
A Gallager-Tanner construction based on convolutional codesSandrine VIALLE, Joseph BOUTROSMotorola Research Center, ParisENST, Communications & Electronics DepartmentEmail : NAME@com.enst.frDecember 1, 1998Keywords : Low density codes, Turbo codes, Asymptotically good codes.AbstractGeneralized low density codes are built by applying a Tanner-like construction to binary recursivesystematic convolutional codes. The Gallager-Tanner construction is restricted to 2 levels only. Wedescribe the structure of a GLD code and show how to compute its ensemble performance. We alsoprove that RSC based GLD codes are asymptotically good. A parity-check interpretation of turbocodes is given for both parallel and serial concatenations.1 IntroductionAn e�cient channel coding scheme has to imitate random codes. To make it feasible, such a schemeis generally based on simple structured elementary codes linked via a pseudo-random interleaver. Lowdensity parity-check (LDPC) codes developed by Gallager [1] are a good example of error-correcting codesimitating random coding.A binary LDPC code (N;K) of length N and dimension K is de�ned by a set of N � K interleavedparity-check equations (PCEs) making the (N �K) � N matrix H. The low density of H is due to thelimited number of 1's in each PCE and the limited weight of its columns. It is also proved [1] that thelow density of H reduces signi�cantly the complexity of the LDPC iterative decoder. Figure 1 shows anLDPC matrix of size 9 � 12. This matrix is obtained from the concatenation of J = 3 submatrices Hi,i = 1; 2; 3. The �rst submatrix H1 contains 3 disjoint PCEs and the other ones are given by applying arandom column permutation � to H1, i.e. H2 = �1(H1) and H3 = �2(H1). The PCEs weight is n = 4and the columns weight is J = 3. Gallager's codes are asymptotically good in the sense of the minimumdistance criterion if J � 3.The matrix representation of an LDPC code is equivalent to a bipartite graph showing the structureof the code. The left part of the graph has N nodes (bit nodes) and the right one has N � K nodes(subcode nodes). The graph is regular and the degrees of the bit nodes and the subcode nodes are J andn respectively. For example, the code of Figure 1 can be graphically represented with a bipartite graphhaving 12 bit nodes and 9 subcode nodes.The generalization of the graphical representation described above generates a Tanner code [2]. In fact,each subcode node of an LDPC code is associated to an (n = 4; k = 3; 2) single parity-check (SPC) code.A Tanner code is built from a graph where the subcode nodes are associated to a more general linear(n; k; dHmin) code, e.g. BCH codes.In this paper, we apply a Tanner-like construction to binary recursive systematic convolutional (RSC)codes [3] to build a generalized low density (GLD) code. The matrix representation of a GLD code issimilar to an LDPC representation where the PCEs derived from the SPC code are replaced by non-disjoint PCEs derived from an RSC code. In the sequel, we restrict the Gallager-Tanner construction toJ = 2 levels only. We describe the structure of a GLD code and show how to compute its average weightdistribution, i.e. its ensemble performance. We also prove that RSC based GLD codes (with 2 levels)are asymptotically good. A parity-check interpretation of turbo codes [4] is given for both parallel andserial concatenations, where turbo codes are described as a special case of Low Density Parity Check codes.1



