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Abstract—This paper presents a new class of irregular low-den-
sity parity-check (LDPC) codes of moderate length (103

10
4) and high rate ( 3 4). Codes in this class admit low-com-

plexity encoding and have lower error-rate floors than other irreg-
ular LDPC code-design approaches. It is also shown that this class
of LDPC codes is equivalent to a class of systematic serial turbo
codes and is an extension of irregular repeat-accumulate codes. A
code design algorithm based on the combination of density evolu-
tion and differential evolution optimization with a modified cost
function is presented. Moderate-length, high-rate codes with no
error-rate floors down to a bit-error rate of 10 9 are presented.
Although our focus is on moderate-length, high-rate codes, the pro-
posed coding scheme is applicable to irregular LDPC codes with
other lengths and rates.

Index Terms—Efficient encoding, error-rate floor, irregular
repeat–accumulate codes, low-density parity-check (LDPC) codes.

I. INTRODUCTION

THE recent literature in coding has seen an explosion of pa-
pers surrounding the design and implementation of low-

density parity-check (LDPC) codes [1], [2]. As has been well
reported, this class of codes is capable of operation within tenths
of a decibel of the capacity limit, given sufficiently long code-
word lengths, surpassing even turbo codes in many cases [3],
[4]. The pioneering work of Richardson et al. [3], [4] presented
very long rate-1/2 codes (codeword lengths ) which are
not appropriate for many applications (e.g., low-latency, band-
width-efficient applications). Further, such codes generally re-
quire high-complexity encoders, since they lack sufficient struc-
ture to allow simple encoding (with cyclic codes representing
the limit of simplicity), although Richardson et al. [5] have
proposed a clever encoding algorithm whose complexity is ap-
proximately linear in the code length . MacKay, on the other
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hand, has designed high-rate LDPC codes of moderate lengths
( ) [16], but again, these codes generally re-
quire complex encoders. Important alternatives to these codes
are the cyclic and quasi-cyclic LDPC codes of Kou et al. [15]
based on finite geometries. This class of codes admits low-com-
plexity shift-register encoders, but the decoders for these codes
are generally of higher complexity as a result of their higher
density parity-check matrices or, in some cases, square ( )
parity-check matrices. These codes are also regular or near reg-
ular, which limits their performance in the low signal-to-noise
ratio (SNR) region.

In this paper, we focus on the design of moderate length
( ), high rate ( ) irregular LDPC codes.
(The only other paper of which we are aware which focuses
on this regime is [10].) Our goal is the design of such codes
superior in performance to alternative approaches and which
allow low-complexity encoding and decoding. Our approach
starts with the work of Richardson et al. [3], but we make some
novel modifications to their design technique which constrains
our codes to a specialized class of irregular LDPC codes. These
modifications improve performance for the range of and
under consideration and lead to vastly simplified encoders. We
show that the complexity of these encoders is much smaller than
might be achieved with a typical LDPC code, even when the
technique proposed in [5] is used. We also show the connec-
tion between the proposed class of codes, serial turbo codes,
and irregular repeat-accumulate (IRA) codes [11]. In fact, we
call these codes extended IRA (eIRA) codes. These codes were
independently studied by Narayanaswami and Narayanan [12].

The remainder of the paper is outlined as follows. Section II
provides the necessary background and notation for the subse-
quent sections. Section III develops an important lemma which
leads to the introduction of the new class of irregular LDPC
codes introduced in Section IV. Section V briefly presents
the (computer-based) code-design algorithm, and Section VI
presents selected design results which demonstrate the validity
of the preceding sections. Finally, some concluding remarks
are presented in Section VII.

