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Abstract—We generalize probabilistic amplitude shaping (PAS)
with binary codes [1] to the case of non-binary codes defined over
prime finite fields. Firstly, we introduce probabilistic shaping
via time sharing where shaping applies to information symbols
only. Then, we design circular quadrature amplitude modulations
(CQAM) that allow to directly generalize PAS to prime finite
fields with full shaping.

I. INTRODUCTION

Shaping refers to methods that adapt the signal distribu-
tion to a communication channel for increased transmission
efficiency. Shaping is eventually important for optimal infor-
mation transmissions [4] and various solutions starting with
non-linear mapping over asymmetric channel models towards
pragmatic proposals involving shaped QAM signaling have
been investigated and/or implemented over the years.

More precisely, building upon early works on, e.g., many-
to-one mapping, research efforts from the 70s towards the
90s derive conceptual frameworks and methods to reduce
the shaping gap in communication systems. Exploiting the
principles of coded modulation, a sequence of works [5]–
[12] present operational methods to reduce the shaping gap.
Compared to cubic constellations, up to πe

6 ≈ 1.53dB of shap-

ing gain is achievable using well-adapted signaling. Simple
methods such as trellis shaping or shell mapping permit to
recover a significant fraction of the 1.53dB figure. Exam-
ples of applications include the ITU V.34 modem standard
recommendations that uses shell mapping to recover 0.8dB.
While several shaping schemes are based on the structural
properties of lattices [13]–[15], more randomized schemes also
emerge after the re-discovery of probabilistic decoding in the
90s. With the advent of efficient binary codes, different coded
modulation schemes were proposed offering flexible and low-
complex solutions [17]. In the 2000s, despite the important de-
velopment of wireless communications, the need for advanced
shaping methods seems to have remained marginal. From
a technological viewpoint, this may have been justified by
the high variations of the channel in wireless communication
networks. From an academic viewpoint, schemes have been
analyzed and match the capacity-achieving distribution of a
channel in different theoretical scenarios [18]–[20]. In the last
few years, industrial applications of shaping methods have re-
gained interest. This concerns areas where current technologies
operate close to fundamental limits. For example, different
methods have been experimented in optical communications
[26], [27]. Hence, because there are already efficient VLSI

implementations of contemporary coding schemes that have
been proven to asymptotically achieve capacity with constant
complexity per information unit [17], [21]–[23], it is then
natural to combine them with efficient shaping methods.

In probabilistic shaping, for linear digital modulations, the a

priori probability distribution of modulation points is modified
to match a discrete Gaussian-like distribution, namely the
Maxwell-Boltzmann distribution [3]. The method aims at
maximizing the mutual information with respect to the same
modulation where all points are equally likely. For special 2m-
ASK and 2m-QAM constellations with linear binary codes,
this method is equivalent to probabilistic amplitude shaping
(PAS) where uniformly-distributed parity bits are assigned to
the sign of a constellation point [1], [2]. In this paper, we
generalize this method to the non-binary case. The goal is
to permit the use of efficient non-binary codes in order to
enable low-latency processing (reducing the need for ‘Turbo’-
detection [17]). Also, from an algebraic viewpoint, a character-
istic p > 2 of the finite field Fpm on which coding is built leads
to new interesting problems such as distribution matching in
Fpm and assigning a constellation points to elements in Fpm .

In this paper, codes are supposed to be linear and de-
fined over Fp, where p is an odd prime. Firstly, except for
codes with a sparse generator matrix, we show in Section II
that parity symbols are asymptotically uniformly-distributed
over Fp. This fact is used to derive two new methods for
probabilistic shaping. Time sharing is proposed in Section III
where symbols of a p-ary code are mapped into p-ASK points.
Hence, in time sharing, probabilistic shaping is performed only
when information symbols are transmitted. Full probabilistic
shaping is described in Section IV where circular QAM
(CQAM) constellations of size p2 points are introduced. This
second method assigns a constellation shell to a Maxwell-
Boltzmann-distributed information symbol and then a parity
symbol selects a point within that shell. Numerical results
for p-ASK-based time sharing and p2-CQAM probabilistic
shaping are shown in Section V. Similar to the binary case [1],
a gap to channel capacity of 0.1 dB or less is observed for
CQAM constellations.

