
386 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 1, JANUARY 2005

Following the same argument in Section IV, T =
i
�i, we have

the spectral entropy

H(S) = �
i

�i
T

log
�i
T
:

Then the Campbell bandwidth is Wc = (1=2)eH(S), and we can say
the Campbell bandwidth is the minimum average bandwidth for en-
coding the process across all possible distortion levels.

IX. CONCLUSION

We have presented two new derivations of the coefficient rate in-
troduced by Campbell. One derivation solidifies its interpretation as
a coefficient rate, and shows that the spectral entropy of a random
process is proportional to the logarithm of the equivalent bandwidth
of the smallest frequency band that contains most of the energy. The
second derivation implies that the number of samples of a particular
component should be proportional to the variance of that component.
We discussed the implications of the latter result for realization-adap-
tive source coding and provided a connection with the familiar reverse
water-filling result from rate distortion theory. From the coefficient
rate, we defined a quantity called the Campbell bandwidth of a random
process, and we contrasted Fourier bandwidth, Shannon bandwidth,
and Campbell bandwidth.

ACKNOWLEDGMENT

The authors are indebted to the referees for their constructive com-
ments and insights.

REFERENCES

[1] L. Campbell, “Minimum coefficient rate for stationary random pro-
cesses,” Inf. Contr., vol. 3, no. 4, pp. 360–371, Dec. 1960.

[2] T. Berger, Rate Distortion Theory. Englewood Cliffs, NJ: Prentice-
Hall, 1968.

[3] N. Abramson, “Information theory and information storage,” in Proc.
Symp. System Theory, New York, Apr. 1965, pp. 207–213.

[4] J. D. Gibson, S. P. Stanners, and S. A. McClellan, “Spectral entropy
and coefficient rate for speech coding,” in Proc. Asilomar Conf. Signals,
Systems, and Computers, Nov. 1993, pp. 925–929.

[5] S. McClellan and J. D. Gibson, “Variable-rate CELP based on subband
flatness,” IEEE Trans. Speech Audio Process., vol. 5, no. 3, pp. 120–130,
Mar. 1997.

[6] J. D. Gibson, M. L. Moodie, and S. A. McClellan, “Variable rate tech-
niques for CELP speech coding,” in Proc. Asilomar Conf. Signals, Sys-
tems, and Computers, Pacific Grove, CA, Oct. 29 –Nov. 1, 1995.

[7] S. McClellan and J. D. Gibson, “Variable rate tree coding of speech,”
in Proc. 1994 IEEE Wichita Conf. Communications, Networking, and
Signal Processing, Wichita, KS, Apr. 1994.

[8] R. Mester and U. Franke, “Spectral entropy-activity classification in
adaptive transform coding,” IEEE J. Sel. Areas Commun., vol. 10, no.
5, pp. 913–917, Jun. 1992.

[9] R. R. Coifman and M. V. Wickerhauser, “Entropy-based algorithms
for best basis selection,” IEEE Trans. Inf. Theory, vol. 38, no. 2, pp.
713–718, Mar. 1992.

[10] E. Wesfreid and M. V. Wickerhauser, “Adapted local trigonometric
transforms and speech processing,” IEEE Trans. Signal Process., vol.
41, no. 12, pp. 3596–3600, Dec. 1993.

[11] A. Said and W. A. Pearlman, “A new, fast, and efficient image codec
based on set partitioning in hierarchical trees,” IEEE Trans. Circuits Syst.
Video Technol., vol. 6, no. 3, pp. 243–250, Jun. 1996.

[12] J. M. Shapiro, “Embedded image coding using zerotrees of wavelet co-
efficients,” IEEE Trans. Signal Process., vol. 41, no. 12, pp. 3445–3462,
Dec. 1993.

[13] D. L. Donoho, M. Vetterli, R. A. DeVore, and I. Daubechies, “Data com-
pression and harmonic analysis,” IEEE Trans. Inf. Theory, vol. 44, no.
6, pp. 2435–2476, Oct. 1998.

[14] A. Ortega and K. Ramchandran, “Rate-distortion methods for image
and video compression,” IEEE Signal Process. Mag., vol. 15, no. 6, pp.
23–50, Nov. 1998.

[15] M. Effros, “Optimal modeling for complex system design,” IEEE Signal
Process. Mag., vol. 15, no. 6, pp. 50–73, Nov. 1998.

[16] S. Mallat and F. Falzon, “Analysis of low bit rate image transform
coding,” IEEE Trans. Signal Process., vol. 46, no. 4, pp. 1027–1042,
Apr. 1998.

[17] J. L. Massey, “Toward an information theory of spread-spectrum sys-
tems,” Code Division Multiple Access Commun., pp. 29–46, 1995.

[18] U. Grenander and G. Szego, Toeplitz Forms and Their Applica-
tions. Berkeley, CA: Univ. Calif. Press, 1958.

[19] T. M. Cover and J. A. Thomas, Elements of Information Theory. New
York: Wiley, 1991.

[20] L. Rade, Beta Mathematics Handbook. Boca Raton, FL: CRC, 1992.
[21] A. Gersho and R. M. Gray, Vector Quantization and Signal Compres-

sion. Norwell, MA: Kluwer Academic, 1991.
[22] C. E. Shannon, “Communication in the presence of noise,” Proc. IRE,

vol. 37, pp. 10–21, Jan. 1949.

Regular and Irregular Progressive Edge-Growth
Tanner Graphs

Xiao-Yu Hu, Member, IEEE, Evangelos Eleftheriou, Fellow, IEEE,
and Dieter M. Arnold, Member, IEEE

Abstract—We propose a general method for constructing Tanner
graphs having a large girth by establishing edges or connections between
symbol and check nodes in an edge-by-edge manner, called progres-
sive edge-growth (PEG) algorithm. Lower bounds on the girth of PEG
Tanner graphs and on the minimum distance of the resulting low-density
parity-check (LDPC) codes are derived in terms of parameters of the
graphs. Simple variations of the PEG algorithm can also be applied to
generate linear-time encodeable LDPC codes. Regular and irregular
LDPC codes using PEG Tanner graphs and allowing symbol nodes to
take values over GF() (2) are investigated. Simulation results
show that the PEG algorithm is a powerful algorithm to generate good
short-block-length LDPC codes.

Index Terms—Girth, low-density parity-check (LDPC) codes, LDPC
codes over GF(), progressive edge growth (PEG), PEG Tanner graphs.

I. INTRODUCTION

Codes on graphs [1]–[13] have attracted considerable attention
owing to their capacity-approaching performance and low-complexity
iterative decoding. The prime examples of such codes are the low-den-
sity parity-check (LDPC) codes. It is known that the belief-propagation
(BP) or sum–product algorithm (SPA) over cycle-free Tanner graphs
[1] provides optimum decoding. Hence, it is natural to try to minimize
the influence of the cycles in the iterative decoding process. This
approach has been adopted for both LDPC [14] and turbo codes [15]

Manuscript received September 2, 2002; revised July 18, 2004. The material
in this correspondence was presented in part at 2001 IEEE Global Telecommu-
nications Conference, San Antonio, TX, November 2001.

X.-Y. Hu and E. Eleftheriou are with IBM Research, Zurich Research
Laboratory, 8803 Rüschlikon, Switzerland (e-mail: xhu@zurich.ibm.com;
ele@zurich.ibm.com).

D. M. Arnold was with IBM Research, Zurich Research Laboratory, Rüsch-
likon, Switzerland (e-mail: d.m.arnold@ieee.org).

Communicated by K. A. S. Abdel-Ghaffar, Associate Editor for Coding
Theory.

Digital Object Identifier 10.1109/TIT.2004.839541

0018-9448/$20.00 © 2005 IEEE

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 1, JANUARY 2005 387

by using rather long block lengths. In fact, for the binary-symmetric
channel and sufficiently small crossover probability, it was shown that
the decoding-error probability approaches zero with an increasing
number of independent iterations [14]. Using the incidence matrix
associated with a graph, Gallager proposed an explicit LDPC code
construction [14, Appendix C] that guarantees independent decoding
iterations up to a lower bound. Unfortunately, this construction is
only valid for regular LDPC codes, and seems to be computationally
infeasible for large block lengths.

