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Abstract

Generalized low density codes are built by applying a Tanner-like construction to binary recursive
systematic convolutional codes. The Gallager-Tanner construction is restricted to 2 levels only. We
describe the structure of a GLD code and show how to compute its ensemble performance. We also
prove that RSC based GLD codes are asymptotically good. A parity-check interpretation of turbo
codes is given for both parallel and serial concatenations.

1 Introduction

An efficient channel coding scheme has to imitate random codes. To make it feasible, such a scheme
is generally based on simple structured elementary codes linked via a pseudo-random interleaver. Low
density parity-check (LDPC) codes developed by Gallager [1] are a good example of error-correcting codes
imitating random coding.

A binary LDPC code (N, K) of length N and dimension K is defined by a set of N — K interleaved
parity-check equations (PCEs) making the (N — K) x N matrix H. The low density of H is due to the
limited number of 1’s in each PCE and the limited weight of its columns. Tt is also proved [1] that the
low density of H reduces significantly the complexity of the LDPC iterative decoder. Figure 1 shows an
LDPC matrix of size 9 x 12. This matrix is obtained from the concatenation of J = 3 submatrices H;,
t = 1,2,3. The first submatrix H; contains 3 disjoint PCEs and the other ones are given by applying a
random column permutation 7 to Hy, i.e. Ho = m1(Hy) and Hs = ma(H;). The PCEs weight is n = 4
and the columns weight is J = 3. Gallager’s codes are asymptotically good in the sense of the minimum
distance criterion if J > 3.

The matrix representation of an LDPC code is equivalent to a bipartite graph showing the structure
of the code. The left part of the graph has N nodes (bit nodes) and the right one has N — K nodes
(subcode nodes). The graph is regular and the degrees of the bit nodes and the subcode nodes are J and
n respectively. For example, the code of Figure 1 can be graphically represented with a bipartite graph
having 12 bit nodes and 9 subcode nodes.

The generalization of the graphical representation described above generates a Tanner code [2]. In fact,
each subcode node of an LDPC code is associated to an (n = 4, k = 3, 2) single parity-check (SPC) code.
A Tanner code is built from a graph where the subcode nodes are associated to a more general linear
(n, k, dmin) code, e.g. BCH codes.

In this paper, we apply a Tanner-like construction to binary recursive systematic convolutional (RSC)
codes [3] to build a generalized low density (GLD) code. The matrix representation of a GLD code is
similar to an LDPC representation where the PCEs derived from the SPC code are replaced by non-
disjoint PCEs derived from an RSC code. In the sequel, we restrict the Gallager-Tanner construction to
J = 2 levels only. We describe the structure of a GLD code and show how to compute its average weight
distribution, i.e. its ensemble performance. We also prove that RSC based GLD codes (with 2 levels)
are asymptotically good. A parity-check interpretation of turbo codes [4] is given for both parallel and
serial concatenations, where turbo codes are described as a special case of Low Density Parity Check codes.



The structure of the generalized low density code 1s given in section 2 and its performance is analysed
in section 3. A Gallager-Tanner interpretation of turbo codes is made in section 4 before sketching the
simulation results on a gaussian channel.
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Figure 1: Example of an LDPC matrix H with J = 3 levels.

2 The GLD code structure

For simplicity reasons, we consider only RSC codes of rate r = kk? The RSC encoder reads k information
bits and generates an additional parity bit. The total number of coded bits at its output is denoted by
n =k + 1. The constraint length is L = v+ 1 and the RSC code trellis has 2¥ states. This convolutional
code is defined by n generator polynomials, go(2), g1(), ..., gx(x). The n output sequences s;(x) and

the k input sequences ¢; () are related by the following equations

si(x) = e(x) fori=1,...,k and  sp(z) = Z g;((x) ei(x) (1)

go(x)
The PCEs of the RSC code are defined by the syndrome equation easily derived from (1)
go(w)s0 (&) + g1 ()31 () + ...+ g (@) (2) = 0 2)

The above equation produces the parity-check matrix Hgrsc of the convolutional code. As an example,
the matrix below is associated to a four-state RSC of rate » = 1/2 with generators go = 7 and g; = 5 in
octal notation,

11000000O0O0O0O0GO0O0UO0O0
01 1 10000O0O0O0U0O000 0
11011 100000000 TO00
Hoo._ |00 1 1011100000000 5
RS¢=10 0001 10111000000 (3)
00000O0T1T1O071110000
00000O0O0COTLT1O0T1T1T100
00000O0UO0OO0OT1T10T111

has been converted to a (N = 16, K; = 6) linear
([%] branches in general) and it occupies the last 4

Note that this convolutional code (g0 = 7,41 = 5
block code. The trellis termination needs 2 branche
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columns and the last 2 rows of Hrsc. The even columns are assoclated to information bits and the odd
columns to parity bits. Note also that the PCEs of a convolutional code are not disjoint.

