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Quasi-Cyclic Low-Density Parity-Check Codes From
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Abstract—In this correspondence, the construction of low-density
parity-check (LDPC) codes from circulant permutation matrices is
investigated. It is shown that such codes cannot have a Tanner graph
representation with girth larger than 12, and a relatively mild necessary
and sufficient condition for the code to have a girth of 6 8 10 or 12
is derived. These results suggest that families of LDPC codes with such
girth values are relatively easy to obtain and, consequently, additional
parameters such as the minimum distance or the number of redundant
check sums should be considered. To this end, a necessary condition for the
codes investigated to reach their maximum possible minimum Hamming
distance is proposed.

Index Terms—Iterative decoding, low-density parity-check (LDPC)
codes, quasi-cyclic (QC) codes.

I. INTRODUCTION

Recently, several methods for constructing good families of
low-density parity-check (LDPC) codes have been proposed. These
methods can be decomposed into two main classes: random or pseu-
dorandom constructions, and algebraic constructions. For long code
lengths, random constructions [1]–[4] or pseudorandom constructions
[5]–[7] of irregular LDPC codes have been shown to closely approach
the theoretical limits for the additive white Gaussian noise (AWGN)
channel. Generally, these codes outperform algebraically constructed
LDPC codes. On the other hand, for medium-length LDPC codes
(say, up to a few thousand bits long for rate 1=2), the situation is quite
different. For these lengths, irregular constructions are generally not
better than regular ones, and graph-based or algebraic constructions
can outperform random ones [8].

Algebraic constructions of LDPC codes can be decomposed into
two main categories. The first category is based on finite geometries
[9]–[12], while the second category is based on circulant permuta-
tion matrices.1 This second approach was initially proposed by Gal-
lager [13, Appendix C] (although in this original construction, the per-
mutation matrices are not restricted to circulants). A special class of
these codes was later analyzed in [14] and several recent works con-
sider structured ways to design such codes [15]–[20]. In fact, these two
methods are interrelated and, for example, many of the code construc-
tions based on finite geometries have an equivalent circulant permuta-
tion matrix representation [21, p. 286].

A (J; L)-regular LDPC code is defined as a code represented by a
parity-check matrix H in which each column has weight J and each
row has weight L[13]. Hence, to construct the parity-check matrix H
of a (J;L)-regular LDPC code of length N = Lp with the second
method, J rows of L circulant permutation matrices of size p � p
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1A permutation matrix is any square matrix with constant row and colum
weight of one; a circulant permutation matrix is a permutation matrix which is
cyclic.

can be judiciously adjoined. The code obtained is quasi-cyclic (QC)
and therefore, can be encoded in linear time with shift registers [22,
pp. 256–261]. Furthermore, since by row and column permutations, an
equivalent code with only identity matrices in the first row block and
the first column block of H can be obtained, at most (J � 1)(L� 1)
integers suffice to entirely specify the code. In this correspondence, we
derive a simple necessary and sufficient condition for the Tanner graph
[23] of these QC LDPC codes to have a given girth. In fact, we show
that these QC LDPC codes have a girth g of at most 12, which gen-
eralizes the result of [16]. For g = 6, the condition is very loose and,
therefore, it is very easy is construct QC LDPC codes which perform
quite well when iteratively decoded with the belief propagation (BP)
algorithm [1]. The conditions for g = 8; 10; or 12 are also quite easy
to satisfy. This suggests that for LDPC codes of moderate lengths, ad-
ditional constraints other than the girth need to be considered.

Based on a result of [25], it directly follows that the minimum Ham-
ming distance dH of a (J;L)-regular QC LDPC code satisfies dH �

(J+1)!. A set of (J+1)! columns inH summing to zero is explicitly
determined in this correspondence. A necessary condition to have all
columns in this set distinct is then proposed.