II. BACKGROUND

Following the literature (e.g., [3]), we let and represent
the length and dimension, respectively, of an irregular LDPC
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code. (In the following, unless specified otherwise, when we
say LDPC code, we shall mean the general case of an irregular
LDPC code.) We also let represent its code rate and

equal the number of parity bits. The generator and
parity-check matrices are denoted by and , respectively,
and encoding takes place according to the usual equation,

, where ( ) is the information (code) vector. Following
[3], represents the variable node (v-node)
distribution in the code’s Tanner graph, and
represents the check node (c-node) distribution. Here, is the
fraction of edges connected to v-nodes of degree and similarly
for and c-nodes. For now, we assume , but later we will
allow a single v-node of degree one. It can be shown [3] that the
number of v-nodes of degree is (the integer part of)

(1)

and the number of c-nodes of degree is (the integer part of)

(2)

Thus, there are columns in of Hamming weight and
is the number of rows in of weight . For v-nodes,

ranges from two to , and for c-nodes ranges from two to .
With LDPC codes so parameterized, it is shown in [3] and

[6] how optimum degree distributions and may be
obtained via algorithms centered on the evolution of the proba-
bility density functions (pdfs) of the messages passed between
the two node types in the belief-propagation decoder. These dis-
tributions are optimal in the limit as and as the number
of iterations . For the practical case of finite , the fol-
lowing additional design rules are proposed in [3]:

1) forbid short cycles involving only degree-two v-nodes;
2) degree-two v-nodes are made to correspond to nonsys-

tematic bits;
3) there exist no length-four cycles in the code’s graph.

III. ON DEGREE-TWO V-NODES

We assume the (log-) sum-product decoding algorithm
throughout (also called belief propagation) [1], [2]. The sum
of the messages received at the th v-node after a sufficient
number of decoding iterations is known to be an approximation
of the log a posteriori ratio (LAPR) [or log-likelihood ratio
(LLR)] of the th code bit given the received word. Degree-two
v-nodes represent the weakest link in the code in the following
sense. First, the bit LLRs for these v-nodes converge slower
than do larger degree v-nodes. This is discussed in [6] and [7] in
the context of density evolution, where it is noted that the slope
of the versus curve for v-nodes is equal to the
node degree minus one. Second, the LLRs for the degree-two
v-nodes converge (on average) to a smaller magnitude than do
larger degree v-nodes.

We demonstrate these characteristics in Fig. 1 for code four
of Example 2 below (the details of which are not important at
this point). The figure depicts the evolution of the expected LLR
magnitudes for each of the possible v-node degrees for this code
at dB (corresponding to ). As
expected, the LLR magnitudes for the larger degrees converge

Fig. 1. Evolution of expected LLR magnitudes for code four of Example 2.

quickly (in about eight iterations) and to large values, whereas
the degree-two node is the worst in this regard (it converges in
about 14 iterations). Code four of Example 2 also has a single
degree-one v-node whose impact is negligible, as demonstrated
later.

The vulnerability of the degree-two bits was made evident
in the foregoing discussion. Still, as shown in [3], the presence
of degree-two v-nodes is necessary to ensure optimal irregu-
larity. Intuitively, low-degree v-nodes, which are “bad,” must be
present to balance out the presence of the low-degree c-nodes,
which are “good.” Low-degree c-nodes are advantageous be-
cause there is less opportunity for a check to fail when fewer
bits are involved in the check equation.

Because degree-two v-nodes represent the weakest link in a
code, we introduce in this section some results concerning the
degree-two v-nodes in a code’s Tanner graph (equivalently, the
weight-two columns in its matrix). Most crucial to the devel-
opment is the following lemma and its implications.

Lemma: In a given Tanner graph (equivalently, matrix),
the maximum number of degree-two v-nodes possible before
a cycle is created involving only these degree-two nodes is

. Furthermore, for codes
free of “degree-two cycles” and possessing this maximum, the
submatrix of composed of only its weight-two columns is
simply a permutation of the following parent
matrix:

(3)

Proof: Because a Tanner graph is a bipartite graph, a
length- cycle in the graph corresponds to an submatrix
of , in which each row and each column of that submatrix
contains at least two ones (corresponding to the intersection
of rows and columns in which need not be contiguous).
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The columns in corresponding to the degree-two
v-nodes already contain two ones, so consider now the rows
in in which these ones are located, and suppose there are

such rows. It may be shown inductively that the
submatrix containing these rows and columns (of
weight two) must contain a cycle if . (Consider,
for example, such a submatrix with columns,

columns, and so on. Consider also the form of
which contains no cycles and has one more row than it does
columns, as it must.) Thus, in order for to correspond to a
cycle-free part of the graph, we must have .
But since , we must have . The second
statement in the lemma is evident at this point.

