columns of the interleaver should be sent in a specified order 
to spread as much as possible the low-weight sequence. A method for re- 
ordering the columns is given in [8]. This method guarantees that for any 
number of columns U, = aq + r ,  ( r  5 a - 1), the minimum separation 
between data entries is q - 1, where a is the number of columns affected 
by a burst. However, as can be observed in the example in Fig. 3, the se- 
quence 1001 will still appear at the input of the encoders for any possible 
column permutation. Only if we permute the rows of the interleaver in ad- 
dition to its columns it is possible to break the low-weight sequences. The 
method in [SI can be used again for the permutation of rows. Appropriate 
selection of of a ,  and q for rows and columns depends on the particular 
set of codes used and on the specific low-weight sequences that we would 
like to break. We designed random permutations (interleavers) by gen- 

erating random integers i, 1 5 i 5 N ,  without replacement. We define 
a “S-random” permutation as follows: each randomly selected integer 
is compared to S previously selected integers. If the current selection 
is equal to any S previous selections within a distance of fS, then the 
current selection is rejected. This process is repeated until all N integers 
are selected. While the searching time increases with S, we observed 
that choosing S < usually produces a solution in reasonable time. 
(For S = 1 we have a purely random interleaver). 

In the simulations we used S = 11 for N = 256 and S = 31 for 
N = 4096. 

The advantage of using three or more constituent codes is that the 
corresponding two or more interleavers have a better chance to break se- 
quences that were not taken care by another interleaver. The disadvantage 
is that, for an overall desired code rate, each code must be punctured more, 
resulting in weaker constituent codes. In our experiments, we have used 
randomly selected interleavers and interleavers based on the row-column 
permutation described above. In general, randomly selected permuta- 

r o o  . . .  0 0 0 1  

WRITE 0 

+ 
0 0 

L o o 0  . . .  0 0 1  

Figure 3: Example where a block interleaver fails to “break” the 
input sequence. 

tions are good for low SNR operation (e.g., PCS applications requiring 
f$ = where the overall weight distribution of the code is more 
important than the minimum distance 

111. TURBO DECODING CONFIGURATION 
The turbo decoding configuration proposed in [1] for two codes is shown 
schematically in Fig. 4. This configuration operates in serial mode, i.e. 
“Dec1” processes data before “Dec2” starts its operation, and so on. 
An obvious extension of this configuration to three codes is shown in 

Figure 4: Decoding structure for two codes. 

Fig. 5(a), which also operates in serial mode. But, with more than two 
codes, there are other possible configurations, as that shown in Fig. 5(b) 
where “Decl” communicates with the other decoders, but these decoders 
do not exchange information among each other. This “Master & Slave’’ 
configuration operates in a mixed serial-parallel mode, since all other 
decoders except the first operate in parallel. Another possibility, shown in 
Fig. 5(c) is that all decoders operate in parallel at any given time. Note that 
self loops are not allowed in these structures since they cause degradation 
or divergence in the decoding process (positive feedback). We are not 
considering other possible hybrid configurations. Which configuration 
performs better? Our selection of the best configuration and its associated 
decoding rule is based on a detailed analysis of the minimum bit error 
decoding rule (MAP algorithm) as described below. 
Turbo D e c o d i n g  for M u l t i p l e  Codes - Let uk be a binary 
random variable taking values in (0, l}, representing the sequence of 
information bits U = ( U , ,  . . . , u N ) ,  The MAP algorithm [7] provides the 
log likelihood ratio Lk given the received symbols y: 
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(a) SERIAL 

e . .  

(b) MASTER 8 SLAVE 

(c) PARALLEL 

F’igure 5: Different decoding structures for three codes. 

(2) 
c U , ~ = l  ‘(Ylu) n , f k  ‘ ( ‘ 1 )  

c U , u k = O  ‘(ylu) n,#k ‘(’1) 

p(uk = 1) 
p(uk = 0) 

= log + log 

For efficient computation of eq.(2) when the a-priori probabilities P (U,) 
are non-uniform, the modified MAP algorithm in [2] is simpler to use 
than the version considered in [l]. Therefore, in this paper we use the 
modified MAP algorithm of [2] as we did in [4]. 