The correspondence is organized as follows. The necessary and suffi-
cient condition for a given girth is derived in Section II. Applications of
this condition to construct families of QC LDPC codes are presented in
Section III. Code searches and simulation results are discussed in Sec-
tion IV. In Section V, the necessary condition for a QC LDPC code to
reach the upper bound on its minimum distance is developed. Finally,
concluding remarks are given in Section VI.

II. GIRTH OF QC LDPC GRAPH REPRESENTATIONS

A. Preliminaries

The parity-check matrix H of a (J;L)-regular QC LDPC code of
length N = pL can be represented by

H =

I(0) I(0) � � � I(0)

I(0) I(p1;1) � � � I(p1;L�1)
...

. . .
...

I(0) I(pJ�1;1) � � � I(pJ�1;L�1)

(1)

where for 1 � j � J � 1, 1 � l � L � 1, I(pj;l) represents the
circulant permutation matrix with a one at column-(r + pj;l) mod p
for row-r, 0 � r � p � 1, and zero elsewhere. It follows that I(0)
represents the p� p identity matrix. Also, since the p rows of each of
the J submatrices [I(0)I(pj;1) � � � I(pj;L�1)], 0 � j � J � 1, in (1)
sum to the all-1 vector, the rank of H is at most Jp� J + 1.

A cycle of length 2i inH=[hx;y] is defined by 2i positions hx;y=1
such that: 1) two consecutive positions are obtained by changing alter-
natively of row or column only; and 2) all positions are distinct, except
the first and last ones. It follows that two consecutive positions in any
cycle belong to distinct circulant permutation matrices which are either
in the same row, or in the same column. Hence, a cycle of length 2i can
be associated with an ordered series of circulant permutation matrices

I(pj ;l ); I(pj ;l ); I(pj ;l );

. . . ; I(pj ;l ); I(pj ;l ); I(pj ;l )

with for 1 � k � i, jk 6= jk�1 and lk 6= lk�1. With the conven-
tion of going from I(pj ;l ) to I(pj ;l ) via I(pj ;l ) (i.e., of
changing first of row and then of column), any cycle of length 2i in H

can be represented by the ordered series

(j0; l0); (j1; l1); � � � (ji�1; li�1); (j0; l0) (2)
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for 1 � k � i, jk 6= jk�1, and lk 6= lk�1 We note that (2) does not
necessarily define a unique cycle of length 2i in H , but this is not an
issue for the following results. Defining

�j ;j (l) = pj ;l � pj ;l (3)

the matrix H contains a cycle of length 2i given by (2) if and only if
i�1

k=0

�j ;j (lk) = 0 mod p (4)

with j0 = ji, jk 6= jk+1, and lk 6= lk+1. This simple necessary and
sufficient condition can be rewritten in the following theorem.

Theorem 2.1: A necessary and sufficient condition for the Tanner
graph representation of the matrix H defined in (1) to have a girth at
least 2(i + 1) is

m�1

k=0

�j ;j (lk) 6= 0 mod p (5)

for all m, 2�m� i, all jk , 0�jk�J�1, all jk+1, 0�jk+1�J�1,
and all 0� lk�L�1, with j0=jm, jk 6=jk+1, and lk 6= lk+1.

Note that an equivalent condition with respect to row index differ-
ences rather than column index differences as in Theorem 2.1 can also
be obtained based on Ht, the transpose of H . From Theorem 2.1, the
next corollary follows.

Corollary 2.1: For QC LDPC codes with J = 2, g = 4i only is
possible.

This result directly follows from the series given in (2), in which j0
and j1 have to alternate.

In the following two subsections, a lower bound on the minimum
value of p for which g � 6 and g � 8, respectively, is determined. Un-
fortunately, for larger girth values, no meaningful bound was obtained.

