
Turbo Codes for PCS Applications
D. Divsalar and E Pollara‘

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91 109

ABSTRACT: Turbo codes are the most exciting and potentially important
development in coding theory in many years. They were introduced in
1993 by Berrou, Glavieux and Thitimajshima [l], and claimed to achieve
near Shannon-limit error correction performance with relatively simple
component codes and large interleavers. A required Eb/N, of 0.7 dB was
reported for BER of and code rate of 1/2 [l]. However, some im-
portant details that are necessary to reproduce these results were omitted.
This paper confirms the accuracy of these claims, and presents a complete
description of an encodeddecoder pair that could be suitable for PCS ap-
plications. We describe a new simple method for trellis termination, we
analyze the effect of interleaver choice on the weight distribution of the
code, and we introduce the use of unequal rate component codes which
yields better performance. Turbo codes are extended to encoders with
multiple codes and a suitable decoder structure is developed, which is
substantially different from the decoder for two-code based encoders.

I. INTRODUCTION
Coding theorists have traditionally attacked the problem of designing
good codes by developing codes with a lot of structure which lends to
feasible decoders, although coding theory suggests that codes chosen “at
random” should perform well if their block size is large enough. The
challenge to find practical decoders for “almost” random, large codes has
not been seriously considered until recently. Perhaps the most exciting
and potentially important development in coding theory in recent years
has been the dramatic announcement of “Turbo-codes” by Berrou et al.
in 1993 [l]. The announced performance of these codes was so good that
the initial reaction of the coding establishment was deep skepticism, but
recently researchers around the world have been able to reproduce those
results [3]- [4]. The introduction of turbo-codes has opened a whole new
way of looking at the problem of constructing good codes and decoding
them with low complexity.

These codes are claimed to achieve near Shannon-limit error correc-
tion performance with relatively simple component codes and large inter-
leavers. A required &,/No of 0.7 dB was reported for BER of [l].
However, some important details that are necessary to reproduce these
results were omitted. The purpose of this paper is to shed some light on
the accuracy of these claims, and to present a complete description of an
encodeddecoder pair that could be suitable for PCS applications, where
lower rate codes can be used.

For example, in multiple-access schemes like CDMA the capacity
(maximum number of users per cell) can be expressed as C = & + 1,
where 17 is the processing gain and E, , /N, is the required signal-to-noise
ratio to achieve a desired bit error rate (BER) performance. For a given
BER, a smaller required E b / N o implies a larger capacity or cell size.
Unfortunately, to reduce Eh/ No it is necessary to use very complex codes
(e.g. large constraint length convolutional codes). In this paper, we design
turbo codes suitable for CDMA and PCS applications that can achieve
superior performance with limited complexity. For example, if a (7,1/2)
convolutional code is used at BER=10-3, the capacity is C = 0.5q.
However, if two (5,1/3) punctured convolutional codes or three (4,1/3)
punctured codes are used in a turbo encoder structure, the capacity can
be increased to C = 0.817 (with 192-bits and 256-bits interleavers which

‘The research described in this paper was carried out at the Jet Propulsion
Laboratory, California Institute of Technology, under contract with the National
Aeronautics and Space Administration.

correspond to 9.6 Kbps and 13 Kbps with roughly 20ms frames). Higher
capacity can be obtained with larger interleavers. Note that low rate codes
can be used for CDMA since an integer number of chips per coded symbol
is used and bandwidth is defined mainly by chip rate.

Three new contributions are reported in this paper: a new simple
method for trellis termination, the use of unequal rate component codes
which results in better performance, and the development of decoders for
multiple-code encoders - the original turbo decoder scheme operates in
serial mode, while for multiple-code encoders we found that the decoder
for the whole turbo code based on the optimum MAP rule must operate
in parallel mode, and we derived the appropriate metric as illustrated in
Sec. 111.

11. PARALLEL CONCATENATION OF CONVOLUTIONAL
CODES

The codes considered in this paper consist of the parallel concatenation
of multiple convolutional codes with random interleavers (permutations)
at the input of each encoder. Fig. 1 illustrates a particular example that
will be used in this paper to verify the performance of these codes. The

Figure 1: Example of encoder with three codes

encoder contains three recursive binary convolutional encoders, with M I ,
M2 and M3 memory cells respectively. In general, the three component
encoders may not be identical. The first component encoder operates
directly on the information bit sequence U = (u1. . . . , U N) of length N ,
producing the two output sequences y l r and ylp. The second component
encoder operates on a reordered sequence of information bits u2 produced
by an interleaver n2 of length N , and outputs the sequence y2,,. Similarly,
subsequent component encoders operate on a reordered sequence of in-
formation bits u j produced by interleaver nj and output the sequence yjp.

