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Abstract

We construct new families of error�correcting codes based on Gallager�s low density parity
check codes� We improve on Gallager�s results by introducing irregular parity check matrices�
Demonstrating that irregular structure can improve performance is a key point of our work�

We consider irregular codes under both belief propagation and hard decision decoding� ob�
taining improvements over previous results for both types of decoding� For belief propagation�
we report experimental results of irregular codes on both binary symmetric channels and Gaus�
sian channels� For example� using belief propagation� for rate ��� codes on ������ bits over a
binary symmetric channel� previous low density parity check codes can correct up to approxi�
mately ��	 errors� while our codes correct over �
	� In some cases our results come very close
to reported results for turbo codes� suggesting that variations of irregular low density parity
check codes may be able to match or beat turbo code performance�

We also study hard decision decoding� even though it does not perform as well as belief
propagation� because it gives insight into the design of parity check codes� In particular� for
hard decision decoding� we demonstrate how to prove performance guarantees for irregular par�
ity check codes� extending the original work by Gallager� We also provide e�cient methods for
�nding good irregular structures for hard decision decoding algorithms� Our rigorous analysis
and our methodology for constructing good irregular codes constitute our other key contribu�
tions�

� Introduction

In this paper� we construct new families of low density parity check codes� which we call irregular
codes� that have signi�cantly improved performance over previously known codes of this type� Our
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codes can correct a signi�cantly higher number of errors than previous low density parity check
codes� albeit at the expense of a slightly slower running time� Our work signi�cantly lowers the
gap between the performance of low density parity check codes and the best known turbo codes�
opening the question of whether further improvements may yield low density parity check codes
with equivalent or better performance�

Low density parity check codes� introduced by Gallager in ���� ��	� and their performance
under 
belief propagation� decoding� has been the subject of much recent experimentation and
analysis �e�g�� ��� 
� �
� ��� ��� ��	�� The interest in these codes stems from their near Shannon
limit performance� their simple descriptions and implementations� and their amenability to rigorous
theoretical analysis ��� �� �� ��� ��� �
� ��� ��	� Moreover� there appears to be a connection between
these codes and turbo codes� introduced by Berrou� Glavieux� and Thitimajshima ��	� In particular�
the turbo code decoding algorithm can be understood as a belief propagation based algorithm
���� �	� and hence any understanding of belief propagation on low density parity check codes may
be applicable to turbo codes as well�

We �nd it helpful to describe low density parity check codes in terms of graphs� In the following
we refer to the nodes on the left and the right of a bipartite graph as its message nodes and check

nodes respectively� A bipartite graph with n nodes on the left and r nodes on the right gives rise
to a linear code of dimension k � n � r and block length n in the following way� The bits of a
codeword are indexed by the message nodes� A binary vector x � �x�� � � � � xn� is a codeword if and
only if Hx � �� where H is the r� n incidence matrix of the graph whose rows are indexed by the
check nodes and whose columns are indexed by the message nodes� In other words� �x�� � � � � xn� is
a codeword if and only for each check node the exclusive�or of its incident message nodes is zero�
�We note that our code construction can also be used to construct codes that can be encoded in
linear time based on cascading series of bipartite graphs� as described for example in ���	 or ��	� but
for convenience we will not address this issue here�� More speci�c details are given in Section ��

Most previously studied low density parity check codes have been constructed using sparse
regular� or nearly regular� random bipartite graphs ��� �� �
� ��	� That is� the degrees of all
message nodes are equal� and the degrees of all check nodes are equal� This means that the parity
check matrix of the code described above contains the same number of ones in each row and the
same number of ones in each column� We call these codes regular codes� Our improved performance
comes from using codes based on irregular graphs� That is� the degrees of the nodes on each side of
the graph can vary widely� In terms of the parity check matrix H� the weight per row and column is
not uniform� but instead governed by an appropriately chosen distribution of weights� By carefully
choosing the distributions� we achieve improved performance� In fact� the codes we describe use a
number of largely disparate weights� suggesting that often the best distributions are far from those
that produce regular codes�

As an example of our improved performance� we have found a rate ��� irregular code that� on
������ message bits� corrects over ��� random errors with high probability on our experiments� On
������ message bits� this code corrects up to ��� random errors on our experiments� In contrast�
the best regular code corrects up to approximately ����� random errors with ������ message bits
and approximately ����� on ������ message bits� �The Shannon bound for rate ��� codes is
��������

We provide some useful intuition for why irregular codes should provide better performance than
regular codes in Section 
� However� that irregular structure improves performance is not surprising
in light of recent work rigorously proving the power of irregular graphs in designing erasure codes
��� �	� Irregular graphs appear to have been rarely studied in the setting of error�correcting codes
because of the di�culty in determining what irregular structures might perform well� The erasure
codes and the techniques for �nding good erasure codes determined in ��� �	 provide the basis for
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some of the codes and the techniques we develop here�
Besides studying the performance of irregular codes under belief propagation� we also analyze

irregular codes that use a simpler hard decision decoding scheme� The simpli�cation arises by
reducing the complexity of the messages being passed between nodes of the graph� The case of
belief propagation corresponds to a real number being passed along each edge in each direction in
each round� For our simpler hard decision decoding process� just one bit is passed in each direction
in each round�

Hard decision decoding does not perform as well as belief propagation� as one might expect�
Such schemes may still be useful in practice� since they are simpler and require less memory� Our
main motivation for studying this model� however� is that we can make provable statements about
the performance of hard decision decoding of irregular graphs� In doing so� we extend the previous
analysis of Gallager� who provided an analysis for the case of regular graphs with no small cycle�
In Section ���� we provide a new argument showing how to extend Gallager�s analysis to random
regular graphs� We then show that our analysis easily extends to randomly chosen irregular graphs�
and describe how to �nd irregular graphs that lead to good codes�

