Probabilistic Shaping and Non-Binary Codes

Joseph J. Boutros*, Fanny Jardel†, and Cyril Méasson‡

*Texas A&M University, 23874 Doha, Qatar
†Nokia Bell Labs, 70435 Stuttgart, Germany
‡Nokia Bell Labs, 91620 Nozay, France
boutros@tamu.edu, {fanny.jardel,cyril.measson}@nokia.com

Abstract—We generalize probabilistic amplitude shaping (PAS) with binary codes [1] to the case of non-binary codes defined over prime finite fields. Firstly, we introduce probabilistic shaping via time sharing where shaping applies to information symbols only. Then, we design circular quadrature amplitude modulations (CQAM) that allow to directly generalize PAS to prime finite fields with full shaping.

I. INTRODUCTION

Shaping refers to methods that adapt the signal distribution to a communication channel for increased transmission efficiency. Shaping is eventually important for optimal information transmissions [4] and various solutions starting with non-linear mapping over asymmetric channel models towards pragmatic proposals involving shaped QAM signaling have been investigated and/or implemented over the years.

More precisely, building upon early works on, e.g., many-to-one mapping, research efforts from the 70s towards the 90s derive conceptual frameworks and methods to reduce the shaping gap in communication systems. Exploiting the principles of coded modulation, a sequence of works [5]–[12] present operational methods to reduce the shaping gap. Compared to cubic constellations, up to 1.53dB of shaping gain is achievable using well-adapted signaling. Simple methods such as trellis shaping or shell mapping permit to recover a significant fraction of the 1.53dB figure. Examples of applications include the ITU V.34 modem standard recommendations that uses shell mapping to recover 0.8dB. While several shaping schemes are based on the structural properties of lattices [13]–[15], more randomized schemes also emerge after the re-discovery of probabilistic decoding in the 90s. With the advent of efficient binary codes, different coded modulation schemes were proposed offering flexible and low-complex solutions [17]. In the 2000s, despite the important development of wireless communications, the need for advanced shaping methods seems to have remained marginal. From a technological viewpoint, this may have been justified by the high variations of the channel in wireless communication networks. From an academic viewpoint, schemes have been analyzed and match the capacity-achieving distribution of a channel in different theoretical scenarios [18]–[20]. In the last few years, industrial applications of shaping methods have regained interest. This concerns areas where current technologies operate close to fundamental limits. For example, different methods have been experimented in optical communications [26], [27]. Hence, because there are already efficient VLSI implementations of contemporary coding schemes that have been proven to asymptotically achieve capacity with constant complexity per information unit [17], [21]–[23], it is then natural to combine them with efficient shaping methods.

In probabilistic shaping, for linear digital modulations, the a priori probability distribution of modulation points is modified to match a discrete Gaussian-like distribution, namely the Maxwell-Boltzmann distribution [3]. The method aims at maximizing the mutual information with respect to the same modulation where all points are equally likely. For special 2^m-ASK and 2^m-QAM constellations with linear binary codes, this method is equivalent to probabilistic amplitude shaping (PAS) where uniformly-distributed parity bits are assigned to the sign of a constellation point [1], [2]. In this paper, we generalize this method to the non-binary case. The goal is to permit the use of efficient non-binary codes in order to enable low-latency processing (reducing the need for ‘Turbo’-detection [17]). Also, from an algebraic viewpoint, a characteristic $p > 2$ of the finite field \mathbb{F}_p on which coding is built leads to new interesting problems such as distribution matching in \mathbb{F}_p^n and assigning a constellation points to elements in \mathbb{F}_p^n.

In this paper, codes are supposed to be linear and defined over \mathbb{F}_p, where p is an odd prime. Firstly, except for codes with a sparse generator matrix, we show in Section II that parity symbols are asymptotically uniformly-distributed over \mathbb{F}_p. This fact is used to derive two new methods for probabilistic shaping. Time sharing is proposed in Section III where symbols of a p-ary code are mapped into p-ASK points. Hence, in time sharing, probabilistic shaping is performed only when information symbols are transmitted. Full probabilistic shaping is described in Section IV where circular QAM (CQAM) constellations of size p^2 points are introduced. This second method assigns a constellation shell to a Maxwell-Boltzmann-distributed information symbol and then a parity symbol selects a point within that shell. Numerical results for p-ASK-based time sharing and p^2-CQAM probabilistic shaping are shown in Section V. Similar to the binary case [1], a gap to channel capacity of 0.1 dB or less is observed for CQAM constellations.