B. Girth g � 6

A simple necessary condition for g � 6 is given by the following
theorem

Theorem 2.2: A necessary condition to have g�6 is pj ;l 6=pj ;l

for j1 6= j2, and pj ;l 6= pj ;l for l1 6= l2.
Proof: The first part of the theorem directly follows from (3) and

(4) with i = 2. For g � 6, Theorem 2.1 for rows 0 and j1 and columns
l1 and l2 in H becomes

�0;j (l1) + �j ;0(l2) 6= 0 mod p (6)

with �0;j (l1) + �j ;0(l2) = �pj ;l + pj ;l , which completes the
proof.

A lower bound on the minimum value of p for which g � 6 is given
by the following.

Corollary 2.2: A necessary condition to have g � 6 in the Tanner
graph representation of a (J; L)-regular QC LDPC code is p � L, or
N � L2.

Theorem 2.2 and its corollary suggest that finding a (J;L)-regular
QC LDPC code with g � 6 should not be necessarily difficult. Corol-
lary 2.2 can be refined depending on whether L is odd or even as fol-
lows.

Theorem 2.3: A necessary condition to have g � 6 in the Tanner
graph representation of a (J;L)-regular QC LDPC code is p � L, or
N � L2 if L is odd, and p � L+ 1, or N � L(L+ 1) if L is even.

Proof: Assume p = L and g � 6. Without loss of generality, we
can choose p0;l = 0 and p1;l = l in (1) for 0 � l � L � 1 based
on Corollary 2.2. For l > 0, define e and o as the number of even and
odd values p1;l, respectively. If L = p is even, then e = p=2� 1 and
o = p=2, so that o � e = 1.

We can choose p2;0 = 0 and, from Theorem 2.2, p2;l 6= p2;l for
l1 6= l2. For l > 0, define o1 and o2 as the numbers of odd values
p1;l corresponding to odd and even values p2;l, respectively, so that
o1 + o2 = o. Similarly, for l > 0, define e1 and e2 as the numbers
of even values p1;l corresponding to odd and even values p2;l, respec-
tively, so that e1+e2 = e. We also have o1+e1 = o and o2+e2 = e,
which implies e1 = o2 and o1 = e2.

If o1 is odd, then e2 is also odd. If e is even, then e1 and, hence, o2
are odd too, and o is even; else if e is odd, then e1 and, hence, o2 are
even, and o is odd. Similarly, if o1 is even, then e2 is also even. If e is
even, then e1 and hence o2 are even too, and so is o; else if e is odd, then
e1 and, hence, o2 are odd, and so is o. As a result, in each case, e and o
are either both odd or both even, which is impossible since o� e = 1.
It follows that for L even, p � L+ 1, which completes the proof.

C. Girth g � 8

The previous approach is extended to the case g � 8.

Theorem 2.4: For J � 3 and L � 3, a necessary condition to have
g � 8 is pj ;l 6= pj ;l for 0 < j1 < j2 and 0 < l1 < l2.

Proof: Assume pj ;l =pj ;l , with 0<j1<j2 and 0<l1<l2,
which requires J �3 and L�3, respectively. Then

�j ;j (0) + �j ;0(l2) + �0;j (l1) = 0 + pj ;l � pj ;l = 0:

Based on Theorem 2.1, this indexing defines a cycle of length 6 with
respect to rows 0, j1, and j2 and columns 0, l1, and l2 of H , which
contradicts g � 8.

A lower bound on the minimum value of p for which g � 8 is given
by the following.

Corollary 2.3: A necessary condition to have g � 8 in the
Tanner graph representation of a (J;L)-regular QC LDPC code is
p > (J � 1)(L� 1) or N > (J � 1)(L� 1)L.

D. Girth g � 10

The next theorem shows that a (J;L)-regular QC LDPC code nec-
essarily has g � 12.

Theorem 2.5: For any (J;L)-regular QC LDPC code, we have
g � 12.

Proof: For J � 3, this result directly follows from Theorem 2.1
with j1 = j4, j2 = j5, and j3 = j6, as well as i1 = i3 = i5 and
i2 = i4 = i6. For J = 2, the result follows in a straightforward way
from the equivalent expression of Theorem 2.1 with respect toHt and
row index differences, which completes the proof.