For most existing LDPC codes, the Tanner graph is randomly
constructed, avoiding cycles of length 4 [16]–[19]. To date, ran-
domly constructed LDPC codes have largely relied on the sparsity
of the parity-check matrix to avoid short cycles in the Tanner graph.
Although random graphs have been used to construct LDPC codes
with impressive performance [16], [20], large girths facilitate iter-
ative decoding and impose a respectable minimum distance bound
that enhances decoding performance in a high-signal-to-noise (SNR)
regime. Note that a large girth does not automatically imply a large
minimum distance. Consider, for example, a code with only one
parity check whose girth is infinity, but whose minimum distance is
only two. For large block lengths, random graphs work very well, but
for short block lengths, the probability of choosing an unfavorable
random graph is surprisingly high. As observed in [21], the random
ensemble average is to a large degree dominated by such “bad”
graphs for short block lengths. The minimum distance issue becomes
critical if an irregular degree sequence is used. This suggests that
one needs to define an expurgated random ensemble to avoid graphs
having short cycles.

Construction of LDPC codes based on finite geometries was reported
in [22]. Finite-geometry LDPC codes have relatively good minimum
distances and their Tanner graphs do not contain cycles of length 4.
They can be put in either cyclic or quasi-cyclic form so that the en-
coding can be achieved in linear time by using simple feedback shift
registers. With a high rate and very long block length, these codes per-
form very well under iterative decoding, only a few tenths of a decibel
away from the Shannon limit [22]. For more results obtained by var-
ious authors, the reader is referred to [23]–[26].

Since the early work of Gallager, the first significant work in
constructing LDPC codes based on a graph-theoretic algebraic ap-
proach was reported in [27]. In [28], [29], explicit group-theoretic
constructions of graphs were proposed. The girth of these graphs
exceeds the Erdös–Sachs bound [30], which is a nonconstructive lower
bound on the girth of random graphs and has the same significance
as the Gilbert–Varshamov bound does in the context of the minimum
distance of linear codes. The notion of graph expansion was first intro-
duced as an analysis tool in coding theory [3]. Recently, this approach
has been pursued even further, with emphasis on constructing LDPC
codes having almost the largest girth possible [31], [32].

In this correspondence, we present a simple but efficient method for
constructing Tanner graphs having a large girth in a best effort sense by
progressively establishing edges between symbol and check nodes in
an edge-by-edge manner, called progressive edge-growth (PEG) algo-
rithm. Given the number of symbol nodes, the number of check nodes,
and the symbol–node–degree sequence of the graph, an edge-selection
procedure is started such that the placement of a new edge on the graph
has as small an impact on the girth as possible. After a best effort edge
has been determined, the graph with this new edge is updated, and the
procedure continues with the placement of the next edge. In addition,
lower and upper bounds on the girth and a lower bound on the min-
imum distance are derived in terms of parameters of the underlying

PEG Tanner graphs. Simulation results show that the PEG algorithm is
a powerful algorithm for generating good regular and irregular LDPC
codes of short and moderate block lengths.
Compared with other existing constructions, the significance of the

PEG algorithm lies in 1) its simplicity, i.e., its complexity is such that
it can easily be used for constructing codes of very large block lengths
and good girth guaranteed by the lower bound, and 2) its flexibility, i.e.,
it successfully generates good codes for any given block length and
any rate when using a density-evolution-optimized degree sequence.
Moreover, with a slight modification, it can be used to generate linear-
time-encodeable LDPC codes.
The remainder of this correspondence is organized as follows. Sec-

tion II introduces the necessary definitions and notations on graphs.
Section III describes the principle and the details of the PEG algo-
rithm. In Section IV, we summarize the graph properties of PEGTanner
graphs; in particular, the lower bounds on the girth and on theminimum
distance are derived. We briefly address linear-time encoding based on
the PEG principle in Section V. Section VI presents simulation results
comparing the performance of regular and irregular LDPC codes de-
fined on PEG Tanner graphs with that of randomly constructed ones.
In Section VII, we investigate the performance of PEG Tanner-graph
codes over a finite field GF (q). Finally, Section VIII concludes this
correspondence.

II. DEFINITIONS AND NOTATIONS

An LDPC code is a linear code defined by a sparse parity-check ma-
trixH having dimensionm�n. A bipartite graph withm check nodes
in one class and n symbol nodes in the other can be created usingH as
the integer-valued incidence matrix for the two classes. Such a graph is
also called a Tanner graph [1]. As a Tanner graph defines a parity-check
matrix and a parity-check matrix corresponds to a Tanner graph, we use
the terms Tanner graph and parity-check matrix interchangeably. For-
mally, a Tanner graph is denoted as (V;E), with V the set of vertices
(nodes), V = Vc [Vs, where Vc = fc0; c1; . . . ; cm�1g is the set of
check nodes and Vs = fs0; s1; . . . ; sn�1g the set of symbol nodes. E
is the set of edges such that E � Vc � Vs, with edge (ci; sj) 2 E if
and only if hi;j 6= 0, where hi;j denotes the entry ofH at ith row and
jth column, 0 � i � m� 1; 0 � j � n� 1. A Tanner graph is called
(ds; dc)-regular if every symbol node participates in ds check nodes
and every check node involves dc symbol nodes; otherwise, it is called
irregular. Denote the symbol degree sequence by

Ds = fds ; ds ; . . . ; ds g

in which ds is the degree of symbol node sj , 0 � j � n� 1, in
nondecreasing order, i.e., ds � ds � � � � ds , and the parity-check
degree sequence by

Dc = fdc ; dc ; . . . ; dc g

in which dc is the degree of parity-check node cj , 0 � j � m� 1,
and dc � dc � � � � dc . Let also the set of edgesE be partitioned
in terms of Vs as E = Es [Es [� � � [Es , with Es containing
all edges incident on symbol node sj . Moreover, denote the kth edge
incident on sj byEk

s , 0 � k � ds � 1. Fig. 1 shows an example of a
Ds = f2; 2; 2; 2; 3; 3; 3; 3g irregular Tanner graph, in which the check
degree sequence is uniformly of degree 5, i.e.,Dc = f5; 5; 5; 5g.

388 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 1, JANUARY 2005

Fig. 1. An example of a symbol-node degreeDs = f2; 2; 2; 2; 3; 3; 3; 3g
irregular Tanner graph.

A graph is called simple if 1) it does not have a self-loop that is an
edge joining a vertex to itself, 2) there is at most one edge between a
pair of vertices, and 3) all edges are nondirected. In a simple graph,
we say that vertices x and y are adjacent if (x; y) is an edge. The set
consisting of all vertices that are adjacent to x is called x’s neighbors.
A subgraph of a graph G = (V;E) is a graph whose vertex and edge
set are subsets of those ofG. Note that ifG0 = (V 0; E0) is a subgraph
ofG, then for every edge e 2 E0, it must hold that both the vertices of
e lie in V 0. A sequence of distinct vertices, starting from x and ending
with y is called a path between x and y if any two consecutive vertices
in the sequence are joined by an edge. If there exists at least one path
between x and y, then x and y are called connected or x is reached by
y and vice versa. If two vertices x and y in the graph are connected,
their distance d(x; y) is then defined as the length (number of edges) of
the shortest path joining them. A closed path with edges starting from
x and ending at x is called a cycle of x. Girth g refers to the length
of the shortest cycle in a graph. For each symbol node sj , we define a
local girth gs as the length of the shortest cycle passing through that
symbol node. By definition, if follows that g = minjfgs g.

In general, an ensemble of bipartite or Tanner graphs is characterized
by degree distribution pairs. In the case of the symbol nodes, the degree
distribution is defined as

�(x) =

d

i�2

�ix
i

where �i is the fraction of symbol nodes connected to exactly i check
nodes; dmaxs is the largest entry inDs = fds ; ds ; . . . ; ds g, and

d

i�2

�i = 1:

Similarly, in the case of the parity-check nodes, the degree distribution
is defined as

�(x) =

d

i�2

�ix
i

where �i is the fraction of parity-check nodes connected to
exactly i symbol nodes; dmaxc is the largest entry in Dc =
fdc ; dc ; . . . ; dc g, and

d

i�2

�i = 1:

For a given symbol node sj , define its neighborhood within depth l,
N l

s , as the set consisting of all check nodes reached by a subgraph (or
a tree) spreading from symbol node sj within depth l, as shown in the
example in Fig. 2. Its complementary set, �N l

s , is defined as VcnN
l
s ,

or equivalently �N l
s [N

l
s = Vc. The subgraph rooted from sj is

generated by means of unfolding the Tanner graph in a breadth-first
way; we start from sj , and traverse all edges incident on sj ; let
these edges be (sj ; ci); (sj ; ci); . . . ; (sj ; ci). Then we traverse
all other edges incident on vertices ci ; ci ; . . . ; ci , excluding

(sj ; ci); (sj ; ci); . . . ; (sj ; ci). This process continues until the
desired depth is reached. Note that in the subgraph duplicate vertices
or edges may occur. Referring to Fig. 2, any symbol node residing for
the first time at depth l has a distance of 2l to sj , and any check node
residing for the first time at depth l has a distance of 2l + 1 to sj .
Therefore, N l

s can be alternatively defined as the check-node subset
of distance (relative to sj) smaller than or equal to 2l + 1. Similarly,
for a given parity-check node ci, define its neighborhood with depth
l, N l

c , as the set consisting of all parity-check nodes reached by a
subgraph (or a tree) spreading from ci within depth l.