The interleaver is a pseudo-random block scrambler defined by a permu-
tation of N elements with no repetitions: a complete block is read into
the the interleaver and read out in a specified (fixed) random order. The
same interleaver is used repeatedly for all subsequent blocks. Figure 1
shows an example where a rate r = 1 / n = 1 /4 code is generated by three

0-7803-2486-2195 $4.00 0 1995 IEEE 54

component codes with M I = M2 = M3 = M = 2, producing the outputs
Yil 11, Y i p = U . &?Olga, Yz,, = U2’gh/ga , and y3,, = U 3 . gb/ga, where
the generator polynomials g, and go have octal representation (7)octal and
(5)octal, respectively. Note that various code rates can be obtained by
proper puncturing of y ip , y2,, and y3,,. The design of the constituent
convolutional codes, which are not necessarily optimum convolutional
codes, IS still under investigation. It was suggested in [SI that good codes
are obtained if g b is a primitive polynomial.
Trelliis Termination - We use the encoder in Fig. 1 to generate a
(n(N t- M) , N) block code, where the M tail bits of code 2 and code 3
are not transmitted. Since the component encoders are recursive, it is not
sufficient to set the last M information bits to zero in order to drive the
encoder to the all zero state, i.e. to terminate the trellis. The termination
(tail) st:quence depends on the state of each component encoder after N
bits, which makes it impossible to terminate both component encoders
with just M bits. This issue has not been resolved in previously proposed
turbo code implementations. Fortunately, the simple stratagem illustrated
in Fig. 2 is sufficient to terminate the trellis at the end of the block. (The
specific code shown is not important). Here the switch is in position “A”
for the first N clock cycles and is in position “B” for M additional cycles,
which will flush the encoders with zeros. The decoder does not assume
knowledge of the M tail bits. The same termination method will he used
for all encoders.

lnpi -

xP

Figure 2: Trellis Termination

Weight Distribution - In order to estimate the performance of
a code it is necessary to have information about its minimum distance,
weight distribution, or actual code geometry, depending on the accuracy
required for the bounds or approximations. The challenge is in finding
the pairing of codewords from each individual encoder, induced by a
particular set of interleavers. Intuitively, we would like to avoid joining
low-weight codewords from one encoder with low-weight words from
the other encoders. In the example of Fig. 1, the component codes have
minimum distances 5,2 and 2. This will produce a worst-case minimum
distance of 9 for the overall code. Note that this would be unavoid-
able if the encoders were not recursive since, in this case, the minimum
weight word for all three encoders is generated by the input sequence
U = (00. . . 0000100 . . . 000) with a single “l”, which will appear again
in the other encoders, for any choice of interleavers. This motivates the
use of recursive encoders, where the key ingredient is the recursiveness
and not the fact that the encoders are systematic. For our example, the
input sequence U = (00.. . 00100100 . . ,000) generates a low weight
codeword with weight 6, for the first encoder. If the interleavers do not
“break” this input pattern, the resulting codewords weight will be 14. In
general weight-2 sequences wilh 2 + 3t zeros separating the 1’s would
result in a total weight of 14 + 1st if there were no permutations.

With permutations before the second and third encoders, a weight-
2 sequence with its 1’s separated by 2 + 3r l zeros will be permuted
into two other weight-2 sequences with 1’s separated by 2 + 3t, zeros,
1 = 2, 3, where each tl is defined as a multiple of 113. If any tl is not
an integer, the corresponding encoded output will have a high weight
because then the convolutional code output is non-terminating (until the
end of the block). If all t, ’s are integers, the total encoded weight will be

14+2 E;=, t i . Thus, one of the considerations in designing theinterleaver
is to avoid integer triplets (tl , t z , t 3) that are simultaneously small in all
three components. In fact, it would be nice to design an interleaver to
guarantee that the smallest value of E:=, ti (for integer t i) grows with the
block size N .

