Leech Constellations of Construction-A Lattices

Joseph J. Boutros
Talk at Nokia Bell Labs, Stuttgart

Texas A&M University at Qatar
In collaboration with Nicola di Pietro.

March 7, 2017
Many Thanks to Dr Laurent Schmalen and his group for this invitation.
Shaping in Coded Modulations (Gaussian Channel)

- Shaping is necessary to achieve capacity.
 - Probabilistic shaping:
 Assign Gaussian-like prior distribution to constellation points.
 Kschischang-Pasupathy 1993, Böcherer-Steiner-Schulte 2015
 - Geometric shaping in lattices:
 Design a spherical-like constellation for covering goodness.
 - A mixture of probabilistic and geometric shaping:
 Boutros-Jardel-Méasson 2017
Shaping is necessary to achieve capacity.

- **Probabilistic shaping:**
 Assign Gaussian-like prior distribution to constellation points.
 - Kschischang-Pasupathy 1993, Böcherer-Steiner-Schulte 2015

- **Geometric shaping in lattices:**
 Design a spherical-like constellation for covering goodness.

- **A mixture of probabilistic and geometric shaping:**
 - Boutros-Jardel-Méasson 2017
Shaping is necessary to achieve capacity.

Probabilistic shaping:
Assign Gaussian-like prior distribution to constellation points.
Kschischang-Pasupathy 1993, Böcherer-Steiner-Schulte 2015

Geometric shaping in lattices:
Design a spherical-like constellation for covering goodness.

A mixture of probabilistic and geometric shaping:
Boutros-Jardel-Méasson 2017
Shaping in Coded Modulations (Gaussian Channel)

- Shaping is necessary to achieve capacity.

- **Probabilistic shaping:**
 Assign Gaussian-like prior distribution to constellation points.
 Kschischang-Pasupathy 1993, Böcherer-Steiner-Schulte 2015

- **Geometric shaping in lattices:**
 Design a spherical-like constellation for covering goodness.

- **A mixture of probabilistic and geometric shaping:**
 Boutros-Jardel-Méasson 2017
Outline of this talk

- Brief general introduction on lattices
- Infinite Constellations - Poltyrev Goodness
- Finite Constellations - Voronoi shaping
- Leech shaping of Construction-A lattices
- Numerical Results - Performance on a Gaussian channel
A lattice is a discrete additive subgroup of \mathbb{R}^n:

- There are n basis vectors.
- The lattice is given by all their integer linear combinations.
- Lattices are the real Euclidean counterpart of error-correcting codes.
 - Codes are vector spaces over a finite field.
 - Lattices are modules over a real or a complex ring, e.g. \mathbb{Z}, $\mathbb{Z}[i]$, $\mathbb{Z}[\omega]$.

![Diagram of a lattice]
Lattices, Sphere Packings, and Codes (2)

Integer Cubic Lattice Packing

Hexagonal Lattice Packing

(a) (b)
Integer Cubic Lattice \mathbb{Z}^2

Hexagonal Lattice A_2
Lattices, Sphere Packings, and Codes (4)

packing radius ρ

covering radius R

Voronoi cell of A_2
Building lattices out of codes: Construction A by Leech and Sloane 1971.

Lattices as coset codes (Forney 1988):
- The lattice $p\mathbb{Z}^n$ has p^n cosets in \mathbb{Z}^n.
- A subset of size p^k cosets is selected among the p^n cosets via a code C.
- A coset code in Forney's terminology with the formula (p is prime)

$$\Lambda = C[n, k]_p + p\mathbb{Z}^n.$$

The ring can be \mathbb{Z} (relative integers), $\mathbb{Z}[i]$ (Gaussian integers), $\mathbb{Z}[\omega]$ (Eisenstein integers), etc. $C[n, k]_p$ should be correctly embedded in the ring.

Construction A can be thought of as
- drawing p^k points representing the codewords of C inside the cube $[0, p - 1]^n$
- then paving the whole space \mathbb{R}^n by translating the cube by multiples of p in all directions.
Theorem (Poltyrev 1994)

Over the unconstrained AWGN channel and for every $\varepsilon > 0$, there exists a lattice $\Lambda \subseteq \mathbb{R}^n$ (in dimension n big enough) that can be decoded with error probability less than ε if and only if $\text{Vol}(\Lambda) > (\sqrt{2\pi e\sigma^2})^n$.