The weight distribution of an RSC code (viewed as an (N, K1) block code) is computed using the transfer
function method described in [5]. The effect of the trellis termination phase can be neglected, i.e. % T
The number of codewords of weight ¢ is denoted Ny(¢), £ =0...N.

Let Cy be an (N, K1, d;) linear binary block code built from an RSC code. A second (N, K1,d;) block
code Cy = (C4) is constructed by a random interleaving of C}.

Definition (GLD code with two identical constituents)

A GLD code C'is an (N, K, dgmin) linear block code equal to the intersection of Cy and Cs.

The above definition is similar to that of GLD construction based on block codes [6] such as primitive,
extended or shortened BCH codes. It can be easily shown that R = % = 2r — 1 when the permutation
m is random. The average minimum Hamming distance dg,;, 18 obtained from the average weight dis-
tribution given in theorem 1. The structure of the GLD parity-check matrix is illustrated in Figure 2.
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RSC 2

Figure 2: Structure of a GLD parity-check matrix based on two convolutional codes.

The GLD code C' = 4 (] Cy has a simple graphical representation. Each convolutional code Cj is drawn
as a chain [7] where a supernode includes the encoder state, the n coded bits and the corresponding
channel output (observation). Thus, the Bayesian network [7] of C'is obtained by linking the supernodes
of the two chains via the interleaver. For example, if » = 3/4, each supernode is linked to the opposite
code via 4 branches (see Figure 3). The iterative decoding of C' is done by propagating the belief in the
network (practically by a forward-backward algorithm [8] applied successively on each chain).

@ = supernode = state + coded bits + observation W degree=4

chain of RSC 1

Figure 3: The Bayesian network of a GLD code based on two RSC rate 3/4 codes.



3 Performance analysis of GLD codes

Given a fixed RSC constituent code (', the average weight distribution over the whole ensemble of ran-
dom interleavers is stated by the following theorem.

Theorem 1 (weight distribution)
Let C be an (N, K) GLD code. Then, the average number N (£) of codewords of C' with weight ¢ is

Ny (£)?

(%)

where Ny (£) is the weight distribution of the constituent RSC code.

N(6) = (4)

Proof. We have N(£) = JZ
at random belongs to C'. But if P;({) is the probability that ¢ € C;, then P({) = Py(¢)Py({) since
C=CNCa.

By replacing Py (¢) = P2(¢) =

x P(f), where P({) is the probability that a weight-f word ¢ chosen

%ﬁ)) we obtain the announced result. QFED.

4

Formula (4) has been applied to a rate 1/2 GLD code C' based on an 8-state RSC code. The starting tail

of the distribution is shown in Table 1. Tt can be easily shown that Prob(dmm:n < D) < ZzD:dl N(¥).
By taking the right hand side of the previous relation equal to 1, we can compute an upper bound for
the minimum Hamming distance of C'

DINW=1 and  dgmin <A (5)

As an example, from Table 1 we obtain dgm, < 18.

Weight £ | Coefficient N (£) || Weight £ | Coefficient N ({)

4 3.4E-3 17 0.37

5 1.4E-3 18 0.91

6 8.9E-4 19 2.3

7 6.3E-4 20 6.1

8 1.3E-3 21 16.6

9 2.0E-3 22 46.5
10 3.1E-3 23 134.0
11 4.8E-3 24 396.3
12 8.6E-3 25 1.19E+43
13 1.6E-2 26 3.71E+43
14 3.4E-2 27 1.16E+4
15 7.2E-2 28 3.75E+4
16 0.16 29 1.22E+45

Table 1: The starting tail of the average weight distribution, Cy is an 8-state (13,7,15,17) RSC.

The output weight distribution is sufficient for computing the bit error probability when Maximum
Likelihood (ML) decoding of C'. Actually, the interleaver acts on all coded bits, so that they are equally



protected. Thus, the input-output enumerating function [9][10] is not needed to evaluate the ML bound.
Finally, we can write the following union bound

Ny 2,
Pep < ngzl v XN < Q( REN—O) (6)

where Fy/Ny is the signal-to-noise ratio per bit and () is the error function.
Figure 4 shows the average ML bound for two values of the code length, N = 200 and N = 800, when

(1 has an 8-state trellis.
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Figure 4: ML Performance of the GLD code built from the 8-state rate 3/4 RSC (13,7,15,17). The GLD
code length is N = 200 and N = 800, total rate R = 0.5, on AWGN channel.

