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Outline of my talk

Maximum-Likelihood (ML) Decoding over the BEC

OSD Decoding over the BI-AWGN

List of Codes for Short-Length Error Correction

Performance Results

→ Researchers and Engineers from all fields are welcome.
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The Binary Erasure Channel (BEC)

We consider the ergodic binary erasure channel (BEC). The channel input is binary
and its output is ternary. Only erasures occur on this channel, no errors.

0 0

?

11

erasure

1− ǫ

ǫ

ǫ

1− ǫ

Shannon capacity of the BEC is C = 1− ǫ bits per channel use.

Rate 1/2 code → ǫmax = 1/2. Rate 1/4 code → ǫmax = 3/4.
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Maximum-Likelihood Decoding over the BEC (1)

Linear binary code C[n, k, d]2 of length n, dimension k, rate R = k/n,
and minimum Hamming distance d.

Let G be a generator matrix of C, G is k × n.

The source vector b = (b1, ..., bk) ∈ F
k
2
.

A codeword of C is obtained by c = (c1, ..., cn) = bG ∈ F
n
2
.

There exists a generator matrix in systematic form G = [Ik|P ],
in this case c = [b | p].

Let H be a parity-check matrix of C, H is (n− k)× n.

Any codeword of C satisfies the constraint Hct = 0,
i.e. n− k parity-check equations.
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Maximum-Likelihood Decoding over the BEC (2)

Example: Extended-Shortened BCH code [n = 10, k = 5, d = 4]2.
The code has |C| = 2k = 32 codewords each of length n = 10 bits.

G =













1 0 0 0 0 1 1 1 0 0
0 1 0 0 0 0 1 1 1 0
0 0 1 0 0 1 1 1 1 1
0 0 0 1 0 1 0 1 1 0
0 0 0 0 1 1 0 0 1 1













H =













1 0 1 1 1 1 0 0 0 0
1 1 1 0 0 0 1 0 0 0
1 1 1 1 0 0 0 1 0 0
0 1 1 1 1 0 0 0 1 0
0 0 1 0 1 0 0 0 0 1













b = ( 1 0 0 1 1 ) then c = bG = ( 1 0 0 1 1 1 1 0 0 1 ).
Check Hct = ( 0 0 0 0 0 )t.
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Maximum-Likelihood Decoding over the BEC (2)

Let y = (y1 . . . yn) be the channel output. ML Decoding:

ĉ = arg max
c

P (y|c) and max
c

P (y|c) = ǫw(1− ǫ)n−w,

where w is the Hamming weight of the erasure pattern.

The ML decoder should find a unique codeword that matches
the n− w non-erased bits yi.

This codeword is solution of Hct = 0.
The decoder uses the n− k parity-check equations in H to solve c.
ML Decoding over the BEC ⇐⇒ Gaussian Elimination of H .

If w ≤ d− 1, all erased bits will be filled, whatever are the w positions.

If d ≤ w ≤ n− k (non-MDS code), erased bits may be solved for some
erasure patterns.
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ĉ = arg max
c

P (y|c) and max
c

P (y|c) = ǫw(1− ǫ)n−w,

where w is the Hamming weight of the erasure pattern.

The ML decoder should find a unique codeword that matches
the n− w non-erased bits yi.

This codeword is solution of Hct = 0.
The decoder uses the n− k parity-check equations in H to solve c.
ML Decoding over the BEC ⇐⇒ Gaussian Elimination of H .

If w ≤ d− 1, all erased bits will be filled, whatever are the w positions.

If d ≤ w ≤ n− k (non-MDS code), erased bits may be solved for some
erasure patterns.

Joseph Jean Boutros Nokia Bell Labs at Stuttgart March 6, 2017 6 / 23



Outline ML over BEC OSD over BI-AWGN Codes Performance Conclusions

Maximum-Likelihood Decoding over the BEC (3)

ML decoding via Gaussian elimination has an affordable complexity, at least in
software applications, for a code length n as high as a thousand bits.

The cost of solving Hc
t = 0 is O(n× (n− k)2).

Results shown at the end of this talk are obtained for a short length n = 256.
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The Binary-Input Additive White Gaussian Noise
(BI-AWGN) Channel

A codeword c in F
n
2
is mapped into a codeword in {±1}n, i.e. a BPSK

symbol sequence s = s(c), where si = 2ci − 1, for i = 1 . . . n.