II. SUM OF RANDOM VARIABLES IN A PRIME FIELD

Lemma 4.1 in [16] established the expressions of the
probability of a sum in F2. We translate this result to a
prime field Fp = Z/pZ. Principles of this extension to the
non-binary case are implicit from Chapter 5 of [16] with



the use of the z-transform. Nevertheless, we give here the
exact expression of the probability of a sum of prime random
symbols modulo p. This expression is directly related to
Hartmann-Rudolph symbol-by-symbol probabilistic decoding
[24] in the special case of a single-parity check code and its
generalization to characteristic p [25].

Lemma 1: Let p be a prime and Fp = {0, 1, · · · , p − 1}
be the associated finite field. Consider a sequence {sℓ}mℓ=1 of
m independent symbols over Fp in which the ℓ-th symbol is
β ∈ Fp with probability

Pr{sℓ = β} = qℓ(β).

Then, for any k ∈ Fp, the probability that the sum of the sℓ’s
equals k is

Pr{
m
∑

ℓ=1

sℓ = k} =
1 +

∑p−1
i=1

∏m
ℓ=1

(

∑p−1
β=0 qℓ(β)ω

iβ−k+1
)

p
,

where ω
def
= exp(2π

√
−1/p) indicates the p-th root of unity.

Proof 1: Consider the enumerator function in t,

Q(t)
def
=

m
∏

ℓ=1

(

p−1
∑

β=0

qℓ(β)t
β
)

mod (tp − 1). (1)

Observe that if this is expanded into a polynomial in t (where
degree operations are taken mod p), the coefficient of tk is the
probability that the sum of m symbols is k, which we write

Pr{
m
∑

ℓ=1

sℓ = k} = coef[Q(t), tk]. (2)

Let us also define for any k ∈ {0, 1, 2, · · · , p − 1} the
function

Qk(t) = t−kQ(t) mod tp − 1. (3)

In an identical manner as for Q(t), expanding Qk(t) would
enumerate the probabilities of the sum of the sℓ’s. Recall
that the p-th root of unity in the complex plane satisfies
∑p−1

i=0 ωki = 0 for any k ∈ {1, 2, · · · , p − 1}. Then, for any
k ∈ Fp, we have

Pr{
m
∑

ℓ=1

sℓ = k} =
1

p

p−1
∑

i=0

Qk(ω
i) (4)

because all but the constant polynomial terms are annihilated
from the fact that the roots of unity sum to zero. It remains
to evaluate the expression observing that ω0 = 1 to get the
results. !
This lemma shows that, if a sℓ is uniformly distributed over
Fp, then the sum is also uniformly distributed. Furthermore,
for any ℓ, it is straightforward from convexity arguments that
the weighted sum

∑p−1
β=0 qℓ(β)ω

iβ in the complex plane lies
inside the unit circle in the strict sense if and only if one of the
probability distribution qℓ is not degenerated in one singular
point. Therefore, assuming that the norm tends to be smaller
and bounded away from 1, the distribution of the infinite sum
tends to be uniform. It remains to summarize this observation
in a theorem.

Theorem 1: Let p be a prime and Fp = {0, 1, · · · , p − 1}
be the associated finite field. Consider a sequence {sℓ}ℓ≥1

of independent random symbols over Fp with respective
probability distributions {(qℓ(0), qℓ(1), · · · , qℓ(p − 1))}ℓ ≥ 1
such that lim supℓ→∞{maxp(qℓ(p))} < 1. Then

∀k ∈ Fp, lim
m→∞

Pr{
m
∑

ℓ=1

sℓ = k} =
1

p
. (5)

For error-correction over a prime field, this observation is
interesting as follows. The limit theorem over Fp indicates that
the non-systematic symbols obtained from a linear encoder
associated with a dense generator matrix will tend to have a
uniform distribution independently on the input distribution.