For comparison we consider the same encoder structure in Fig. 1, ex-
cept with the roles of ga and gb reversed. Now the minimum distances
of the three component codes are 5 , 3, and 3, producing an overall min-
imum distance of 11 for the total code without any permutations. This
is apparently a better code, but it turns out to be inferior as a turbo code.
This paradox is explained by again considering the critical weight-2 data
sequences. For this code, weight-2 sequences with 1 + 2tl zeros sepa-
rating the two l’s produce non-terminating output and hence low-weight
encoded words. In the turbo encoder, such sequences will be permuted
to have separations 1 + 2ti, i = 2, 3, for the second and third encoders,
where now each ti is defined as a multiple of 1/2. But now the total
encoded weight for integer triplets (tl, t2. t3) is 11 +E;=, ti. Notice how
this weight grows only half as fast with ti as the previously calcu-
lated weight for the original code. If E;=, ti can be made to grow with
block size by proper choice of interleaver, then clearly it is important to
choose component codes that cause the overall weight to grow as fast as
possible with the individual separations t i . This consideration outweighs
the criterion of selecting component codes that would produce the highest
minimum distance if unpermuted.

There are also many weight-n, n = 3 , 4 , 5, ..., data sequences that
produce terminating output and hence low encoded weight. However, as
argued below, these sequences are much more likely to be broken up by the
random interleavers than the weight-2 sequences and are therefore likely
to produce non-terminating output from at least one of theencoders. Thus,
turbo code structures which have low minimum distances (if unpermuted)
due strictly to higher-weight input sequences are often superior to other
turbo codes with higher unpermuted minimum distances that are caused
by weight-2 input sequences.

Weight Distribution with Random Interleavers -NOW
we briefly examine the issue of whether one or more random interleavers
can avoid matching small separations between the 1’s of a weight-2 data
sequence with equally small separations between the 1’s of its permuted
version(s). Consider for example a particular weight-2 data sequence
(. . . 001001000 . . 1) which corresponds to a low weight codeword in each
of the encoders of Fig. 1. If we select randomly an interleaver of size
N, the probability that this sequence will be permuted into another se-
quence of the same form is roughly 2/N (assuming that N is large,
and ignoring minor edge effects). The probability that such an unfor-
tunate pairing happens for at least one possible position of the original
sequence (. . .001001000.. .) within the block size of N, is approxi-
mately 1 - (1 - 2/N)N x 1 - e-*. This implies that the minimum
distance of a two-code turbo code constructed with a random permuta-
tion is not likely to be much higher than the encoded weight of such
an unpermuted weight-2 data sequence, e.g. 14 for the code in Fig. 1.
(For the worst case permutations, the dmin of the code is still 9, but these
permutations are highly unlikely if chosen randomly). By contrast, if
we use three codes and two different interleavers, the probability that
a particular sequence (. , .001001000., .) will be reproduced by both
interleavers is only (2/N)2. Now the probability of finding such an un-
fortunate data sequence somewhere within the block of size N is roughly
1 - [l - (2 / N) ’ I N % 4,”. Thus it is probable that a three-code turbo
code using two random interleavers will see an increase in its minimum
distance beyond the encoded weight of an unpermuted weight-2 data
sequence. This argument can be extended to account for other weight-
2 data sequences which may also produce low weight codewords, e.g.
(. . .00100(000)‘1000. . .), for the code in Fig. 1. For comparison, let

55

us consider a weight-3 data sequence such as (. . . 001 1100. . ,) which
for our example corresponds to the minimum distance of the code (using
no permutations). The probability that this sequence is reproduced with
one random interleaver is roughly 6 / N 2 , and the probability that some
sequence of the form (. . ,001 1100. . .) is paired with another of the same
form is 1 - (1 - 6 / N 2) N x 6 / N . Thus for large block sizes, the bad
weight-3 data sequences have a small probability of being matched with
bad weight-3 permuted data sequences, even in a two-code system.

For a turbo code using q codes and q - 1 random interleavers this
probability is even smaller, 1 - [l - (6 /N2)9- ‘1” : (+)q- * . This
implies that the minimum distance codeword of the turbo code in Fig. 1
is more likely to result from a weight-2 data sequence of the form
(, . .001001000 . . .) than from the weight-3 sequence (. . ,001 1100. . .)
that produces the minimum distance in the unpermuted version of the
same code. Higher weight sequences have even smaller probability of
reproducing themselves after being passed through a random interleaver.