The structure of the generalized low density code is given in section 2 and its performance is analysedin section 3. A Gallager-Tanner interpretation of turbo codes is made in section 4 before sketching thesimulation results on a gaussian channel.
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N = 12n = 4�1�2 N �KJ = 3 submatricesFigure 1: Example of an LDPC matrix H with J = 3 levels.2 The GLD code structureFor simplicity reasons, we consider only RSC codes of rate r = kk+1 . The RSC encoder reads k informationbits and generates an additional parity bit. The total number of coded bits at its output is denoted byn = k+ 1. The constraint length is L = � + 1 and the RSC code trellis has 2� states. This convolutionalcode is de�ned by n generator polynomials, g0(x); g1(x); : : : ; gk(x). The n output sequences si(x) andthe k input sequences ei(x) are related by the following equationssi(x) = ei(x) for i = 1; : : : ; k and s0(x) = kXi=1 gi(x)g0(x)ei(x) (1)The PCEs of the RSC code are de�ned by the syndrome equation easily derived from (1)g0(x)s0(x) + g1(x)s1(x) + : : :+ gk(x)sk(x) = 0 (2)The above equation produces the parity-check matrix HRSC of the convolutional code. As an example,the matrix below is associated to a four-state RSC of rate r = 1=2 with generators g0 = 7 and g1 = 5 inoctal notation, HRSC = 0BBBBBBBBBB@ 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 00 1 1 1 0 0 0 0 0 0 0 0 0 0 0 01 1 0 1 1 1 0 0 0 0 0 0 0 0 0 00 0 1 1 0 1 1 1 0 0 0 0 0 0 0 00 0 0 0 1 1 0 1 1 1 0 0 0 0 0 00 0 0 0 0 0 1 1 0 1 1 1 0 0 0 00 0 0 0 0 0 0 0 1 1 0 1 1 1 0 00 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1CCCCCCCCCCA (3)Note that this convolutional code (g0 = 7; g1 = 5) has been converted to a (N = 16;K1 = 6) linearblock code. The trellis termination needs 2 branches (d�ke branches in general) and it occupies the last 42



columns and the last 2 rows of HRSC . The even columns are associated to information bits and the oddcolumns to parity bits. Note also that the PCEs of a convolutional code are not disjoint.The weight distribution of an RSC code (viewed as an (N;K1) block code) is computed using the transferfunction method described in [5]. The e�ect of the trellis termination phase can be neglected, i.e. K1N � r.The number of codewords of weight ` is denoted N1(`), ` = 0 : : :N .Let C1 be an (N;K1; d1) linear binary block code built from an RSC code. A second (N;K1; d1) blockcode C2 = �(C1) is constructed by a random interleaving of C1.De�nition (GLD code with two identical constituents)A GLD code C is an (N;K; dHmin) linear block code equal to the intersection of C1 and C2.The above de�nition is similar to that of GLD construction based on block codes [6] such as primitive,extended or shortened BCH codes. It can be easily shown that R = KN = 2r � 1 when the permutation� is random. The average minimum Hamming distance dHmin is obtained from the average weight dis-tribution given in theorem 1. The structure of the GLD parity-check matrix is illustrated in Figure 2.
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RSC 1Figure 2: Structure of a GLD parity-check matrix based on two convolutional codes.The GLD code C = C1TC2 has a simple graphical representation. Each convolutional code Ci is drawnas a chain [7] where a supernode includes the encoder state, the n coded bits and the correspondingchannel output (observation). Thus, the Bayesian network [7] of C is obtained by linking the supernodesof the two chains via the interleaver. For example, if r = 3=4, each supernode is linked to the oppositecode via 4 branches (see Figure 3). The iterative decoding of C is done by propagating the belief in thenetwork (practically by a forward-backward algorithm [8] applied successively on each chain).
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Figure 3: The Bayesian network of a GLD code based on two RSC rate 3=4 codes.3



3 Performance analysis of GLD codesGiven a �xed RSC constituent code C1, the average weight distribution over the whole ensemble of ran-dom interleavers is stated by the following theorem.Theorem 1 (weight distribution)Let C be an (N;K) GLD code. Then, the average number N (`) of codewords of C with weight ` isN (`) = N1(`)2� Ǹ � (4)where N1(`) is the weight distribution of the constituent RSC code.Proof. We have N (`) = � Ǹ � � P (`), where P (`) is the probability that a weight-` word c chosenat random belongs to C. But if Pi(`) is the probability that c 2 Ci, then P (`) = P1(`)P2(`) sinceC = C1TC2.By replacing P1(`) = P2(`) = N1(`)� Ǹ � we obtain the announced result. QED.Formula (4) has been applied to a rate 1=2 GLD code C based on an 8-state RSC code. The starting tailof the distribution is shown in Table 1. It can be easily shown that Prob(dHmin � D) � PD̀=d1 N (`).By taking the right hand side of the previous relation equal to 1, we can compute an upper bound forthe minimumHamming distance of C�X`=d1N (`) = 1 and dHmin � � (5)As an example, from Table 1 we obtain dHmin � 18.Weight ` Coe�cient N (`) Weight ` Coe�cient N (`)4 3.4E-3 17 0.375 1.4E-3 18 0.916 8.9E-4 19 2.37 6.3E-4 20 6.18 1.3E-3 21 16.69 2.0E-3 22 46.510 3.1E-3 23 134.011 4.8E-3 24 396.312 8.6E-3 25 1.19E+313 1.6E-2 26 3.71E+314 3.4E-2 27 1.16E+415 7.2E-2 28 3.75E+416 0.16 29 1.22E+5Table 1: The starting tail of the average weight distribution, C1 is an 8-state (13,7,15,17) RSC.The output weight distribution is su�cient for computing the bit error probability when MaximumLikelihood (ML) decoding of C. Actually, the interleaver acts on all coded bits, so that they are equally4