Theorem 2.5 generalizes the result of [16] to any (J;L)-regular QC
LDPC code. Based on the distance bounds presented in [23], it impor-
tantly indicates that for a given code rate, the only way of increasing
the guaranteed minimum Hamming distance of a QC LDPC code is to
increase both J and L.

We finally note that Theorem 2.1 can be viewed as a simplified for-
mulation of [15, Theorem 2] in the case of circulant permutation ma-
trices. A formulation of some results derived in this section with the
notations of [15] has been given in [24].

III. FAMILIES OF QC LDPC CODES

A. Random Constructions

For given values of the code length N , the code dimension K , and
the desired girth g, the most straightforward approach is to determine
corresponding values of J , L, and p, and then randomly generate (J�
1)(L� 1) integers until Theorem 2.1 is satisfied. For given values of
J and L, the smallest value of p for which a (J;L)-regular QC LDPC
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TABLE I
SMALLEST VALUE OF p FOR WHICH A (J; L)-REGULAR QC LDPC CODE

WITH GIRTH g � 6 WAS FOUND WITH COMPUTER SEARCH

TABLE II
SMALLEST VALUE OF p FOR WHICH A (J;L)-REGULAR QC LDPC CODE

WITH GIRTH g � 8 WAS FOUND WITH COMPUTER SEARCH

code with girth g = 6 and g = 8 was found with computer search are
recorded in Tables I and II, respectively. Note that although the search
for smaller values of p failed, there is no guarantee that such codes
do not exist, except for the values of p which meet the lower bound
of Theorem 2.3 or of Corollary 2.3. For g = 6, the optimum value
was found in each case, except for L = 9 and J � 4 (represented
in italics in Table I). As suggested from Theorem 2.3, we observe that
the smallest values of p remain the same as J increases in Table I.
For g = 8, none of the values recorded in Table II corresponds to the
smallest possible value p = (J�1)(L�1)+1 given in Corollary 2.3.
It should be noted that some of these values, as well as those for g = 6,
J = 5, and L � 8 were found after relatively long computer searches,
which suggests to search for structured values of pj;l in the matrix H
of (1). Several such constructions are discussed in the next section.

B. Structured Constructions

In order to speed up the code search based on Theorem 2.1, a par-
ticular structure on the (J � 1)(L� 1) integers necessary to specify
the matrix H of (1) can be imposed. As a result, each structure deter-
mines a particular family of QC LDPC codes. In the following, exam-
ples of such families are given. These families generally correspond
to previous works which are therefore now proposed within the same
framework and often generalized.
1) Sum pj;l = jq1 + lq2 mod p: In this case, we compute

�j ;j (l) = (j1 � j2)q1

so that�j ;j (l1)+�j ;j (l2) = 0. It follows from Theorem 2.1 that
g � 4 for this construction.
2) Product pj;l = jl mod p: For this family, we compute

�j ;j (l) = (j1 � j2)l:

For g � 6, Theorem 2.1 becomes (j1�j2)(l1� l2) 6= 0 mod p for all
j1 6= j2 and all l1 6= l2. This condition is always satisfied for p prime,
but depending on J andL, other values of p are also valid. For example,
for (J;L) = (3; 6) and p � 15, p 2 f7; 9; 11; 12; 13; 14; 15g is a
valid choice, while for J � 4,L = 6, and p � 15, p 2 f7; 11; 13; 14g
works. It is finally interesting to point out that this form defines array
codes [15] and that for p prime and J = L = p, the p2 � p2 matrix H
of (1) defines the Euclidean geometry plane EG (p; 2). For example,
for p = J = L = 5, we obtain a 25 � 25 matrix H of rank 21
corresponding to EG(5; 2).