II. SUM OF RANDOM VARIABLES IN A PRIME FIELD

Lemma 4.1 in [16] established the expressions of the probability of a sum in \mathbb{F}_2. We translate this result to a prime field $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$. Principles of this extension to the non-binary case are implicit from Chapter 5 of [16] with...
the use of the z-transform. Nevertheless, we give here the exact expression of the probability of a sum of prime random symbols modulo p. This expression is directly related to Hartmann-Rudolph symbol-by-symbol probabilistic decoding [24] in the special case of a single-parity check code and its generalization to characteristic p [25].

Lemma 1: Let p be a prime and $\mathbb{F}_p = \{0, 1, \cdots, p - 1\}$ be the associated finite field. Consider a sequence $\{s_\ell\}_{\ell = 1}^m$ of m independent symbols over \mathbb{F}_p, in which the ℓ-th symbol is $\beta \in \mathbb{F}_p$ with probability

$$\Pr(s_\ell = \beta) = q_\ell(\beta).$$

Then, for any $k \in \mathbb{F}_p$, the probability that the sum of the s_ℓ’s equals k is

$$\Pr\{\sum_{\ell = 1}^m s_\ell = k\} = \frac{1 + \sum_{\ell=1}^{p-1} Q(t) \omega^{k} \omega^\beta - k + 1}{p},$$

where $\omega \triangleq \exp(2\pi \sqrt{-1}/p)$ indicates the p-th root of unity.

Proof 1: Consider the enumerator function in t,

$$Q(t) \triangleq \prod_{\ell=1}^{m} \left(\frac{1}{\beta=0} q_\ell(\beta) t^\beta \right) \mod (t^p - 1).$$

Observe that if this is expanded into a polynomial in t (where degree operations are taken mod p), the coefficient of t^k is the probability that the sum of m symbols is k, which we write

$$\Pr\{\sum_{\ell=1}^{m} s_\ell = k\} = \operatorname{coef}(Q(t), t^k).$$

Let us also define for any $k \in \{0, 1, 2, \cdots, p - 1\}$ the function

$$Q_k(t) = t^k Q(t) \mod (t^p - 1).$$

In an identical manner as for $Q(t)$, expanding $Q_k(t)$ would enumerate the probabilities of the sum of the s_ℓ’s. Recall that the p-th root of unity in the complex plane satisfies $\sum_{\ell=0}^{p-1} \omega^{k\ell} = 0$ for any $k \in \{1, 2, \cdots, p - 1\}$. Then, for any $k \in \mathbb{F}_p$, we have

$$\Pr\{\sum_{\ell=1}^{m} s_\ell = k\} = \frac{1}{p} \sum_{\ell=0}^{p-1} Q_k(\omega^\ell)$$

because all but the constant polynomial terms are annihilated from the fact that the roots of unity sum to zero. It remains to evaluate the expression observing that $\omega^0 = 1$ to get the results. □

This lemma shows that, if a s_ℓ is uniformly distributed over \mathbb{F}_p, then the sum is also uniformly distributed. Furthermore, for any ℓ, it is straightforward from convexity arguments that the weighted sum $\sum_{\beta=0}^{p-1} q_\ell(\beta) \omega^\beta$ in the complex plane lies inside the unit circle in the strict sense if and only if one of the probability distribution q_ℓ is not degenerated in one singular point. Therefore, assuming that the norm tends to be smaller and bounded away from 1, the distribution of the infinite sum tends to be uniform. It remains to summarize this observation in a theorem.