The channel model is shown in Fig. 6 where the nz,k’s and the n p k ’ S  

are i.i.d. zero mean Gaussian random variables with unit variance, and 
p = ,/- is the signal-lo-noise ratio. (The same model is used 
for each encoder). To explain the basic decoding concept we restrict 

Figure 6: Channel model. 

ourselves to three codes, but extension to several codes is straightforward. 
In order to simplify the notation, consider the combination of permuter 
and encoder as a block code with input U and outputs x,, i = 1 , 2 , 3  and 
the corresponding received sequences yl , i = 1, 2 ,  3. The optimum MAP 
decision metric on each bit is (for data with uniform probabilities) 

but in practice we cannot compute eq.(3) for large N. Suppose that we 
evaluate P(yI \U) ,  1 = 2,  3, in eq.(3) using Bayes’ rule and using the, 
following approximation 

(4) 

Note that P(ulyi) is not separable in general A reasonable criterion for 
this approximation is to choose n,”=, pi (uk) such that it minimizes the 
Kullback distance or free energy [9, lo]. Define 

euki lk  

pi (uk) = - 9 

1 + eick 

where uk E IO, 1). Then the Kullback distance is given by 

Such minimization involves forward and backward recursions analogous 
to the MAP decoding algorithm! Therefore, if such an approximation 
can be obtained, we can use it in eq.(3) for i = 2 and i = 3 (by Bayes’ 
rule) to complete the algorithm. Now, instead of using eq.(6) to obtain 
{ F i }  or equivalently (Li), we use (4) and ( 5 )  for i = 2 , 3  (by Bayes’ rule) 
to express (3) as 

Lk = f ( y l ,  fJ2, 6 3 ,  k )  f L 2 k  f L 3 k  (7) 

where 

We can use (4) and (5) again, but this time for i = 1,3 ,  to express (3) as 

Lk = f ( Y 2 ,  El, L 3 ,  k )  + i l k  + L 3 k  

Lk = f(Y3, L l ,  L 2 ,  k )  f i l k  f L 2 k  

(9) 

(10) 
and similarly 

A solution to eqs. 7,9, and 10 is 

i l k  f(yl ,  E 2 1  L3, k ) ;  L 2 k  = f (Y2,  f J 1 ,  k ) ;  L 3 k  = f (Y3,  f J I ,  6 2 ,  k )  
(11) 

provided that a solution does indeed exist. fork = 1,2 ,  , . , , N. The final 
decision is then based on 

Lk = i l k  + i 2 k  + i , k  (12) 

which is passed through a hard-limiter with zero threshold. We attempted 

Figure 7: Structure of block decoder 2 

to solve the nonlinear equations in ( 1  1) for L,, L 2 ,  and L 3  by using the 
iterative procedure 

(13) 

for k = 1 ,2 ,  . , . , N, iterating on m. Similar recursions hold for LEi and 
LEi. The gain ay’ should be equal to one, but we noticed experimentally 
that better convergence can be obtained by optimizing this gain for each 
iteration starting from a value slightly less than one, and increasing toward 

L ( m + l i  ,k - - crr“ f (y l ,  L?’. Ly, k )  



one with the iterations, as often done in simulated annealing methods. We 
start the recursion with the initial condition* E:’ = E:) = I?$) = 0. 
For the computation of f ( . )  we use the modified MAP algorithm with 
permuters (direct and inverse) where needed, as shown in Fig. 7 for block 
decoder 2. The MAP algorithm always starts and ends at the all-zero 
state since we used perfect termination. Similar structures apply for 
block decoder 1 (nl = I ,  identity), and block decoder 3. The overall 
decoder is composed of block decoders connected as in Fig. 5(c), which 
can he implemented as a pipeline or by feedback. 
Multiple Code Algorithm Applied to Two Codes. -For 
turbo codes with only two constituent codes, eq. (13) reduce to 

where, for each iteration, a?’ and a?’ can be optimized (simulated an- 
nealing) or set to 1 for simplicity. The decoding configuration for two 
codes, according to the previous section, is shown in Fig. 8. In this spe- 

X X 

Figure 8: Parallel structure for two codes. 

cia1 case, since the two paths in Fig. 8 are disjoint, the decoder structure 
reduces to that of Fig. 4, i.e. to the serial mode. 

If we optimize a y )  and a?), our method for two codes is similar to 
the decoding method proposed in [l], which requires estimates of the 
variances of ilk and i2k for each iteration in presence of errors. In the 
method proposed in [2] the received “systematic” observation was sub- 
tracted from ilk, which results in performance degradation. In [3] the 
method proposed in [2] was used hut the received “systematic” observa- 
tion was interleaved and provided to decoder 2. In [4], we argued that 
there is no need to interleave the received “systematic” Observation and 
provide it to decoder 2, since E l k  does this job. It seems that our proposed 
method with ay’ and a?) equal to 1 is the simplest and achieves the same 
performance reported in [3] for rate 1/2 codes. 
Terminated Parallel Convolutional Codes as Block 
Codes. - Consider the combination of permuter and encoder as a 
linear block code. Define P, as the parity matrix of the terminated convo- 
lutional code i .  Then the overall generator matrix for three parallel codes 
is 

where n, are the permutations (interleavers). In order to maximize the 
minimum distance of the code given by G we should maximize the number 
of linearly independent columns of the corresponding parity check matrix 
H .  This suggests that the design of P, (code) and n, (permutation) are 
closely related and it does not necessarily follow,that optimum component 
codes (maximum d,,,) yield optimum parallel concatenated codes. For 
very small N we used this concept to design jointly the permuter and the 
component convolutional codes. 