For g � 8, Theorem 2.1 becomes

(j1 � j2)(l1 � l3) + (j2 � j3)(l2 � l3) 6= 0 mod p:

This is impossible for l1 = j3, l2 = j1, and l3 = j2. It follows that
g � 6 only with this construction.
3) Power pj;l = q

j
1
ql2 mod p: It should first be noted that while

the form pj;l = q
j
1
ql2 mod p is that used in [16], an equivalent repre-

sentation which satisfies the form (1) is pj;l = (qj
1
�1)(ql2�1) mod p.

For this family, we compute

�j ;j (l) = (qj
1
� q

j
1
)ql2

and after a little elementary algebra, (5) can be rewritten as
m�2

k=0

(q
j
1
� q

j

1
)(q

l
2
� q

l

2
) 6= 0 mod p: (7)

This equation can be satisfied for g � 12. In fact, this construction is
a generalization of [16] in which p was chosen as a prime and q1 and
q2 as two nonzero distinct elements of GF (p) with order o1 = J and
o2 = L, respectively. However, for p prime, only o1 � J and o2 � L

is necessary to have g � 6. For example, for p = 7, J = 3, and L =
5, we can choose q1 2 f2; 3; 4; 5g and q2 2 f3; 5g, not necessarily
distinct. Note also that for this construction, we have J � L � p� 1.
Finally, for q1 = q2, g > 6 is impossible as (7) is not satisfied for
l0 = j2, l1 = j0, and l2 = j1.

Theorem 2.3 can be refined for this construction as follows.

Theorem 3.1: For pj;l = q
j
1
ql2 mod p, a necessary condition to

have g � 6 in the Tanner graph representation of a (J;L)-regular QC
LDPC code is p � L + 1, and p prime.

Proof: For l1 6= l2, pj;l 6= pj;l is equivalent to

q
l
2
6= q

l
2

mod p: (8)

For p prime, it follows o2 � L and since o2 � p�1, we have p � L+1.

For this construction and given values of J and L, the smallest value
of p for which a (J;L)-regular QC LDPC code with girth g = 6 and
g = 8 was found with computer search are recorded in Tables III
and IV, respectively. We observe that, in general, the values found are
larger than those given in Tables I and II. By structuring the search, not
only can much larger values of J andL be considered, but most impor-
tantly, the optimum values of p for this construction can be determined.
For g = 6 (note that g � 8 for L = 2 based on Corollary 2.1), we ob-
serve that the optimum value of p given in Table III corresponds to that
of Theorem 3.1. On the other hand, as already noted in [16], an an-
alytical derivation of the optimum value of p for g � 8 seems quite
difficult. This is further confirmed by the fact that the same value of p
can be found for the same value of J and different values ofL. We also
notice that the optimum value of p does not have to be prime.

A (J;L)-regular LDPC code obtained by this construction can be
extended to either a (J+1; L)-regular LDPC code, or a (J;L+1)-reg-
ular LDPC code by appending to H a row of L I(0)’s, or a column of
J I(0)’s. Similarly, a (J+1; L+1)-regularLDPC code can be obtained
by appending to H both a row of L I(0)’s and a column of J I(0)’s.
Since qj

1
ql2 6= 0, and for p prime, o1 � J and o2 � L, these extensions

preserve g = 6 and can be applied to any code given in Table III.
In the preceding sections, the main motivation was to find the

smallest value of p for which a (J;L)-regular QC LDPC code exists.
However, the search can be conducted with additional constraints such
as a large number of dependent check sums in the matrix H of (1).

