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Abstract. A new decoder for the Leech lattice is presented. This quasi-
optimal decoder utilizes a re-encoding paradigm, where candidates are
obtained via a shallow neural network. This implies easy parallelization
and low latency. The decoder exploits the fact that the Leech lattice is
obtained from the direct sum of three polarized Gosset 8-dimensional
lattices. This Turyn’s construction was used in 2010 by G. Nebe to build
the extremal even unimodular lattice in dimension 72 from three copies
of the Leech lattice. Thus, we view this work as a first step towards
the implementation of an efficient decoder for the Nebe 72-dimensional
lattice.

1 Introduction

The Leech lattice Λ24 was discovered at the dawn of the communications era [15].
Recently, it was proved that Λ24 is the densest packing of congruent spheres in
24-dimensions [4]. Between these two major events, it has been subject to count-
less studies. This 24-dimensional lattice is exceptionally dense for its dimension
and, unsurprisingly, has a remarkable structure. For instance, it contains the
densest known lattices in all lower dimensions and it can be obtained in many
different ways from these lower dimensional lattices. In fact, finding the sim-
plest structure for efficient decoding of the Leech lattice has become a challenge
among engineers. Forney even refers to the performance of the best algorithm
as a world record [11]. Of course, decoding the Leech lattice is not just a use-
less game between engineers as it has many practical interests: its high nominal
coding gain of 6dB makes it a good candidate for high spectral efficiency short
block length channel coding and its spherical-like Voronoi region of 16969680
facets [7] enables to get state-of-the-art performance for operations such as vec-
tor quantization or lattice shaping.

Among others, Λ24 can be obtained as (i) 8192 cosets of 4D24, (ii) 4096 cosets
of
√

2E8 ⊕
√

2E8 ⊕
√

2E8, (iii) 2 cosets of the half-Leech lattice H24, where H24

is constructed by applying Construction B on the Golay code C24, and (iv) 4
cosets of the quarter-Leech lattice, where Q24 is also built with Construction B
but applied on a subcode of C24. Finally, one of the simplest construction is due
to [23], where the Leech lattice is obtained via Construction A applied on the
quaternary Golay code.



The history of maximum-likelihood decoding algorithms for Λ24 starts with [5],
where Conway and Sloane used (i) to compute the second moment of the Voronoi
region of Λ24. The first efficient decoder was presented in [6] by the same authors
using construction (ii). Two years latter, Forney reduced the complexity of the
decoder by exploiting the same construction (ii), which he rediscovered in the
scope of the “cubing construction”, with a 256-state trellis diagram represen-
tation [10]. A year later, it was further improved in [14] and [3] thanks to (iii)
combined with an efficient decoder of C24. Finally, (iv) along with the Hexacode
is used to build a state-of-the-art decoder in [26].
To further reduce the complexity, suboptimal bounded-distance decoders were
also investigated based on the same constructions: e.g. [11] with (iii) and [2]
[27] with (iv). Most of these bounded-distance decoders don’t change the error
exponent (i.e. the effective minimum distance is not diminished) but increase
the equivalent error coefficient. The extra loss is roughly 0.1dB on the Gaussian
channel.

Besides lattice decoders tuned to the specific algebraic or geometric struc-
ture of a point lattice in the real Euclidean space, there exist universal lattice
decoders, i.e. sphere decoders, based on point enumeration [28][1]. Sphere decod-
ing is extremely fast at low noise level but it may get stuck (i.e. tragically slow)
in looking for the closest point at high noise level for dense lattices in dimensions
beyond 64. The parallelization of sphere decoding may help in overcoming this
defect for high dimensions but its implementation over multiple processors was
never made yet.

In this work, unlike the latest algebraic decoders, we don’t use the Golay
code to build our decoder but rather the multiple occurrence of E8 in Λ24,
similarly to [6][10]. This construction of the Leech lattice usually goes under the
name of Turyn’s construction. This structure enables to utilize a re-encoding
process to correct errors. Since the decoder requires candidates, a simple list
decoder for E8, based on a neural network, is presented: it uses the hyperplane
logical decoder (HLD) [8]. The advantages of the HLD are its low-latency and its
hardware-friendly architecture. Moreover, to ensure the optimality of the HLD,
we state a new theorem providing sufficient conditions for a basis of E8 to be
Voronoi-reduced. The performance of the proposed algorithm is investigated on
the Gaussian channel.

