Leech Constellations of Construction-A Lattices

Joseph J. Boutros Talk at Nokia Bell Labs, Stuttgart

Texas A&M University at Qatar

In collaboration with Nicola di Pietro.

March 7, 2017

<ロト (四) (注) (注) (注) (注)

		Voronoi Constellations	Leech Constellations	Encoding Information	
Thank	<i>\$\$</i>				

Many Thanks to Dr Laurent Schmalen and his group for this invitation.

・ロト ・ 日 ト ・ ヨ ト ・

Shaping in Coded Modulations (Gaussian Channel)

• Shaping is necessary to achieve capacity.

• Probabilistic shaping:

Assign Gaussian-like prior distribution to constellation points. Kschischang-Pasupathy 1993, Böcherer-Steiner-Schulte 2015

• Geometric shaping in lattices:

Design a spherical-like constellation for covering goodness. Ferdinand-Kurkoski-Nokleby-Aazhang, Kurkoski 2016, diPietro-Boutros 2016

• A mixture of probabilistic and geometric shaping: Boutros-Jardel-Méasson 2017

イロト イ団ト イヨト イヨト

- Shaping is necessary to achieve capacity.
- Probabilistic shaping:

Assign Gaussian-like prior distribution to constellation points. Kschischang-Pasupathy 1993, Böcherer-Steiner-Schulte 2015

• Geometric shaping in lattices:

Design a spherical-like constellation for covering goodness. Ferdinand-Kurkoski-Nokleby-Aazhang, Kurkoski 2016, diPietro-Boutros 2016

• A mixture of probabilistic and geometric shaping: Boutros-Jardel-Méasson 2017

- Shaping is necessary to achieve capacity.
- Probabilistic shaping:

Assign Gaussian-like prior distribution to constellation points. Kschischang-Pasupathy 1993, Böcherer-Steiner-Schulte 2015

• Geometric shaping in lattices:

Design a spherical-like constellation for covering goodness. Ferdinand-Kurkoski-Nokleby-Aazhang, Kurkoski 2016, diPietro-Boutros 2016

• A mixture of probabilistic and geometric shaping: Boutros-Jardel-Méasson 2017

- Shaping is necessary to achieve capacity.
- Probabilistic shaping:

Assign Gaussian-like prior distribution to constellation points. Kschischang-Pasupathy 1993, Böcherer-Steiner-Schulte 2015

• Geometric shaping in lattices:

Design a spherical-like constellation for covering goodness. Ferdinand-Kurkoski-Nokleby-Aazhang, Kurkoski 2016, diPietro-Boutros 2016

• A mixture of probabilistic and geometric shaping: Boutros-Jardel-Méasson 2017

- Brief general introduction on lattices
- Infinite Constellations Poltyrev Goodness
- Finite Constellations Voronoi shaping
- Leech shaping of Construction-A lattices
- Numerical Results Performance on a Gaussian channel

イロト イヨト イヨト イヨ

A lattice is a discrete additive subgroup of \mathbb{R}^n :

- There are *n* basis vectors.
- The lattice is given by all their integer linear combinations.
- Lattices are the real Euclidean counterpart of error-correcting codes.
 - Codes are vector spaces over a finite field.
 - Lattices are modules over a real or a complex ring, e.g. \mathbb{Z} , $\mathbb{Z}[i]$, $\mathbb{Z}[\omega]$.

Integer Cubic Lattice Packing

Hexagonal Lattice Packing

イロト イポト イヨト イヨト

Integer Cubic Lattice \mathbb{Z}^2

Hexagonal Lattice A_2

イロト イヨト イヨト イヨ

Lattices, Sphere Packings, and Codes (4)

・ロト ・ 日 ・ ・ ヨ ト ・

Building lattices out of codes: Construction A by Leech and Sloane 1971.

Lattices as coset codes (Forney 1988):

- The lattice $p\mathbb{Z}^n$ has p^n cosets in \mathbb{Z}^n .
- A subset of size p^k cosets is selected among the p^n cosets via a code C.
- A coset code in Forney's terminology with the formula (p is prime)

$$\Lambda = C[n,k]_p + p\mathbb{Z}^n.$$

The ring can be \mathbb{Z} (relative integers), $\mathbb{Z}[i]$ (Gaussian integers), $\mathbb{Z}[\omega]$ (Eisenstein integers), etc. $C[n,k]_p$ should be correctly embedded in the ring.