Volume-to-noise ratio of Λ (Forney 2000):

$$
VNR = \frac{\text{Vol}(\Lambda)^{\frac{2}{n}}}{2\pi e\sigma^2}.
$$

Corollary (Poltyrev Goodness)

In the set of all lattices Λ with fixed normalized volume $\text{Vol}(\Lambda)^{\frac{2}{n}} = \nu$, there exists a lattice that can be decoded with vanishing error probability over the unconstrained AWGN channel only if the noise variance satisfies

$$
\sigma^2 < \frac{\nu}{2\pi e} = \sigma_{\text{max}}^2.
$$
Infinite Lattice Constellations

Theorem (Poltyrev 1994)

Over the unconstrained AWGN channel and for every $\varepsilon > 0$, there exists a lattice $\Lambda \subseteq \mathbb{R}^n$ (in dimension n big enough) that can be decoded with error probability less than ε if and only if $\text{Vol}(\Lambda) > (\sqrt{2\pi e\sigma^2})^n$.

Volume-to-noise ratio of Λ (Forney 2000):

$$VNR = \frac{\text{Vol}(\Lambda)^{\frac{2}{n}}}{2\pi e\sigma^2}.$$

Corollary (Poltyrev Goodness)

In the set of all lattices Λ with fixed normalized volume $\text{Vol}(\Lambda)^{\frac{2}{n}} = \nu$, there exists a lattice that can be decoded with vanishing error probability over the unconstrained AWGN channel only if the noise variance satisfies

$$\sigma^2 < \frac{\nu}{2\pi e} = \sigma_{\text{max}}^2.$$
Infinite Lattice Constellations

Theorem (Poltyrev 1994)

Over the unconstrained AWGN channel and for every \(\varepsilon > 0 \), there exists a lattice \(\Lambda \subseteq \mathbb{R}^n \) (in dimension \(n \) big enough) that can be decoded with error probability less than \(\varepsilon \) if and only if \(\text{Vol}(\Lambda) > (\sqrt{2\pi e}\sigma^2)^n \).

Volume-to-noise ratio of \(\Lambda \) (Forney 2000):

\[
\text{VNR} = \frac{\text{Vol}(\Lambda)^{\frac{2}{n}}}{2\pi e\sigma^2}.
\]

Corollary (Poltyrev Goodness)

In the set of all lattices \(\Lambda \) with fixed normalized volume \(\text{Vol}(\Lambda)^{\frac{2}{n}} = \nu \), there exists a lattice that can be decoded with vanishing error probability over the unconstrained AWGN channel only if the noise variance satisfies

\[
\sigma^2 < \frac{\nu}{2\pi e} = \sigma_{\text{max}}^2.
\]
Poltyrev-Good Lattices from Codes on Graphs

- Low-Density Construction A (LDA) lattices

- Generalized Low Density (GLD) lattices
Finite Lattice Constellations (1)

- AWGN channel input is \(x = (x_1, \ldots, x_n) \). Power condition:
 \[
 \mathbb{E}[x_i^2] \leq P, \quad \text{for some } P > 0,
 \]

- Signal-to-noise ratio:
 \[
 \text{SNR} = \frac{P}{\sigma^2}
 \]

- Capacity of the channel is \(\frac{1}{2} \log_2 (1 + \text{SNR}) \) bits per dimension.
Finite Lattice Constellations (2)

- An efficient way to build finite set of lattice points: Voronoi constellations (*Conway and Sloane 1983*)
- Coding lattice or fine lattice: Λ_f
- Shaping lattice or coarse lattice: $\Lambda \subseteq \Lambda_f$
- Quotient group

$$\Lambda_f/\Lambda = \{x + \Lambda : x \in \Lambda_f\}, \text{ equivalently } \Lambda_f = \Lambda_f/\Lambda + \Lambda.$$

- Coset $x + \Lambda$, coset leader x.
- Order of the quotient group (number of cosets)

$$|\Lambda_f/\Lambda| = \frac{\text{Vol}(\Lambda)}{\text{Vol}(\Lambda_f)}.$$

- The Voronoi constellation C given by the coset leaders of Λ in Λ_f with smallest Euclidean norm (*Conway and Sloane 1983, Forney 1989*):

$$C = \Lambda_f \cap V(\Lambda).$$
Finite Lattice Constellations (2)