Gallager [1] showed that LDPC codes based on simple SPC equations are asymptotically good, i.e.
dimin > 0N where § is a positive constant, when J = 3 levels. It has been recently proved [6] that
Tanner codes based on bipartite graphs and BCH codes are asymptotically good with J = 2 levels only.
The theorem stated below proves that GLD construction with convolutional codes satisfies the same
minimum distance property. Notice that theorems 1 & 2 are not limited to RSC codes and are also valid
for non-systematic non-recursive convolutional (NRNSC) codes. In the SISO decoding of a systematic
code, the a posteriori probability (APP) depends on the a priori probabilities of information bits and
their channel observation. Thus, RSC codes exhibit a slightly better performance than NRNSC codes,
when iterative decoding is applied to the whole concatenation.



Theorem 2 (asymptotically good)
The GLD code C' built from the rate k/n convolutional code Cy (N, K1, d;) is asymptotically good. When
N is large enough, the normalized minimum distance ., = dgmin/N is lower bounded by a positive

constant d. The constant § is the smallest positive (non-zero) root of the equation B(A) = 0, where
B(A) >0 for A€]0...4] and
1 A A A
B =H\ —2(= -2 H(-—2
() () (n +d1) (‘i—l—ﬁ/\dl) 0

H(z) = —wlog(x) — (1 — x)log(1 — x) is the entropy function and 5 is a positive constant depending on
the convolutional code transfer function.

Proof. We first compute an asymptotic upper bound for N(f) from formula (4). When the code length
N is large enough, the Stirling approximation gives

! L N 1
a0 - grr) < (1) < Zmmpmy ey ®

where A = % is the normalized Hamming weight, 0 < A < 0.5.
By introducing the number Ny (¢, e) of codewords of Cy of weight ¢ formed from the concatenation of e
consecutive simple error events in the trellis of C, we can write the weight distribution of C; as a sum

over all possible combinations of error events, i.e.

SICED o S AR R ()

vl ) +e )

where p(e, £) is the total number of branches in the e error events of total weight £. Moreover ( n .

1s maximal for e = ep, consequently we obtain:

N €max
Nl(g)§<n 60, +60)ZN1£6

Using (8), the above equation becomes

Ni(f) < AN, 1) exp ((%—p@o%)“o)H(w " £)+eo))

T (eOa

where A(N,I) = L Soema Ny (L e).

Imeghl— g— 90—
\/ D< %—p(eo,l)+eo)

Similarly, by substituting equation (9) in (4) we have:
N(f) < C(N,A) exp(=N f(A)) (10)

where the expression of the exponent function is

ey :HW‘Q(%‘ T ?VO)H(E—M;O,EH%)

According to inequality (10), f(A) can be lowerbounded while keeping the inequality satisfied. The pos-
itive part = — &+ 5 can be maximized as well & . We need then to bound p and to upperbound eg.

P+€0

For a given ¢, the maximal number of simple error events can be upper bounded by dil, as di 1s the

minimal weight of an error event. The number of branches p is simply lowerbounded by p > %. On the
other hand, we can upperbound p by 3¢, where /3 is a constant given by the trellis (or state diagram)
cycle maximizing the ratio p/¢ for Cy. Figures 5, 6 and 7 illustrate this special cycle for three different
codes and the resulting value of 5.
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Figure 6: The RSC (23,31,35,37) cycle maximizing p/¢: cycle length=7, weight=2, 5 = 7/2.
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Figure 7: The RSC (45,63,67,75) cycle maximizing p/¢: cycle length=4, weight=1, 5 = 4.

Consequently, we obtain a lower bound for f(A):

f(A)ZH(A)_2<1—5+;—1)H( A ) (11)

non i—l—ﬁ/\d1+6o7\f—l

When N is large, eqg jl\,—l can be neglected (this has no influence on the starting tail of the weight distribution)
and finally we have

N() < C(N, ) exp(~ N BOY) (12)
where B(A) is defined by expression (7). Q.E.D.

Expressions of B(A) are given in Table 3 for different constituent RSC codes. B(A) is also sketched on
figure 8. The values of § are listed in the last column of Table 3. Notice that the Gilbert-Varshamov
bound produces a minimum distance of §g = H; '(1 — R) = H5'(1/2) = 0.11. We also computed the
upperbound A from equation (5) for the GLD code based on (13,7,15,17) and for different values of N.
Both bounds are shown in Figure (9) where A exhibits a linear behavior similar to JN.
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Figure 8: The exponent function B(A) versus the normalized weight A.
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Number of States | Generator polynomials B(A) d= Cl*’%
8 13,7,15,17 HO\) - 1H(Z5) 0.0652
16 23,31,35,37 HQ\) -0 (2 0.0449
32 45,63,67,75 HA) -3(1-2) (%_*w) 0.0439

Table 2: Lower bound on the minimum distance of three GLD codes.