Construction A can be thought of as

- drawing p^k points representing the codewords of C inside the cube $[0, p-1]^n$
- then paving the whole space \mathbb{R}^n by translating the cube by multiples of p in all directions.

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト ・

Theorem (Poltyrev 1994)

Over the unconstrained AWGN channel and for every $\varepsilon > 0$, there exists a lattice $\Lambda \subseteq \mathbb{R}^n$ (in dimension n big enough) that can be decoded with error probability less than ε if and only if $\operatorname{Vol}(\Lambda) > (\sqrt{2\pi e \sigma^2})^n$.

Volume-to-noise ratio of Λ (Forney 2000):

$$VNR = \frac{Vol(\Lambda)^{\frac{2}{n}}}{2\pi e\sigma^2}.$$

Corollary (Poltyrev Goodness)

In the set of all lattices Λ with fixed normalized volume $\operatorname{Vol}(\Lambda)^{\frac{2}{n}} = \nu$, there exists a lattice that can be decoded with vanishing error probability over the unconstrained AWGN channel only if the noise variance satisfies

$$\sigma^2 < \frac{\nu}{2\pi e} = \sigma_{\max}^2.$$

Theorem (Poltyrev 1994)

Over the unconstrained AWGN channel and for every $\varepsilon > 0$, there exists a lattice $\Lambda \subseteq \mathbb{R}^n$ (in dimension n big enough) that can be decoded with error probability less than ε if and only if $\operatorname{Vol}(\Lambda) > (\sqrt{2\pi e \sigma^2})^n$.

Volume-to-noise ratio of Λ (Forney 2000):

$$VNR = \frac{Vol(\Lambda)^{\frac{2}{n}}}{2\pi e\sigma^2}$$

Corollary (Poltyrev Goodness)

In the set of all lattices Λ with fixed normalized volume $\operatorname{Vol}(\Lambda)^{\frac{2}{n}} = \nu$, there exists a lattice that can be decoded with vanishing error probability over the unconstrained AWGN channel only if the noise variance satisfies

$$\sigma^2 < \frac{\nu}{2\pi e} = \sigma_{\max}^2.$$

Theorem (Poltyrev 1994)

Over the unconstrained AWGN channel and for every $\varepsilon > 0$, there exists a lattice $\Lambda \subseteq \mathbb{R}^n$ (in dimension n big enough) that can be decoded with error probability less than ε if and only if $\operatorname{Vol}(\Lambda) > (\sqrt{2\pi e \sigma^2})^n$.

Volume-to-noise ratio of Λ (Forney 2000):

$$VNR = \frac{Vol(\Lambda)^{\frac{2}{n}}}{2\pi e\sigma^2}.$$

Corollary (Poltyrev Goodness)

In the set of all lattices Λ with fixed normalized volume $\operatorname{Vol}(\Lambda)^{\frac{2}{n}} = \nu$, there exists a lattice that can be decoded with vanishing error probability over the unconstrained AWGN channel only if the noise variance satisfies

$$\sigma^2 < \frac{\nu}{2\pi e} = \sigma_{\max}^2.$$

Joseph Jean Boutros

• • • • • • • • • • • •

Poltyrev-Good Lattices from Codes on Graphs

- Low-Density Construction A (LDA) lattices di Pietro-Zémor-Boutros 2012-2016, Vatedka-Kashyap 2014
- Generalized Low Density (GLD) lattices Boutros-di Pietro-Basha-Huang 2014-2015

Finite Lattice Constellations (1)

• AWGN channel input is $\mathbf{x} = (x_1, \dots, x_n)$. Power condition:

 $\mathbb{E}[x_i^2] \le P, \quad \text{ for some } P > 0,$

Signal-to-noise ratio:

$$SNR = \frac{P}{\sigma^2}$$

• Capacity of the channel is $\frac{1}{2}\log_2(1 + \text{SNR})$ bits per dimension.