For a turbo code using q codes and q - 1 interleavers, the probability
that a weight-n data sequence will be reproduced somewhere within the
block by all q - 1 permutations is of the form 1 - [1 - (/?/N“-’)q-‘]N,
where f i is a number that depends on the weight-n data sequence but does
not increase with block size N . For large N , this probability is propor-
tional to (l/N)“q-“-q, which falls off rapidly with N , when n and q are
greater than two. Furthermore, the symmetry of this expression indicates
that increasing either the weight of the data sequence n or the number of
codes q has roughly the same effect on lowering this probability.

In summary, from the above arguments we conclude that weight-2 data
sequences are an important factor in the design of the component codes,
and that higher weight have decreasing importance. Also, increasing the
number of codes may result in better turbo codes. More accurate results
and derivations are discussed in [6].

The minimum distance is not the most important quantity of the turbo
code, except for its asymptotic performance, at very high E!,/N,. At mod-
erate SNRs, the weight distribution for the first several possible weights
is necessary to compute the code performance. Estimating the complete
weight distribution of these codes for large N and fixed interleavers is still
an open problem. However, it is possible to estimate the weight distribu-
tion for large N for random interleavers by using probabilistic arguments.
(See [4] for further considerations on the weight distribution).
I n t e r l e a v e r Design - Interleavers should be capable of spread-
ing low-weight input sequences so that the resulting codeword has high
weight. Block interleavers, defined by a matrix with U, rows and U,

columns such that N = ur x U,, may fail to spread certain sequences. For
example, the weight 4 sequence shown in Fig. 3 cannot be broken by a
block interleaver. In order to break such sequences random interleavers
are desirable. (A method for the design of interleavers is discussed in [3]) .
Block interleavers are effective if the low-weight sequence is confined to
a row. If low-weight sequences (which can be regarded as the combina-
tion of lower weight sequences) are confined to several consecutive rows,
then the U, columns of the interleaver should be sent in a specified order
to spread as much as possible the low-weight sequence. A method for re-
ordering the columns is given in [8]. This method guarantees that for any
number of columns U, = aq + r , (r 5 a - 1), the minimum separation
between data entries is q - 1, where a is the number of columns affected
by a burst. However, as can be observed in the example in Fig. 3, the se-
quence 1001 will still appear at the input of the encoders for any possible
column permutation. Only if we permute the rows of the interleaver in ad-
dition to its columns it is possible to break the low-weight sequences. The
method in [SI can be used again for the permutation of rows. Appropriate
selection of of a , and q for rows and columns depends on the particular
set of codes used and on the specific low-weight sequences that we would
like to break. We designed random permutations (interleavers) by gen-

erating random integers i, 1 5 i 5 N , without replacement. We define
a “S-random” permutation as follows: each randomly selected integer
is compared to S previously selected integers. If the current selection
is equal to any S previous selections within a distance of fS, then the
current selection is rejected. This process is repeated until all N integers
are selected. While the searching time increases with S, we observed
that choosing S < usually produces a solution in reasonable time.
(For S = 1 we have a purely random interleaver).

In the simulations we used S = 11 for N = 256 and S = 31 for
N = 4096.

The advantage of using three or more constituent codes is that the
corresponding two or more interleavers have a better chance to break se-
quences that were not taken care by another interleaver. The disadvantage
is that, for an overall desired code rate, each code must be punctured more,
resulting in weaker constituent codes. In our experiments, we have used
randomly selected interleavers and interleavers based on the row-column
permutation described above. In general, randomly selected permuta-

r o o . . . 0 0 0 1

WRITE 0

+
0 0

L o o 0 . . . 0 0 1

Figure 3: Example where a block interleaver fails to “break” the
input sequence.

tions are good for low SNR operation (e.g., PCS applications requiring
f$ = where the overall weight distribution of the code is more
important than the minimum distance

111. TURBO DECODING CONFIGURATION
The turbo decoding configuration proposed in [1] for two codes is shown
schematically in Fig. 4. This configuration operates in serial mode, i.e.
“Dec1” processes data before “Dec2” starts its operation, and so on.
An obvious extension of this configuration to three codes is shown in

Figure 4: Decoding structure for two codes.