III. PROGRESSIVE EDGE-GROWTH (PEG) CONSTRUCTION

Constructing a Tanner graph with the largest possible girth is a
rather difficult combinatorial problem. Nevertheless, a suboptimum
algorithm to construct a Tanner graph with a relatively large girth is
feasible. One such algorithm is the PEG algorithm that we present
here, in which the local girth of a symbol node is maximized whenever
a new edge is added to this symbol node. Given the graph parameters,
i.e., the number of symbol nodes n, the number of check nodesm, and
the symbol–node–degree sequence Ds, an edge-selection procedure
is started such that the placement of a new edge on the graph has as
small an impact on the girth as possible. The underlying graph grows
in an edge-by-edge manner, optimizing each local girth. Accordingly,
the resulting Tanner graph is referred to as PEG Tanner graph. The
fundamental idea is to find the most distant check node and then to
place a new edge connecting the symbol node and this most distant
check node.
Whenever a subgraph from symbol node sj is expanded before an

edge is established, two situations can occur: 1) the cardinality ofN l
s

stops increasing but is smaller than m; 2) �N l
s 6= , but �N l+1

s =
. In the first case, not all check nodes are reachable from sj , so the

PEG algorithm chooses the one that is not reachable, thus not creating
any additional cycle. This often occurs in the initial phase of graph
construction. In the second case, all check nodes are reachable from sj ,
and the algorithm chooses the one that is at the largest distance from
sj , say at depth l+1, so that the cycle created by establishing an edge
is of the largest possible length 2(l+ 2). We summarize the proposed
algorithm as follows.

Progressive Edge-Growth Algorithm:
for j = 0 to n � 1 do
begin
for k = 0 to ds � 1 do
begin
if k = 0
E0

s � edge (ci; sj), where E0
s is the first edge incident to sj

and ci is a check node such that it has the lowest check-node degree
under the current graph setting Es [Es [� � � [Es .

else
expand a subgraph from symbol node sj up to depth l under the
current graph setting such that the cardinality of N l

s stops in-
creasing but is less thanm, or �N l

s 6= but �N l+1
s = , then

Ek
s � edge (ci; sj), where Ek

s is the kth edge incident to
sj and ci is a check node picked from the set �N l

s having the low-
est check-node degree.

end
end

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 1, JANUARY 2005 389

Fig. 2. A subgraph spreading from symbol node sj .

The setN l
s and its complement �N l

s can be efficiently obtained in a
recursive manner. One can set an indicator Ic for each check node ci
taking on values from the set f0; 1g. The indicator set I is initialized
to 0. As the tree originating in sj proceeds to depth l, the indicators of
all check nodes included in the spanning tree are set to 1, indicating
that these nodes belong toN l

s . Likewise, �N l
s is obtained by checking

whether the indicator Ic equals 0. Note that this simple version is
definitely not the most efficient one; nevertheless, it proves to be good
enough for generating practical PEG Tanner-graph codes.

There is a subtle point in the PEG algorithm that needs further
comment. Whenever we encounter multiple choices for connecting
to symbol node sj , i.e., multiple check nodes exist in �N l

s , we select
the one having the smallest number of incidence edges under the
current graph setting. Such a check-node selection strategy renders
the resulting PEG Tanner graphs as check-node-degree uniform as
possible. In particular, it tends to produce graphs with uniform degree
in parity-check nodes (parity-check-node-regular graphs), or concen-
trated graphs with two consecutive nonzero degrees. One can easily
apply additional constraints on the check-node degree distribution,
e.g., by setting appropriate maximum degrees on individual check
nodes; this however might not be necessary as there is strong evidence
that a concentrated degree sequence on the check nodes is optimum
[33], [34].

Even so, we may still face a situation in which multiple choices exist
because multiple check nodes in �N l

s might have the same lowest de-
gree, particularly in the initial phase of PEG construction. There are
two main approaches to solve this problem. The first is to randomly
select one of these check nodes. The second is to always select one ac-
cording to its position in the order of c0; c1; . . . ; cm�1. For instance,
we can first sort the check nodes in �N l

s that have the same lowest de-
gree according to their subscripts, and then always pick the first one. In
this correspondence, we adopt the first approach. Note, however, that
the second may also be of interest because of its deterministic nature.

We close this section with the following remarks.

1) Complexity—The computational load in obtaining the set N l
s

or �N l
s primarily depends on the degree sequences Ds and Dc

as well as on the depth l. In a sparse graph, the elements of
Ds and Dc are small numbers irrespective of n, and l grows
at most logarithmically withm. In the worst case, the computa-

tional complexity and the storage requirements of the PEG al-
gorithm scale as O(nm) and O(n), respectively, whereas the
complexity and storage requirements of Gallager’s explicit con-
struction [14, Appendix C] for large girth, in the best case, are
both O(n2).

2) Nongreedy version—The version presented above is greedy
in the sense that the subgraph spreading from sj proceeds
as deep as possible, i.e., the depth l is maximized such that
�N l
s 6= but �N l+1

s = . This approach appears to be favor-
able if the minimum distance is at a premium, particularly for
short-block-length and/or high-rate codes [36], [37]. However,
for long-block-length, low-rate codes, in which the minimum
distance is in principle large, it might be favorable to limit l to a
certain value lmax, 1) to make the check-node degree sequence
concentrated in the strict sense, and 2) possibly to reduce the
diameter of the graph, i.e., the maximum distance of distinct
vertex pairs, such that fewer decoding iterations are required.
This variant is called the nongreedy PEG algorithm. Note that if
one sets lmax = gt=2� 2, where gt is the target girth, then this
variant bears some resemblance to the “bit-filling” algorithm
described independently in [38].

3) Look-ahead-enhanced version—The PEG principle refers to
constructing graphs by attaching edges in stages, where at
each stage we choose an edge emanating from a symbol node
such that the shortest cycle passing through the assumed edge
is locally optimized. Clearly, this local optimization usually
does not produce the best possible overall solution. One can
enhance the greedy PEG algorithm by looking one step ahead.
In the look-ahead-enhanced version, the same procedure as
in the greedy PEG algorithm is applied, except when several
choices exist for placing the kth edge of sj . In this case,
additional testing is introduced to ensure that a better choice
is used. Specifically, for each candidate parity-check node in
�N l
s , we evaluate the maximum possible depth l the subgraph

expanded from sj would have if an edge connecting the can-
didate parity-check node with sj had been put onto the graph.
Then we select the parity-check node having the largest l as the
parity-check node that the kth edge of sj joins.

390 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 1, JANUARY 2005

4) Flexibility and scalability—The PEG algorithm can be used to
construct regular and irregular bipartite graphs with arbitrary
size. It generates good codes for any given block length and
rate, provided a good degree sequence is supplied. Its low
complexity makes it suitable for constructing codes of very
large lengths and, with a slight modification, for constructing
linear-time-encoding LDPC codes. Any other algorithm known,
e.g., Gallager’s construction, does not have this degree of
flexibility. The underlying PEG principle is flexible and broadly
applicable; for example, with only a minor modification it can
be used to generate graphs that are strictly regular [35]. By
incorporating an extra criterion called “approximate cycle-ex-
trinsic message degree (ACE)” [40] at the stage of selecting one
check node from the set �N l

s , the error floor at high SNRs for
irregular PEG codes can be further improved [41]. Rate-com-
patible LDPC codes based on the PEG principle have recently
been published in [42].

IV. GRAPH PROPERTIES

A randomly constructed Tanner graph guarantees neither a mean-
ingful lower bound on the girth nor the minimum distance. In contrast,
a PEG Tanner graph exhibits some rather elegant properties in terms of
girth and minimum distance.