<ロ> (日) (日) (日) (日) (日)

Lattices Poltyrev Goodness Voronoi Constellations Leech Constellations Encoding Information
Finite Lattice Constellations (2)

- An efficient way to build finite set of lattice points: Voronoi constellations (Conway and Sloane 1983)
- Coding lattice or fine lattice: Λ_f
- Shaping lattice or coarse lattice: $\Lambda \subseteq \Lambda_f$
- Quotient group

 $\Lambda_f/\Lambda=\{\mathbf{x}+\Lambda:\mathbf{x}\in\Lambda_f\},\quad\text{equivalently}\quad\Lambda_f=\Lambda_f/\Lambda+\Lambda.$

• Coset $\mathbf{x} + \Lambda$, coset leader \mathbf{x} .

• Order of the quotient group (number of cosets)

$$|\Lambda_f / \Lambda| = \frac{\operatorname{Vol}(\Lambda)}{\operatorname{Vol}(\Lambda_f)}.$$

• The Voronoi constellation C given by the coset leaders of Λ in Λ_f with smallest Euclidean norm (Conway and Sloane 1983, Forney 1989):

$$\mathcal{C} = \Lambda_f \cap \mathcal{V}(\Lambda).$$

イロト イヨト イヨト イヨト

Lattices Poltyrev Goodness Voronoi Constellations Leech Constellations Encoding Information
Finite Lattice Constellations (2)

- An efficient way to build finite set of lattice points: Voronoi constellations (Conway and Sloane 1983)
- Coding lattice or fine lattice: Λ_f
- Shaping lattice or coarse lattice: $\Lambda \subseteq \Lambda_f$
- Quotient group

$$\Lambda_f / \Lambda = \{ \mathbf{x} + \Lambda : \mathbf{x} \in \Lambda_f \}, \quad \text{equivalently} \quad \Lambda_f = \Lambda_f / \Lambda + \Lambda_f$$

- Coset $\mathbf{x} + \Lambda$, coset leader \mathbf{x} .
- Order of the quotient group (number of cosets)

$$|\Lambda_f/\Lambda| = \frac{\operatorname{Vol}(\Lambda)}{\operatorname{Vol}(\Lambda_f)}.$$

• The Voronoi constellation C given by the coset leaders of Λ in Λ_f with smallest Euclidean norm (Conway and Sloane 1983, Forney 1989):

$$\mathcal{C} = \Lambda_f \cap \mathcal{V}(\Lambda).$$

Finite Lattice Constellations (3)

$$\Rightarrow \begin{array}{c} \mathsf{Coding \ lattice} \ \Lambda_f \\ \mathsf{Shaping \ lattice} \ \Lambda \end{array} \qquad & \Lambda \subseteq \Lambda_f \end{array}$$

Our finite constellation

We work with a Voronoi constellation obtained from lattices Λ_f and Λ : it is the set of coset leaders of smaller norm of Λ_f/Λ . The coding lattice Λ_f can be selected in the LDA ensemble as shown in the numerical results at the end of this talk.

Illustration made in the following slides:

A Voronoi constellation of the hexagonal lattice A_2 in dimension 2. $4^2 = 16$ points of the constellation $A_2/4A_2$.

イロト イ団ト イヨト イヨト

Illustration: Voronoi Constellation $A_2/4A_2$ (1)

The hexagonal lattice A_2 and its Voronoi cells.

Illustration: Voronoi Constellation $A_2/4A_2$ (2)

The lattice A_2 , its sub-lattice $4A_2$, and their Voronoi cells.

Illustration: Voronoi Constellation $A_2/4A_2$ (3)

Select 16 points following the basis of A_2 .

Illustration: Voronoi Constellation $A_2/4A_2$ (3)

The constellation takes the shape of the fundamental parallelotope.

Illustration: Voronoi Constellation $A_2/4A_2$ (4)

Consider the 5 points (in green) in the upper right red cell.

Illustration: Voronoi Constellation $A_2/4A_2$ (4)

The nearest point in $4A_2$ to these 5 green points is the cell center.