G = [ I  Pi ~ 2 P 2  n3P3] 

IV. PERFORMANCE 
Two Codes - The performance obtained by turbo decoding the 
code with two constituent codes (1, go/g,), where g, = (37),,r,l and 
g b  = (21),,ral, and with random permutations of lengths N = 4096 and 

2Note that the components of the E’s corresponding to the tail bits are set to 
zero for all iterations. 

N = 16384 is compared in Fig. 9 to the capacity of a binary-input Gaus- 
sian channel for rate r = 1/4. The hest performance curve in Fig. 9 is 
approximately 0.7 dB from the Shannon limit at BER=10-4. 

i o - ’ . g .  ’ ’ .  ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ” ’ ’ 

RATE = I t4  

-1.5 -1.0 -0.5 0.0 0.5 1 .o 
EdN,, dB 

Figure 9: Turbo codes performance, r = 1 /4 

Unequal Rate Encoders -We now extend the results to encoders 
with unequal rates with two K = 5 constituent codes (1, gb/ga, g,/ga) 
and (gb/ga), where ga = (Wocrar, 86 = (33)octar and gc = (25)octar. 
This structure improves the performance of the overall, rate 1/4, code, as 
shown in Fig.9. This improvement is due to the fact that we can avoid 
using the interleaved information data at the second encoder and that the 
rate of the first code is lower than that of the second code. For PCS ap- 
plications, short interleavers should be used, since the vocoder frame is 
usually 20ms. Therefore we selected 192 and 256 bits interleavers as an 
example, corresponding to 9.6 and 13 Kbps. (Note that this small dif- 
ference of interleaver size does not affect significantly the performance). 
The performance of codes with short interleaver is shown in Fig. 10 for the 
K = S codes described above for random permutation and row-column 
permutation with a = 2 for rows and a = 4 for columns. 
Three Codes - The performance of a three-code turbo code with 
random interleavers is shown in Fig. 1 1 for N = 4096. The three recursive 
codes shown in Fig. 1 where used for K = 3. Three recursive codes with 
g, = (13)ocror and gb = (ll)octal were used for K = 4. Note that the 
non-systematic version of this encoder is catastrophic, hut the recursive 
systematic version is non-catastrophic. We found that this K = 4 code 
has better performance than several others. 

Although it was suggested [SI that g, be a primitive polynomial, we 
found several counterexamples that show better performance, e.g. g, for 
K = 5 proposed in [l] is not primitive. 

In Fig. 11 , the performance of the K = 4 code was improved by 
going to 30 iterations and using a S-random interleaver with S = 3 1 .  For 
shorter blocks (192 and 256), the results are shown in Fig. 10 where it 
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can be observed that approximately 1 dB SNR is required for BER=10-3, 
which implies a CDMA capacity C = 0 . 8 ~  We have noticed that the 
slope of the BER curve changes around BER=10-5 (flattening effect) if 
the interleaver is not designed properly to maximize d,,, or is chosen at 

1 

random. 

r=l I4 

Random Interleaving N=4096 
Code Rate=1/4 Y 

m=20 

Three K=3 Codes 
Random Interleaver, N=192 

K 
W 
m 

TWO K=5 Codes 

N=l9: 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

E@,, dB 

Figure 10: Performance with short block sizes. 

V. CONCLUSIONS 
We have shown how turbo codes and decoders can be used to improve 
the coding gain for PCS applications. These are just preliminary results 
that require extensive further analysis. In particular, we need to improve 
our understanding of the influence of the interleaver choice on the code 
performance, to explore the sensitivity of the decoder performance to the 
precision with which we can estimate Eb f No.  

An linteresting theoretical qwstion is to determine “how random” these 
codes can be so as to draw conclusions on their performance based on 
comparison with random coding bounds. In [4] we obtained the complete 
weight distribution of a turbo code, calculated the upper bound on BER 
and compared it with maximum-.likelihood (ML) decoding. Those results 
showed that the performance of turbo decoding is close to ML decoding 
and to optimum MAP decoding. However, the approximation used in 
eq.(4) implies that turbo decoding is only close to but not equal to MAP 
decoding. 

The authors are grateful to S.  Dolinar and R.J. McEliece for their helpful 
comments. 
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