Fig. 5(a), which also operates in serial mode. But, with more than two
codes, there are other possible configurations, as that shown in Fig. 5(b)
where “Decl” communicates with the other decoders, but these decoders
do not exchange information among each other. This “Master & Slave’’
configuration operates in a mixed serial-parallel mode, since all other
decoders except the first operate in parallel. Another possibility, shown in
Fig. 5(c) is that all decoders operate in parallel at any given time. Note that
self loops are not allowed in these structures since they cause degradation
or divergence in the decoding process (positive feedback). We are not
considering other possible hybrid configurations. Which configuration
performs better? Our selection of the best configuration and its associated
decoding rule is based on a detailed analysis of the minimum bit error
decoding rule (MAP algorithm) as described below.
Turbo D e c o d i n g for M u l t i p l e Codes - Let uk be a binary
random variable taking values in (0, l}, representing the sequence of
information bits U = (U , , . . . , u N) , The MAP algorithm [7] provides the
log likelihood ratio Lk given the received symbols y:

56

(a) SERIAL

e . .

(b) MASTER 8 SLAVE

(c) PARALLEL

F’igure 5: Different decoding structures for three codes.

(2)
c U , ~ = l ‘(Ylu) n , f k ‘ (‘ 1)

c U , u k = O ‘(ylu) n,#k ‘(’1)

p(uk = 1)
p(uk = 0)

= log + log

For efficient computation of eq.(2) when the a-priori probabilities P (U,)
are non-uniform, the modified MAP algorithm in [2] is simpler to use
than the version considered in [l]. Therefore, in this paper we use the
modified MAP algorithm of [2] as we did in [4].

The channel model is shown in Fig. 6 where the nz,k’s and the n p k ’ S

are i.i.d. zero mean Gaussian random variables with unit variance, and
p = ,/- is the signal-lo-noise ratio. (The same model is used
for each encoder). To explain the basic decoding concept we restrict

Figure 6: Channel model.

ourselves to three codes, but extension to several codes is straightforward.
In order to simplify the notation, consider the combination of permuter
and encoder as a block code with input U and outputs x,, i = 1 , 2 , 3 and
the corresponding received sequences yl , i = 1, 2 , 3. The optimum MAP
decision metric on each bit is (for data with uniform probabilities)

but in practice we cannot compute eq.(3) for large N. Suppose that we
evaluate P(yI \U) , 1 = 2, 3, in eq.(3) using Bayes’ rule and using the,
following approximation

(4)

Note that P(ulyi) is not separable in general A reasonable criterion for
this approximation is to choose n,”=, pi (uk) such that it minimizes the
Kullback distance or free energy [9, lo]. Define

euki lk

pi (uk) = - 9

1 + eick

where uk E IO, 1). Then the Kullback distance is given by

Such minimization involves forward and backward recursions analogous
to the MAP decoding algorithm! Therefore, if such an approximation
can be obtained, we can use it in eq.(3) for i = 2 and i = 3 (by Bayes’
rule) to complete the algorithm. Now, instead of using eq.(6) to obtain
{ F i } or equivalently (Li), we use (4) and (5) for i = 2 , 3 (by Bayes’ rule)
to express (3) as

Lk = f (y l , fJ2, 6 3 , k) f L 2 k f L 3 k (7)

where

We can use (4) and (5) again, but this time for i = 1,3 , to express (3) as

Lk = f (Y 2 , El, L 3 , k) + i l k + L 3 k

Lk = f(Y3, L l , L 2 , k) f i l k f L 2 k

(9)

(10)
and similarly

A solution to eqs. 7,9, and 10 is

i l k f(yl , E 2 1 L3, k) ; L 2 k = f (Y2, f J 1 , k) ; L 3 k = f (Y3, f J I , 6 2 , k)
(11)

provided that a solution does indeed exist. fork = 1,2 , , . , , N. The final
decision is then based on

Lk = i l k + i 2 k + i , k (12)

which is passed through a hard-limiter with zero threshold. We attempted

Figure 7: Structure of block decoder 2

to solve the nonlinear equations in (1 1) for L,, L 2 , and L 3 by using the
iterative procedure

(13)

for k = 1 ,2 , . , . , N, iterating on m. Similar recursions hold for LEi and
LEi. The gain ay’ should be equal to one, but we noticed experimentally
that better convergence can be obtained by optimizing this gain for each
iteration starting from a value slightly less than one, and increasing toward