A. Girth Bounds

The number of independent iterations has been analyzed in [14].
In particular, an upper bound on the maximum number of indepen-
dent iterations i is derived. This bound is general and applies to any
(ds; dc)-regular Tanner graph. More importantly, an explicit construc-
tion procedure is described by which it is always possible to find a
(ds; dc)-regular graph for which the maximum number of independent
iterations is bounded by t � 1 < i � t, where the real number t de-
pends on ds, dc, and the code block length n. In [14], it was also shown
that the girth g and i are related by the following inequality:

i < g=4 � i+ 1:

The PEG construction procedure described here also guarantees the
existence of a regular or irregular graph whose girth satisfies a lower
bound. We use the following lemma to establish a lower bound on the
girth of the PEG Tanner graphs.

Lemma 1: Let (V; E) be an irregular Tanner graph in which dmax
c

and dmax
s are the largest degrees of the degree sequences Dc and Ds,

respectively. Let N l
s denote the depth-l neighborhood of any symbol

node sj such that N l
s � Vc andN l+1

s = Vc, then l is lower-bounded
by

l � btirrlowc (1)

where tirrlow is given by

tirrlow =
log mdmax

c �
md

d
�m+ 1

log[(dmax
s � 1)(dmax

c � 1)]
� 1 (2)

b�c indicates the floor of a floating-point number, and m denotes the
cardinality of the set Vc of parity-check nodes.

Proof: Consider a depth-l subgraph of an irregular Tanner graph
which spreads from any symbol node sj , sj 2Vs, such that N l

s �Vc
and N l+1

s = Vc. Let also dmax
c and dmax

s be the largest degrees
of Dc and Ds, respectively. By definition the depth-0 subgraph
contains at most dmax

s parity-check nodes, each giving rise to at most

(dmax
s �1)(dmax

c �1) parity-check nodes in the next round of spreading.
Thus, there are at most dmax

s (dmax
s � 1)(dmax

c � 1) check nodes at
depth 1. Similarly, there are at most dmax

s (dmax
s �1)l(dmax

c �1)l check
nodes at depth l. In principle, duplicate parity-check nodes may occur
in the subgraph during the spreading process. Let l0 be the largest
integer such that

dmax
s + dmax

s (dmax
s � 1)(dmax

c � 1)+

� � �+ dmax
s (dmax

s � 1)l (dmax
c � 1)l < m (3)

which can be simplified to

dmax
s (dmax

s � 1)l +1(dmax
c � 1)l +1 � 1

(dmax
s � 1)(dmax

c � 1)� 1
< m: (4)

Let tirrlow be the solution of the equation

dmax
s (dmax

s � 1)t+1(dmax
c � 1)t+1 � 1

(dmax
s � 1)(dmax

c � 1)� 1
= m (5)

that is,

tirrlow =
log mdmax

c �
md

d
�m+ 1

log[(dmax
s � 1)(dmax

c � 1)]
� 1: (6)

Then l � l0 = btirrlowc.

Note that the above lemma also holds for a (dc; ds)-regular Tanner
graph, with dmax

c = dc and dmax
s = ds. We now establish a lower

bound on the girth of a PEG Tanner graph.

Theorem 1: Let (V;E) be an irregular PEG Tanner graph in which
dmax
c and dmax

s are the largest degrees of the degree sequencesDc and
Ds, respectively. The girth g of this graph is lower-bounded by

g � 2(btirrlowc + 2) (7)

where tirrlow is given by (2).
Proof: Suppose that the closed path

(sj ; ci); (ci ; sj); (sj ; ci); (ci ; sj);

. . . ; (sj ; ci); (ci ; sj)

is among those that provide the shortest cycle in a PEG Tanner graph
(V;E), where, without loss of generality, jg=2�1 is the largest index
among j0; j1; . . . ; jg=2�1. Then, the length of the shortest cycle in the
graph, i.e., girth g, is equal to the local girth of symbol node sj ,
i.e., g = gj . As jg=2�1 is the largest index, gj can be viewed
as the girth of symbol node sj in the intermediary graph with
edges in the set E0 [E1 [� � � [Ej . Clearly, the edges in the
complementary set Ej [� � � [En�1 have no impact on the local
girth of sj . Recall now the procedure in the PEG algorithm for
placing edges successively in the set Ej . Whenever a subgraph
from symbol node sj is expanded before an edge is established,
two cases may occur: 1) the cardinality of N l

s stops increasing

but is smaller than m; 2) �N l
s 6= , but �N l+1

s = . In
case 1), not all check nodes are reachable from sj , so the PEG algo-
rithm chooses the one that is not reachable, thus avoiding the creation
of an additional cycle. In case 2), by construction, the shortest pos-
sible cycle passing through symbol node sj has length 2(l+ 2),
where l corresponds to the depth-l neighborhood N l

s such that

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 1, JANUARY 2005 391

�N l
s 6= , but �N l+1

s = . Therefore, by making use of

Lemma 1 we obtain g�2(btirrlowc+2), where tirrlow is given by (2).

The bound on the girth justifies the effort of the PEG algorithm to
keep the check-node degree as uniform as possible. The more uniform
the Tanner graph, the smaller the values of dmax

s and dmax
c , thereby

improving the lower bound. Moreover, it can readily be seen that this
lower bound is always better than the lower bound guaranteed by
Gallager’s explicit construction [14, Appendix C].

An upper bound on the girth of a general Tanner graph can be derived
based on the approach in [14] in a straightforward way. We state the
result without a proof. The reader is referred to [14, Appendix C] for
details.

Lemma 2: Let (V;E) be a (ds; dc)-regular Tanner graph. The girth
g of this graph is upper-bounded by

g � 4btreguppc + 4 (8)

where tregupp is given by

t
reg
upp =

log (m� 1)(1� d
d (d �1)

) + 1

log[(dc � 1)(ds � 1)]
: (9)

Comparing the lower and upper bounds in (7) and (8), respectively,
one can easily see that the girth of a regular PEGTanner graph is always
larger than or equal to half of the upper bound. This result is analogous
to the asymptotic bounds on the girth of regular graphs having only
one type of nodes. Specifically, the asymptotic Erdös–Sachs bound [30]
states that a randomly generated regular graph with n vertices and de-
gree r has a girth that is larger than or equal to (1 + o(1)) logr�1 n,
with probability approaching 1 as n ! 1, and is half of the asymp-
totic upper bound (2+o(1)) logr�1 n [28]. Using similar arguments as
in [14, Appendix C], one can readily derive an analogous Erdös–Sachs
asymptotic bound for bipartite (Tanner) graphs and show that the lower
bound on the girth of PEG Tanner graphs in (7) always meets this anal-
ogous Erdös–Sachs bound. The Erdös–Sachs bound may be regarded
as an analog of the Varshamov–Gilbert bound in coding theory, as both
are derived from similar arguments. Note that, similarly to the Var-
shamov–Gilbert bound, the Erdös–Sachs bound is nonconstructive in
the sense that the corresponding sequence of graphs is defined noncon-
structively. It is not clear from the proof of the Erdös–Sachs bound how
to construct a sequence fGjg of regular graphs of degree r explicitly
such that n(fGjg)!1 and g(fGjg) � (1+o(1)) logr�1 n(fGjg)
for j ! 1.

The following lemma provides an even tighter upper bound on the
girth of a general Tanner graph.