Theorem 1: Let p be a prime and $\mathbb{F}_p = \{0, 1, \cdots, p - 1\}$ be the associated finite field. Consider a sequence $\{s_\ell\}_{\ell = 1}^m$ of independent random symbols over \mathbb{F}_p with respective probability distributions $\{q_\ell(0), q_\ell(1), \cdots, q_\ell(p-1)\}_{\ell \geq 1}$ such that $\lim_{\max_p \geq 1} \{\max_p(q_\ell(p)) \} < 1$. Then

$$\forall k \in \mathbb{F}_p, \quad \lim_{m \to \infty} \Pr\{\sum_{\ell=1}^{m} s_\ell = k\} = \frac{1}{p}.$$ (5)

For error-correction over a prime field, this observation is interesting as follows. The limit theorem over \mathbb{F}_p indicates that the non-systematic symbols obtained from a linear encoder associated with a dense generator matrix will tend to have a uniform distribution independently on the input distribution.

III. PROBABILISTIC SHAPING VIA TIME SHARING OVER PRIME FIELDS

A common mapping between non-binary codes and non-binary modulations is to select a constellation and a finite field of identical size. Let p be a prime integer, $p > 2$. Consider the set of p points shown in Figure 1, known as p-ASK modulation. This p-ASK set \mathcal{A} is isomorphic to the finite field \mathbb{F}_p (a ring isomorphism in \mathbb{Z}). Symbols from \mathbb{F}_p are one-to-one mapped into p-ASK points. We embed \mathbb{F}_p into \mathbb{Z} such that a symbol $s \in \mathbb{F}_p$ and its corresponding point in \mathcal{A} satisfy $x - s = 0 \mod p$.

There are many advantages for such a simple structure

![Fig. 1: Real p-ASK constellation isomorphic to \mathbb{F}_p.](image)

where the source is p-ary, the linear code is over \mathbb{F}_p, and p-ary modulation points are transmitted over the channel. Firstly, a probabilistic detector needs no conversion between modulation points and code symbols. A channel likelihood, after normalization, is directly fed as a soft value to the input of a probabilistic decoder. Secondly, turbo detection-decoding between the constellation \mathcal{A} and the code C is not required as for binary codes with non-binary modulations [17].

Consider a systematic linear code C over \mathbb{F}_p where parity symbols satisfy Theorem 1, i.e., check nodes used for encoding have a relatively high degree. Many practical error-correcting codes do satisfy this property, such as LDPC codes over \mathbb{F}_p. Let $R_c = k/n$ be the coding rate of C, where n is the code length and k is the code dimension. Assume that information symbols s_1, s_2, \ldots, s_k at the encoder input are identically distributed according to an a priori probability distribution $\{\pi_i\}_{i=1}^{n}$. Let $P_{MB}(x, \nu) \propto \exp(-\nu|x|^2)$ be a discrete Maxwell-Boltzmann distribution [3] with parameter $\nu \geq 0$. The a priori distribution $\{\pi_i\}$ is taken to be

$$\pi_0 = P_{MB}(0, \nu) \propto 1, \quad \pi_i = P_{MB}(i, \nu) \propto \exp(-\nu i^2).$$

(6)

(7)
for $i = 1 \ldots 2^{\frac{p-1}{2}}$. The average energy per point for the p-ASK constellation, denoted by E_s, is given by

$$E_s = \sum_{x \in A} P_{MB}(x, \nu) \frac{|x|^2}{2} = \sum_{i=1}^{\frac{p-1}{2}} \pi_i \frac{i^2}{2}.$$

From Theorem 1 and (6)&(7), a fraction R_c of transmitted ASK points corresponding to information symbols are Maxwell-Boltzmann-shaped and a fraction $1 - R_c$ of ASK points corresponding to parity symbols is uniformly distributed in the constellation. We refer to this coding scheme as probabilistic shaping via time sharing. The target rate should be the average information rate (expressed in bits per real dimension)

$$R_t = R_c \log_2(p) = R_c I(X_s; Y) + (1 - R_c) I(X_p; Y),$$

where the two random variables $X_s, X_p \in A$ satisfy $X_s \sim \pi_i$ and $X_p \sim 1/p$. The random variable Y represents the output of a real additive white Gaussian noise channel, where additive noise has variance $\sigma^2 = \frac{1}{2} P$. For a given target rate R_t, the Maxwell-Boltzmann parameter ν is chosen such that the signal-to-noise ratio $\gamma = \frac{E_s}{\sigma^2}$ attaining R_t is minimized. Let γ_A be that minimum. We also define two signal-to-noise ratios γ_{cap} and γ_{unif} such that

$$R_t = \frac{1}{2} \log(1 + 2\gamma_{\text{cap}}), \quad \text{and} \quad R_t = I(X_p; Y), \quad \text{for} \quad \gamma = \gamma_{\text{unif}}.$$