L (m + l i ,k - - crr“ f (y l , L?’. Ly, k)

one with the iterations, as often done in simulated annealing methods. We
start the recursion with the initial condition* E:’ = E:) = I?$) = 0.
For the computation of f (.) we use the modified MAP algorithm with
permuters (direct and inverse) where needed, as shown in Fig. 7 for block
decoder 2. The MAP algorithm always starts and ends at the all-zero
state since we used perfect termination. Similar structures apply for
block decoder 1 (nl = I , identity), and block decoder 3. The overall
decoder is composed of block decoders connected as in Fig. 5(c), which
can he implemented as a pipeline or by feedback.
Multiple Code Algorithm Applied to Two Codes. -For
turbo codes with only two constituent codes, eq. (13) reduce to

where, for each iteration, a?’ and a?’ can be optimized (simulated an-
nealing) or set to 1 for simplicity. The decoding configuration for two
codes, according to the previous section, is shown in Fig. 8. In this spe-

X X

Figure 8: Parallel structure for two codes.

cia1 case, since the two paths in Fig. 8 are disjoint, the decoder structure
reduces to that of Fig. 4, i.e. to the serial mode.

If we optimize a y) and a?), our method for two codes is similar to
the decoding method proposed in [l], which requires estimates of the
variances of ilk and i2k for each iteration in presence of errors. In the
method proposed in [2] the received “systematic” observation was sub-
tracted from ilk, which results in performance degradation. In [3] the
method proposed in [2] was used hut the received “systematic” observa-
tion was interleaved and provided to decoder 2. In [4], we argued that
there is no need to interleave the received “systematic” Observation and
provide it to decoder 2, since E l k does this job. It seems that our proposed
method with ay’ and a?) equal to 1 is the simplest and achieves the same
performance reported in [3] for rate 1/2 codes.
Terminated Parallel Convolutional Codes as Block
Codes. - Consider the combination of permuter and encoder as a
linear block code. Define P, as the parity matrix of the terminated convo-
lutional code i . Then the overall generator matrix for three parallel codes
is

where n, are the permutations (interleavers). In order to maximize the
minimum distance of the code given by G we should maximize the number
of linearly independent columns of the corresponding parity check matrix
H . This suggests that the design of P, (code) and n, (permutation) are
closely related and it does not necessarily follow,that optimum component
codes (maximum d,,,) yield optimum parallel concatenated codes. For
very small N we used this concept to design jointly the permuter and the
component convolutional codes.

G = [I Pi ~ 2 P 2 n3P3]

IV. PERFORMANCE
Two Codes - The performance obtained by turbo decoding the
code with two constituent codes (1, go/g,), where g, = (37),,r,l and
g b = (21),,ral, and with random permutations of lengths N = 4096 and

2Note that the components of the E’s corresponding to the tail bits are set to
zero for all iterations.

N = 16384 is compared in Fig. 9 to the capacity of a binary-input Gaus-
sian channel for rate r = 1/4. The hest performance curve in Fig. 9 is
approximately 0.7 dB from the Shannon limit at BER=10-4.

i o - ’ . g . ’ ’ . ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ” ’ ’

RATE = I t4

-1.5 -1.0 -0.5 0.0 0.5 1 .o
EdN,, dB

Figure 9: Turbo codes performance, r = 1 /4

Unequal Rate Encoders -We now extend the results to encoders
with unequal rates with two K = 5 constituent codes (1, gb/ga, g,/ga)
and (gb/ga), where ga = (Wocrar, 86 = (33)octar and gc = (25)octar.
This structure improves the performance of the overall, rate 1/4, code, as
shown in Fig.9. This improvement is due to the fact that we can avoid
using the interleaved information data at the second encoder and that the
rate of the first code is lower than that of the second code. For PCS ap-
plications, short interleavers should be used, since the vocoder frame is
usually 20ms. Therefore we selected 192 and 256 bits interleavers as an
example, corresponding to 9.6 and 13 Kbps. (Note that this small dif-
ference of interleaver size does not affect significantly the performance).
The performance of codes with short interleaver is shown in Fig. 10 for the
K = S codes described above for random permutation and row-column
permutation with a = 2 for rows and a = 4 for columns.
Three Codes - The performance of a three-code turbo code with
random interleavers is shown in Fig. 1 1 for N = 4096. The three recursive
codes shown in Fig. 1 where used for K = 3. Three recursive codes with
g, = (13)ocror and gb = (ll)octal were used for K = 4. Note that the
non-systematic version of this encoder is catastrophic, hut the recursive
systematic version is non-catastrophic. We found that this K = 4 code
has better performance than several others.