III. PROBABILISTIC SHAPING VIA TIME SHARING OVER

PRIME FIELDS

A common mapping between non-binary codes and non-
binary modulations is to select a constellation and a finite field
of identical size. Let p be a prime integer, p > 2. Consider
the set of p points shown in Figure 1, known as p-ASK mod-
ulation. This p-ASK set A = {− p−1

2 , . . . ,−1, 0, 1, . . . , p−1
2 }

is isomorphic to the finite field Fp (a ring isomorphism in
Z). Symbols from Fp are one-to-one mapped into p-ASK
points. We embed Fp into Z such that a symbol s ∈ Fp

and its corresponding point in A satisfy x − s = 0 mod p.
There are many advantages for such a simple structure

−1 0 1 + p−1
2− p−1

2

one−to−one mapping

Fp = {0, 1, . . . , p− 1}

p-ASK

Fig. 1: Real p-ASK constellation isomorphic to Fp.

where the source is p-ary, the linear code is over Fp, and
p-ary modulation points are transmitted over the channel.
Firstly, a probabilistic detector needs no conversion between
modulation points and code symbols. A channel likelihood,
after normalization, is directly fed as a soft value to the input
of a probabilistic decoder. Secondly, turbo detection-decoding
between the constellation A and the code C is not required
as for binary codes with non-binary modulations [17].

Consider a systematic linear code C over Fp where parity
symbols satisfy Theorem 1, i.e., check nodes used for encoding
have a relatively high degree. Many practical error-correcting
codes do satisfy this property, such as LDPC codes over
Fp. Let Rc = k/n be the coding rate of C, where n is
the code length and k is the code dimension. Assume that
information symbols s1, s2, . . . , sk at the encoder input are
identically distributed according to an a priori probability
distribution {πi}p−1

i=0 . Let PMB(x, ν) ∝ exp(−ν|x|2) be a
discrete Maxwell-Boltzmann distribution [3] with parameter
ν ≥ 0. The a priori distribution {πi} is taken to be

π0 = PMB(0, ν) ∝ 1, (6)

πi = πp−i = PMB(i, ν) ∝ exp(−νi2), (7)



for i = 1 . . . p−1
2 . The average energy per point for the p-ASK

constellation, denoted by Es, is given by

Es =
∑

x∈A

PMB(x, ν) |x|2 = 2

(p−1)/2
∑

i=1

πi i
2. (8)

From Theorem 1 and (6)&(7), a fraction Rc of transmit-
ted ASK points corresponding to information symbols are
Maxwell-Boltzmann-shaped and a fraction 1 − Rc of ASK
points corresponding to parity symbols is uniformly distributed
in the constellation. We refer to this coding scheme as proba-
bilistic shaping via time sharing. The target rate should be the
average information rate (expressed in bits per real dimension)

Rt = Rc log2(p) = RcI(Xs;Y ) + (1−Rc)I(Xp;Y ), (9)

where the two random variables Xs, Xp ∈ A satisfy Xs ∼ πi

and Xp ∼ 1/p. The random variable Y represents the output
of a real additive white Gaussian noise channel, where additive
noise has variance σ2 = N0

2 . For a given target rate Rt,
the Maxwell-Boltzmann parameter ν is chosen such that the
signal-to-noise ratio γ = Es/N0 attaining Rt is minimized.
Let γA be that minimum. We also define two signal-to-noise
ratios γcap and γunif such that

Rt =
1

2
log(1 + 2γcap), and Rt = I(Xp;Y ), for γ = γunif.