- An efficient way to build finite set of lattice points: Voronoi constellations (*Conway and Sloane 1983*)
- Coding lattice or fine lattice: Λ_f
- Shaping lattice or coarse lattice: $\Lambda \subseteq \Lambda_f$
- Quotient group

$$\Lambda_f / \Lambda = \{x + \Lambda : x \in \Lambda_f\}, \quad \text{equivalently} \quad \Lambda_f = \Lambda_f / \Lambda + \Lambda.$$

- Coset $x + \Lambda$, coset leader x.
- Order of the quotient group (number of cosets)

$$|\Lambda_f / \Lambda| = \frac{\text{Vol}(\Lambda)}{\text{Vol}(\Lambda_f)}.$$

- The Voronoi constellation \mathcal{C} given by the coset leaders of Λ in Λ_f with smallest Euclidean norm (*Conway and Sloane 1983, Forney 1989*):

$$\mathcal{C} = \Lambda_f \cap \mathcal{V}(\Lambda).$$
Finite Lattice Constellations (3)

\[\Rightarrow \quad \text{Coding lattice } \Lambda_f \]

\[\text{Shaping lattice } \Lambda \quad \& \quad \Lambda \subseteq \Lambda_f \]

Our finite constellation
We work with a Voronoi constellation obtained from lattices \(\Lambda_f \) and \(\Lambda \): it is the set of coset leaders of smaller norm of \(\Lambda_f/\Lambda \). The coding lattice \(\Lambda_f \) can be selected in the LDA ensemble as shown in the numerical results at the end of this talk.

Illustration made in the following slides:

A Voronoi constellation of the hexagonal lattice \(A_2 \) in dimension 2.
\[4^2 = 16 \text{ points of the constellation } A_2/4A_2. \]
Illustration: Voronoi Constellation $A_2/4A_2 \ (1)$

The hexagonal lattice A_2 and its Voronoi cells.
Illustration: Voronoi Constellation $A_2/4A_2$ (2)

The lattice A_2, its sub-lattice $4A_2$, and their Voronoi cells.
Illustration: Voronoi Constellation $A_2/4A_2$ (3)

Select 16 points following the basis of A_2.
Illustration: Voronoi Constellation $A_2/4A_2$ (3)

The constellation takes the shape of the fundamental parallelootope.
Consider the 5 points (in green) in the upper right red cell.
Illustration: Voronoi Constellation $A_2/4A_2$ (4)

The nearest point in $4A_2$ to these 5 green points is the cell center.
Illustration: Voronoi Constellation $A_2/4A_2$ (5)

Subtract the cell center $(2, 4\sqrt{3}/2)$, i.e. translate down and left.
Consider the 4 points (in green) in the right red cell.
Illustration: Voronoi Constellation $A_2/4A_2$ (7)

Translate to the left by subtracting the cell center $(4,0)$.
Consider the point (in green) in the upper (and twice to the right) red cell.
Illustration: Voronoi Constellation $A_2/4A_2$ (8)

Translate this green point by subtracting its red cell center $(6, 4\sqrt{3}/2)$.
Now you get the Voronoi constellation $A_2/4A_2$ with 16 points.
Leech Constellations (1)

- The Leech lattice $\Lambda_{24} \subset \mathbb{Z}^{24}$, an even unimodular lattice (see the SPLAG).

- Its Voronoi region has 196560 facets.

- Densest sphere packing in dimension 24 (Cohn et al., March 2016).

- Shaping again of Λ_{24} is 1.03 dB. Gap of 0.5 dB from maximal shaping gain ($n \to \infty$).

- Let $n = 24\ell$. The shaping lattice is, for $\alpha \in \mathbb{N} \setminus \{0\}$,

 $$\Lambda = p \times \alpha \times \Lambda_{24}^{\oplus \ell}.$$

- The fine lattice is $\Lambda_f = C[n, k]_p + p\mathbb{Z}^n$.