IV. SEARCH AND SIMULATION RESULTS

Comparative error performance studies of LDPC codes constructed
with various methods have been conducted for given values of N and
K . For example, two QC LDPC codes with N = 1053, K = 812,
J = 3, L = 13, p = 81, and g = 6 and 8, respectively, and one QC
LDPC code with N = 1062,K = 819, J = 4, L = 18, p = 59, and
g = 6 have been generated randomly based on Section III-A for g = 6
and g = 8, respectively, and compared in Fig. 1 to other LDPC codes
with similar parameters.We notice that these codes slightly outperform
their LDPC counterparts constructed from [1] with J = 3 and L = 12
or 13, and J = 4 and L = 17 or 18 [8]. They are easier to design,
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TABLE III
SMALLEST VALUE OF p FOR WHICH A (J; L)-REGULAR QC LDPC CODE WITH GIRTH g � 6 WAS FOUND WITH COMPUTER SEARCH FOR THE

CONSTRUCTION pj;l = q
j
1
ql2 mod p

TABLE IV
SMALLEST VALUE OF p FOR WHICH A (J;L)-REGULAR QC LDPC CODE WITH GIRTH g � 8 WAS FOUND WITH COMPUTER SEARCH FOR THE

CONSTRUCTION pj;l = q
j
1
ql2 mod p

Fig. 1. BP decoding of different LDPC codes of about rate 0:77 and length 1050 (maximum of 200 iterations).

represent, and encode than random Gallager codes. We also notice that
increasing g from 6 to 8 had little effect on the error performance.
On the other hand, the QC LDPC codes do not perform as well as the
(1057;813) projective geometry (PG) code for which J = L = 33
and the matrix H used for decoding has size 1057 � 1057. However,
they have a much lower decoding complexity than the PG code. Note
also that, in general, QC LDPC codes can be constructed in a more
flexible manner than PG codes for given values ofN andK . However,
while the PG code has a minimum distance of 34, that guaranteed from
the bounds of [23] for the three QC LDPC codes are much smaller.

In Fig. 2, a similar comparison has been represented for longer codes
of lower rate. Based on Section III-A, two QC LDPC codes withN =

4104, K = 2283, J = 4, L = 9, p = 456, and g = 6 and 8,
respectively, and one QC LDPC code with N = 4104, K = 2287,
J = 8, L = 18, p = 228, and g = 6 have been generated randomly.
A random (4; 9)-regular LDPC code with N = 4104 and N = 2281
and the (4096;2238) with J = L = 16 and g = 8 constructed in
[12] (referred to as finite-geometry (FG) code in the figure) are also
considered. For these longer codes, compared with that of the previous
example, we observe that the three LDPC codes with J = 4, L = 9
have similar error performance. Hence, at the word error rates repre-
sented, increasing the girth has no great influence. These codes also
outperform that of [12] constructed from finite geometry. We finally
notice that the QC LDPC code with J = 8 performs quite poorly.
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Fig. 2. BP decoding of different LDPC codes of about rate 0:55 and length 4100 (maximum of 200 iterations).

V. MINIMUM DISTANCE OF QC LDPC CODES

A result of [25] implies that the minimum Hamming distance dH of
a (J; L)-regular QC LDPC code is upper-bounded by dH � (J + 1)!.
Consequently, for a (J;L)-regular QC LDPC code, dH cannot grow
with N , which suggests that QC LDPC codes compare favorably to
random LDPC codes only for short to medium code lengths. Obser-
vations along the same lines were made in [16]. In the following, we
derive for (3; L)-regular QC LDPC codes a necessary condition for
dH = 24. Extensions to larger values of J are then discussed.

A. (3; L)-Regular QC LDPC Codes

Let us consider four columns of the matrix H given in (1). With
respect to Theorem 2.1, the indexes pj;l can be normalized (mod p) as

[H0H1H2H3] =

I(0) I(0) I(0) I(0)

I(0) I(i1) I(i2) I(i3)

I(0) I(j1) I(j2) I(j3)

: (9)

In each 3p� p submatrix Hk , k = 0; . . . ; 3, define l as the position of
the lth column of Hk for l = 0; . . . ; p � 1, and define Sk as a subset
of column positions inHk . Then it is readily seen that the following 24
columns sum to zero:

S0 = f�i2 � j3;�i1 � j2;�i3 � j1;�i3 � j2;