Then, the gap to capacity and the shaping gain (expressed
in decibels) are respectively given by γA(dB)−γcap(dB) and
γunif(dB)−γA(dB). In this time sharing scheme, probabilistic
shaping is made only during a fraction Rc of transmission
time. This method is attractive due to isomorphism between
the field Fp and the p-ASK constellation. From (9), one may
quickly conclude that high coding rate is recommended to
approach full-time probabilistic shaping. However, at Rc close
to 1, the mutual information I(X ;Y ), for X ∈ A, approaches
its asymptote log2(A) = log2(p) and the required signal-to-
noise ratio γA goes far away from γcap. This is clearly shown
in the numerical results presented in Section V. A method for
full probabilistic shaping is proposed in the next section.

IV. PROBABILISTIC SHAPING VIA p2-CIRCULAR QAM
OVER PRIME FIELDS

We propose in this section a coded modulation scheme that
allows full probabilistic shaping of all transmitted symbols
with a non-binary linear code over Fp. Probabilistic amplitude
shaping with binary codes maps uniformly-distributed parity
bits into the sign of an ASK point [1]. Parity bits do not
perturb amplitude shaping because 2m-ASK = B

⋃

−B,
where B = {1, 3, . . . , 2m − 1}. This sign mapping is not
valid with a prime finite field Fp, p > 2. The key idea in
our new coded modulation is to assign the parity symbol to p
modulation points with the same amplitude via multiplication
with a p-th root of unity. This is a direct generalization
of the sign mapping to p-ary mapping. The linear p-ary
code is assumed to be systematic. Its information symbols
become amplitude labels in the modulation. We propose a
bi-dimensional constellation with p2 points, referred to as

p2-circular quadrature amplitude modulation (p2-CQAM). A
circle containing CQAM points of the same amplitude will be
called a shell. The p2-CQAM includes p shells with p points
per shell. As for antipodal symmetry of 2m-ASK, the CQAM
satisfies circular symmetry

p2-CQAM =
p−1
⋃

i=0

ei
2π

p

√
−1 B, (10)

where B is a set of p points from p distinct shells. Such
a bi-dimensional constellation is not unique. Indeed, many
ways do exist to build p shells and populate each shell with
p points. As a consequence, we introduce a figure of merit
for a constellation [6] and we build a specific p2-CQAM
constellation that maximizes this figure of merit.

Definition 1: Consider a finite discrete QAM constellation

A ⊂ C. Assume that
∑

x∈A x = 0. Let Es =
∑

x∈A
|x|2

|A| be the
average energy per point, assuming equiprobable points. Let
d2Emin(A) = minx,x′∈A,x ̸=x′ |x−x′|2 be the minimum squared
Euclidean distance between the points of A. A figure of merit
FM for A is defined by the following expression:

FM (A) =
d2Emin(A)

Es
· log2(|A|). (11)

The log2(|A|) factor is arbitrary, it is used in the above defini-
tion to normalize the squared minimum Euclidean distance by
bit energy instead of point energy. This may be useful when
comparing two constellations of different sizes.

Now, we build a p2-CQAM constellation A that maximizes
FM (A) by populating the p shells as follows:

1) For the first CQAM shell (i = 0), draw p uniformly-
spaced points on the unit circle. The points are xℓ =
exp(ℓ 2πp

√
−1), for ℓ = 0 . . . p − 1. Here, we impose

the constellation minimum distance to be the distance
between two consecutive points of the first shell,

dEmin(A) = 2 sin(
π

p
). (12)

2) Assume that shells 0 to i − 1 are already built. Let
xip = ρi exp(φi

√
−1) be the first point of the i-th

shell. The p − 1 remaining points on this shell are
xip+ℓ = ρi exp((φi + ℓ 2πp )

√
−1), ℓ = 1, . . . p − 1.