Lemma 3: Let (V;E) be a (ds; dc)-regular Tanner graph. The girth
g of the graph is upper-bounded by

g � minfg1; g2g (10)

where

g1 =
4bt1c+ 2; if I1 = 0

4bt1c+ 4; otherwise

g2 =
4bt2c+ 2; if I2 = 0

4bt2c+ 4; otherwise
(11)

in which

t1 =
log (m� 1)(1� d

d (d �1)
) + 1

log[(dc � 1)(ds � 1)]
; (12)

t2 =
log (n� 1)(1� d

d (d �1)
) + 1

log[(dc � 1)(ds � 1)]
(13)

and I1 is equal to 0 if and only if

[(dc � 1)(ds � 1)]bt c

> m� 1�
dc(ds � 1)f[(dc � 1)(ds � 1)]bt c � 1g

(dc � 1)(ds � 1)� 1
(14)

and I2 is equal to 0 if and only if

[(dc � 1)(ds � 1)]bt c

> n� 1�
ds(dc � 1)f[(dc � 1)(ds � 1)]bt c � 1g

(dc � 1)(ds � 1)� 1
: (15)

The details of the proof of Lemma 3 can be found in [39].
Fig. 3 depicts both the lower bound on a PEG Tanner graph and the

two upper bounds on a general Tanner graph for regular ds = 3, dc = 6
codes with varying m (in this case, n = 2m). It can be seen that the-
upper bound of Lemma 3 is tighter than that of Lemma 2. Moreover,
the lower bound of a PEG Tanner graph is higher than half of the two
upper bounds for the entire range of block lengths. The lower bound
corresponding to Gallager’s construction is also shown in Fig. 3, illus-
trating that the lower bound of a PEG Tanner graph is better than that
of Gallager’s explicit construction.
Compared with Gallager’s explicit construction, the PEG construc-

tion in general achieves a better girth with much less complexity. The
PEG algorithm is quite simple, whereas the complexity of Gallager’s
explicit construction remains prohibitively large for medium and large
block lengths. So far, we are not aware of practical LDPC codes based
on Gallager’s explicit construction. More importantly, the PEG algo-
rithm can also be applied to generate irregular graphs, whereas Gal-
lager’s construction only applies to regular graphs. The flexibility of the
PEG algorithm even allows us to design linear-time-encoding LDPC
codes without sacrificing decoding performance. It is worthwhile to
point out that in practice the lower bound on PEG Tanner graphs can
be exceeded. We have designed good LDPC codes based on the non-
greedy PEG variant or the look-ahead-enhanced variant that achieve a
girth that is larger than the lower bound. In Fig. 3 these codes are indi-
cated by circles, corresponding tom = 20; 75; 430; 3000;30 000; and
300000.

B. Minimum-Distance Bound

Assume that Vs takes on values from the binary alphabet f0; 1g and
Vc is a set of simple parity checks (SPC), the Tanner graph then trans-
lates into Gallager’s binary LDPC code. The randomly constructed
(ds; dc)-regular code for ds � 3 has aminimum distance that increases
linearly with block length n, for ds and dc constant [14]. This is only
valid for relatively large block lengths, however, and a code with a low
minimum distance will be impaired in its performance at high SNRs.
Although finding the minimum distance of a generic linear code is an
NP-hard problem, some bounds on the minimum distance of a gen-
eral Tanner graph have been established in [1], [43]. For a PEG Tanner
graph, it is possible to derive a lower bound on the minimum distance
in a similar way. In fact, using Tanner’s approach [1] and arranging the
graph in tree formwith the symbol node as root, it can readily be shown
that for a (ds; dc)-regular graph with (ds � 3), the minimum distance
dmin satisfies

dmin � 1 +
ds[(ds � 1)b(g�2)=4c � 1]

ds � 2
: (16)

392 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 1, JANUARY 2005

Fig. 3. Lower and upper bounds on a PEG regular Tanner graph with ds = 3, dc = 6.

Furthermore, if g=2 is even, the lower bound on dmin can be made even
tighter

dmin � 1 +
ds[(ds � 1)b(g�2)=4c � 1]

ds � 2
+ (ds � 1)b(g�2)=4c: (17)

The proof of this bound is based on counting symbol nodes in an active
subgraph induced by a minimum-weight codeword, which is a straight-
forward variation of theminimumdistance result in [1]. Comparedwith
the original Tanner minimum-distance lower bound, (16) and (17) are
slightly stronger as in general ds � 3. For example, in the case of
g = 6, (16) reduces to the conventional bound dmin � 1+ds, whereas
the lower bound in [1] yields the weaker result dmin � 4� 2=ds, be-
cause in general ds � 3. In the case of g = 8, both bounds yield the
same result, namely, dmin � 2ds. On the other hand, for g = 10, the
bound in (16) yields 1 + d2s , whereas the lower bound in [1] leads to
the weaker result 4(ds � 1) + 2=ds for ds � 3.

The above bound can readily be extended to the symbol-node-uni-
form case where the degree sequence of check nodes is not necessarily
uniform. Thus, we obtain the following general result.

Lemma 4: Given a symbol-node-uniform PEG Tanner graph with
ds (ds � 3) edges incident to each symbol node, let dmax

c be the largest
degree of check nodes. The minimum distance dmin of the resulting
LDPC code satisfies (18) at the bottom of the page, in which

tirrlow =
log(mdmax

c �
md

d
�m+ 1)

log[(ds � 1)(dmax
c � 1)]

� 1: (19)

The proof follows directly from (16), (17), and the lower bound on the
girth of PEG Tanner graphs in Theorem 1.

Note that the above bound on the minimum distance still is a weak
bound for two reasons. The first is the assumption that all active check
nodes are satisfied by exactly two symbol nodes, which weakens the es-
timate of the minimum distance. The second is that the condition that
the last row of check nodes in the active subgraphmust be satisfied with
additional active symbol nodes has not been taken into account. Nev-
ertheless, (18) always furnishes a meaningful bound on graphs having
a large girth.

V. LINEAR-TIME ENCODING

The computational complexity per block of iterative decoding using
BP or SPA on a Tanner graph has been shown to be essentially linear
with block length n, but the encoding complexity per block increases
quadratically by n2. Several publications address this issue, with the
aim of obtaining linear-time-encoding complexity, see for example
[44]–[49]. The most common approach is to exploit the sparseness of
the parity-check matrix H and its corresponding graph to obtain an
efficient encoding format, namely, a triangular or almost triangular
parity-check matrix.
The PEG algorithm can easily be tailored to construct LDPC codes

having (almost) triangular structure, good girth properties, and an

dmin �
1 + d [(d �1) �1]

d �2
; if btirrlow c is odd

1 + d [(d �1) �1]
d �2

+ (ds � 1)b c; if btirrlow c is even

(18)

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 1, JANUARY 2005 393

optimum irregular degree sequence. According to the linear-time-en-
coding principle, the codeword w and the parity-check matrix H are
partitioned intow = [p; d] andH = [Hp; Hd], respectively, such that

[Hp; Hd]wT = 0 (20)

where them�m componentHp = fhpi;jg of the parity-check matrix
is forced (constructed) to have the special form

Hp =

1

0
...

0

hp1;2
1
...

� � �

� � �

. . .

0

0

� � �

...
1

0

hp1;m

...
hpm�1;m

1
m�m

(21)

in which hi;j = 1 for i = j and hi;j = 0 for i > j. Hence, the
parity-check bits p = fpig are computed according to

pi =

m

j=i+1

hpi;jpj +

n�m

j=1

hdi;jdj mod 2 (22)

where d = fdig is the systematic part of the codeword, and Hd =
fhdi;jg is them� (n�m) component of the partitioned parity-check
matrix H . Equation (22) is computed recursively from i = m to i =
1. Clearly, the encoding process has become much simpler because
the Gaussian elimination step is avoided. Moreover, computation and
storage requirements in the encoder are also reduced because H is
sparse by design.

Accordingly, we partition the symbol node set Vs in the Tanner-
graph representation into the redundant subset V p

s and the information
subset V d

s , which contain the firstm symbol nodes (parity bits) and the
other n�m symbol nodes (systematic information bits), respectively.
The edges of the symbol nodes are then established by means of the
PEG algorithm while observing the special pattern in (21), so that the
linear-time-encoding property results. As the procedure of establishing
the edges of n�m information bits follows the construction of edges
of V p

s and is exactly the same as that described in Section III, we focus
on the modified PEG algorithm for constructing edges of V p

s .