The BI-AWGN channel output is r = s+ η, where r ∈ R
n and ηi ∼ N (0, σ2).

Take noise variance σ2 = N0

2
and energy per bit Eb =

n

k
.

The channel parameter is the signal-to-noise ratio Eb/N0.

Maximum-Likelihood Decoding, known as Soft-Decision Decoding:

The likelihood P (r|s) is proportional to exp
(

− ‖r−s‖2

2σ2

)

then

ĉ = arg max
c

P (r|s(c)) ⇐⇒ min
c

‖r − s(c)‖2 ⇐⇒ max
c

〈r, s(c)〉.

The cost of exhaustive decoding is 2k metric computations!

Near-ML reduced-complexity decoding: Ordered Statistics Decoding (OSD).
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OSD Decoding over the BI-AWGN (1)

The OSD algorithm: an efficient most reliable basis (MRB) decoding
algorithm.

Firstly proposed by Dorsch in 1974.

Further developed by Fang and Battail in 1987.

Analyzed and revived by Fossorier and Lin in 1995.

Improvements to the original OSD algorithm by Wu and Hadjicostis in 2007.

Our OSD implementation is based on several complexity-reduction rules,
Van Wonterghem, Alloum, Boutros, and Moeneclaey 2016.
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OSD Decoding over the BI-AWGN (2)

For a given channel output at discrete time i, i = 1 . . . n, the log-likelihood
ratio is

log
P (ri|ci = 0)

P (ri|ci = 1)
=

2

σ2
× ri.

The hard decision yields y = [ bHD | pHD ] where

yi =

{

0 for ri < 0

1 for ri > 0

The confidence value of a received bit is

αi = |ri| , i = 1 . . . n.

The OSD decoder input is:

The n bits yi found by hard decision.
The n confidence values αi = |ri|.

The OSD does not need to know the channel noise variance σ2.
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OSD Decoding over the BI-AWGN: order 0

G =

















1 2 3 4 5 6 7 8 9 10
1 0 0 0 0 1 1 1 0 0
0 1 0 0 0 0 1 1 1 0
0 0 1 0 0 1 1 1 1 1
0 0 0 1 0 1 0 1 1 0
0 0 0 0 1 1 0 0 1 1

















Codeword in F2:
c = ( 1 0 0 1 1 1 1 0 0 1 )

Bipolar codeword:
s = ( +1 − 1 −1 + 1 + 1 + 1 + 1 −1 − 1 + 1 )

Received noisy word:
r = ( +1.91 − 2.64 +0.54 + 1.13 + 1.23 + 1.54 + 0.56 +0.20 − 0.17 + 1.24 )

Confidence values and detected word via threshold detection:
α = ( 1.91 2.64 0.54 1.13 1.23 1.54 0.56 0.20 0.17 1.24 )
y = ( 1 0 1 1 1 1 1 1 0 1 )
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OSD Decoding over the BI-AWGN: order 0

G′ =

















2 1 6 10 5 4 7 3 8 9
0 1 1 0 0 0 1 0 1 0
1 0 0 0 0 0 1 0 1 1
0 0 1 1 0 0 1 1 1 1
0 0 1 0 0 1 0 0 1 1
0 0 1 1 1 0 0 0 0 1
















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


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





Codeword in F2:
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Bipolar codeword:
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Sorted threshold detection:
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Re-encoding from MRB (the 5 bits on the left, i.e. the most confident):
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Final codeword (order-0 OSD):
ĉ = ( 1 0 0 1 1 1 1 0 0 1 ) = c
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OSD Decoding over the BI-AWGN: order 1

Consider the k most confident bits on the left (MRB).

Flip one bit out of k, i.e. add an error pattern of weight 1.

This will generate k codeword candidates.

From order 0 and order 1, now we have 1 + k codeword candidates.

Keep the best candidate according to 〈r, s(ĉ)〉.
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OSD Decoding over the BI-AWGN: order 2

Consider the k most confident bits on the left (MRB).

Flip two bits out of k, i.e. add an error pattern of weight 2.

This will generate
(

k

2

)

= k(k − 1)/2 codeword candidates.