Let d2i = minℓ=0...ip−1 |xip − xℓ|2 be the minimum
distance between the first point of the current shell and
all previously constructed points. The radius ρi and the
phase shift φi are determined by an incremental search:

• Start with ρi = ρi−1 and increment by a step ∆ρ.
• At each radius increment, vary φi from π/p to

−π/p.
• Stop incrementing the radius ρi and the phase shift

φi when d2i ≥ d2Emin(A). Now, xip is found.

3) Repeat the second construction step until completing
the p-th shell of the p2-CQAM constellation.

The p2-CQAM obtained with the construction described above
has the circular symmetry required by PAS over Fp.
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Fig. 2: Bi-dimensional p2-CQAM constellation for p = 5, 7, 11 from left to right.

Examples of circular QAM modulations for probabilistic
amplitude shaping are shown in Figure 2, for p = 5, 7, 11
respectively. Points are drawn as small circles in red. Blue
segments connect points located at minimum Euclidean
distance. By the given construction, the inner radius of
the p2-CQAM is ρin = 1, ∀p. The outer radius ρout varies
slightly with p but limp→∞ ρout = ρout(∞) ≈ 3.6. This limit
exists because the sequence ρout(p) is increasing with p and
bounded from above by 1 + (p − 1)dEmin(A) ≤ 1 + 2π.
The limitation of the Maxwell-Boltzmann probability mass
function to amplitudes between ρin = 1 and ρout(∞)
is a major drawback. This short interval [1, ρout(∞)[ is
shifted away from the origin and is not large enough to
yield a good Gaussian-like discrete distribution. In the
next section, the shells radii are modified to get a wider
amplitude range, the p2-CQAM phase shifts are kept invariant.

Let s1, s2, . . . , sk be i.i.d. information symbols with a priori
probability distribution {πi}p−1

i=0 , as in the previous section.
Then, for points xip+ℓ ∈ A, i, ℓ = 0 . . . p − 1, the prior
distribution becomes

π(xip+ℓ) =
πi

p
=

PMB(|xip|, ν)
p

. (13)

In presence of the above distribution, the signal-to-noise
ratio should be defined with an average energy per point
Es =

∑p−1
i=0 πi|xip|2. Furthermore, the circular symmetry of a

p2-CQAM facilitates the numerical evaluation of average mu-
tual information. The general expression of I(X ;Y ) with p2

integral terms reduces to p terms only. The mutual information
I(X ;Y ) is given by

p−1
∑

i=0

πi

∫

y∈C

p(y|xip) log2

(

p(y|xip)
∑p2−1

ℓ=0 π(xℓ)p(y|xℓ)

)

dy.

The Maxwell-Boltzmann parameter ν in (13) is chosen such
that 2Rt = 2Rc log2(p) = I(X ;Y ) at a minimal value of
signal-to-noise ratio Es/N0 = γA, where Rt is the target rate
per real dimension. The gap to capacity is determined by the
difference γA−γcap with γcap satisfying 2Rt = log2(1+γcap).

Given the a priori distribution {πi}p−1
i=0 of symbols in the

finite field Fp, the linear code C[n, k]p and the p2-CQAM
constellation should be combined together as illustrated in
Figure 3. Suppose that Rc = 1/2 and say that s1 ∈ Fp

is an information symbol (encoder input) and p1 ∈ Fp is a
parity symbol. Then, s1 should be shaped by the distribution
matcher (DM) according to {πi}p−1

i=0 [2]. The symbol s1 will
be used to select a shell in the p2-CQAM and the parity
symbol p1 will uniformly select a point on that shell. Similarly,
suppose that Rc = 2/3 and consider four information symbols
s1, s2, s3, s4 and two parity symbols p1, p2. The DM shall
generate s1, s2, s3 according to the distribution {πi}p−1

i=0 and
select the shell of three p2-CQAM points. The symbol s4
is read directly from a uniform i.i.d p-ary source. Given the
shells of three points, uniformly-distributed symbols s4, p1, p2
constitute the points indices inside those shells. In the general
case, n/2 symbols in Fp with probability distribution {πi} are
read from the DM and mapped into a shell number for n/2
CQAM points. The probabilistic shaping is due to these n/2
symbols. On the other hand, k − n/2 uniformly-distributed
symbols are directly read from the source. Together with
n− k parity symbols, i.e., a total of n/2 symbols, uniformly-
distributed symbols in Fp determine the phase of CQAM
points within constellation shells.