Then, the gap to capacity and the shaping gain (expressed in decibels) are respectively given by $\gamma_A(dB) = -\gamma_{\text{cap}}(dB)$ and $\gamma_{\text{unif}}(dB) - \gamma_A(dB)$. In this time sharing scheme, probabilistic shaping is made only during a fraction R_t of transmission time. This method is attractive due to isomorphism between the field \mathbb{F}_p and the p-ASK constellation. From (9), one may readily conclude that high coding rate is recommended to approach full-time probabilistic shaping. However, at R_t, close to 1, the mutual information $I(X_s; Y)$, for $X \in A$, approaches its asymptote $\log_2(A) = \log_2(p)$ and the required signal-to-noise ratio γ_A goes far away from γ_{cap}. This is clearly shown in the numerical results presented in Section V. A method for full probabilistic shaping is proposed in the next section.

IV. Probabilistic Shaping via p^2-Circular QAM over Prime Fields

We propose in this section a coded modulation scheme that allows full probabilistic shaping of all transmitted symbols with a non-binary linear code over \mathbb{F}_p. Probabilistic amplitude shaping with binary codes maps uniformly-distributed parity bits into the sign of an ASK point [1]. Parity bits do not perturb amplitude shaping because 2^n-ASK is $B \cup \overline{B}$, where $B = \{1, 3, \ldots, 2^n - 3\}$. This sign mapping is valid with a prime finite field \mathbb{F}_p, $p > 2$. The key idea in our new coded modulation is to assign the parity symbol to p modulation points with the same amplitude via multiplication with a p-th root of unity. This is a direct generalization of the sign mapping to p-ary mapping. The linear p-ary code is assumed to be systematic. Its information symbols become amplitude labels in the modulation. We propose a bi-dimensional constellation with p^2 points, referred to as p^2-circular quadrature amplitude modulation (p^2-CQAM). A circle containing CQAM points of the same amplitude will be called a shell. The p^2-CQAM includes p shells with p points per shell. As for antipodal symmetry of 2^n-ASK, the CQAM satisfies circular symmetry

$$p^2\text{-CQAM} = \bigcup_{i=0}^{p-1} e^{i \theta} \overline{B},$$

where B is a set of p points from p distinct shells. Such a bi-dimensional constellation is not unique. Indeed, many ways do exist to build p shells and populate each shell with p points. As a consequence, we introduce a figure of merit for a constellation [6] and we build a specific p^2-CQAM constellation that maximizes this figure of merit.

Definition 1: Consider a finite discrete QAM constellation $A \subset \mathbb{C}$. Assume that $\sum_{x \in A} x = 0$. Let $E_s = \sum_{x \in A} |x|^2$ be the average energy per point, assuming equiprobable points. Let $d_{\text{min}}^2(A) = \min_{x \neq x'} |x - x'|^2$ be the minimum squared Euclidean distance between the points of A. A figure of merit F_M for A is defined by the following expression:

$$F_M(A) = \frac{d_{\text{min}}^2(A)}{E_s} \cdot \log_2(|A|).$$

The $\log_2(|A|)$ factor is arbitrary, it is used in the above definition to normalize the squared minimum Euclidean distance by bit energy instead of point energy. This may be useful when comparing two constellations of different sizes.