2 Turyn’s Construction

The story of Turyn’s construction starts in 1967, when Turyn constructed the
Golay code from two versions of the extended Hamming code [17]. According to
Nebe [18], it has then been remarked independently in [25], [16], and [22] that
there is an analogous construction of Λ24 based on E8. Turyn’s construction re-
appeared in [6] under the form of 4096 cosets of the lattice generated by glued
copies of E8 (construction (ii) above). Finally, it was rediscovered under both



forms in the scope of the “cubing construction” [10]. We briefly describe below
the Turyn’s construction from E8 and prove that the constructed lattice is the
Leech Λ24. Our proof relies on simpler but less general arguments than those
found in [22][16].

In the sequel, vol(Λ) denotes the fundamental volume of Λ, i.e. the volume of
its Voronoi cell. The squared minimal distance (or minimal squared norm) of Λ
will be denoted d2min(Λ). We say that an integral lattice is even if ‖x‖2 is even for
any x in Λ. Let E8 be a version of the Gosset lattice with squared minimal norm
d2min(E8) = 2 and a fundamental volume equal to unity, i.e. an even unimodular
version. Consider L = 1√

2
E8 with minimal norm 1 and volume 2−4. Starting

from the quotient L/2L, we determine two versions M and N of E8 satisfying

2L ⊂M ⊂ L, and 2L ⊂ N ⊂ L,
with vol(M) = vol(N) = 1, d2min(M) = d2min(N) = 2, and M

⋂
N = 2L, to get

the following polarisation of L [18]:

L = M +N.

M and N are integral even unimodular lattices. Now define the quotient groups
M = M/2L and N = N/2L, |M| = |N | = 24.

Theorem 1. Using the above notations, the lattice defined as

Λ ={(a, b, c) : a = m+ n1, b = m+ n2, c = m+ n3,

m ∈M, n1, n2, n3 ∈ N, n1 + n2 + n3 ∈ 2L}
is the even unimodular Leech lattice Λ24.

Proof. Firstly, assume that m + n1 and m + n2 both have odd squared norms.
This is equivalent to having the scalar products 〈m,n1〉 = λ

2 and 〈m,n2〉 = λ′

2 ,
where λ and λ′ are odd integers. Then using n1+n2+n3 ∈ 2L, we get that 〈m,n3〉
is integer. Thus m+n3 has an even squared norm. We just proved that Λ is even.

Secondly, let us prove that d2min(Λ) = 4.
Let x = (a, b, c) ∈ Λ. Given the symmetry with respect to the three sets of eight
coordinates, we shall distinguish three cases according to the number of non-zero
components:

1. x = {(a, 0, 0)} => a ∈ 2L => ‖x‖2 ≥ d2min(2L) = 4.
2. x = {(a, b, 0)} => a, b ∈ N => ‖x‖2 ≥ 2d2min(N) = 4.
3. x = {(a, b, c)} => ‖x‖2 ≥ 3d2min(L) = 3. But Λ is even, then ‖x‖2 ≥ 4.

This implies that Λ has d2min = 4.
The last step aims at proving that Λ has a unit volume. Indeed, the definition
of Λ is rewritten by developing a, b, c modulo 2L,

Λ ={(a, b, c) : a = d1 +m′ + n′1︸ ︷︷ ︸
p1

, b = d2 +m′ + n′2︸ ︷︷ ︸
p2

, c = d3 +m′ + n′3︸ ︷︷ ︸
p3

,

d1, d2, d3 ∈ 2L, m′ ∈M, n′1, n
′
2, n
′
3 ∈ N , n′1 + n′2 + n′3 = 0},

(1)



where p1, p2, p3 ∈ L/2L. (1) shows that Λ is obtained by the union of cosets
of (2L)3. The number of those cosets is determined by m′, n′1, and n′2, with
n′3 = −n′1−n′2. Hence, there are |M|× |N |2 = 212 such cosets. Finally, vol(Λ) =
vol((2L)3)/212 = 1. The Leech lattice is the unique lattice in dimension 24 with
Hermite constant d2min/vol

2/24 = 4. �

As stated in the introduction, a new extremal even unimodular lattice in
dimension 72 of minimum 8 was discovered by Nebe in 2010 [19]. Given Nebe’s
lattice Hermite constant of 8 (9 dB) and its huge kissing number, we expect a
performance about 2.5dB from Poltyrev limit [21] at a point error probability
of 10−5 on an additive white Gaussian noise channel. For a gentle introduction
on this lattice and its Turyn’s construction, the reader is invited to refer to [18].
Based on arguments similar to those in Theorem 1, we state the next lemma.

Lemma 1. Nebe72 can be obtained as the union of 236 cosets of 2L′ ⊕ 2L′ ⊕
2L′, where L′ is a specific version of Λ24 (with minimum 2) used in Turyn’s
construction of Nebe72.