Although it was suggested [SI that g, be a primitive polynomial, we
found several counterexamples that show better performance, e.g. g, for
K = 5 proposed in [l] is not primitive.

In Fig. 11 , the performance of the K = 4 code was improved by
going to 30 iterations and using a S-random interleaver with S = 3 1 . For
shorter blocks (192 and 256), the results are shown in Fig. 10 where it

58

can be observed that approximately 1 dB SNR is required for BER=10-3,
which implies a CDMA capacity C = 0 . 8 ~ We have noticed that the
slope of the BER curve changes around BER=10-5 (flattening effect) if
the interleaver is not designed properly to maximize d,,, or is chosen at

1

random.

r=l I4

Random Interleaving N=4096
Code Rate=1/4 Y

m=20

Three K=3 Codes
Random Interleaver, N=192

K
W
m

TWO K=5 Codes

N=l9:

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

E@,, dB

Figure 10: Performance with short block sizes.

V. CONCLUSIONS
We have shown how turbo codes and decoders can be used to improve
the coding gain for PCS applications. These are just preliminary results
that require extensive further analysis. In particular, we need to improve
our understanding of the influence of the interleaver choice on the code
performance, to explore the sensitivity of the decoder performance to the
precision with which we can estimate Eb f No.

An linteresting theoretical qwstion is to determine “how random” these
codes can be so as to draw conclusions on their performance based on
comparison with random coding bounds. In [4] we obtained the complete
weight distribution of a turbo code, calculated the upper bound on BER
and compared it with maximum-.likelihood (ML) decoding. Those results
showed that the performance of turbo decoding is close to ML decoding
and to optimum MAP decoding. However, the approximation used in
eq.(4) implies that turbo decoding is only close to but not equal to MAP
decoding.

The authors are grateful to S. Dolinar and R.J. McEliece for their helpful
comments.

[1] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon Limit Error-
Correcting Coding: Turbo Codes.” Proc. 1993 IEEE International Conference
on Communications, pp. 1064--1070.

VI. ACKNOWLEDGMENTS

RE~FERENCES

Galileo Code

10-

Three &State Codes 1 t \

-0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5

dB

Figure 11 : Three-code performance

[2] J. Hagenauer and P. Robertson, “Iterative (Turbo) decoding of systematic
convolutional codes with the MAP and SOVA algorithms”, Proc. of the ITG
conference “Source and channel coding”, Oct. 1994, Frankfurt.

[3] P. Robertson, “Illuminating the structure of code and decoder of parallel con-
catenated recursive systematic (Turbo) codes”, Proceedings GLOBECOM
’94, Dec. 1994, pp.1298-1303.

[4] D. Divsalar and E Pollara, “Turbo Codes for Deep-Space Communications”,
JPL TDA Progress Report 42-120, Feb. 15, 1995.

[5] G. Battail, C. Berrou and A. Glavieux, “Pseudo-random recursive con-
volutional coding for near-capacity performance”, Comm. Theory Mini-
conference, GLOBECOM ’93, Dec. 1993.

[6] D. Divsalar, S. Dolinar and E Pollara, “Weight distribution of multiple turbo
codes”, JPL TDA Progress Report, (In preparation).

[7] L. R. Bahl, J. Cocke, E Jelinek, and J. Raviv, “Optimal Decoding of Lin-
ear Codes for Minimizing Symbol Error Rate,” IEEE Trans. Znfurm. Theory,

[8] E. Dunscombe and EC. Piper, “ Optimal interleaving scheme for convolutional
codes”, Electronic Letters, 26 Oct. 1989, Vol. 25, No. 22, pp. 1517-1518.

[9] M. Moher, “Decoding via Cross-entropy Minimization”, Proceedings
GLOBECOM ’93, Dec. 1993, p.809-813.

[lo] G. Battail and R. Sfez, “Suboptimum Decoding using the Kullback Princi-
ple”, Lecture Notes in Computer Science, Vol. 313, pp. 93-101, 1988.

vol. IT-20 (1974), pp. 284-287.

59