We emphasize that our approach di�ers strongly form Gallager�s original approach� Currently
the only method we know for constructing irregular codes requires randomly choosing the cor�
responding irregular graph� However� the analysis used by Gallager does not directly apply to
randomly chosen graphs� instead� Gallager relied on an explicit construction to obtain regular
graphs with no small cycles� It is therefore important that our analysis applies to randomly chosen
graphs� Our technique can be summarized as follows� Using ideas from ��	 for studying random
processes� we show that with high probability hard decision decoding successfully corrects all but
an arbitrarily small constant fraction of the message bits� Once the number of erroneous bits is
reduced to this level� we switch from Gallager�s algorithm to one used by Spielman and Sipser in
���	� and prove that this new hybrid method successfully �nishes the decoding with high probabil�
ity� This analysis easily extends to the irregular codes that we introduce� Additionally� the bound
on the probability of error we derive using this methodology improves upon the bound derived by
Gallager for the regular graphs he explicitly constructed�

We note that since this work originally appeared in the papers ���	 and ���	� a great deal of
progress has been made in this area� In particular� the work of Davey and MacKay demosntrates
another approach to improving low density parity check performance by treating small numbers
of bits as elements of an appropriate �nite �eld �
	� By using irregular graphs and this technique�
they have in some cases matched turbo code performance� More recent work by Richardson and
Urbanke ���	 extends our approach to message passing systems where a message can take on one
of a �nite number of values� Using this technique� they have come close to obtaining tight provable
bounds on regular codes using belief propagation� Extending their and our ideas in order to �nd
irregular graphs speci�cally designed to perform well using belief propagation appears just around
the corner�

� Low Density Parity Check Codes and Belief Propagation

We �rst review the low density parity check codes developed by Gallager and his suggested decoding
algorithm� using the framework of MacKay and Neal ��� �
	� The parity check matrix H of the
code is obtained by creating a matrix chosen uniformly �or near uniformly� at random such that
the weight per column is a �xed constant and the weight per row is as uniform as possible� The
decoding algorithm attempts to �nd the most probable vector x such that Hx � � mod ��

In practice� the parity check matrix H can easily be constructed by randomly generating an






appropriate bipartite graph� We describe the construction method� Message nodes are located on
the left and the check nodes on the right� Each message node has a certain number of edges which
connect to check nodes� similarly each check node has a certain number of edges connecting to
message nodes� The total number of edges in the graph is e� A random permutation � of f�� � � � � eg
is chosen� and then� for all i � f�� � � � � eg� the edge with index i out of the left side is identi�ed with
the edge with index �i out of the right side� Note that this may potentially lead to multi�edges�
often in practice multi�edges and small cycles can be removed to improve performance ��
	�

Gallager�s decoding algorithm uses the idea of belief propagation� As explained in ��
	� the
algorithm runs two alternating phases� in which for each non�zero entry in H with row i and
column j �or� in other terms� for each edge of the associated bipartite graph� two values qij and
rij are iteratively updated� The quantity qzij approximates the probability that the jth bit of x
is z� given the information obtained from all checks of j other than i� Similarly� the quantity rzij
approximates the probability that the ith check node is satis�ed when the jth bit of x is z and all
other message bits j� associated with check i have a separable distribution given by the appropriate
qij�� That is� we assume that the other message bits j� are independently � with probability q�ij� �
and use this to calculate rzij � Over a binary symmetric channel with cross�over probability p� all qij
have initially the value ��p� In the �rst phase of a round� all the rij values are updated in parallel�
then in the second phase all the qij values are updated in parallel� �These parallel updates can also
be simulated sequentially in a straightforward manner�� The total amount of work performed each
round is linear in the number of edges of the graph� If the bipartite graph de�ned by H contains no
cycles of length up to �r� then after r rounds of updates the algorithm produces the exact posterior
probabilities that each message bit is in error based on the neighborhood within a diameter of �r
of the message node� The presence of cycles in the graph skews the probabilities� but in practice
the e�ect on the algorithm appears to be small� More details can be found in ��� �� �
� ��	�

� Irregular Graphs� Intuition

Before we demonstrate irregular random graphs that improve the performance of low�density par�
ity check codes� we o�er some intuition as to why irregular graphs should improve performance�
Consider trying to build a regular low density parity check code that transmits at a �xed rate� It
is convenient to think of the process as a game� with the message nodes and the check nodes as the
players� and each player trying to choose the right number of edges� A constraint on the game is
that the message nodes and the check nodes must agree on the total number of edges� From the
point of view of a message node� it is best to have high degree� since the more information it gets
from its check nodes the more accurately it can judge what its correct value should be� In contrast�
from the point of view of a check node� it is best to have low degree� since the lower the degree of
a check node� the more valuable the information it can transmit back to its neighbors�

These two competing requirements must be appropriately balanced� Previous work has shown
that for regular graphs� low degree graphs yield the best performance ��
� ��	� If one allows irregular
graphs� however� there is signi�cantly more �exibility in balancing these competing requirements�
Message nodes with high degree tend to their correct value quickly� These nodes then provide good
information to the check nodes� which subsequently provide better information to lower degree
message nodes� Irregular graph constructions thus lead to a wave e�ect� where high degree message
nodes tend to get corrected �rst� and then message nodes with slightly smaller degree� and so on
down the line�

This intuition �which we observe in our experiments� unfortunately does not provide clues as to
how to construct appropriate irregular graphs� Moreover� because belief propagation is not yet well
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understood mathematically� creating the proper irregular graphs appears a daunting challenge� We
meet this challenge by using irregular graphs that have been proven to be e�ective for erasure codes
that function in a similar manner� In the area of erasure codes� the mathematical framework has
been established to both design irregular graphs and prove their e�ectiveness� Intuitively� graphs
that work well for erasure codes should also work well for error�correction codes� since the two are
closely related�

� Irregular Graph Performance� Simulations

We describe a few important details of our experiments and implementations� We performed simu�
lations using two types of channels for several rates and block lengths� The �rst channel we model
is a binary symmetric channel� To more accurately compare code quality� instead of introducing
errors with probability p� we introduced the same number of errors at each trial �corresponding
to a fraction p of the block length�� This procedure allows for easier comparison with other codes
and minimizes the variance in the experiments that might arise from the variance in the number of
errors� The second channel type we model is a white Gaussian channel with binary input �� and
an additive noise of variance ��� We report results for the Gaussian channel of rate R and additive
noise �� in terms of the signal to noise ratio Eb�N� � ���R�� expressed as decibels ��� log��Eb�N���
Here Eb represents the average energy per bit ���R� and N� represents the noise spectral density
������

Rather than encoding a message for each trial� we use an initial message consisting entirely of
zeroes� Since the code is linear and the decoding algorithm respects its linearity� no generality is
lost� In our experiments� we allowed the belief propagation algorithm to run for up to ��� rounds�
If the algorithm failed to converge on a codeword within ��� rounds� a failure was reported� This
was in fact the only failure we saw in our experiments� that is� the algorithm never returned a
codeword that di�ered from the initial message�

A di�erent random graph was conducted for each trial� No e�ort was made to test graphs and
weed out potentially bad ones� and hence we expect that our results would be slightly better if
several random graphs were tested and the best ones chosen� Also� following the ideas of ��
� ��	�
when necessary we remove double edges from our graphs�

We describe the irregular graphs used in Table �� using the notation of ��	� We say that an
edge has degree i on the left if its adjacent node on the left has degree i� and we similarly de�ne an
edge with degree i on the right� Our graphs are described in the following terms� for each graph�
there is a corresponding left degree vector � and a right degree vector �� The value �i represents
the fraction of edges with degree i on the left� and similarly the value �j represents the fraction
of edges with degree j on the right� Note that given a vector � and � one can construct a graph
with �approximately� the correct edge fractions for any number of nodes� using the construction
method described in Section �� �Some care must be taken because of rounding and the necessity
to have the number of edges on the left equal the number of edges on the right� however� this is
easily handled��

��� Binary Symmetric Channel

Table � compares the performance of regular and irregular codes of rates ��� and ���� Our results
for regular codes �based on graphs in which all nodes on the left have degree 
� are slightly better
than �but consistent with� previous results reported in ��
	� In the table� n represents the block
length� R represents the rate� f represents the fraction of errors introduced� and C represents the
capacity of the binary symmetric channel with cross�over probability f � The results are reported
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Right Degrees �	 � ��������� ��� � ���������

��� � ��
�


�� ��	 � ���
����

Table �� Parameters of our codes�

in terms of the number of trials� or blocks decoded� and the number of errors� or the number of
blocks for which the decoding algorithm failed to �nd a solution within ��� rounds�

At rate ���� our irregular codes perform only slightly better than the regular codes at block
lengths of ������ bits� They do appear notably more robust at higher error rates� however� At
������ bits� our code can handle over a half a percent more errors� While it has been previously
noted that low density parity check codes perform better as the block length increases ��
	� we
believe that this e�ect is magni�ed for our irregular codes� because the degrees of the nodes can
be quite high� For example� our irregular rate ��� codes have nodes on the left of degree �� and
nodes on the right of degree ���

At rate ���� we have di�erent irregular codes with lower degrees� This code greatly outperforms
the regular codes� even at block lengths of ������� where they correct approximately �� more errors�
At block lengths of ������ bits� the e�ect is even more dramatic� and the irregular codes appear to
correct more than �� more errors� We note that initial experiments at other rates further validate
our contention that irregular codes can outperform regular codes in terms of the number of errors
that can be corrected�

For both regular and irregular codes� the number of operations required is proportional to
the product of the number of edges in the corresponding graph and the number of rounds until
the process terminates� The irregular graphs have approximately ��� times as many edges as the
regular graphs� and at higher error rates they can take approximately ��� times as many iterations
to complete� Hence it takes approximately � times as many operations to decode at higher rates�
In practice� performance can actually be worse than this� however� since the larger graph size for
the irregular codes requires more accesses to slower levels of the memory hierarchy� However� we
believe the slower running time is not dramatic in light of the improved performance�

��� Gaussian Channel

Figures � and � compare the performance �in terms of the bit error rate �BER�� of irregular codes
of rate ��� and ��� with reported results for turbo codes ��	 and regular codes ���	 at these rates�
Again� our experiments were with block lengths of ������ bits� and for this block length each data
point is the result of ������ trials� �We compare with results using comparable block lengths� The
results from ��	 are available at http���www����jpl�nasa�gov�public�TurboPerf�html� The
results we report from ���	 are only approximate� as ���	 does not provide actual numbers but only
a graph�� For our irregular codes� the belief propagation algorithm terminated after ��� rounds if
the solution was not found�

For rate ��� codes� our irregular codes perform notably better than regular codes� greatly
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Table �� Comparing regular and irregular graphs�
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Figure �� Irregular codes vs� regular codes and turbo codes� rate ����

reducing the gap between the performance of low density parity check codes and turbo codes� This
gap is further reduced when we move to larger block sizes� as our codes prove to perform better for
larger block lengths in this setting as well� At block lengths of ������ bits� our code never failed in
����� trials at both ���� dB and ���� dB� Our estimates for the bit error rate from ����� trials at
��� dB is 
��� � ���� and at ���� dB is ���
 � ����� Again� this is much better than the performance
of regular codes at a comparable block length presented in ���	�

Our results for irregular codes at rate ��� �Figure �� similarly show signi�cant improvement
over regular codes� At this lower rate and block length� however� turbo codes appear to have a
signi�cant edge� We believe this edge can be reduced with further exploration and experimentation�

Our irregular codes at this rate again perform signi�cantly better with larger block lengths�
At block lengths of ������ bits� our code never failed in ����� trials at both ���� dB and ���� dB�
Our estimates for the bit error rate from ����� trials at ���� dB is ���� � ���	 and at ���� dB is
��
� � �����

� Analyzing Message Passage Decoding

The experiments and experience of the previous section demonstrate the e�ectiveness of using
irregular graphs in conjunction with belief propagation� Belief propagation� however� proves di�cult
to analyze� As a �rst step in the direction of analyzing belief propagation� we consider a simpli�ed
message�passing algorithm where in each round one bit� instead of a real number� is passed in each
direction along each edge� This message�passing scheme was analyzed for speci�c regular codes by
Gallager� Our new analysis extends to random regular and irregular graphs� As with general belief
propagation� we �nd that using irregular graphs can improve performance of this decoding scheme�

��� Regular Graphs

As described in the Introduction� a bipartite graph with n message nodes on the left and r check
nodes on the right gives rise to a linear code of dimension k � n � r and block length n in
the following way� the bits of a codeword are indexed by the message nodes� A binary vector
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x � �x�� � � � � xn� is a codeword if and only if Hx � �� where H is the r� n incidence matrix of the
graph whose rows are indexed by the check nodes and whose columns are indexed by the message
nodes� In other words� �x�� � � � � xn� is a codeword if and only if for each check node the exclusive�or
of its incident message nodes is zero� An alternative approach is to allow the nodes on the right
to represent bits rather than restrictions� and then use a cascading series of bipartite graphs� as
described for example in ���	 or ��	� In this situation� we know inductively the correct value of
the check nodes in each layer when we correct the message nodes� and the check nodes are the
exclusive�or of their incident message nodes�

In the sequel� we again focus on one bipartite graph only� and assume that only the nodes on the
left are in error� The analysis that we provide in this case works for either of the two approaches
given above� as we may inductively focus on just one layer in the context of cascading series of
graphs ���� �	�

We now review the hard decision decoding approach taken by Gallager in his original analysis
��	�

Consider a regular random graph with the message nodes having degree d� and the check nodes
having degree dr� With probability p a message node receives the wrong bit� The decoding process
proceeds in rounds� where in each round �rst the message nodes send each incident check node a
single bit and then the check nodes send each incident message node a single bit� To picture the
decoding process� consider an individual edge �m� c� between a message node m and a check node
c� and an associated tree describing a neighborhood of m� This tree is rooted at m� and the tree
branches out from the check nodes of m excluding c� as shown in Figure 
� For now let us assume
that the neighborhood of m is accurately described by a tree for some �xed number of rounds�

Each message nodem remembers the received bit rm that is purported to be the correct message
bit� �Thus� rm is not the correct message bit with probability p�� Each edge �m� c� remembers a
bit gm�c that is a guess of the correct bit of m� This bit is continually updated each round based
on all information that is passed from c to m� During each round a bit is passed in each direction
across edge �m� c�� Each round consists of an execution of the following script�
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� Representing the code as a tree�

� For all edges �m� c� do the following in parallel�

� If this is the zeroth round� then set gm�c to rm�

� If this is a subsequent round� then gm�c is computed as follows�

� if all the check nodes of m excluding c sent the same value to m in
the previous round� then set gm�c to this value�

� else set gm�c to rm�

� In either case� m sends gm�c to c�

� For all edges �m� c� do the following in parallel�

� the check node c sends to m the exclusive�or of the values it received
in this round from its adjacent message nodes excluding m�

Of course the parallel work can easily be simulated sequentially� Moreover� the work per round
can easily be coded so that it is linear in the number of edges� Indeed� this algorithm is entirely
similar to a belief propagation based algorithm� except that bits are passes instead of probabilities�
and hence no calculations of a posteriori probabilities is necessary�

The process can run for a preset number of rounds� after which each message node can determine
its most likely value based on its neighbors� If the check nodes are satis�ed� then a codeword has
been found� otherwise the decoding has failed� Alternatively� after each round� each message node
can determine its most likely value and a check can be performed to see if a codeword has been
found� If not� the process continues until the decoder decides to stop with a failure�

Let pi be the probability that m sends c an incorrect value gm�c in round i� Initially p� � p�
Following the work of Gallager� we determine a recursive equation describing the evolution of pi
over a constant number of rounds�

Consider the end of the ith round� and consider a check node c� of m other than c� The node c�

sends m its correct value as long as there are an even number �including possibly �� message nodes
other than m sending c� the wrong bit� As each bit was correctly sent to c� with probability pi� it
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is easy to check that the probability that c� receives an even number of errors is

� � ��� �pi�
dr��

�
� ���

Hence� the probability that m was received in error and sent correctly in round i� � is

p�

�
� � ��� �pi�

dr��

�

�d���
�

and similarly the probability that m was received correctly but sent incorrectly in round i � � is
given by

��� p��

�
�� ��� �pi�

dr��

�

�d���
�

This yields an equation for pi
� in terms of pi�

pi
� � p� � p�

�
� � ��� �pi�

dr��

�

�d���
� ��� p��

�
�� ��� �pi�

dr��

�

�d���
� ���

Gallager�s idea is then to �nd the supremum p� of all values of p� for which the sequence pi
is monotonically decreasing and hence converges to �� Note� however� that even if pi converges to
�� this does not directly imply that the process necessarily corrects all message nodes� even with
high probability� This is because our assumption that the neighborhood of �m� c� is accurately
represented by a tree for arbitrarily many rounds is not true� In fact� even for any constant number
of rounds it is true only with high probability�

Gallager proves that� as the block length of the code and girth of the graph grow large� this
decoding algorithm works for all p� � p�� Since random graphs do not have large girth� Gallager
introduced explicit constructions of regular sparse graphs that do have su�ciently large girth for
his analysis to hold� We shortly provide an analysis that shows that Gallager�s decoding algorithm
successfully corrects a large fraction of errors for a randomly chosen regular graph with high prob�
ability� Then in Section ��� we show how to ensure the decoding terminates successfully with high
probability using a slightly di�erent decoding rule�

Gallager notes that the decoding rule can be relaxed in the following manner� at each round�
there is a universal threshold value bi �to be determined below� that depends on the round number�
For each message node m and neighboring check node c� if at least bi neighbors of m excluding c
sent the same bit to m in the previous round� then m sends this bit to c in this round� otherwise
m sends to c its initial bit rm� The rest of the decoding algorithm is the same� Using the same
analysis as for equation ���� we may �nd a recursive description of the pi�

pi
� � p� � p�

d���X
t�bi

�
d� � �

t

��
� � ��� �pi�

dr��

�

�t �
�� ��� �pi�

dr��

�

�d����t

� �
�

��� p��
d���X
t�bi

�
d� � �

t

��
�� �� � �pi�

dr��

�

�t �
� � ��� �pi�

dr��

�

�d����t

�

We choose bi so as to minimize pi
�� To do this we compare the odds of being right initially
to the odds of being right using the check nodes and the threshold bi� As determined by Gallager�
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the correct choice of bi is the smallest integer that satis�es

�� p�
p�

�

�
� � ��� �pi�

dr��

�� ��� �pi�dr��

��bi�d�
�

� ���

Note that bi is an increasing function of pi� this is intuitive� since as pi decreases� smaller
majorities are needed to get an accurate assessment of m�s correct value� Also� note that while
the algorithm functions by passing values along the edges� it can also keep a running guess for the
value of each message node based on the passed values� The algorithm continues until the proposed
values for the message nodes satisfy all the check nodes� at which point the algorithm terminates
with the belief that it has successfully decoded the message� or it can fail after a preset number of
rounds�

It follows simply from a similar argument in ��	 that the recursive description given by equa�
tion �
� is correct with high probability over any constant number of rounds�

Theorem � Let i � � be an integer constant and let Zi be the random variable describing the

fraction of edges set to pass incorrect messages after i rounds of the above algorithm� Further�

let pi be as given in the recursion �
�� Then there is a constant c such that for any 	 � � and

su�ciently large n we have

Pr�jZi � pij � 	� � exp��c	n��

Proof � We sketch the proof� �A full proof� containing all of the details fully speci�ed� has appeared
in the subsequent work of Richardson and Urbanke ���	� we refer the interested reader there�� There
are two considerations requiring care� First� the neighborhood around a message bitmmay not take
the form of a tree� We show that this does not happen too often with an edge exposure martingale
argument� Second� even assuming the number of non�trees is small� we still need to prove tight
concentration of pi around the expectation given that message bits may be wrong initially with
probability p�� This follows from a separate martingale argument� exposing the initial values at
each node one by one�

For the �rst consideration� it is easily seen that there is a number 
 depending on i and the
maximum degree of the graph such that the probability that the neighborhood of depth �i stemming
from an edge is not a tree is 
�n� For su�ciently large n the value 
�n is less than 	��� Now by
exposing the edges one by one using an edge exposure martingale and applying Azuma�s inequality
���� Section ���	 we see that the fraction of edges with non�tree neighborhoods is greater than 	��
with probability at most exp��c	n��

Now let Zi be the expected number of edges set to pass incorrect messages after i rounds� Then
jZi � pij � 	�� with high probability by the above� We can show that Zi and Zi are close using a
martingale argument� exposing the initial values at the vertices one by one� Again using Azuma�s
inequality we obtain Pr�jZi � Zij � 	��� � exp��c	n� for some constant c �depending on i�� This
now gives the assertion� Q�E�D�

Corollary � Given a random regular code with pi as de�ned by equation ���� if the sequence pi
converges to �� then for any � � � there is a su�ciently large message size n such that Gallager�s

hard decision decoding correctly decodes all but at most �n bits in some constant number r� of

rounds with high probability�
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��� Completing the Work� Expander�based Arguments

In the previous section we have shown that the hard decision decoding corrects all but an arbitrarily
small constant fraction of the message nodes for regular codes with su�ciently large block lengths�
The analysis� however� is not su�cient to show that the decoding process completes successfully� In
this section� we show how to �nish the decoding process with high probability once the number of
errors is su�ciently small using slightly di�erent algorithms� Our work utilizes the expander�based
arguments in ���� ��	�

We �rst de�ne what we require in terms of the bipartite graph represented by the code being a
good expander�

De�nition � A bipartite graph has expansion ��� 
� if for all subsets S of size at most �n of the

vertices on the left� the size of the neighborhood N�S� of S on the right satis�es N�S� � 
j��S�j�
where ��S� is the set of edges attached to vertices in S�

Following the notation of ���	� we call a message node corrupt if it di�ers from its correct value�
and we call a check node satis�ed �respectively unsatis�ed� if its value is �is not� the sum of the
values of its adjacent message nodes� The work of ���	 shows that if the underlying bipartite graph
of a code has su�cient expansion for sets of size up to �n� then both of the following algorithms
can correct any set of �n�� errors�

Sequential decoding� if there is a message node that has more satis�ed than unsatis�ed
neighbors� �ip the value of that message node� Repeat until no such message node
remains�

Parallel decoding� for each message node� count the number of unsatis�ed check nodes
among its neighbors� Flip in parallel each message node with a majority of unsatis�ed
neighbors�

Note that the above algorithms are very similar to Gallager�s hard decision decoding algorithm�
except that here we need not hold values for each �message node�check node� pair� We call upon the
results of ���	 to show that once we use hard decision decoding to correct all but some arbitrarily
small fraction of the message nodes� we can �nish the process� The next lemma follows from
Theorems �� and �� of ���	�

Lemma � Let � � � and 
 � 
�� � 	 for some �xed 	 � �� Let B be an ��� 
� expander� Then

the sequential and parallel decoding algorithms correct up to �n�� errors� The sequential decoding

algorithm does so in linear time and the parallel decoding algorithm does so in O�log n� rounds�

with each round requiring a linear amount of work�

We use the following standard lemma to claim that the graph we choose is an appropriate
expander� and hence we can �nish o� the analysis of the decoding process using the previous
lemma�

Lemma � Let B be a bipartite graph formed as follows with n nodes on the left and �n nodes on

the right� where � � � is a �xed constant� Suppose that a degree is assigned to each node so that all

left nodes have degree at least �ve� and all right nodes have degree at most C for some constant C�

Suppose that a random permutation is chosen and used to match each edge out of a left node with

each edge into a right node� Then� with ��O���n�� for some �xed � � �� 	 � �� and 
 � 
�� � 	�
B is an ��� 
� expander�
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Figure �� If the two left nodes are supposed to be �� and all other nodes are correct� then the
majority tells the left nodes not to change�

We note that the restriction in Lemma � that the left degrees are at least �ve appears necessary�
For example� it is entirely possible for random graphs with degree three on the left to fail to
complete using the proposed sequential and parallel algorithms even after almost all nodes have
been corrected� A problem occurs when the graph has a small even cycle� In this case� if all the
nodes in the cycle are received incorrectly� the algorithm may fail to terminate correctly� �See
Figure ��� Even cycles of any constant length occur with constant probability� so errors remain
with constant probability�

To circumvent this problem Gallager designs regular graphs with no small cycles ��	� To cir�
cumvent this problem in random graphs� we make a small change in the structure of the graph�
similar to that in ��	� Suppose that we use the previous analysis to correct all but at most �n
message bits with high probability� We add an additional ��n check nodes� where �� is a constant
that depends on �� and construct a regular random graph with degree � on the left between all the
n message nodes and the ��n check nodes� The decoding proceeds as before on the original random
graph� correcting all but at most �n message bits� We then use the ��n check nodes previously held
in reserve to correct the remaining message bits using the Sipser�Spielman algorithm� That this
procedure works follows directly from Lemmas � and �� Moreover� as both � and �� can be made
arbitrarily small by Corollary �� the change in the rate of the code due to this additional structure
is negligible� and is ignored in the sequel�

It is worth noting that since explicit constructions are known for regular expanders� using
the previous analysis �Theorem � and Lemma �� we may construct regular codes with the same
asymptotic performance as Gallager�s regular codes that are guaranteed to work with probability
exponential in n� Gallager proved that his codes and decoding algorithm worked correctly with
probability exponential in a root of n� Hence our proof yields slightly better bounds on the error
probability in this case�

��� Theoretically Achievable Error Correction

For every rate� and for every possible left degree and corresponding right degree� the value of p� can
be computed by the above analysis� A natural question to ask is which regular code can achieve
the largest value of p�� Among rate ��� regular codes� it turns out that the largest p� is achieved
when all left nodes have degree � and all right nodes have degree �� in which case p� 	 �������
Thus� combining Corollary �� Lemma �� and Lemma �� we have shown that when the corresponding
bipartite graph is chosen randomly this code can correct all errors with high probability when the
initial fraction of errors approaches ������� All of these regular codes run in linear time if we use
the sequential decoding algorithm in the �nal stage� This follows from the fact that we need to run
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the hard decision decoding only for a constant number of rounds �at linear time per round�� and
then the sequential decoding algorithm can �x the remaining errors in linear time�

� Irregular Codes

��� Analyzing Irregular Codes

We now describe a decoding algorithm for codes based on irregular graphs� or what we call irregular
codes� Following the notation used in ��	� for an irregular bipartite graph we say that an edge has
degree i on the left �right� if its left �right� hand neighbor has degree i� Let us suppose we have an
irregular bipartite graph with some maximum left degree d� and some maximum right degree dr�
We specify our irregular graph by sequences ���� ��� � � � � �d�� and ���� ��� � � � � �dr�� where �i ��i� is
the fraction of edges with left �right� degree i� Further� we de�ne ��x� ��

P
i �ix

i���
Our decoding algorithm in the case of irregular graphs is similar to Gallager�s hard decision

decoding as described in Section ���� but generalized to take into account the varying degrees of
the nodes� Again we look at the process from the point of view of an edge �m� c�� Consider the end
of the ith round� and consider a check node c� of m other than c� The node c� sends m its correct
value as long as there are an even number �including possibly �� of other message nodes sending c�

the wrong bit� As each bit was correctly sent to c� with probability pi� it is simple to check that
the probability that c� receives an even number of errors is

� � ���� �pi�

�
� ���

Equation � is the generalization of equation �� taking into account the probability distribution on
the degree of c��

Also similarly to Section ���� after round i a message node m of degree j passes its initial value
along �m� c� to check node c unless at least bi�j of the check nodes c� adjacent to m other than c
send m the same value� Note that now the threshold value for a node depends on its degree� Also�
the value of bi�j changes according to the round�

To analyze the decoding process� consider a random edge �m� c�� The left degree of �m� c� is j
with probability �j � It thus follows from the same argument as in Section ��� that the recursive
description for pi is

pi
� � p� �
d�X
j��

�j

�
�p�

jX
t�bi�j

�
j � �

l

��
� � ���� �pi�

�

�t ��� ���� �pi�

�

�j���t

� ���

��� p��
j��X
t�bi�j

�
j � �

t

��
�� ���� �pi�

�

�t �� � ���� �pi�

�

�j���t
�
	 �

We need to determine bi�j so as to minimize the value of pi
�� As in equation ���� the best value of
bi�j is given by the smallest integer that satis�es�

�� p�
p�

�

�
� � ���� �pi�

�� ���� �pi�

��bi�j�j
�

� ���

This equation has an interesting interpretation� Note that �bi�j � j � � is a constant �xed by
the above equation� The value �bi�j � j � � � bi�j� �j���bi�j� can be interpreted as the di�erence
between the number of check nodes that agree in the majority and the number that agree in the
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minority� We call this di�erence the discrepancy of a node� Equation ��� tells us that we need only
check that the discrepancy is above a certain threshold to decide which value to send� regardless of
the degree of the node�

��� Designing Irregular Graphs

We now describe techniques for designing codes based on irregular graphs that can handle larger
probabilities of error at potentially some expense in encoding and decoding time� Given our analysis
of irregular codes� our goal is to �nd sequences � � ���� ��� � � � � �d�� and � � ���� ��� � � � � �dr� that
yield the largest possible value of p� such that the sequence of pi decreases to � for a given rate� We
frame this problem in terms of linear programs� Our approach cannot actually determine the best
sequences � and �� Instead� our technique allows us to determine a good vector � given a vector �
and the desired rate of the code� This proves su�cient for �nding codes that perform signi�cantly
better than regular codes� �Similarly� we may also apply this technique to determine a good vector
� given a vector � and the desired rate� as we explain below� however� this does not prove useful in
this setting��

Let p� be �xed� For a given degree sequence � � ���� ��� � � � � �dr � let the real valued function
f�x� be de�ned by

f�x� � p� �
d�X
j��

�j

�
�p�

j��X
t�bi�j

�
j � �

t

��
� � ���� �x�

�

�t ��� ���� �x�

�

�j���t

�

��� p��
j��X
t�bi�j

�
j � �

t

��
�� ���� �x�

�

�t �� � ���� �x�

�

�j���t
�
	 �

where now

bi�j �


�
j � � �

log���� p���p��

log��� � x���� � x��

�
��




and the �j are variables to be determined� Observe that condition ��� now reads as pi
� � f�pi��
For a given p� and right hand degree sequence �� we are interested in �nding a degree sequence
���� � � � � �d�� such that the corresponding function f�x� satis�es f�x� � x on the open interval
��� p��� We begin by choosing a set L of positive integers which constitute the range of possible
degrees on the left hand side� To �nd appropriate ��� � � L� we use the condition f�x� � x above
to generate linear constraints that the �� must satisfy by considering di�erent values of x� For
example� by examining the condition at x � ����� we obtain the constraint f������ � ����� which
is linear in the ���

We generate constraints by choosing for x multiples of p��N for some integer N � We also include
the constraints �� � � for all � � L� as well as the constraintX

��L

���� � R
X
i

�i�i� ���

where R is the rate of the code� This condition expresses the fact that the number of edges incident
to the left nodes equals the number of edges incident to the right nodes� We then use linear
programming to determine if suitable �� exist that satisfy our derived constraints� The choice for
the objective function is arbitrary as we are only interested in the existence of feasible solutions�

Given the solution from the linear programming problem� we can check whether the �� computed
satisfy the condition f�x� � x on ��� p��� The best value for p� is found by binary search� Due to our
discretization� there are usually some con	ict intervals in which the solution does not satisfy this
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inequality� Choosing large values for the tradeo� parameter N results in smaller con�ict intervals�
although it requires more time to solve the linear program� For this reason we use small values of
N during the binary search phase� Once a value for p� is found� we use larger values of N for that
speci�c p� to obtain small con�ict intervals� In the last step we get rid of the con�ict intervals by
slightly decreasing the value of p��

This linear programming tool allows for e�cient search for good codes� That is� given a vector
� we can �nd a good partner vector �� In a similar fashion� we can similarly �nd a good partner
vector � from a given �� However� our experiments reveal that the best � vector for this decoding
algorithm is always the one where are the nodes on the right have the same degree �or all nodes
have as close to the same degree as possible��

There is a natural intuition explaining this phenomenon� �From the point of view of a message
node m� it appears best if the expected number of other neighbors a neighboring check node
c has is as small as possible� This can be seen as follows� At the end of the ith round� the
probability that c sends the correct vote tom is �
�����pi


� � For small pi values� this is approximately

� � pi
Pdr

i���i � ���i� To maximize this probability� we seek to minimize
Pdr

i���i � ���i� which is
exactly the expected number of other neighbors c has� This quantity is minimized �subject to the
constraints

Pdr
i�� �i � � and equation ���� when all check nodes have equal degree� or as nearly equal

as possible� In constrast� we note that using varying degrees for the check nodes is advantageous
when using a more complicated decoding algorithm based on belief propagation ���	�

Using the linear programming technique� we have considered graphs where the nodes on the
left side may have varying degrees and the nodes on the right side all have the same degree� In
other words� we have found good codes by considering � vectors with just one non�zero entry� As
we shall see in Section �� this su�ces to �nd codes with signi�cantly better performance than that
given by codes determined by regular graphs�

It remains to show that the codes we derive in this manner in fact function as we expect�
That is� given a vector ���� � � � � �d�� the right degree dr� and the initial error probability p�� if
the sequence pi given by equation ��� is monotonically decreasing and hence converges to �� then
the code obtained from the corresponding irregular random graph corrects a p��fraction of errors�
with high probability� We �rst note that the equivalent of Theorem � holds in this case as well�
by a similar proof �modi�ed to take into account the di�erent degrees�� That is� we can use the
hard decision decoding algorithm to decrease the number of erroneous bits down to any constant
fraction�

To �nish the decoding� we use the sequential algorithm from Section ���� The overall decoding
time is linear�

Lemma � Let � � � and 
 � 
���	 for some �xed 	 � �� Suppose that B is an irregular bipartite

��� 
� expander� and that d is the maximum degree on a left node of B� Then the sequential decoding

algorithm corrects up to �n��d errors in linear time�

Proof � We follow Theorem �� of ���	� We show that the number of unsatis�ed check nodes
decreases after each step in the sequential algorithm� Let V be the set of corrupt message nodes�
with jV j � v and j��V �j � �dv� Suppose there are u unsatis�ed check nodes and let s be the number
of satis�ed neighbors of the corrupt variables� By the expansion of B� we have

u� s � �
��� �dv�

As each satis�ed neighbor of V shares at least two edges with V � and each unsatis�ed neighbor
shares at least one� we have

�dv � u� �s�
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Code Name Right Degree Left Degree Parameters Value of p�

Code �� ��
�� � ��������� �� � ����
����
��� � ��������� ��� � ��������

������

Code �� ��
�� � ��������� �� � ���������
��� � ��������� ��� � ���������
��� � ��������� ���� � ����
�
�

����



Code ��� ��
�� � ����

��� �	 � �������
�
��� � ��
�����

������

Code ��� ��
�� � ����

��� �	 � ��
������
��� � �����
��� ��� � �����
��

������

Table 
� Parameters of our codes�

It follows that
u � �dv���

and hence there is some message node with more than ��� of its incident check nodes unsatis�ed�
Hence at each step the sequential algorithm may �ip a message node and decrease the number of
unsatis�ed check nodes�

Therefore the only way the algorithm can fail is if the number of corrupt message nodes increases
so that v � �n during the algorithm� But if v � �n� then u � �d�n��� However� initially u is at
most vd � �n��� and u decreases throughout the course of the algorithm� so this cannot happen�
Q�E�D�

It follows that the irregular codes we derive function as we expect as long as our random graphs
have su�cient expansion� This expansion property holds with high probability if we choose the
minimum degree to be at least �ve� However� as stated previously� graphs with message nodes of
smaller degree may be handled with a small additional structure in the graph�

��� Theoretically Achievable Error Correction

We have designed some irregular degree sequences using the linear programming methodology
described in subsection ���� The codes we describe all have rate ���� These codes perform well
in practice as well as according to our theoretical model� However� it is likely that one could �nd
codes that perform slightly better codes using our techniques� It is worth noting that Shannon
upper bound �or entropy bound� for p� for codes of rate ��� is ������ Although the irregular codes
we have designed to date are far from this limit� they are still much better than regular codes�

Code �� and Code ��� described fully in Table 
 are two irregular codes that we designed� For
Code �� all nodes on the right have degree ��� and for Code �� all nodes on the right have degree
���� In both these codes� the minimum degree on the left hand side is �ve� This ensures that the
graphs have good expansion as needed in Lemma �� and thus there is no need for the additional
structure discussed in Section ����

We can achieve even better performance by considering graphs with smaller degrees on the left�
While such graphs do not have su�cient expansion for Lemma � to hold� we can use the additional
structure discussed in Section ��� to �nish the decoding� For Code ��� all nodes on the right have
degree ��� and for Code ��� all nodes on the right have degree ��� Recall that ������ is the best
value of p� that is possible using regular graphs for rate ��� codes�

�Actually� to balance the number of edges� we do allow one node on the right to have a di�erent degree�
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� Experimental Results

We include preliminary experimental results for new codes we have found using the linear program�
ming approach� Our experimental design is similar to that of ���	� whose results can be compared
with ours�

We describe a few important details of our experiments and implementations� In our implemen�
tation� we simply run Gallager�s decoding technique until it �nishes� or until a pre�speci�ed number
of rounds pass without success� In our experiments it turns out that it is unnecessary to switch
to the modi�ed decoding algorithm of Section ��� or use the additional structure described in Sec�
tion ���� as in our experience the hard decision decoding algorithm of Gallager �nishes successfully
once the number of errors becomes small�

We do not perform an actual encoding� but instead for each trial use an initial message con�
sisting entirely of zeroes� To more accurately compare code quality� instead of introducing errors
with probability p� we set the same number of errors �corresponding to a fraction p of the block
length� each trial� It is worthwhile to note that even when the decoding algorithm fails to decode
successfully because too many rounds have passed� it can report that failure back� We have yet
to see the decoding algorithm produce a codeword that satis�ed all constraints but was not the
original message� although theoretically it is a possible event�

Our implementation takes as input a schedule that determines the discrepancy value �bi�j � j � �
at each round� This schedule can be calculated according to equation ���� In practice� however�
the schedule determined by equation ��� must be modi�ed somewhat� If the discrepancy threshold
is changed prematurely� before enough edges transfer the correct value� the decoding algorithm is
signi�cantly more likely to fail� Hence changing the threshold according to the round as given by
equation ��� often fails to work well when the block size is small� since the variance in the number
of edges sending the correct value can be signi�cant� In practice we �nd that stretching out the
schedule somewhat� so that the discrepancy threshold is changed after a few more rounds than
the equations suggest� prevents this problem� at the expense of increasing the running time of the
decoding algorithm�

In our experiments� a random graph was constructed separately for each trial at a certain error
rate� No e�ort was made to test graphs or weed out potentially bad ones� and hence we expect that
our results would be slightly better if several random graphs were tested and the best ones chosen�
Following the ideas of ���	 and ��
	� when necessary we remove double edges from our graphs�

	�� Some Experiments

We �rst describe experiments on codes of rate ��� with ������ message bits and ����� check bits� In
Figure �� we describe the performance of Code �� and Code �� that we introduced in subsection ��
�
Each data point represents the results from ����� trials� Recall that the appropriate value of p� is
approximately ������ for Code �� and ����

 for Code ��� Recall that p� represents the error rate
we would expect to be able to handle for arbitrarily long block lengths� and that we only expect to
approach p� asymptotically in practice as the number of nodes grows�

Our results show that for block lengths of length ������ the codes appear to perform extremely
well when a random fraction ����� �or ���� of the original message bits are in error� For the �����
trials� Code �� never failed� and Code �� failed just once� �In fact in ������ trials with this number
of errors� Code �� proved successful every time�� The probability that the code succeeds falls slowly
as the error probability approaches p�� Further experiments with larger block lengths demonstrate
that performance improves with the number of bits in the message� as one would expect� These
codes therefore perform better than the codes based on regular graphs presented in ���	� albeit at
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the expense of a greater �but still linear� running time� They also perform much better than regular
codes� For instance� as mentioned before� the best regular code of rate ��� is obtained from random
regular bipartite graphs with degree � on the left and degree � on the right� The performance of
this code is also shown in Figure �� Although the p� value for this regular code is approximately
������� in practice� with ������ message bits this regular code failed �
 times in ����� trials with
a fraction of ����� errors�

We now consider Code ��� and Code ��� introduced in subsection ��
� The experiments were
run on ������ message bits and ����� check bits for ����� trials� In our experiments� we remove
both double edges and some small cycles� as suggested in ��
	� Recall that the appropriate value of
p� is approximately ������ for Code ��� and ������ for Code ���� These codes again perform near
what our analysis suggests� and they signi�cantly outperform previous similar codes with similar
decoding schemes� including regular codes�

In summary� irregular codes Code �� and Code �� appear superior to any regular code in
practice� and irregular codes Code ��� and Code ��� are far superior to any regular code� We have
similarly found irregular codes that perform well at other rates�

� Conclusion
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