PEG Algorithm for Establishing Edges of V p
s :

for j = 0 to m � 1 do
begin
for k = 0 to ds � 1 do
begin
if k = 0
E0
s � edge (cj ; sj), where E0

s is the first edge incident to sj .
This edge corresponds to the “1” in the diagonal line of matrixHp.

else
expand a subgraph from symbol node sj up to depth l under the
current graph setting such that �N l

s \ fc0; c1; . . . ; cj�1g 6=

but �N l+1
s \ fc0; c1; . . . ; cj�1g = , or the cardinality of N l

s

stops increasing, then Ek
s � edge (ci; sj), where Ek

s is the
kth edge incident to sj and ci is a check node picked from the
set �N l

s \fc0; c1; . . . ; cj�1g having the lowest check-node degree.
end

end

VI. CODE PERFORMANCE

In this section, we first study the performance of PEG Tanner graphs
applied to binary LDPC codes by means of computer simulations. For
comparison purposes, we use the rate-1=2 (n = 504,m = 252) code
of MacKay in [50], which is based on a regular Tanner graph with
ds = 3, dc = 6. This code was randomly constructed followed by

ad hoc optimization procedures, and has been widely used as a bench-
mark. A PEG Tanner graph of 504 symbol and 252 check nodes is gen-
eratedwith uniform degree 3 for each symbol node. The resulting graph
is nearly check-node uniform with degree 6, except for eight check
nodes with a degree of 7, and eight with a degree of 5. We also use a
randomly constructed rate-1=2 (504;252) code, in which the degree
of symbol nodes is 3 and the positions of 1’s in a column is deter-
mined by a random integer generator uniformly distributed among the
set f0; 1; . . . ;m � 1g. Additional tests are implemented to guarantee
that no four cycles occur in the graph representation.
In the PEG Tanner graph, each symbol node has a local girth of 8,

except for three symbol nodes with a local girth of 10. In MacKay’s
code, 63% of the symbol nodes have a local girth of 6 and 37% one
of 8. In the random graph, 79% of the symbol nodes have a local girth
of 6 and 21% one of 8. The average local girth of these three graphs
is 8:01; 6:74; and 6:42; respectively. Fig. 4 shows a perspective of the
girth properties of the various graphs. It depicts the girth of the left-hand
subgraph of symbol node sj as a function of j. The left-hand subgraph
of sj consists of the symbol nodes fs0; s1; . . . ; sj�1g; 0 � j � n�1,
the edges that emanate from them, and the parity-check nodes they are
connected to. It is desirable, in particular for irregular LDPC codes,
that the girth of the left-hand subgraph of sj decreases slowly as a
function of j such that the possibility that lower degree nodes together
form a small cycle decrease. Furthermore, for irregular Tanner graphs,
lower degree symbol nodes intuitively require more iterations during
the decoding process than higher degree symbol nodes do, and they are
also more likely to lead to low-weight codewords. Therefore, having a
large girth on the left-hand subgraph of lower degree symbol nodes
is a nice property inherent in the PEG construction. In addition, opti-
mizing the girth of the left-hand subgraph can also facilitate the design
of LDPC codes having as high a rate as possible while satisfying the
requirement of a good global girth. One can easily think of the fol-
lowing (minor) improvement to the generic PEG algorithm obtained
by adding an extra procedure to make the girth of the left-hand sub-
graph decrease as slowly as possible: If the local girth of the current
symbol node is less than the girth of its left-hand subgraph (before the
current-working symbol node), which indicates a decrease in the girth
of the left-hand subgraph, we simply discard all the edges for the the
current symbol node and redo the PEG algorithm for it (with random
seeds) until a maximum number of trials has been made or the local
girth of the symbol node is no longer less than the girth of its left-hand
subgraph. It is empirically observed that this modification will not al-
ways yield a noticeable improvement, but on some occasions—down
to very low bit- or block-error rates—it can improve the error floor due
to near- (pseudo-) codewords.
Fig. 5 compares the bit- and block-error rates for the three codes

after 80 iterations over a binary-input additive white Gaussian noise
(AWGN) channel, and shows that the performance of the random graph
is much worse than that of the other two codes, perhaps mainly because
of its poor girth histogram.We collect at least 100 block errors per sim-
ulation point.We observe that the LDPC code based on the PEGTanner
graph is slightly better than MacKay’s code. With 80 iterations and at a
block-error rate of 5 �10�5, the LDPC code based on the PEG Tanner
graph outperforms MacKay’s code by 0.2 dB. The significance of this
result should not be underestimated, considering that, to the best of our
knowledge, MacKay’s codes are among the best codes for short and
medium block lengths. Note that although both MacKay’s code and
the random graph have a global girth of 6, the performance of the latter
degrades significantly. This suggests that in reality the girth histogram
may be of greater importance than the girth for the performance of iter-
ative decoding. For instance, in [51], the average of the girth histogram
is used as a heuristic tool to select good codes from random graphs for
short block lengths. Of course, one can also apply the approach of [51]
to select good codes among PEG Tanner graphs, anticipating further
performance improvements.

394 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 1, JANUARY 2005

Fig. 4. Girth of the left-hand subgraphs of symbol node sj in a PEG Tanner graph, MacKay’s code, and a random graph, with n = 504,m = 252, ds = 3,
dc = 6.

Fig. 5. Bit- and block-error rates of a PEG Tanner-graph code, MacKay’s code, and a random graph code, with n = 504,m = 252, ds = 3, dc = 6.

Density evolution [52], [18] has proved to be an efficient and ef-
fective approach to design of good irregular degree-distribution pairs
withwhich LDPC codes based on random construction exhibit a perfor-
mance extremely close to the Shannon limit for sufficiently long block
lengths. It is thus tempting to combine the PEG algorithm with the
symbol-node-degree distribution optimized by density evolution to de-

sign LDPC codes. We investigate the performance of symbol-node-de-
gree distributions as given in [19, Tables I and II] using the PEG con-
struction with n = 504, m = 252. Note that the check-node distri-
bution is not needed as the check-degree sequence is made as uniform
as possible by the PEG algorithm. Among these symbol-node distri-
butions with maximum symbol-node degrees 4; 7; 11; 15; 30; the one

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 1, JANUARY 2005 395

Fig. 6. Block-error rates of irregular PEG (solid lines) and irregular random-graph codes (dashed lines) with density-evolution-optimized degree distributions;
code parameters are n = 504,m = 252.

Fig. 7. Bit- and block-error rates of an irregular PEG Tanner-graph code, an upper-triangular PEG Tanner-graph code, and MacKay’s code, all with n = 1008,
m = 504.

with maximum degree 15 achieves the best performance, see Fig. 6.
This reveals the interesting finding that even for short block lengths, the
degree distributions designed by the density-evolution approach still
are very good if the PEG algorithm is used. We observe that the PEG
construction significantly outperforms the irregular random construc-
tion, particularly in the high-SNR region. This irregular random code is
constructed column by column with appropriate symbol-node degree.

The position of 1’s in each column is determined according to a uni-
formly distributed integer random variable and there are no four cycles
in the code’s graph representation
We investigate the performance of an irregular PEG Tanner-graph

LDPC code whose parity-check matrix is forced into an upper trian-
gular form, thus having linear-time-encoding property. Fig. 7 compares
the bit- and block-error rates of the irregular PEG Tanner-graph code,

396 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 1, JANUARY 2005

TABLE I
OPTIMIZED SYMBOL-NODE-DEGREE DISTRIBUTIONS FOR RATE-1=2 PEG CODES OVER GF (2b). THE BLOCK LENGTH IN BINARY BITS IS nb

an irregular PEG Tanner-graph code with a parity-check matrix in
upper diagonal form, and MacKay’s regular code, all with n = 1008,
m = 504. The symbol-node-degree distribution for both irregular PEG
Tanner-graph codes chosen is that from [19, Table II] with maximum
symbol-node degree 15.When the parity-check matrix is forced into an
upper triangular form there is one symbol node of degree 1. As can be
seen, the two irregular codes designed according to the PEG algorithm
have essentially the same performance and are about 0.5 dB better
than MacKay’s rate-1=2 (n = 1008,m = 504) code, which suggests
that with the PEG construction linear-time encoding can be achieved
without noticeable performance degradation.

VII. PEG TANNER-GRAPH CODES OVER GF (q)

So far we have primarily considered binary LDPC codes represented
by binary parity-check matrices or their corresponding bipartite graphs
constructed using the PEG algorithm. These codes can easily be gen-
eralized to finite fields GF (q) in the same way as in [53], [54], i.e.,
by allowing the symbol nodes to assume values from the finite field.
As a symbol from the field GF (q), q = 2b for some integer b > 1,
may be represented as a binary string of b bits, we can use such codes
with binary-input channels, transmitting one q-ary symbol for every b
uses of the binary channel. The decoder interprets b consecutive bits
(y0; y1; . . . ; yb�1) from the channel as a single 2b-ary symbol and sets
the prior information of that symbol by assuming a product distribution
for the values of each constituent bit, i.e.,

fx :=

b�1

i=0

fxy :

Here fxy is the likelihood that the ith constituent bit is equal to xi,
where (x0; x1; . . . ; xb�1) is the binary representation of the trans-
mitted symbol x.

Let us briefly recall the construction of PEG-based LDPC codes over
GF (q). Given the number of symbol nodes n, the number of parity-
check nodes m, and the symbol-node-degree sequence of the graph,
the PEG algorithm is initially started in exactly the same manner as
in the binary case, i.e., such that the placement of a new edge on the
graph has as small an impact on the girth of the graph as possible. In
this way, a PEG Tanner graph is obtained that not only has a large
girth but also a good girth histogram. To form a GF (q) parity-check
matrix, the positions of nonzero entries are determined by the PEG
Tanner graph, whereas the values of the nonzero entries of the parity-
check matrix are selected randomly from a uniform distribution among
nonzero elements of GF (q).