Thanks to this lemma, it might be possible to use the algorithm presented in
the next sections, with some modifications, to decode Nebe72.

3 A new Turyn-based Leech decoder

In [6] a point in R24 is decoded in all 212 cosets of 2L ⊕ 2L ⊕ 2L and the best
candidate is kept. However, as we shall see in the sequel it is not necessary
to investigate all the cosets to get quasi-optimal performance on the Gaussian
channel. To explain our decoder, we first introduce a naive decoder.

The main idea of this naive decoder is to generate several candidates for each
of the three 8 dimensions of Λ24 by decoding in L and keep only the combinations
resulting in a valid point. The best point among these final candidates is then
kept. To run the decoder, we first need to pre-compute the following elements.

1. Pick generator matrices for L,M,N .
2. Choose 256 coset leaders of 2L in L, a set denoted by C. For instance, they

can be chosen with the “maximally biased method” of Forney [12].
3. Generate M and N based on C (they are the unique 16 integers 8-tuples

when the coset leaders in C are multiplied by the inverse of the generator
matrix of M or N).

4. Find the unique map between the 256 elements of C and the 256 elements
of M+N mod 2L (create a look-up table).

We are now ready to present the naive decoder. To decode a point y = (y1, y2, y3) ∈
R24, the algorithm implements the following steps.

1. Generate ℵ candidates t1 ∈ T1, t2 ∈ T2, t3 ∈ T3, t1, t2, t3 ∈ L for each
y1, y2, y3 (i.e. |T1| = ℵ, |T2| = ℵ, and |T3| = ℵ).



2. For each of these candidates, find the coset of 2L it belongs to (i.e. find the
proper coset leader in C).

3. For each of these coset leaders, find the unique corresponding elements m′ti ∈
M and n′ti ∈ N .

4. For each of the ℵ3 combinations of (t1, t2, t3), check if m′t1 = m′t2 = m′t3 and
n′t1 + n′t2 + n′t3 = 0 (mod 2L). If the conditions are satisfied then store this
point of Λ24.

5. For each point found, compute its distance to the received point. Keep the
closest point.

Important choices are the rule to generate the candidates and the size of ℵ.
We choose the candidates as the ℵ closest lattice points in L from yi.

Figure 1 illustrates the performance of the naive decoding algorithm on the
Gaussian channel for several values of ℵ. Unsurprisingly, the performance is
disappointing: if the noise realization is strong and concentrated on the 8 di-
mensions of a yi, even if y is within the decoding capability of Λ24, the proper
ti is unlikely to be in the corresponding list, even if the list is large.
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Fig. 1. Performance of the naive decoder versus the optimal maximum-likelihood de-
coder (MLD) with different ℵ. The candidates are chosen to be the ℵ closest lattice
points.

Nevertheless, the noise is unlikely to be strong on two of the three 8 dimen-
sions and almost null on the remaining 8 dimensions. Hence, if the list size is
large enough (but not necessarily very large as shown below), at least two of the
three lists probably contain the good point. Moreover, given a and b, thanks to
(1), we know in which coset of 2L is located c (via the uniqueness of n′3 given
n′1 and n′2). In other words, we can use these constraints to re-encode c based



on a and b: once p3 is computed, one can find d3 by decoding y3 in this coset
of 2L. Note that the equivalent minimum distance of 2L is the same as Λ24.
Consequently, if one decodes y3 in the proper coset and the point y is within the
decoding capability of Λ24, the closest lattice point from y3 found in this coset
of 2L is always the correct d3.

The second decoder (our main decoder) exploits these observations. It needs
an additional element compared to the first decoder: a look-up table that gives
the only valid n′i ∈ N given one of the 256 possible tuples of 2 elements in N .
We are now ready to present our main decoder.

1. Generate ℵ candidates t1 ∈ T1, t2 ∈ T2, t3 ∈ T3, t1, t2, t3 ∈ L for each
y1, y2, y3 (i.e. |T1| = ℵ, |T2| = ℵ, and |T3| = ℵ).

2. For each of these candidates, find the coset of 2L it belongs to (i.e. find the
proper coset leader in C).

3. For each of these coset leaders, find the unique corresponding elements m′ti ∈
M and n′ti ∈ N .

4. For each of the 3ℵ2 combinations of (ti, tj), if m′ti = m′tj find n′k and generate
the coset leader pk. Find the closest lattice point dk to yk in this coset of 2L
and compute tk = dk + pk. Store the resulting point (ti, tj , tk) ∈ Λ24 (with
the proper arrangement of ti, tj , tk).