Encoder
Merge

DM

select point
within shell

select shell

Mapper
sn

2
+1, . . . , sk

over Fp p1, . . . , pn−k

s1, . . . , sn

2

p
2-CQAM n

2 points

Fig. 3: Full probabilistic amplitude shaping with p2-CQAM.

Our p-ary coded modulation suited for probabilistic shaping
assumes that Rc ≥ 1/2, i.e., k ≥ n/2. Coding rates in the
interval [0, 1/2[ are less attractive for probabilistic amplitude
shaping because, for small Rc, a constellation with equiprob-
able points already shows a rate that is too close to channel
capacity in terms of signal-to-noise ratio.



V. NUMERICAL RESULTS

Two typical values of p are considered in this section,
namely p = 7 and p = 13. The target rate herein is expressed
in bits per real dimension for both real and complex
constellations. Gaps and gains are expressed in decibels.

Size Coding Target Potential Gap Effective
p Rate Rate Gain to cap. Gain
7 2/3 1.871 0.817 0.331 0.485
7 3/4 2.105 0.982 0.428 0.553
7 4/5 2.245 1.105 0.546 0.559
7 17/20 2.386 1.283 0.753 0.530
7 9/10 2.526 1.588 1.133 0.455
7 19/20 2.666 2.232 1.916 0.316

13 2/3 2.466 0.997 0.346 0.651
13 3/4 2.775 1.129 0.376 0.753
13 4/5 2.960 1.214 0.443 0.771
13 17/20 3.145 1.328 0.593 0.735
13 9/10 3.330 1.549 0.915 0.633
13 19/20 3.515 2.096 1.658 0.438

TABLE I: Signal-to-noise ratio gain (dB) of probabilistic
shaping via time sharing for 7-ASK and 13-ASK.

For probabilistic amplitude shaping via time sharing,
signal-to-noise ratio gaps and gains are presented in Table I
for different values of the coding rate Rc. As discussed in
Section III, the effective gain due to shaping decreases at
very high rate. A coding rate around 4/5 yields the highest
effective gain. One of our perspectives is to analytically
determine the optimal coding rate (or its range) from (9).
Tables II includes results for CQAM shaping. As suggested
in the previous section, CQAM radii are stretched to improve
the range for PMB(ν, x). Here, radius ρi of shell i is taken
to be 1 + (ρmax − 1)(i/(p − 1))β where ρmax > ρout(∞)
and i = 0 . . . p − 1. At Rc = 2/3, optimized parameters are
ρmax = 4.80 and β = 0.78 for 72-CQAM and ρmax = 6.0 and
β = 0.80 for 132-CQAM. Square (p-ASK)2 constellations
are not valid for full PAS because they require time sharing,
however we added them for comparison purpose. Shaping
with 72-CQAM and 132-CQAM is about 0.1 dB from the
additive white Gaussian noise channel capacity.

Constellation Target Rate Pot. Gain Gap Full shaping

(7-ASK)2 1.871 0.817 0.098 No
72-CQAM 1.871 0.744 0.102 Yes

(13-ASK)2 2.466 0.998 0.036 No
132-CQAM 2.466 1.092 0.088 Yes

TABLE II: Gain (dB) of full probabilistic shaping for circular
constellations 72-CQAM and 132-CQAM at Rc = 2/3.
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[27] F. Buchali, G. Böcherer, W. Idler, L. Schmalen, P. Schulte, F. Steiner,
“Experimental Demonstration of Capacity Increase and Rate-Adaptation
by Probabilistically Shaped 64-QAM,” in Proc. ECOC, Aug. 2015.