Illustration: Voronoi Constellation $A_2/4A_2$ (5)

Subtract the cell center $(2, 4\sqrt{3}/2)$, i.e. translate down and left.

Illustration: Voronoi Constellation $A_2/4A_2$ (6)

Consider the 4 points (in green) in the right red cell.

Illustration: Voronoi Constellation $A_2/4A_2$ (7)

Translate to the left by subtracting the cell center (4, 0).

Illustration: Voronoi Constellation $A_2/4A_2$ (8)

Consider the point (in green) in the upper (and twice to the right) red cell.

Illustration: Voronoi Constellation $A_2/4A_2$ (8)

Translate this green point by subtracting its red cell center $(6, 4\sqrt{3}/2)$.

Illustration: Voronoi Constellation $A_2/4A_2$ (9)

Now you get the Voronoi constellation $A_2/4A_2$ with 16 points.

		Voronoi Constellations	Leech Constellations	Encoding Information	Conclusions
Leech	Constellat	ions (1)			

- The Leech lattice $\Lambda_{24} \subset \mathbb{Z}^{24}$, an even unimodular lattice (see the SPLAG).
- Its Voronoi region has 196560 facets.
- Densest sphere packing in dimension 24 (Cohn et al., March 2016).
- Shaping again of Λ_{24} is 1.03 dB. Gap of 0.5 dB from maximal shaping gain $(n \rightarrow \infty)$.
- Let $n = 24\ell$. The shaping lattice is, for $\alpha \in \mathbb{N} \setminus \{0\}$,

 $\Lambda = p \times \alpha \times \Lambda_{24}^{\oplus \ell}.$

• The fine lattice is $\Lambda_f = C[n,k]_p + p\mathbb{Z}^n$.

イロト イヨト イヨト イヨ

		Voronoi Constellations	Leech Constellations	Encoding Information	Conclusions
Leech	Constellate	ions (1)			

- The Leech lattice $\Lambda_{24} \subset \mathbb{Z}^{24}$, an even unimodular lattice (see the SPLAG).
- Its Voronoi region has 196560 facets.
- Densest sphere packing in dimension 24 (Cohn et al., March 2016).
- Shaping again of Λ_{24} is 1.03 dB. Gap of 0.5 dB from maximal shaping gain $(n \rightarrow \infty)$.
- Let $n = 24\ell$. The shaping lattice is, for $\alpha \in \mathbb{N} \setminus \{0\}$,

 $\Lambda \ = \ p \times \alpha \times \Lambda_{24}^{\oplus \ell}.$

• The fine lattice is $\Lambda_f = C[n,k]_p + p\mathbb{Z}^n$.

イロト イボト イヨト イヨ

イロト イロト イヨト イ

Leech Generator Matrix in Triangular Form

4	4																						
4		4																					
4			4																				
4				4																			
4					4																		
4						4																	
2	2	2	2	2	2	2	2																
4								4															
4									4														
4										4													
2	2	2	2					2	2	2	2												
4												4											
2	2			2	2			2	2			2	2										
2		2		2		2		2		2		2		2									
2			2	2			2	2			2	2			2								
4		_		_			_	_	_							4	_						
2		2	_	2	_		2	2	2	_						2	2	_					
2	~		2	2	2	~		2		2	~					2		2	_				
2	2	~	~	2		2		2			2	~				2			2	~			
	2	2	2	2				2	~			2	~			2	~			2	~		
								2	2	0		2	2	0		2	2	0		2	2	~	
	-		-	-				2		2		2		2		2		2		2	-	2	
-3	1	1	1	1	T	1	T	1	1	1	1	T	1	T	T	1	T	1	T	T	1	1	1,
	444444244222242222 -3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$																					

Given the coding rate R = k/n in the fine lattice and the volume $Vol(\Lambda_{24}) = 2^{36}$, the information rate of the Leech constellation C is

$$\begin{split} R_{\mathcal{C}} &= \frac{\log_2 |\Lambda_f / \Lambda|}{n} = \frac{\log_2 \operatorname{Vol}(\Lambda) / \operatorname{Vol}(\Lambda_f)}{n} \text{ bits/dim} \\ &= R \log_2 p + \log_2 \alpha + \frac{3}{2} \text{ bits/dim} \ . \end{split}$$