4 A Gallager-Tanner interpretation of PCCCs and SCCCs

Parallel concatenated convolutional codes (PCCCs) [4] and serial concatenated convolutional codes (SC-
CCs) [11] can be described as the intersection of two (or more) interleaved convolutional codes.

Let us consider a classical (PCCC) turbo code €' with an interleaver of size K and two constituents. A
parity-check matrix H; can be defined for the first constituent Cy (N1, K). The (N; — K) x Ny matrix Iy
is similar to that given by equation (3), but the columns associated to information bits are now grouped
together on the left side. Next, extend C; by adding Ny — K zero columns to H; (at the right side). This
extended code is denoted C'.:. The parity-check matrix Hi..¢ 18 written horizontally as 3 blocks : the
first block of size (N1 — K) x K defines the part of the PCEs associated to information bits, the second
block of size (N7 — K) x (N1 — K) corresponds to parity check bits and the last block is null.

The turbo code C'is equal to the GLD code obtained from the intersection of Chepr and Cy = m(Clepe),
where the special interleaver 7 acts randomly on the K columns of the first block of Hicy: and permutes
the second and the third blocks.

Let us now consider a serial (SCCC) turbo code C' with an interleaver of size Ny and two constituents.
The parity-check matrix H; of Cy (the outer code) is of size (N7 — K) x Ny. Extend H; by adding N — N,
zero columns and denote the extended constituent by Clept. Hierr has the same structure as described
above for the parallel turbo code. The inner code C2(N, N1) has a parity-check matrix 5 with no zero
columns, where the N; columns associated to information bits are grouped in the left side.

The serial turbo code C'is equal to the GLD code obtained from the intersection of Cicy and 7(Cha),
where the special interleaver 7 acts on the Ny first columns of Hs.

In both cases, parallel and serial concatenations, the interleaver of a GLD code equivalent to a turbo code
does not act on all coded bits. Thus, the formula R = 2r — 1 is no more valid. We have R =r/(2 —r)
and R = ryre for PCCCs and SCCCs respectively.

PCCCs exhibit an interleaver gain of % when both constituents are RSC codes [9]. SCCCs exhibit an
interleaver gain of m when the inner code is RSC. Unfortunately, using the proof of theorem 2, 1t
can be easily shown that the bit error probability of a GLD code with a random interleaving of all coded
bits is proportionnal to /N at least, i.e. GLD codes do not exhibit an interleaving gain.

On the other hand, the specific structure of the interleaver makes the results on GLD code performance
inappropriate for turbo codes. Thus, GLD codes are good for the minimum distance criterion, but it is
well known that Turbo codes are not asymptotically good in this sense [9][10][11].

5 Simulation results

The iterative decoding of GLD codes is similar to the SISO decoding of turbo codes. Simulation results
presented here are obtained by applying the modified forward-backward algorithm to the constituent code
(1 and its interleaved version. Figures 10, 11, 12, 13 show the bit error rate function of the signal-to-noise
ratio Ep/Ng on a gaussian channel. Two code lengths have been tested, N = 800 and N = 2000. For
each length, two different constituent codes have been compared. The first code € has a rate r = 3/4



and is obtained by puncturing the rate 1/2 16 state (23,35) RSC code. The second code C is a true rate
3/4 8 state (13,7,15,17) RSC code.

6 Conclusions

We built generalized low density parity-check codes from the intersection of two randomly interleaved
convolutional codes. These codes belong to the Tanner family based on bipartite graphs. It has been
proved that such GLD codes are asymptotically good but do not have an interleaving gain. Their average
minimum Hamming distance is relatively high, e.g. 52 < dgmin < 56 for a code length N = 800 based
on an 8 state RSC code. We showed also that parallel and serial turbo codes can be viewed as a special
case of GLD codes.
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Figure 10: Tterative decoding of a GLD code, R = 0.5, C is a 16 state punctured (23,35) RSC, N=800.
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Figure 11: Tterative decoding of a GLD code, R = 0.5, (' is an 8 state (13,7,15,17) RSC, N=800.
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Figure 12: Tterative decoding of a GLD code, R = 0.5, C is a 16 state punctured (23,35) RSC, N=2000.
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is an 8 state (13,7,15,17) RSC, N=2000.