5. For each point found, compute its distance to the received point. Keep the
closest point.

Figure 2 shows the very satisfactory performance of this decoding scheme for
several values of ℵ. The candidates are the ℵ closest lattice points in L from yi.
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Fig. 2. Performance of the main decoder versus the optimal maximum-likelihood de-
coder (MLD) with different ℵ. The candidates are chosen to be the closest lattice
points.



Note that the paradigm of this decoder is similar to the one of the Ordered
Statistics Decoder [13], namely use a reliable subset of the received symbols to
re-encode and correct errors.

4 A method to generate the list of candidates in L

In this section, we present a simple list decoder for E8. It is used in step 1 of
the above main decoder.

Our strategy involves an optimal decoder for E8. We use the HLD because
of its low-latency and its hardware-friendly architecture: it can be implemented
via a neural network with only two hidden layers. This decoder operates in the
fundamental parallelotope P and considers only the corners of P. Hence, to make
sure that the HLD is optimal, we must prove that the closest lattice point to
any point in P is one of the corner of P: i.e. we must prove that E8 admits a
Voronoi-reduced (VR) basis [8].

Theorem 2. Let G be a generator matrix of E8, where all the basis vectors are
from the first lattice shell. Let P̊ be the interior of the fundamental parallelotope
of E8. If (G−1)T is a generator matrix of E8 with basis vectors from the first
shell, then the G basis is Voronoi-reduced with respect to P̊.

The proof of this theorem is omitted due to the paper length. An example
of a Voronoi-reduced basis for E8 satisfying the sufficient conditions given by
Theorem 2 can be found in [8].

We are now ready to present the list decoder:

1. Find the closest lattice point x1 ∈ L to the point to decode yi via the HLD.
Compute y′ = R×(yi−x1)/||yi−x1|| and find x2, the closest lattice point of
y′, also via the HLD (R = (1+ ε)×dmin/

√
2, where dmin/

√
2 is the covering

radius of E8).
2. Compute x3 = (x2 + x1)/2. Two situations can be encountered: (i) if ||x2 −
x1|| =

√
2× dmin, then there are 14 lattice points at equal distance from x3.

(ii) If ||x2 − x1|| = dmin, then there are 56 lattice points at equal distance
from x3. In both cases, the list is formed by x1, x2, and the other ℵ − 2
points, among the 14 or 56 points at equal distance from x3, that are the
closest to yi.

With ℵ = 11, the performance of the main decoder using this list decoder is
almost the same as one depicted in Figure 2 by the purple curve.

5 Summary and complexity analysis

The decoder is summarized in Figure 3.
Nowadays, the CPU time of an algorithm is not as crucial as it used to

be: with the advent of GPUs, parallelization is often more important than the
raw amount of flops. This former aspect is clearly a strength of the proposed
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Fig. 3. Overview of the proposed decoder. From left to right: the point to decode
y ∈ R24 is split into three points y1, y2, y3 ∈ R8, which are then processed inde-
pendently. A list of |{ti}| = ℵ candidates for each yi is generated. For each valid
combination of (ti, tj), a lattice point of Λ24 is obtained. The closest point to y among
these lattice points is the decoded point.



algorithm, mainly due to the parallel processing of the three 8 dimensions of the
point to decode y ∈ R24 and the shallow structure of the HLD.

The CPU time could be optimized, but at the cost of latency: for instance, a
large amount of computations in our algorithm is due to the multiple use of the
HLD. Hence, the number of flops could be reduced via folding techniques, such
as the one presented in [9], decreasing the complexity of the HLD. Nevertheless,
this implies using neural networks which cannot be parallelized as efficiently due
to a large depth. Similarly, one could also replace the HLD by the low-complexity
E8 decoder presented in [6] but this would also increase the latency.

A rough estimate of the CPU time C of our Leech decoder is the following. Let
C(HLD) denote the complexity of the maximum-likelihood decoder of E8. The
largest amount of operations are due to: (i) finding the two maximum-likelihood
points in the list decoder of E8, (ii) finding the coset of 2L each candidate belongs
to, and (iii) re-encoding and processing the 3ℵ2 points. We get:

C ≈ 3× 2× C(HLD) + 3× ℵ × C(HLD) + 3ℵ2(a+ C(HLD)) + b,

where a and b are small constants. Our decoder is more complex than the state-
of-the art decoder of Vardy [27] which requires only 331 real operations. However,
this latter decoder is specific to Λ24 whereas our decoder is more universal: the
re-encoding paradigm can be used whenever some dimensions of the lattice are
explicitly constrained by the others, which is the case of the Nebe 72-dimensional
lattice.
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