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Abstract—Code construction for a data transmission channel case, after rewritingvn asn, a message at the decoder input
with a limited number of degrees of freedom is a big challenge would be expressed ag + 1, anda2 + n, for the first half-
For codes on graphs, a solution based on rootchecks has beerbodeword and the second half-codeword respectively.

proposed [1]. In this paper, we start by establishing a new pwof . .
for full diversity equivalence between the block-fading aml the For any finite non-zero value of, according to (3), a zero

block-erasure channels. Then, we show how doping [2] can be fading a = 0 is equivalent to a zero message= 0, and

made via high-order rootchecks. This controlled doping wil help  an infinite fadinga = +o0 is equivalent to a full-confidence

in increasing the diversity order of parity bits while boosting the  message\ = +occ.

coding gain of information bits in full-diversity root-LDP C codes. i T ; ;

New ensembles of root-LDPC codes are designed such that 100%If Mm Sum dechlng is applied on an LDPC cpde, instead of
Belief Propagation [4][5], messages propagating alonglgra

of parity bits achieve full diversity.
edges would always be expressed as
. INTRODUCTION

2 2
Consider a data transmission channel with a limited number A=goi+Cay £, “)
of degrees of freedom. A transmitted codeword can be dividgst any number of decoding iterations, whefeand ¢ are
into B blocks where each block is observing a different chaimtegers representing the energy coefficients for bothntadi
nel state. For a given signal-to-noise ratio, it is not passi states. On the other hand, a maximum likelihood (ML) decoder
to guarantee a vanishing error probability at asymptotidecomaximizes the correlation metric
length; Shannon capacity of such a non-ergodic channel is

zero [3]. We restrict our study to the worst cd3e= 2 channel a1 Z YnTn + Q2 Z Ynn- (5)
states. As an example, the block-fading channel with binary n<N/2 n>N/2
input and additive white Gaussian noise is defined by As shown in [1], a code construction for ML decoding is not
N necessarily suitable for iterative decoding. /et denote the
Yn = Q1 Tn 1, fOr n=1... 9 (1) error probability after decoding, for a given type of the LDP

¢ N decoder. The diversity order attained by an error-comecti
Yn = Qz-Zptna, fOr m=—+1...N. (2) code for channel (1)&(2) is defined as [3]

The code length isV bits, symbolsz,, € {—1,+1}, the ad- J— log(P.) 5
ditive noise isn ~ N(0,0?), signal-to-noise ratio iy = 5 R log() )

herey = E,/Ny is a signal-to-noise ratio per symbol), an . . .
Ehe tvf\ro fadir<g Ocoefficiegnts are independ(fnt ar):d ide)ntica(ljg'e error probability before decoding on channel (1)&(2) is

distributed,a; € R*. The fading distribution tail satisfies” ? > L/, for_.y >> 1. Forda general chapnel_wﬂh an uncoded
p(a?) ~ 1 for o? < 1. The all-zero codeword is assumed GO’ probability %) oc 1/4%, the state diversity order [6] for

be transmitted and the value of fading coefficients is pd;teca code construction is

known by the decoder. For a given fadiag € R™ and a d. — 4+ lim log(P) @)
channel output,, when noa priori information is available, * y—+oo log(Py)’
the log-likelihood ratio required for iterative probabtic 5.4 the total diversity order becomes—= d, x do. Unless

decoding is otherwise stated, we assume that= 1 andd = d.

A = log (p(wi+1|y,a)) = log (p(ylwi+17a)) Definition 1: Given a decoding algorithm and a non-ergodic

2y p(””‘;”y’o‘) plylz==1.) (3) channel withB states, a code construction is said tofbl-

= T2 o (a”+an). diversity (FD) if the attained diversity order i¢ = B.
The casea; = ay corresponds to a binary-input Gaussiairor B = 2, the aim of code constructions in [1][2] was to build
channel, i.eA = a + n after division by the constant fadingfull-diversity low-density parity-check codes at the ntaxim
coefficient. This case is equivalent to the study of an eodioding ratel /2, a construction leading to an ensemble referred
channel without fadingd; = s = 1). Foray # ae, itis not to as root-LDPC codes. Examples of rai full-diversity
possible to divide the messageby «. Thus, in the general root-LDPC codes fo3 = 3 and ratet/2 maximum-diversity



root-LDPC codes fo3 = 4 can be also found in [1] and [2] and (10) is found by taking3~y = 1. The functionQ(z) is
respectively. the standard Gaussian tail function.