We are interested in the maximum number of cycle-free
weight-two columns, because the optimal v-node degree distri-
bution (large and large ) usually implies ,
as we will see in the case studies below. We know now from
the lemma that degree-two cycles in the Tanner graph will be
present when . Thus, we focus on codes for
which is not at its optimum, but is instead at the smaller
value prescribed by the lemma, . Doing so will
ensure that cycles among the degree-two v-nodes are avoided.
Some of these points were also noted by Chiani and Ventura
[10] in the design of moderate-length, high-rate irregular LDPC
codes.

IV. NEW CLASS OF IRREGULAR LDPC CODES

A. Code Structure and Encoder

Motivated by the above lemma and surrounding discussion,
we first consider the parity-check matrix of an

LDPC code of the form

(4)

where is a sparse matrix (to be randomly gen-
erated by computer) containing no weight-two columns, and
is the matrix given in (3). Note also that

so that it equals the maximum
prescribed by the lemma. However, we have not yet attained the
form of the matrix which permits efficient encoding. To pro-
ceed, we require the following claim which will be verified by
simulation below.

Claim: Given a randomly generated parity-check matrix for
an ( ) code, appending a single weight-one column
on the right to produce an ( ) code changes the error rate only
negligibly.

Remarks: The veracity of this claim should be clear, because
the addition of a single weight-one column affects only one
check equation. In view of Fig. 1, we can expect the error rate
of this th bit to be quite large, since it corresponds to a de-
gree-one v-node. However, since it corresponds to a parity bit,
its error rate is of no concern. As our simulation results confirm,
its affect on the information bits is negligible.

Armed with the above claim, we modify the in (4) as

(5)

Fig. 2. Two efficient encoders for the proposed class of eIRA codes.
(a) Original direct form. (b) Explicit serial turbo-code form.

where is unchanged from above, and is a full-rank
matrix created from by appending to it (on the right) a

weight-one column vector with a “1” at the bottom

(6)

The matrix in (5) achieves and
corresponds to an ( ) irregular LDPC code which allows very
efficient encoding, as we now show.

Observe from the form of , in particular, the submatrix ,
that encoding may be performed directly from by solving for
the parity bits recursively: 1) the first check equation (first row)
involves only the first parity bit; 2) the second check equation
involves only the first two parity bits; 3) the third check equation
involves only the next two parity bits; and so on. Thus, the form
that we are forcing to take not only avoids degree-two cycles,
but it also achieves the ultimate situation in [5] in which a full

submatrix possesses the diagonal form which permits a
recursive solution of the parity bits.

An alternative way to look at encoding for this class of codes
is as follows. First, we have the following result.

Result: The systematic generator matrix for the parity-
check matrix of (5) is given by

Proof: It is trivial to check that .
Now, it is easy to verify that

(7)

which is precisely the transformation matrix corresponding to a
differential encoder whose transfer function is . Thus,
the encoder for this class of LDPC codes enjoys the low-com-
plexity configuration depicted in Fig. 2(a). Observe that this
encoder is indeed low complexity, for the computation of the
parity bits involves multiplication of the message word by the
low-density matrix followed by the differential encoding.

Observe that the encoder of Fig. 2(a) is the encoder for a type
of systematic serial turbo code. The interleaver that generally



YANG et al.: DESIGN OF EFFICIENTLY ENCODABLE MODERATE-LENGTH HIGH-RATE IRREGULAR LDPC CODES 567

accompanies a serial turbo code may be made more explicit by
writing as the product , where is a permutation matrix
and is simply the low-density matrix . This version
of the encoder is shown in Fig. 2(b). Note that while this class
of LDPC codes possesses the advantage of a low-complexity
encoder that a serial turbo code enjoys, it requires no interleaver
and has all the advantages of an LDPC code: a low error-rate
floor and a parallelizable decoder.