Now, we build a p^2-CQAM constellation A that maximizes $F_M(A)$ by populating the p shells as follows:

1) For the first CQAM shell ($i = 0$), draw p uniformly-spaced points on the unit circle. The points are $x_i = \exp(i \frac{i \pi}{p})$, for $i = 0 \ldots p - 1$. Here, we impose the constellation minimum distance to be the distance between two consecutive points of the first shell.

$$d_{\text{min}}(A) = 2 \sin\left(\frac{\pi}{p}\right).$$

2) Assume that shells 0 to $i - 1$ are already built. Let $x_{ip} = \rho_i \exp(i \frac{\pi}{p})$ be the first point of the i-th shell. The $p - 1$ remaining points on this shell are $x_{ip+\ell} = \rho_i \exp(i \frac{(2\ell + 1) \pi}{p})$, $\ell = 1 \ldots p - 1$. Let $d_{\text{min}}^2 = \min_{\ell=0 \ldots p-1} |x_{ip+\ell} - x_{ip}|^2$ be the minimum distance between the first point of the current shell and all previously constructed points. The radius p_i and the phase shift ϕ_i are determined by an incremental search:

- Start with $p_i = p_{i-1}$ and increment by a step Δp.
- At each radius increment, vary ϕ_i from π/p to $-\pi/p$.
- Stop incrementing the radius p_i when $d_{\text{min}}^2 \geq d_{\text{min}}^2(A)$. Now, x_{ip} is found.

3) Repeat the second construction step until completing the p-th shell of the p^2-CQAM constellation.

The p^2-CQAM obtained with the construction described above has the circular symmetry required by PAS over \mathbb{F}_p.
Examples of circular QAM modulations for probabilistic amplitude shaping are shown in Figure 2, for \(p = 5, 7, 11 \) respectively. Points are drawn as small circles in red. Blue segments connect points located at minimum Euclidean distance. By the given construction, the inner radius of the \(p^2 \)-CQAM is \(\rho_{in} = 1, \forall p \). The outer radius \(\rho_{out} \) varies slightly with \(p \) but \(\lim_{p \to \infty} \rho_{out} = \rho_{out}(\infty) \approx 3.6 \). This limit exists because the sequence \(\rho_{out}(p) \) is increasing with \(p \) and bounded from above by \(1 + (p - 1) \Delta_{min}(A) \leq 1 + 2\pi \).

The limitation of the Maxwell-Boltzmann probability mass function to amplitudes between \([1, \rho_{out}(\infty)] \) is a major drawback. This short interval \([1, \rho_{out}(\infty)]\) is shifted away from the origin and is not large enough to yield a good Gaussian-like discrete distribution. In the next section, the shells radii are modified to get a wider amplitude range, the \(p^2 \)-CQAM phase shifts are kept invariant.

Let \(s_1, s_2, \ldots, s_k \) be i.i.d. information symbols with a priori probability distribution \(\{\pi_i\}_{i=0}^{p-1} \), as in the previous section. Then, for points \(x_{i\ell} \in A, i, \ell = 0 \ldots p - 1 \), the prior distribution becomes

\[
\pi(x_{i\ell}) = \frac{\pi_i}{p} = \frac{P_{MB}(|x_{i\ell}|, \nu)}{p}.
\]

(13)

In presence of the above distribution, the signal-to-noise ratio should be defined with an average energy per point \(E_s = \sum_{i=0}^{p-1} \pi_i |x_{i\ell}|^2 \). Furthermore, the circular symmetry of a \(p^2 \)-CQAM facilitates the numerical evaluation of average mutual information. The general expression of \(I(X; Y) \) with \(p^2 \) integral terms reduces to \(p \) terms only. The mutual information \(I(X; Y) \) is given by

\[
\sum_{i=0}^{p-1} \pi_i \int_{y \in \mathbb{C}} p(y|x_{i\ell}) \log_2 \left(\frac{p(y|x_{i\ell})}{\sum_{\ell=0}^{p-1} \pi_i p(y|x_{\ell})} \right) \, dy.
\]

The Maxwell-Boltzmann parameter \(\nu \) in (13) is chosen such that \(2R_t = 2R_c \log_2(p) = I(X; Y) \) at a minimal value of signal-to-noise ratio \(E_s/N_0 = \gamma_A \), where \(R_t \) is the target rate per real dimension. The gap to capacity is determined by the difference \(\gamma_A - \gamma_{\text{cap}} \) with \(\gamma_{\text{cap}} \) satisfying \(2R_t = \log_2(1 + \gamma_{\text{cap}}) \).

