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Introduction

Motivation:

1 Split a complex problem into two or more simpler sub-problems.

2 Under a given optimality criterion, aim at finding the optimal solution with a
reasonable complexity.

3 Iterative methods are useful for both design (e.g. compound codes) and
optimization (e.g. iterative decoding).

Where?

1 Iterative methods exist in numerical analysis and other fields in mathematics.

2 They appeared in the field of digital transmission at least since the mid 50’s.

In coding and information theory
In communications theory
In signal processing
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Key Dates & Papers (1/2)

All ingredients are here for the birth of modern coding/communication theory.

P. Elias, Product codes and iterative decoding, 1954.

Lloyd and MacQueen, The k-means algorithm, 1957-1967.

R. Gallager, Low-Density Parity-Check (LDPC) codes, 1962.

Baum, Petrie, Soules, and Weiss, The Baum-Welch algorithm, 1970.

Blahut & Arimoto, Computation of channel capacity, 1972.

Bahl, Jelinek, Coke, and Raviv, The forward-backward algorithm, 1974.

Hartmann & Rudolph, APP decoding based on the dual code, 1976.

Dempster, Laird, and Rubin, The Expectation-Maximization algorithm, 1977.

G. Battail, Replication decoding & Soft output Viterbi, 1979-1987.

M. Tanner, Graph codes and iterative algorithms, 1981.

J. Pearl, Probabilistic reasoning in intelligent systems, 1988.
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Key Dates & Papers (2/2)

The era of capacity achieving codes.

Berrou & Glavieux, Parallel Turbo Codes, 1993.

D. Mackay, Rediscovery of LDPC codes and new improvements, 1995.

Luby, Mitzenmacher, Shokrollahi, Spielman, and Stemann, Irregular LDPC
codes, 1997.

More recent papers (1998-2005) can be found in IEEE journals and other
scientific publications.
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Toy Example

Alternate optimization by Csiszár & Tusnady (1984).
Toy example: Find the minimum distance between two sets A and B.
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Set A

Set B

Exhaustive search: |A| × |B| = O(n2) metric computations. It is possible to
find the minimum distance after O(n) metric computations.
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Iteration 1 - Initialize
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Iteration 1 - Minimize distance
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Iteration 2 - Initialize
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Iteration 2 - Minimize distance
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Iteration 3 - Initialize

���
�

���
�

���
�

���
�

��	
	



�
�

��




���
�

���
�

���
�

���
�

���
�

���
�

���
�

���
�

���
�

  !
!

""#
#

$%$%$%$$%$%$%$$%$%$%$$%$%$%$$%$%$%$

&%&%&%&&%&%&%&&%&%&%&&%&%&%&&%&%&%&

'%'%'%'%''%'%'%'%''%'%'%'%''%'%'%'%''%'%'%'%''%'%'%'%''%'%'%'%'

(%(%(%((%(%(%((%(%(%((%(%(%((%(%(%((%(%(%((%(%(%(
Set A

Set B

Joseph J. Boutros AUST, Lebanon April 19, 2006 9 / 28



Introduction Erasure Channel Asymptotic Analysis Soft Channels Iterative Receivers Conclusions

Iteration 3 - Minimize distance
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Codes on graphs for the erasure channel

We consider the ergodic binary erasure channel (BEC). The channel input is binary
and its output is ternary. Only erasures occur on this channel, no erros.

0 0

?

11

erasure

1 − ε

ε

ε

1 − ε

Shannon capacity of the BEC is C = 1− ε bits per channel use.

Rate 1/2 code → εmax = 1/2. Rate 1/4 code → εmax = 3/4
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Bipartite graph representation, the Tanner Graph (1/2)

We build a code defined by a graph in order to fill erasures on the BEC.

A low-density parity-check (LDPC) code of length N bits and dimension K is
defined by a bipartite graph.

Bitnodes are drawn as circles, checknodes are drawn as squares.