We remark that this class of efficiently encodable codes was
independently discovered by Narayanaswami and Narayanan
[12]. We mention also that these codes resemble the systematic
version of the IRA codes [11], except for systematic IRA codes,
the matrix in Fig. 2(a) which has dimension is
replaced by a low-density generator matrix . For
this reason, we call these codes extended IRA (eIRA) codes.

While our focus has been on codes for which
so that degree-two cycles are avoided, certain of the results are
extendable to , as we now discuss. First, it is
easy to show that the matrix for any irregular LDPC code
with may be put in the form of (5), except
the submatrix in this case will contain weight-two columns
when . From this, it is clear that the encoding
may be performed from the matrix as described above [or via
the encoder of Fig. 2(a)] when .

B. Encoder Efficiency

Consider first the number of binary additions required to en-
code one eIRA codeword, assuming encoding is performed via
the matrix. We assume the density of ones in to be . Then
the number of binary additions required to compute the
parity bits is approximately

If we instead use the encoder of Fig. 2(a) to encode, multipli-
cation by the matrix results in additions, and
differential encoding results in additions, resulting in a
total of , which is a small fraction larger than

.
For our first complexity comparison, consider encoding via a

generator matrix which has been obtained from
by Gauss–Jordan elimination. In general, the matrix

has a density of 0.5, and so the number of binary additions
required to perform the multiplication is approximately

Thus, the proposed class of codes provides a factor of
reduction in the number of computa-

tions required to encode a codeword. For example, for a (fairly
high) density of , this complexity reduction factor is
50.

As a second, more involved, comparison, we consider the
encoding technique proposed in [5] assuming an arbitrary ir-
regular LDPC code parity-check matrix.1 Their technique in-
volves the computation of the parity vector in two parts (see

1In response to a comment of a reviewer, we acknowledge that the encoding
technique in [5] is exactly that of theH-based technique described above when
the code is eIRA. The encoding complexity comparison we seek here is that
between an eIRA code and a typical (non-IRA) irregular LDPC code using the
technique in [5].

[5, Tables I and II]). The first part requires, among other oper-
ations, multiplication by three sparse matrices whose sizes are

, , and . (Here, is the gap
parameter defined in [5] where it was shown with
probability near one when is large.) The second part requires,
among other operations, multiplication by two sparse matrices
whose sizes are and . Thus, as-
suming a common density of for each of these matrices (we re-
mark on this below), the number of binary additions required to
perform the various sparse matrix multiplications is (after some
simplification) . The first term
in this expression is approximately the complexity of the
proposed class of codes, and so the second term represents the
additional number of binary additions required by the technique
in [5] just for sparse matrix multiplication. Beyond these addi-
tional addition operations, the technique in [5] requires multipli-
cation by a dense matrix [complexity ], two vector
additions [each ], and two multiplications by a triangular
matrix [each ].

In the foregoing, we assumed that the density for the full
parity-check matrix of an irregular LDPC code was ap-
proximately equal to that of the submatrix of the parity-
check matrix for an eIRA code. We support this as fol-
lows. Note that, for high-rate codes for which is a small frac-
tion of , the difference between the densities of and

are small (e.g., within 20%). Thus, since the row and
column weight distributions for and are similar
as seen in the examples below, we may conclude that the differ-
ence between the densities of and are small.

V. CODE-DESIGN ALGORITHM

Based on the discussion of the previous section, our design
algorithm involves (once the optimal degree distributions have
been determined) appending length- columns to the ma-
trix in accordance with the degree distributions and some addi-
tional design rules. Note that a cycle will be created with the
addition to of a column, and the addition of large-weight
columns tends to create shorter cycles. Thus, in the design al-
gorithm, we only append a column if it creates no length-four
cycles. Note also that, by starting with the matrix , we are
abiding by the other two design criteria of [3], namely, associ-
ating the weight-two columns with the nonsystematic bits and
eliminating all cycles associated with the degree-two nodes (see
Section II).

The goal is to design a parity-check matrix
containing ones. The design algorithm is as follows. (A sim-
ilar computer random-search algorithm for regular codes was
presented in [8].)