protected. Thus, the input-output enumerating function [9][10] is not needed to evaluate the ML bound.Finally, we can write the following union boundPeb � NX`=d1 Ǹ �N (`) �Q(rR`2EbN0 ) (6)where Eb=N0 is the signal-to-noise ratio per bit and Q(x) is the error function.Figure 4 shows the average ML bound for two values of the code length, N = 200 and N = 800, whenC1 has an 8-state trellis.
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Theorem 2 (asymptotically good)The GLD code C built from the rate k=n convolutional code C1(N;K1; d1) is asymptotically good. WhenN is large enough, the normalized minimum distance �min = dHmin=N is lower bounded by a positiveconstant �. The constant � is the smallest positive (non-zero) root of the equation B(�) = 0, whereB(�) > 0 for � 2 ]0 : : :�[ andB(�) = H(�) � 2� 1n � �n + �d1�H� �d1n � ��d1� (7)H(x) = �xlog(x) � (1 � x)log(1 � x) is the entropy function and � is a positive constant depending onthe convolutional code transfer function.Proof. We �rst compute an asymptotic upper bound for N (`) from formula (4). When the code lengthN is large enough, the Stirling approximation gives1p2�N�(1 � �) exp�NH(�) � 112N�(1� �)� � � Ǹ � � 1p2�N�(1� �) exp(NH(�)) (8)where � = Ǹ is the normalized Hamming weight, 0 � � < 0:5.By introducing the number N1(`; e) of codewords of C1 of weight ` formed from the concatenation of econsecutive simple error events in the trellis of C1, we can write the weight distribution of C1 as a sumover all possible combinations of error events, i.e.N1(`) = emaxXe=1 � Nn � �(e; `) + ee �N1(`; e) (9)where �(e; `) is the total number of branches in the e error events of total weight `. Moreover � Nn � �(e; `) + ee �is maximal for e = e0, consequently we obtain:N1(`) � � Nn � �(e0; `) + e0e0 � emaxXe=1 N1(`; e)Using (8), the above equation becomesN1(`) � A(N; l) exp��Nn � �(e0; `) + e0�H� e0Nn � �(e0; `) + e0��where A(N; l) = 1q2�e0�1� e0Nn ��(e0 ;`)+e0 � Pemaxe=1 N1(`; e).Similarly, by substituting equation (9) in (4) we have:N (`) � C(N; �) exp(�Nf(�)) (10)where the expression of the exponent function isf(�) = H(�)� 2�1n � �N + e0N �H� e0Nn � �(e0; `) + e0�According to inequality (10), f(�) can be lowerbounded while keeping the inequality satis�ed. The pos-itive part 1n� �N + e0N can be maximized as well e0Nn ��+e0 . We need then to bound � and to upperbound e0.For a given `, the maximal number of simple error events can be upper bounded by d̀1 , as d1 is theminimal weight of an error event. The number of branches � is simply lowerbounded by � � ǹ . On theother hand, we can upperbound � by �`, where � is a constant given by the trellis (or state diagram)cycle maximizing the ratio �=` for C1. Figures 5, 6 and 7 illustrate this special cycle for three di�erentcodes and the resulting value of �. 6



state 6

state 3state 4

00

0 1

state 1

1

state 2Figure 5: The RSC (13,7,15,17) cycle maximizing �=`: cycle length=5, weight=2, � = 5=2.
state 2 state 12