Table I shows optimized rate-1=2 irregular PEG Tanner-graph codes
over GF (2b) and their corresponding symbol-node-degree distribu-
tions. The optimization of the degree sequences was accomplished with

a variant of the “downhill simplex” method described in [39]. We com-
pare codes having a block length ofn symbols over GF (2b)with binary
codes of length nb bits.
The performance results indicate that PEG Tanner-graph codes over

higher order fields significantly outperform the binary ones. Further-
more, thanks to the PEG algorithm, which aims at large girth as well as
an optimized (by downhill search) irregular degree sequence, we have
observed a monotonic improvement with increasing field order. It is
also observed that the optimum degree sequence favors a lower average
column weight as the field order increases. Interestingly enough, the ir-
regularity feature seems to be unnecessary if the higher order field is
sufficiently large, and the optimum graph tends to favor a regular one of
degree-2 in all symbol nodes. This new insight complements the find-
ings in [53], [54].

VIII. CONCLUSION

A general method for constructing Tanner graphs with large girth has
been presented. Its main principle is to optimize the placement of a new
edge connecting a particular symbol node to a check node on the graph
such that the largest possible local girth is achieved. In this way, the
underlying graph grows in an edge-by-edge manner, optimizing each
local girth, and is thus referred to as a PEG Tanner graph.
Upper and lower bounds on the girth of a PEG Tanner graph have

been derived. These bounds depend on the number of symbol and check
nodes, as well as on the maximum values of the symbol- and check-
node degrees of the underlying graph. In addition, a lower bound on
the minimum distance of binary LDPC codes defined on PEG Tanner
graphs has also been derived.
Simulation results demonstrated that using the PEG algorithm for

constructing short-block-length LDPC codes results in a significant im-
provement comparedwith randomly constructed codes.We empirically
found that even for small block lengths, such as n = 504, there is a
good degree distribution from density evolution that works perfectly
with the PEG construction. Linear-time encodeable LDPC codes have
also been constructed by slightly modifying the PEG algorithm to yield
a Tanner graph with triangular format. This easy encoding property can
be achieved without noticeable performance degradation.
Fig. 8 shows the performance of the irregular PEG Tanner-graph

codes over a binary-input AWGN channel. Five codes of rate 1=2 over
GF (2), GF (8), GF (16), GF (32), and GF (64) are shown. All codes
correspond to block lengths of 1008 bits (except the irregular PEG
Tanner-graph code over GF(32), which has a block length of 202 sym-
bols or 1010 bits). Also shown is the performance of the rate-1=2, n =
1008, m = 504 binary MacKay code as well as the sphere-packing
bound for this block length. As can be seen, an improvement of 0.25 dB
is obtained bymoving from binary to GF (26). Furthermore, the overall
gain of the GF (26) PEG code compared with the binary MacKay code
is approximately 0.75 dB. Finally, the rate-1=2 irregular PEG code over

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 1, JANUARY 2005 397

Fig. 8. Block-error rates of irregular LDPC codes over GF (2), GF (8), GF (16), GF (32), and GF (64), based on a PEG Tanner graph with the parameters
given in Table I.

GF (26) shows a block error rate < 10�4 at Eb=N0 = 2 dB, i.e., a
performance that is only 0.4 dB fromGallager’s sphere-packing bound1

of a binary-input AWGN channel [55], [56], which appears to be the
best iterative-decoding performance at this block length and rate known
today.

Finally, the regular and irregular binary LDPC codes have been gen-
eralized by using the same PEG construction but allowing the symbol
nodes to take values over higher order finite fields. This work con-
firms that by moving to higher order fields short-block-length codes
can be constructed that operate close to the Gallager’s sphere-packing
bound when decoded with the sum–product algorithm. We reported a
short-block-length (1008-bit), rate-1=2 irregular PEG LDPC code over
GF (26) with a block error rate < 10�4 at Eb=N0 = 2 dB, which, to
our knowledge, appears to exhibit the best iterative-decoding perfor-
mance at this short block length achieved to date.

ACKNOWLEDGMENT

The authors are grateful to M. P. C. Fossorier, T. Mittelholzer,
R. L. Urbanke, and M. Vetterli for insightful comments and sugges-
tions. They also thank D. J. C. MacKay for valuable comments and for
providing the parity-check matrices of some LDPC codes simulated
herein. They thank the Associate Editor and two anonymous reviewers
for constructive comments, which have greatly helped improve the
exposition of the correspondence.

REFERENCES

[1] R. M. Tanner, “A recursive approach to low complexity codes,” IEEE
Trans. Inf. Theory, vol. IT-27, no. 6, pp. 533–547, Sep. 1981.

[2] N.Wiberg, H.-A. Loeliger, and R. Kötter, “Codes and iterative decoding
on general graphs,” Europ. Trans. Telecommun., vol. 6, pp. 513–526,
Sep. 1995.

1Bear in mind, however, that no undue significance should be attached to this
0.4-dB gap, as at this block length the formula for computing the Gallager bound
might not be sufficiently exact.

[3] M. Sipser and D. A. Spielman, “Expander codes,” IEEE Trans. Inf.
Theory, vol. 42, no. 6, pp. 1710–1722, Nov. 1996.

[4] N. Alon and M. Luby, “A linear-time erasure-resilient code with
nearly optimal recovery,” IEEE Trans. Inf. Theory, vol. 42, no. 6, pp.
1732–1736, Nov. 1996.

[5] R. J. McEliece, D. J. C. MacKay, and J.-F. Cheng, “Turbo decoding as
an instance of Pearl’s belief propagation algorithm,” IEEE J. Sel. Areas
Commun., vol. 16, pp. 140–152, Feb. 1998.

[6] F. R. Kschischang and B. J. Frey, “Iterative decoding of compound codes
by probability propagation in graphical models,” IEEE J. Selected Areas
Commun., vol. 16, no. 2, pp. 219–230, Feb. 1998.

[7] R. Kötter and A. Vardy, “Factor graphs: Construction, classification, and
bounds,” in Proc. 1998 IEEE Int. Symp Information Theory, Cambridge,
MA, Aug. 1998, p. 14.

[8] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and
the sum-product algorithm,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp.
498–519, Feb. 2001.

[9] A. R. Calderbank, G. D. Forney, and A. Vardy, “Minimal tail-biting trel-
lises: The Golay code and more,” IEEE Trans. Inf. Theory, vol. 45, no.
5, pp. 1435–1455, Jul. 1999.

[10] Y. Weiss, “Correctness of local probability propagation in graph-
ical models with loops,” Neural Computat., vol. 12, pp. 1–41,
2000.

[11] S. M. Aji and R. J. McEliece, “The generalized distributive law,” IEEE
Trans. Inf. Theory, vol. 46, no. 2, pp. 325–343, Mar. 2000.

[12] G. D. Forney, “Codes on graphs: News and views,” in Proc. 2nd Int.
Symp. Turbo Codes & Related Topics, Brest, France, Sep. 2000, pp.
9–16.

[13] “Special issue on codes and graphs and iterative algorithms,” IEEETrans.
Inf. Theory, vol. 47, no. 2, Feb. 2001.

[14] R. G. Gallager, Low Density Parity Check Codes. Cambridge, MA:
MIT Press, 1963, Monograph.

[15] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit
error-correcting coding and decoding: Turbo codes,” in Proc. 1993
IEEE Int. Conf. Communication, Geneva, Switzerland, May 1993, pp.
1064–1070.

[16] D. J. C. MacKay, “Good error-correcting codes based on very sparse
matrices,” IEEE Trans. Inf. Theory, vol. 45, no. 2, pp. 399–431, Mar.
1999.

[17] M. Luby, M.Mitzenmacher, A. Shokrollahi, and D. Spielman, “Analysis
of low-density codes and improved designs using irregular graphs,” in
Proc. 30th ACM STOC, Dallas, TX, 1998, pp. 249–258.

398 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 1, JANUARY 2005

[18] T. Richardson and R. Urbanke, “The capacity of low-density parity-
check codes under message-passing decoding,” IEEE Trans. Inf. Theory,
vol. 47, no. 2, pp. 599–618, Feb. 2001.