Step 1) Use differential evolution [3], [9] to generate the global
optimal degree distributions and for the de-
sired code rate. The cost function is modified to force

. (A detailed differential evolution
algorithm is discribed in [13, Part V], and a source pro-
gram is available at [14].)

Step 2) Initialize the matrix with . Since contains
ones, ones remain to be placed in

.
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Step 3) For both node types and for all appropriate values of
, give each degree- node sockets [3]. Number the

sockets for the v-nodes and then for the c-nodes (there
are at this point sockets of each type to be
assigned edges).

Step 4) Generate an initial permutation of
and use this permutation to connect the v-node

sockets to the c-node sockets.
Step 5) Modify the permutation to satisfy the optimal degree

distributions.
Step 6) Modify the permutation to eliminate the length-four

cycles, and after each modification, go back to Step 3
to ensure the degree distributions are still satisfied. ([8]
has provided detailed procedures for Step 3 and Step
4.)

Step 7) Convert the permutation into the remaining columns
of .

A. Remarks

1) We note that the codes presented in the next section were
obtained from the above algorithm without additional
“manual modification” for girth control; our design
prevents all length-four cycles, but ignores larger cycles.
We emphasize that none of the codes presented in this
paper contain length-four cycles, including the irregular
LDPC codes that are not eIRA codes presented in the
next section. In fact, it can be shown that for some of
the high-rate codes we have designed, graphs with girths
larger than six are not possible.

2) Although we have not made an effort to modify the cycle
structure of our codes beyond removing the length-four
cycles, we have made an effort to maximize the weight
of the codewords corresponding to weight-one and
weight-two encoder inputs. Considering Fig. 2(a), note
that a weight-one input simply selects a row of (a
column of ) which then acts as input to the differential
encoder. To maximize the weight of the differential
encoder output corresponding to weight-one inputs,
then, the ones in the columns of should be widely
separated. Similarly, for weight-two encoder inputs,
since such an input produces the sum of two columns
of as the input to the differential encoder, the ones
in all sums of pairs of columns of should be widely
separated. In principle, we could continue for weight-
inputs, , but the algorithm becomes unwieldy at
this point, and, in any case, our results below show that
the error-rate floor is lower than even when these
larger weight inputs are ignored in the design.

VI. CODE-DESIGN RESULTS

In this section, we present performance results for eIRA codes
designed using the algorithm of the previous section. Compar-
isons are made to codes found in the literature. We note that
computation of the bit-error rate (BER) and the codeword-
error rate involve only the information bits.

Example 1: In this first example, we consider the design of
two moderate-length rate-1/2 codes: one with ( ) parameters

Fig. 3. Performance of n = 4000 and n = 1000 rate-1/2 irregular LDPC
codes.

(4000, 2000), and one with parameters (1000, 500). The optimal
degree distributions for rate-1/2 codes with (using
the Gaussian approximation [6]) are

Based on these distributions, we find for the (4000, 2000) code,
the number of v-nodes of degree two is from (1)

Using (1) and (2) in similar computations, we find also
, , , and . In par-

ticular, , so that the condition required
by the lemma for cycle-free degree-two v-nodes is not satisfied.
For the (1000, 500) code, we find
so that the condition is again not satisfied. However, does
not exceed the prescribed value of by very much in ei-
ther case, so that we would not expect there to be very many
cycles among the degree-two v-nodes. Thus, we would not ex-
pect there to be much degradation due to such cycles for these
particular codes.

To verify this, we first designed a (4000, 2000) eIRA code
with per the algorithm of the previous
section. We then designed a (4000, 2000) code with

using an algorithm much like the one in the previous sec-
tion, but without the constraint (essentially the
algorithm in [3]). The two codes were simulated and had es-
sentially identical performance curves. We repeated this for the
(1000, 500) case and obtained the same result, thus confirming
our expectations. The (1000, 500) curve(s) also showed close
agreement with the one in [3], thus establishing the quality of
our design algorithm. The BER curves for the four codes are
shown in Fig. 3. The two codes designed using the technique in
[3] are labeled “R&U” in the figure, and two codes designed as
eIRA codes per the algorithm above are labeled “eIRA.”