� i1 � j3;�i2 � j1g

S1 = f�i2 � j3;�j2;�i3;�i3 � j2;�j3;�i2g

S2 = f�i1 � j3;�j1;�i3;�i3 � j1;�j3;�i1g

S3 = f�i2;�i1 � j2;�j1;�j2;�i2 � j1;�i1g

where each value in each subset Sk is taken modulo-p. Note that for
k = 0; . . . ; 3, Sk is composed of the negative sums of all pairs of
elements (ix; jy) of (9) indexed by x 6= y, x 6= k, and y 6= k. A
necessary condition for dH = 24 is, therefore, that all six columns in
each set Si are distinct.

Considering the matrix H given in (1), this can be jointly achieved
for all L columns of submatrices by the following procedure.

1. Construct the L�L table with the L columns and the L rows
labeled by the indexes of the second row and of the third row
of H in (1), respectively.

2. For all nondiagonal elements of the table, insert the modulo-p
sum of the corresponding row and column labels.

3. For any three distinct values x, y, and z in f0; . . . ; L � 1g,
check that no two of the six nondiagonal elements in the xth,
yth, and zth rows and columns of the table are the same.

Note that any pair of similar indexes found at step-(3) decreases the
designed distance by two.

Example: Consider a (3; 5)-regular code of length 155 and dimen-
sion 64 obtained with p = 31 and represented by the matrix

H =

I(0) I(0) I(0) I(0) I(0)

I(0) I(4) I(24) I(1) I(5)

I(0) I(12) I(10) I(3) I(15)

: (10)

The corresponding table is depicted in Table V. Since 15 appears twice
when considering the zeroth, second, and fourth rows and columns, and
8 appears twice when considering the seond, third, and fouth rows and
columns, we obtain dH � 20. We also notice that 5 appears twice in
Table V, but not in the same three row and column positions.
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TABLE V
THE (3,5)-REGULAR (155,64) QC LDPC CODE

REPRESENTED BY (10)

If we consider now the (3; 5)-regular code of the same length and
dimension constructed in [16] as described in Section III-B3 for q1 =
5, q2 = 2, and p = 31, its matrix H is given by

H =

I(0) I(0) I(0) I(0) I(0)

I(0) I(4) I(12) I(28) I(29)

I(0) I(24) I(10) I(13) I(19)

: (11)

Although dH = 20 for this code [16], no two elements are the same in
the table obtained by the proposed procedure. This confirms that this
method only represents a necessary condition for dH = 24.

We finally mention that Theorem 2.3 can be further refined in order
to have dH = 24. For example, it is readily verified by contradiction
that all nonzero values in (9) have to be distinct, which implies p �
2(L � 1) + 1 for (3; L)-regular QC LDPC codes with dH = 24.
Further consideration of this interesting problem is beyond the scope
of this correspondence.

B. (J;L)-Regular QC LDPC Codes

The results derived in Section V-A can be extended to any
(J;L)-regular QC LDPC code but the procedure becomes quite
tedious as (J + 1)! columns have to be identified. However, this can
be achieved by considering J + 1 submatrices Hk of size Jp � p in
(9). Each of the J + 1 corresponding sets Sk is then composed of all
J ! possible negative sums indexed on f0; . . . ; Jgnfkg.

VI. CONCLUSION

In this correspondence, a simple necessary and sufficient condition
to determine QC LDPC codes with a given girth has been derived. This
condition implies that such codes cannot have a girth larger than 12.
Consequently, for a given code rate, their minimum distance cannot
be increased by increasing the code length and thus, the girth as for
random constructions. In fact, an upper bound on the minimum Ham-
ming distance of QC LDPC codes was derived in [25], and a necessary
condition to reach this bound has been proposed.

These simple results suggest that when constructing families of
LDPC codes, either relatively large girth (i.e., g > 12), or additional
constraints such as large minimum distance, a large number of
redundant check sums, or appropriate coset weight distribution (see
[26]) have to be considered.
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