[19] T. Richardson, A. Shokrollahi, and R. Urbanke, “Design of provably
good low-density parity-check codes,” IEEE Trans. Inf. Theory, vol. 47,
no. 2, pp. 619–637, Feb. 2001.

[20] S.-Y. Chung, G. D. Forney, Jr., T. J. Richardson, and R. Urbanke, “On
the design of low-density parity-check codes within 0.0045 dB of the
Shannon limit,” IEEECommun. Lett., vol. 5, no. 2, pp. 58–60, Feb. 2001.

[21] C. Di, D. Proietti, İ. E. Telatar, T. Richardson, and R. Urbanke, “Finite-
length analysis of low-density parity-check codes on the binary erasure
channel,” IEEE Trans. Inf. Theory, vol. 48, no. 6, pp. 1570–1579, Jun.
2002.

[22] Y. Kou, S. Lin, and M. P. C. Fossorier, “Low-density parity-check codes
based on finite geometries: A rediscovery and new results,” IEEE Trans.
Inf. Theory, vol. 47, no. 7, pp. 2711–2736, Nov. 2001.

[23] R. M. Tanner, D. Sridhara, and T. Fuja, “A class of group-structured
LDPC codes,” in Proc. ICSTA 2001, Ambleside, UK, 2001.

[24] J. L. Fan, “Array codes as low-density parity-check codes,” in Proc. 2nd
Int. Symp. Turbo Codes & Related Topics, Brest, France, Sep. 2000, pp.
543–546.

[25] B. Vasić, “Combinatorial constructions of structured low-density parity-
check codes for iterative decoding,” manuscript, submitted for publica-
tion.

[26] S. J. Johnson and S. R. Weller, “Regular low-density parity-check codes
from combinatorial designs,” in Proc. IEEE Information Theory Work-
shop, Cairns, Australia, Sep. 2001, pp. 90–92.

[27] G. A. Margulis, “Explicit constructions of graphs without short cycles
and low density codes,” Combinatorica, vol. 2, no. 1, pp. 71–78, 1982.

[28] , “Explicit group-theoretical constructions of combinatorial
schemes and their application to the design of expanders and concentra-
tors,” Probl. Inf. Transm., vol. 24, no. 1, pp. 39–46, Jan.-March 1988.
Translated from Probl. Pered. Inf., vol. 24, no. 1, pp. 51-60, Jan.-Mar.
1988.

[29] A. Lubotzky, R. Phillips, and P. Sarnak, “Ramanujan graphs,” Combi-
natorica, vol. 8, no. 3, pp. 261–277, 1988.

[30] P. Erdös and H. Sachs, “Reguläre Graphen gegebener Taillenweite mit
minimaler Knotenzahl,”Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg
Math.-Naturwiss. Reine, vol. 12, pp. 251–257, 1963.

[31] J. Rosenthal and P. O. Vontobel, “Construction of LDPC codes using Ra-
manujan graphs and ideas from Margulis,” in Proc. 38th Annu. Allerton
Conf. Communication, Computing and Control, Monticello, IL, Oct.
2000, pp. 248–257.

[32] P. O. Vontobel and R. M. Tanner, “Construction of codes based on fi-
nite generalized quadrangles for iterative decoding,” in Proc. IEEE Intl.
Symp. Information Theory, Washington, DC, Jun. 2001, p. 223.

[33] L. Bazzi, T. Richardson, and R. Urbanke, “Exact thresholds and optimal
codes for the binary symmetric channel and Gallager’s decoding algo-
rithm A,” IEEE Trans. Inf. Theory, vol. 50, no. 9, pp. 2010–2021, Sep.
2004.

[34] M. A. Shokrollahi, “New sequence of linear time erasure codes ap-
proaching the channel capacity,” in Proc. 13th Int. Symp. Applied
Algebra, Algebraic Algorithm and Error-Correcting Codes, 1999, pp.
65–76.

[35] G. Richter, “Construction of completely regular LDPC codes with large
girth,” in Proc. ETH Zurich 2003 Winter School on Coding and Infor-
mation Theory, Ascona, Switzerland, Feb. 2003. Available [Online] at
http://www.isi.ee.ethz.ch/winterschool/docs/richter.pdf.

[36] X.-Y. Hu, E. Eleftheriou, and D.-M. Arnold, “Progressive edge-growth
Tanner graphs,” in Proc. IEEE Global Telecommunications Conf.
(GLOBECOM), San Antonio, TX, Nov. 2001. CD Proceedings, paper
no. 0-7803-7208-5/01.

[37] , “Irregular progressive edge-growth Tanner graphs,” in Proc. IEEE
Intl. Symp. Information Theory, Lausanne, Switzerland, Jun./Jul. 2002,
p. 480.

[38] J. Campello, D. S. Modha, and S. Rajagopalan, “Designing LDPC codes
using bit-filling,” in Proc. IEEE Int. Conf. Communications, Helsinki,
Finland, Jun. 2001, pp. 55–59.

[39] X.-Y. Hu, “Low-delay low-complexity error-correcting codes on sparse
graphs,” Ph.D. dissertation, Swiss Federal Institute of Technology Lau-
sanne (EPFL), Lausanne, Switzerland, 2002.

[40] T. Tian, C. Jones, J. D. Vilasenor, and R. D. Wesel, “Construction of
irregular LDPC codes with low error floors,” in Proc. IEEE Int. Conf.
Communications , vol. 5, Anchorage, AK, May 2003, pp. 3125–3129.

[41] H. Xiao and A. H. Banihashemi, “Improved progressive-edge-growth
(PEG) construction of irregular LDPC codes,” IEEE Commun. Lett., to
be published.

[42] M. R. Yazdani and A. H. Banihashemi, “On construction of rate-com-
patible low-density parity-check codes,” IEEE Commn. Lett., vol. 8, no.
3, pp. 159–161, Mar. 2004.

[43] R. M. Tanner, “Minimum distance bounds by graph analysis,” IEEE
Trans. Inf. Theory, vol. 47, no. 2, pp. 808–821, Feb. 2001.

[44] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman, and V. Ste-
mann, “Practical loss-resilient codes,” in Proc. 29th ACM Symp. Theory
of Computing, El Paso, TX, May 1997, pp. 150–159.

[45] D. Spielman, “Linear-time encodeable and decodable error-correcting
codes,” IEEE Trans. Inf. Theory, vol. 42, no. 6, pp. 1723–1731, Nov.
1996.

[46] D. J. C. MacKay, S. T. Wilson, and M. C. Davey, “Comparison of con-
struction of irregular Gallager codes,” IEEE Trans. Commun., vol. 47,
no. 10, pp. 1449–1454, Oct. 1999.

[47] L. Ping, W. K. Leung, and N. Phamdo, “Low density parity check codes
with semi-random parity check matrix,” IEE Electron. Lett., vol. 35, pp.
38–39, Jan. 1999.

[48] H. Jin, A. Khandekar, and R. J. McEliece, “Irregular repeat-accumulate
codes,” in Proc. 2nd Int. Symp. Turbo Codes & Related Topics, Brest,
France, Sep. 2000, pp. 1–8.

[49] T. Richardson and R. Urbanke, “Efficient encoding of low-density
parity-check codes,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp.
638–656, Feb. 2001.

[50] D. J. C. MacKay. Online Database of Low-Density Parity-Check Codes.
[Online]. Available: http://wol.ra.phy.cam.uk/mackay/codes/data.html

[51] Y. Mao and A. Banihashemi, “A heuristic search for good low-density
parity-check codes at short block lengths,” in Proc. Int. Conf. Commu-
nications, vol. 1, Helsinki, Finland, Jun. 2001, pp. 41–44.

[52] M. Luby, M. Mitzenmacher, A. Shokrollahi, and D. Spielman, “Im-
proved low-density parity-check codes and using irregular graphs and
belief propagation,” in Proc. 1998 IEEE Int. Symp. Information Theory,
Cambridge, MA, Aug. 1998, p. 117.

[53] M. C. Davey, “Error-correction using low-density parity-check codes,”
Ph.D. dissertation, Univ. Cambridge, Cambridge, U.K., 1999.

[54] M. C. Davey and D. MacKay, “Low-density parity-check codes over
GF (q),” IEEE Commun. Lett., vol. 2, no. 6, pp. 165–167, Jun. 1998.

[55] C. Schlegel and L. Perez, “On error bounds and turbo-codes,” IEEE
Commun. Lett., vol. 3, pp. 205–207, Jul. 1999.

[56] R. G. Gallager, Information Theory and Reliable Communica-
tion. New York: Wiley, 1968.