SPC
(3, 2)2

c1

c2

c3

PCE: c1 + c2 + c3 = 0

For a regular (db, dc) LDPC, bitnodes have degree db and checknodes have
degree dc. The coding rate is

Rc =
K

N
≥ 1− db

dc

Joseph J. Boutros AUST, Lebanon April 19, 2006 12 / 28
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Bipartite graph representation, the Tanner Graph (2/2)

RANDOM

GRAPH

degree = 3 degree = 6
SPC (6, 5, 2)

1000 bit nodes 500 subcode nodes

Tanner graph of an LDPC code, length N = 1000, dimension K = 500, coding
rate Rc = 1/2. The 3000 edges are chosen at random.
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Decoding algorithm

The number of checknodes is denoted by L = N −K.
In the presence of a uniform source encoded by an LDPC(N,K) code whose
codewords are transmitted on an iid BEC channel, the iterative non probabilistic
decoding algorithm is given by the following steps:

Step 0: Initialize Iter = 0 and j = 1.

Step 1: Count the number µ of erased bits connected to checknode j.

Step 2: If µ = 1 then fill the erased bit by summing other bits modulo 2.

Step 3: Increment j. If j > L then increment Iter and set j = 1.

Step 4: If Iter > MaxIter then Stop else Goto Step 1.

Joseph J. Boutros AUST, Lebanon April 19, 2006 14 / 28
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Regular (3,6) binary LDPC, N = 1000, K = 500, iid BEC
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Joseph J. Boutros AUST, Lebanon April 19, 2006 15 / 28



Introduction Erasure Channel Asymptotic Analysis Soft Channels Iterative Receivers Conclusions

Analysis of iterative decoding (1/3)

Assume an infinite length code with a graph representation without cycles (tree
representation). The local neighborhood of a bitnode υ in a regular (3,6) LDPC
code is shown below. Let pi denote the erasure probability at iteration i.

PCE2

PCE3

One Iteration

Level $i$

Level $i+1$

PCE1

pi+1

υ
Channel observation (p0)

pi pi

It is trivial to prove that

pi+1 = p0 ×
(
1− (1− pi)

5
)2
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Analysis of iterative decoding (2/3)

Plot of the transfer function f(x) = p0(1 − (1 − x)5)2 (in blue) versus y = x (in green).
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Joseph J. Boutros AUST, Lebanon April 19, 2006 17 / 28



Introduction Erasure Channel Asymptotic Analysis Soft Channels Iterative Receivers Conclusions

Analysis of iterative decoding (3/3)

Plot of the transfer function f(x) = p0(1 − (1 − x)5)2 versus y = x.
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Evolution for irregular codes (1/2)

An LDPC code is said to be ’irregular’ if graph nodes of same kind do not
have equal degree.

Left irregularity: Bitnodes have different degrees. The fraction of edges
connected to bitnodes of degree i is λi. The degree distribution is defined by

λ(x) =

db∑

i=1

λix
i−1

where λ(1) = 1 and 0 ≤ λi ≤ 1 ∀i.
Right irregularity: Checknodes have different degrees. The fraction of edges
connected to checknodes of degree j is ρj . The degree distribution is defined
by

ρ(x) =

dc∑

j=2

ρjx
j−1

where ρ(1) = 1 and 0 ≤ ρj ≤ 1 ∀j.
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Evolution for irregular codes (2/2)

By looking to the tree neighborhood of a graph node, it is easy to show that
erasure probability pi after LDPC decoding at iteration i on the binary erasure
channel satisfies

pi+1 = p0 × λ(1− ρ(1− pi))

where p0 = ε is the channel erasure probability.

The stability condition of the fixed point at the origin is obtained by writing
that f ′(0) < 1. Thus, the necessary and sufficient condition for stability of 0 is

λ′(0)× ρ′(1)× p0 < 1

For a general type of channels, assume that all-zero codeword is transmitted

(geometrical uniformity is satisfied). If log-ratios are used, LR = log
(

P (0)
P (1)

)

,

then the fixed point is at +∞. The stability condition becomes

λ′(0)ρ′(1)

∫ +∞

−∞

p0(x)e−x/2dx < 1

Joseph J. Boutros AUST, Lebanon April 19, 2006 20 / 28
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APP Decoding of Binary SPC Codes (1/2)

Let us describe the soft-input soft-output (SISO) decoder which is capable of
determining the a posteriori probability APP (ci) = P (ci|r, PCE) for each bit ci.

The observation of ci is a probability proportional to the channel likelihood

obs(ci) ∝ p(ri|ci) ∝ exp(− (ri − I(ci))
2

2σ2
n

)

The a priori information π(ci) is produced by a genie. Any other code
connected to our code is a potential genie. Write π(ci) = 1/2 when no a
priori information is available.