0

0

0 1

0

0
1

state 1

state 6state 4

state 8 state 3Figure 6: The RSC (23,31,35,37) cycle maximizing �=`: cycle length=7, weight=2, � = 7=2.
0

0 0

1

state 6

state 3

state 24

state 12Figure 7: The RSC (45,63,67,75) cycle maximizing �=`: cycle length=4, weight=1, � = 4.Consequently, we obtain a lower bound for f(�):f(�) � H(�) � 2� 1n � �n + �d1�H� �d1n � ��d1 + e0 d1N � (11)When N is large, e0 d1N can be neglected (this has no inuence on the starting tail of the weight distribution)and �nally we have N (`) � C(N; �) exp(�NB(�)) (12)where B(�) is de�ned by expression (7). Q.E.D.Expressions of B(�) are given in Table 3 for di�erent constituent RSC codes. B(�) is also sketched on�gure 8. The values of � are listed in the last column of Table 3. Notice that the Gilbert-Varshamovbound produces a minimum distance of �0 = H�12 (1 � R) = H�12 (1=2) = 0:11. We also computed theupperbound � from equation (5) for the GLD code based on (13,7,15,17) and for di�erent values of N .Both bounds are shown in Figure (9) where � exhibits a linear behavior similar to �N .7



0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Normalized weight (lambda)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

T
he

 e
xp

on
en

t f
un

ct
io

n 
B

(l
am

bd
a)

8 states

16 states

32 states

Figure 8: The exponent function B(�) versus the normalized weight �.
100 200 300 400 500 600 700 800

Code length N

0

10

20

30

40

50

60

M
in

im
um

 d
is

ta
nc

e 
d

Upper bound

Lower bound

Figure 9: Upper bound and lower bound on the minimum distance.8



Number of States Generator polynomials B(�) � = dHminN8 13; 7; 15; 17 H(�) � 12H( �1�10�) 0.065216 23; 31; 35; 37 H(�) � 12H( �1�14�) 0.044932 45; 63; 67; 75 H(�)� 12(1� �5 )H( �54�20�) 0.0439Table 2: Lower bound on the minimum distance of three GLD codes.4 A Gallager-Tanner interpretation of PCCCs and SCCCsParallel concatenated convolutional codes (PCCCs) [4] and serial concatenated convolutional codes (SC-CCs) [11] can be described as the intersection of two (or more) interleaved convolutional codes.Let us consider a classical (PCCC) turbo code C with an interleaver of size K and two constituents. Aparity-check matrixH1 can be de�ned for the �rst constituent C1(N1;K). The (N1�K)�N1 matrixH1is similar to that given by equation (3), but the columns associated to information bits are now groupedtogether on the left side. Next, extend C1 by adding N1�K zero columns to H1 (at the right side). Thisextended code is denoted C1ext. The parity-check matrix H1ext is written horizontally as 3 blocks : the�rst block of size (N1 �K)�K de�nes the part of the PCEs associated to information bits, the secondblock of size (N1 �K) � (N1 �K) corresponds to parity check bits and the last block is null.The turbo code C is equal to the GLD code obtained from the intersection of C1ext and C2 = �(C1ext),where the special interleaver � acts randomly on the K columns of the �rst block of H1ext and permutesthe second and the third blocks.Let us now consider a serial (SCCC) turbo code C with an interleaver of size N1 and two constituents.The parity-check matrixH1 of C1 (the outer code) is of size (N1�K)�N1 . Extend H1 by adding N�N1zero columns and denote the extended constituent by C1ext. H1ext has the same structure as describedabove for the parallel turbo code. The inner code C2(N;N1) has a parity-check matrix H2 with no zerocolumns, where the N1 columns associated to information bits are grouped in the left side.The serial turbo code C is equal to the GLD code obtained from the intersection of C1ext and �(C2),where the special interleaver � acts on the N1 �rst columns of H2.In both cases, parallel and serial concatenations, the interleaver of a GLD code equivalent to a turbo codedoes not act on all coded bits. Thus, the formula R = 2r � 1 is no more valid. We have R = r=(2 � r)and R = r1r2 for PCCCs and SCCCs respectively.PCCCs exhibit an interleaver gain of 1N when both constituents are RSC codes [9]. SCCCs exhibit aninterleaver gain of 1N(1+d1 )=2 when the inner code is RSC. Unfortunately, using the proof of theorem 2, itcan be easily shown that the bit error probability of a GLD code with a random interleaving of all codedbits is proportionnal to pN at least, i.e. GLD codes do not exhibit an interleaving gain.On the other hand, the speci�c structure of the interleaver makes the results on GLD code performanceinappropriate for turbo codes. Thus, GLD codes are good for the minimum distance criterion, but it iswell known that Turbo codes are not asymptotically good in this sense [9][10][11].5 Simulation resultsThe iterative decoding of GLD codes is similar to the SISO decoding of turbo codes. Simulation resultspresented here are obtained by applying the modi�ed forward-backward algorithm to the constituent codeC1 and its interleaved version. Figures 10, 11, 12, 13 show the bit error rate function of the signal-to-noiseratio Eb=N0 on a gaussian channel. Two code lengths have been tested, N = 800 and N = 2000. Foreach length, two di�erent constituent codes have been compared. The �rst code C1 has a rate r = 3=49