Joseph Jean Boutros
Nokia Bell Labs at Stuttgart
March 7, 2017 15 / 23
Leech Constellations (1)

- The Leech lattice $\Lambda_{24} \subset \mathbb{Z}^{24}$, an even unimodular lattice (see the SPLAG).
- Its Voronoi region has 196560 facets.
- Densest sphere packing in dimension 24 (Cohn et al., March 2016).
- Shaping again of Λ_{24} is 1.03 dB. Gap of 0.5 dB from maximal shaping gain ($n \to \infty$).
- Let $n = 24\ell$. The shaping lattice is, for $\alpha \in \mathbb{N} \setminus \{0\}$,
 \[\Lambda = p \times \alpha \times \Lambda_{24}^{\oplus \ell}. \]
- The fine lattice is $\Lambda_f = C[n, k]_p + p\mathbb{Z}^n$.
Leech Generator Matrix in Triangular Form
Leech Constellations (2)

Given the coding rate $R = k/n$ in the fine lattice and the volume $\text{Vol}(\Lambda_{24}) = 2^{36}$, the information rate of the Leech constellation C is

$$R_C = \frac{\log_2 |\Lambda_f/\Lambda|}{n} = \frac{\log_2 \text{Vol}(\Lambda)/\text{Vol}(\Lambda_f)}{n} \text{ bits/dim}$$

$$= R \log_2 p + \log_2 \alpha + \frac{3}{2} \text{ bits/dim}.$$
Lemma (di Pietro and Boutros, Nov. 2016)
Let $\Gamma \subseteq \mathbb{Z}^n$ be any integer lattice and let $\Lambda = p\Gamma \subseteq p\mathbb{Z}^n$. Let us call T a lower triangular generator matrix of Γ with $t_{i,i} > 0$ for every i:

$$T = \begin{pmatrix}
t_{1,1} & 0 & \cdots & 0 \\
t_{2,1} & t_{2,2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
t_{n,1} & \cdots & t_{n,n-1} & t_{n,n}
\end{pmatrix} \in \mathbb{Z}^{n \times n}.$$

Consider the set:

$$S = \{0, 1, \ldots, t_{1,1} - 1\} \times \{0, 1, \ldots, t_{2,2} - 1\} \times \cdots \times \{0, 1, \ldots, t_{n,n} - 1\} \subseteq \mathbb{Z}^n.$$

Let C be the code that underlies the construction of $\Lambda_f = C + p\mathbb{Z}^n$; we embed it in \mathbb{Z}^n via the coordinate-wise morphism $\mathbb{F}_p \hookrightarrow \{0, 1, \ldots, p-1\} \subseteq \mathbb{Z}$, hence $C \subseteq \{0, 1, \ldots, p-1\}^n$. Then $C + pS = \{c + ps \in \mathbb{Z}^n : c \in C, \ s \in S\} \subseteq \Lambda_f$ is a complete set of coset leaders of Λ_f/Λ.

Joseph Jean Boutros
Nokia Bell Labs at Stuttgart
March 7, 2017 18 / 23
Sketch of the proof

Counting points

\[|C + pS| = |C||S| = p^k \frac{\text{Vol}(\Lambda)}{p^n} = |\Lambda_f/\Lambda|. \]

Distinct Cosets
Take \(x = c + ps \) and \(y = d + pv \) in the same coset.
Then \(x - y = c - d + p(s - v) \in \Lambda \subseteq p\mathbb{Z}^n. \)
We get \(c = d. \) So \(x - y = p(s - v) \in \Lambda = p\Gamma. \)
It translates into \(s - v \in \Gamma, \) i.e. \(s - v = zT. \)
From the definition of \(S \) and the triangularity of \(T, \) we find \(s = v \) which proves that \(x = y. \)
Infinite constellations of LDA lattices, $p = 13$ and $R = 1/3$
Leech Constellations of LDA Lattices (2)

Leech constellations of LDA lattices, $R_C = 2.73$ bits/dim
Conclusions

- Complexity of mapping and demapping is linear in n.
- With a direct sum of Λ_{24}, the shaping gain is 1.03 dB.
- With a direct sum of Λ_{24}, the gap to Shannon capacity is 0.8 dB.
- Very fast universal Sphere Decoding of Λ_{24} (Viterbo-Boutros 1999).
 Needed to quantize points of the information set defined by the encoding Lemma.
- Other specific decoders for the Leech lattice (Vardy-Be’ery 1993).
- Any dense integer lattice can be used for shaping. Density is presumed to bring a high kissing number of low-dimensional lattices (conjecture) which implies a Voronoi region with a small second-order moment.
Main Reference Paper for this Talk

Nicola di Pietro and Joseph J. Boutros,

Leech Constellations of Construction-A Lattices
arXiv:1611.04417v2

January 2017