The extrinsic information is generated by the SISO decoder based on the PCE
constraint. It can be considered as a new a priori information produced by our
decoder. For example, since c1 = c2 + c3 + . . . + cn, the SISO-APP decoder
computes Extr(c1) as follows:

Extr(c1 = 1) =
1

2
×
(

1−
n∏

i=2

(1− 2pi)

)

where pi ∝ πi(ci = 1)× obs(ci = 1).
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computes Extr(c1) as follows:

Extr(c1 = 1) =
1

2
×
(

1−
n∏

i=2

(1− 2pi)

)

where pi ∝ πi(ci = 1)× obs(ci = 1).
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APP Decoding of Binary SPC Codes (2/2)

The a posteriori probability, given the total observation r, some apriori
information πi and the SPC code constraint, is proportional to the product of
the two opposite streams on a graph edge,

APP (ci) ∝ πi × obs(ci)×Extr(ci)

Information Propagation

from left to right

Information Propagation

from right to left

c1

c2

c3

(3, 2)

π1

π2

π3

π1.obs(c1)

π3.obs(c3)

Extr(c1)

Extr(c3)

π2.obs(c2)

Extr(c2)

The proportionality factors are determined by forcing the following sum:
APP (ci = 0) + APP (ci = 1) = 1.
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(3,6) LDPC, N = 10000, K = 5000, BPSK + AWGN
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Regular(6,3) LDPC code, length=10000 bits, dimension=5000, Gaussian channel, BPSK

Random Regular Graph

Probabilistic Decoding (exact sum-product)

Shannon Limit

BPSK Input
0.5 bits/dimension

BIT ERROR PROBABILITY versus Eb/N0

1 iteration
10 iterations
32 iterations
64 iterations

128 iterations
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Iterative APP detection for MIMO channels (1/2)

Consider a frequency non-selective multiple-input multiple-output (MIMO) channel
with nt transmit antennas and nr receive antennas.

yxb M−QAM
mapper

MIMO
channel

Channel coefficients are given by the entries of a nt × nr matrix H = [hij ],
where hij is the complex fading of the channel path linking transmit antenna
i to receive antenna j.

The channel output is
y = xH + η

where x ∈ (M −QAM)nt ⊂ Cnt , y ∈ Cnr , and η is an additive white
complex gaussian noise vector.

A multidimensional alphabet Ω = (M −QAM)nt of size Mnt = 2mnt .
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Iterative APP detection for MIMO channels (2/2)

The observation of a multidimensional symbol is

obs(x) ∝ p(y|x) ∝ exp

(

−‖y− xH‖2
2σ2

)

Independent a priori information π(x) =
∏mnt

j=1 π(bj).

The a posteriori probability for a complex QAM symbol is

APP (xi) =
∑

x∈Ω|xi

APP (x) ∝
∑

x∈Ω|xi

obs(x)

nt∏

`=1

π(x`) ∝ π(xi) Extr(xi)

The a posteriori information for binary elements is

APP (bj) ∝ π(bj)
∑

x∈Ω|bj

obs(x)
∏

`6=j

π(b`)

︸ ︷︷ ︸

Extr(bj)
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Iterative APP detection for CDMA (1/2)

Consider a chip synchronous code division multiple access channel for K users.

AWGN

x1

xK

xi

wi

w1

wK

y

Symbols xi belong to a linear modulation, e.g. xi = ±1.

Channel gain coefficient for user i is ωi.

Equations for APP multiuser (CDMA) detection are similar to those
encountered in MIMO detection.
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Iterative APP detection for CDMA (2/2)
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Iter 16
Single user performance

Iterative APP joint detection in CDMA with K = 4 users on a gaussian channel. The

NRNSC code is a rate 1/4 16-states (25,27,33,37) for all users. Same SNR per bit for all

users. Each user pseudo-randomly interleaves its N = 8192 bits before transmitting on

the multiple access channel. No PN spreading. System load is 100%.
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Conclusions

Concatenating simple elementary codes leads to powerful compound codes.

Iterative decoding/detection is an efficient tool in compound coding systems.

Iterative processing of information opens a new era in coding and
communications.

Future telecommunications products will benefit from iterative probabilistic
processing in order to boost performance and to gain in flexibility and
compatibility.

Supplementary references have been cited by the speaker during the talk.
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