・ロト ・回ト ・ヨト ・ヨ

Lemma (di Pietro and Boutros, Nov. 2016) Let $\Gamma \subseteq \mathbb{Z}^n$ be any integer lattice and let $\Lambda = p\Gamma \subseteq p\mathbb{Z}^n$. Let us call T a lower triangular generator matrix of Γ with $t_{i,i} > 0$ for every i:

$$T = \begin{pmatrix} t_{1,1} & 0 & \cdots & 0 \\ t_{2,1} & t_{2,2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ t_{n,1} & \cdots & t_{n,n-1} & t_{n,n} \end{pmatrix} \in \mathbb{Z}^{n \times n}.$$

Consider the set:

 $\mathcal{S} = \{0, 1, \dots, t_{1,1} - 1\} \times \{0, 1, \dots, t_{2,2} - 1\} \times \dots \times \{0, 1, \dots, t_{n,n} - 1\} \subseteq \mathbb{Z}^n.$

Let C be the code that underlies the construction of $\Lambda_f = C + p\mathbb{Z}^n$; we embed it in \mathbb{Z}^n via the coordinate-wise morphism $\mathbb{F}_p \hookrightarrow \{0, 1, \dots, p-1\} \subseteq \mathbb{Z}$, hence $C \subseteq \{0, 1, \dots, p-1\}^n$. Then $C + p\mathcal{S} = \{\mathbf{c} + p\mathbf{s} \in \mathbb{Z}^n : \mathbf{c} \in C, \ \mathbf{s} \in \mathcal{S}\} \subseteq \Lambda_f$ is a complete set of coset leaders of Λ_f / Λ .

イロト イヨト イヨト イヨト

Sketch of the proof

Counting points

$$|C + p\mathcal{S}| = |C||\mathcal{S}| = p^k \frac{\operatorname{Vol}(\Lambda)}{p^n} = |\Lambda_f / \Lambda|.$$

Distinct Cosets

Take $\mathbf{x} = \mathbf{c} + p\mathbf{s}$ and $\mathbf{y} = \mathbf{d} + p\mathbf{v}$ in the same coset. Then $\mathbf{x} - \mathbf{y} = \mathbf{c} - \mathbf{d} + p(\mathbf{s} - \mathbf{v}) \in \Lambda \subseteq p\mathbb{Z}^n$. We get $\mathbf{c} = \mathbf{d}$. So $\mathbf{x} - \mathbf{y} = p(\mathbf{s} - \mathbf{v}) \in \Lambda = p\Gamma$. It translates into $\mathbf{s} - \mathbf{v} \in \Gamma$, i.e. $\mathbf{s} - \mathbf{v} = \mathbf{z}T$. From the definition of S and the triangularity of T, we find $\mathbf{s} = \mathbf{v}$ which proves that $\mathbf{x} = \mathbf{y}$.

Leech Constellations of LDA Lattices (1)

Joseph Jean Boutros

Leech Constellations of LDA Lattices (2)

Joseph Jean Boutros

		Voronoi Constellations	Leech Constellations	Encoding Information	Conclusions		
Conc	lusions						

- Complexity of mapping and demapping is linear in *n*.
- With a direct sum of Λ_{24} , the shaping gain is 1.03 dB.
- With a direct sum of Λ_{24} , the gap to Shannon capacity is 0.8 dB.
- Very fast universal Sphere Decoding of Λ_{24} (Viterbo-Boutros 1999). Needed to quantize points of the information set defined by the encoding Lemma.
- Other specific decoders for the Leech lattice (Vardy-Be'ery 1993).
- Any dense integer lattice can be used for shaping. Density is presumed to bring a high kissing number of low-dimensional lattices (conjecture) which implies a Voronoi region with a small second-order moment.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Conclusions

Main Reference Paper for this Talk

Nicola di Pietro and Joseph J. Boutros,

Leech Constellations of Construction-A Lattices arXiv:1611.04417v2

January 2017

Joseph Jean Boutros

Nokia Bell Labs at Stuttgart

March 7, 2017 23 / 23

イロト イヨト イヨト イヨ