and is obtained by puncturing the rate 1=2 16 state (23,35) RSC code. The second code C1 is a true rate3=4 8 state (13,7,15,17) RSC code.6 ConclusionsWe built generalized low density parity-check codes from the intersection of two randomly interleavedconvolutional codes. These codes belong to the Tanner family based on bipartite graphs. It has beenproved that such GLD codes are asymptotically good but do not have an interleaving gain. Their averageminimum Hamming distance is relatively high, e.g. 52 � dHmin � 56 for a code length N = 800 basedon an 8 state RSC code. We showed also that parallel and serial turbo codes can be viewed as a specialcase of GLD codes.References[1] R.G. Gallager : Low-density parity-check codes, MIT Press, 1963.[2] R.M. Tanner : \A recursive approach to low complexity codes," IEEE Trans. on Information Theory,Vol. IT-27, Sept 1981.[3] L.H. Charles Lee : Convolutional coding, fundamentals and applications, Artech House, 1997.[4] C. Berrou, A. Glavieux, P. Thitimajshima : \Near Shannon limit error-correcting coding and decod-ing : turbo-codes," Proceedings of ICC'93, Gen�eve, pp. 1064-1070, Mai 1993.[5] D. Divsalar, S. Dolinar, F. Pollara, R.J. McEliece: \Transfer function bounds on the performance ofTurbo codes," TDA Progress Report 42-122, August 1995.[6] J. Boutros, O. Pothier, G. Z�emor : "Generalized Low Density (Tanner) Codes : Approaching thechannel capacity with simple and easily decodable block codes,\ ENST - Philips Research Report,January 1998, also to appear in ICC'99.[7] B.J. Frey and F.R. Kschischang : \Probability propagation and iterative decoding," Allerton Con-ference, October 1996.[8] L.R. Bahl, J. Cocke, F. Jelinek, J. Raviv : \Optimal decoding of linear codes for minimizing symbolerror rate," IEEE Trans. on Inf. Theory, vol. 20, pp. 284{287, March 1974.[9] S. Benedetto, G. Montorsi : \Design of parallel concatenated convolutional codes," IEEE Trans.Com., vol. 44, no. 5, pp. 591-600, May 1996.[10] L.C. Perez, J. Seghers, D.J. Costello : \A distance spectrum interpretation of turbo codes," IEEETrans. on Inf. Theory, vol. 42, no. 6, pp. 1698-1709, November 1996.[11] S. Benedetto, G. Montorsi, D. Divsalar, F. Pollara : \Serial concatenation of interleaved codes :Performance analysis, design and iterative decoding," TDA Progress Report 42-126, JPL, August1995.
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