From order 0, order 1, and order 2, now we have 1+ k+ k(k− 1)/2 codeword
candidates.

Keep the best candidate according to 〈r, s(ĉ)〉.
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OSD Decoding over the BI-AWGN: order ℓ

Consider the k most confident bits on the left (MRB).

Flip ℓ bits out of k, i.e. add an error pattern of weight ℓ.

This will generate
(

k

ℓ

)

codeword candidates.

From order 0 up to order ℓ, now we have
∑ℓ

i=0

(

k

i

)

codeword candidates.

Keep the best candidate according to 〈r, s(ĉ)〉.

The complexity of OSD is O
(

kℓ
)

.

The OSD is asymptotically optimal if ℓ ≥ min{⌈d/4− 1⌉, k} (Fossorier & Lin
1995). The OSD order is taken to be much smaller when improvement rules are
applied, e.g. skipping rule based on weighted Hamming distance or the use of
multiple MRB.
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List of Codes for Short-Length Error Correction

Reed-Muller codes: The code length is n = 2ℓ. Take Arikan’s kernel
G2 (Arikan 2008) and build its Kronecker product ℓ times, i.e. build G⊗ℓ

2
.

Select the k rows of largest Hamming weight to get the k × n gen. matrix.

Polar codes: As for Reed-Muller codes, k rows are selected from G⊗ℓ

2
. These

rows correspond to highest mutual information channels after ℓ splittings. We
used Density Evolution for the BI-AWGN channel.

BCH codes: Standard binary primitive (n, k, t) BCH codes are built from their
generator polynomial (Blahut 2003). An extension by one parity bit is made
to get an even length.

LDPC codes: Regular (3,6) low-density parity-check codes are built from a
random bipartite Tanner graph (Richardson & Urbanke 2008). Length-2
cycles are avoided, the number of length-4 cycles is reduced, but no other
constraint was applied to the graph construction.
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Joint Decoding of Codes with CRC

I. Tal and A. Vardy (2011):
Cyclic redundancy check (CRC) code to improve list decoding of polar codes.

Our Approach:

Let G be the k × n generator matrix of C.

Let GCRC be the (k −m)× k generator matrix of the CRC code.

Joint OSD decoding is based on the following generator matrix:

GCRC ×G.

We considered m = 16 redundancy bits and the CRC-CCITT code with
generator polynomial

g(x) = x16 + x12 + x5 + 1.

The CRC will scramble the original matrix G making any code C look like a
random code.
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Linear Binary Codes over the BEC, No CRC

10-4

10-3

10-2

10-1

100

 0.25  0.3  0.35  0.4  0.45  0.5

epsilon

Regular LDPC (256,128) - BP
Polar code (256,128) - ML
RM code (256,128) - ML
Regular LDPC (256,128) - ML
BCH code (256,131) - ML
PPV bound R = 128/256

Van Wonterghem, Alloum, Boutros, Moeneclaey, 2016
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Linear Binary Codes over the BEC, 16-bit CRC

10-4

10-3

10-2

10-1

 0.44  0.45  0.46  0.47  0.48  0.49  0.5

epsilon

Polar code + CRC (256,112) - ML
RM code + CRC (256,112) - ML
Regular LDPC + CRC (256,112) - ML
BCH code + CRC (256,115) - ML
PPV bound R = 112/256

Van Wonterghem, Alloum, Boutros, Moeneclaey, 2016
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Linear Binary Codes over the BI-AWGN, No CRC
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Linear Binary Codes over the BI-AWGN, 16-bit CRC
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Conclusions

A universal optimal/near-optimal decoder was used: the ML decoder for the
BEC (via Gaussian elimination) and the OSD soft-decision decoder for the
binary-input AWGN channel.

BCH code outperforms Reed-Muller, Polar, and LDPC codes on both
channels.

Under CRC with joint decoding, the different codes lie much closer together
and the choice of a good error-correcting code is not so critical.

More details are found in our paper: “Performance Comparison of
Short-Length Error-Correcting Codes”, by J. Van Wonterghem, A. Alloum,
J.J. Boutros, and M. Moeneclaey, IEEE SCVT 2016, Belgium, Nov. 2016.
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BCH Minimum Distance versus Bounds
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Normalized Rates of Codes over BI-AWGN, P
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