Example 2: In this second example, we consider the fol-
lowing four rate-0.82 codes.
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Fig. 4. Performance comparison of various n = 4161 rate-0.82 regular and
irregular LDPC codes.

1) A (4161, 3431) (nearly) regular LDPC code due to
MacKay [16] having degree distributions

Note .
2) A (4161, 3430) regular finite geometry-based LDPC due

to Kou et al. [15] having degree distributions

Note .
3) A (4161, 3430) irregular LDPC code without the con-

straint and with and
. The optimal degree distributions were found to

be

From the v-node distribution, we compute
, which is far greater than , and so we

can expect there to be many cycles associated with the
degree-two nodes, in light of the lemma.

4) A (4161, 3430) eIRA code (i.e., with the constraint
) and with and .

The optimal degree distributions were found to be

From this, we compute and so
that equals the maximum prescribed by the lemma.

Fig. 4 presents the performance of these four codes, where
we first note that the unconstrained irregular code (code three)
suffers from a high error-rate floor due to its large number of de-
gree-two v-nodes and their associated cycles. The ( -con-
strained) eIRA code (code four) has the best performance in the

Fig. 5. Performance comparison of various n = 4161 rate-0.82 eIRA codes
with H column weights w = 3, 4, and 5.

region simulated, since such cycles are avoided in the code de-
sign. The finite geometry code and the MacKay code possess no
such cycles, but they are inferior to code four in the region sim-
ulated, since they possess far from optimal degree distributions
(one is regular and the other is nearly regular). We remark that
the finite geometry code likely has the lowest error-rate floor
due to its large minimum distance, lower bounded as
in [15]. Last, we point out that a code which has a value of
between those of codes three and four (i.e.,

) will have a floor which lies between the floors of these
two codes.

Example 3: Whereas code four has a vastly improved
error-rate floor relative to code three in the previous example,
it starts to hit a floor in the vicinity of (as will be
shown shortly). This is attributable to a somewhat small .
We conjecture that low-weight columns in (specifically,
the submatrix ) lead to a small . MacKay and Davey
[17] have also made this conjecture. Further, as demonstrated
in Section II, the LLR values for bits corresponding to low
column weights have smaller magnitudes than those with high
column weights. To study this conjecture, we designed two
(4161, 3430) eIRA codes whose column weights are
4 and 5, and compared their performance to code four above,
whose column weights are 3, 7, and 8. Degree distributions
for these two additional codes are

The error-rate curves (BER and codeword-error rate )
for these two codes are presented together with the performance
of code four in Fig. 5 (where code four is labeled ). We
observe that the floor decreases with increasing and that the
code with has no floor down to . Further, the

code is only about 0.2 dB inferior to the code
(code four) at .
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Fig. 6. Rate-0.9 eIRA code on the AWGN channel with low error-rate floor.

Example 4: As a final example which demonstrates the
utility of our approach, we have designed a rate-0.9 (4550,
4095) eIRA code with . The degree distributions for
this code are

Its performance is presented in Fig. 6, where we observe the
absence of an error-rate floor down to .

VII. CONCLUDING REMARKS

We have presented the class of extended IRA codes, making
connections to irregular LDPC codes and serial turbo codes.
We have presented an algorithm for the design of eIRA codes
of moderate length and high rate which possess no error-rate
floor down to . To our knowledge, no other codes
with such characteristics can be found in the literature. This
paper represents a valuable step toward the design of codes
for magnetic and optical data storage where a BER of
is often quoted, or optical communications where error rates
below are often quoted. Further research in this area in-
cludes support for the conjecture that low-weight columns in
(specifically, the submatrix ) lead to a small . Also, given
that we have avoided only length-four cycles, the experimental
results presented imply that short cycles (e.g., length six) and
other graphical configurations do not have as much of an influ-
ence on the level of the floor as does , at least for high-rate
codes. This was first pointed out by the work of Lin et al. [18].
It was shown in [19], however, that small girth values can have
a tremendous effect on the performance of the code when the
code rate is lower and/or the length is smaller than those con-
sidered here.
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