Given the a priori distribution \(\{\pi_i\}_{i=0}^{p-1} \) of symbols in the finite field \(\mathbb{F}_p \), the linear code \(C[n, k] \) and the \(p^2 \)-CQAM constellation should be combined together as illustrated in Figure 3. Suppose that \(R_c = 1/2 \) and say that \(s_1 \in \mathbb{F}_p \) is an information symbol (encoder input) and \(p_1 \in \mathbb{F}_p \) is a parity symbol. Then, \(s_1 \) should be shaped by the distribution matcher (DM) according to \(\{\pi_i\}_{i=0}^{p-1} \) and select the shell of three \(p^2 \)-CQAM points. The symbol \(s_4 \) is read directly from a uniform i.i.d \(p \)-ary source. Given the shells of three points, uniformly-distributed symbols \(s_4, p_1, p_2 \) constitute the points indices inside those shells. In the general case, \(n/2 \) symbols in \(\mathbb{F}_p \) with probability distribution \(\{\pi_i\} \) are read from the DM and mapped into a shell number for \(n/2 \) CQAM points. The probabilistic shaping is due to these \(n/2 \) symbols. On the other hand, \(k - n/2 \) uniformly-distributed symbols are directly read from the source. Together with \(n - k \) parity symbols, i.e., a total of \(n/2 \) symbols, uniformly-distributed symbols in \(\mathbb{F}_p \) determine the phase of CQAM points within constellation shells.

Our \(p \)-ary coded modulation suited for probabilistic shaping assumes that \(R_c \geq 1/2 \), i.e., \(k \geq n/2 \). Coding rates in the interval \([0, 1/2]\) are less attractive for probabilistic amplitude shaping because, for small \(R_c \), a constellation with equiprobable points already shows a rate that is too close to channel capacity in terms of signal-to-noise ratio.

Fig. 2: Bi-dimensional \(p^2 \)-CQAM constellation for \(p = 5, 7, 11 \) from left to right.

Fig. 3: Full probabilistic amplitude shaping with \(p^2 \)-CQAM.
V. NUMERICAL RESULTS

Two typical values of p are considered in this section, namely $p = 7$ and $p = 13$. The target rate herein is expressed in bits per real dimension for both real and complex constellations. Gaps and gains are expressed in decibels.

<table>
<thead>
<tr>
<th>Table II: Gain (dB) of full probabilistic shaping for circular constellations. Gaps and gains are expressed in decibels.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
</tr>
<tr>
<td>13</td>
</tr>
</tbody>
</table>

TABLE I: Signal-to-noise ratio gain (dB) of probabilistic shaping via time sharing for 7-ASK and 13-ASK.

For probabilistic amplitude shaping via time sharing, signal-to-noise ratio gaps and gains are presented in Table I for different values of the coding rate R_c. As discussed in Section III, the effective gain due to shaping decreases at very high rate. A coding rate around 4/5 yields the highest effective gain. One of our perspectives is to analytically determine the optimal coding rate (or its range) from (9). Tables II includes results for CQAM shaping. As suggested in the previous section, CQAM radii are stretched to improve the range for $P_{	ext{Mm}}(r,x)$. Here, radius r_i of shell i is taken to be $1 + (\rho_{\text{max}} - 1)/i((p - 1)^{p-1}$ where $\rho_{\text{max}} > \rho_{\text{opt}}(\infty)$ and $i = 0 \ldots p - 1$. At $R_c = 2/3$, optimized parameters are $\rho_{\text{max}} = 4.80$ and $\beta = 0.78$ for 72-CQAM and $\rho_{\text{max}} = 6.0$ and $\beta = 0.80$ for 132-CQAM. Square $(p\text{-ASK})^2$ constellations are not valid for full PAS because they require time sharing, however we added them for comparison purpose. Shaping with 72-CQAM and 132-CQAM is about 0.1 dB from the additive white Gaussian noise channel capacity.

TABLE II: Gain (dB) of full probabilistic shaping for circular constellations 72-CQAM and 132-CQAM at $R_c = 2/3$.

REFERENCES