It is unclear from (6) and Definition 1 whether diversityNow let us assume that;(c) # 0 andws(c) # 0, then from
orderd and its full-diversity property are defined for the bi{8) we get thatd > 2. Since the channel haB = 2 states,
error probability P., or the word error probability?,,,! For we know thatd < B [3], sod = 2. We can also lower bound
a code lengthV < +o0, we haveP.,, < P., < NPFP.,. P. by any pairwise error probability’(0 — ¢) and show that

If log(N) = o(log(y)) then P, and P.,, have an identical d < 2 in a similar way as in (9)&(10). ]
diversity order. For simplicity, assuming that is finite or Let (z1,2s,...,2x) = (mf’/Q,mx/QH) be a codeword. A

increasing logarithmically with signal-to-noise ratioewvill  block-erasure channel (block-BEC) is defined as followse Th
write P, to denote both bit and word error probabilitiescodeword is divided intd3 = 2b|ocks,;cff/2 andx% 2+1,The
Usually, P. would represent’,;, when dealing with iterative two blocks are independently erased by the channel. Let the
decoding and it refers t.,, in ML decoding. symbol '?’ represent an unknown value (scalar or vectogith
In the next section, we describe the erasure channel age rigorous definition of the block-erasure channel becme
roach for designing root-LDPC codes and we prove the FD- Definition 2: For0 < ¢ < 1, the B = 2 block-erasure chan-
equivalence between block-erasure and block-fading @lannne| is a memoryless vector channel defined by the following
Diversity population evolution [2] is restated in sectidhand  transition probabilities:

doping of parity bits is studied. Section IV introduces eli#nt

code constructions for controlled doping. The paper ends wi P(?a)?) = P(?|zN/a) = €

experimental results of root-LDPC codes on fading channels

and the conclusions. P(al/?aN7?) = P(aNjgs1|TN/o1) =1 —€

Il. THE ERASURE CHANNEL APPROACH FOR From the above definition and the first equality in (3), we
NON-ERGODICFADING CHANNELS deduce that a message can take two possible values on
The channel model is a binary-input real-output channel asblock-erasure channel. If a block is erased, then all its
defined in (1)&(2). Consider a linear binary codgV, K| of symbols have a channel messaje= 0. If a block is not
dimensionK, length NV, and coding raté /N < 1/2. Under erased (perfectly copied at the channel output), then &ll it
ML decoding, the pairwise error probability between the symbols have a channel messaje= +ooc. Also, for the
codeword and a non-zero codewardan be upper boundedblock-BEC, full diversity is equivalent t&. = € [9], i.e. the

by [7][8] definition of diversity isd = lim, _, 525,
1 1
P00 —¢c) < 0+ wno) X A+ w2007) (8) Proposition 1: For a linear binary code&’[N, K], under

. . iaht of the fi . maximume-likelihood decoding, full diversity on the block-
yvhere wi(c) |s.the Hammm_g Welg t of the firsiv/2 b!ts erasure channel is equivalent to full diversity on the block
in ¢ andws(c) is the Hamming weight of the lasy/2 bits fading channel.

in ¢. In our convention, the I—_|amming Weight is equal to Proof: Necessary condition: Assume th@itV, K] is FD
the number of "+1 symbols_ in the transmltfced code_worgn the block-fading channel. Then, from Lemma (1) we have
z(¢) = (x1,x2,...,2N), z, being the channel input at t|mew1(c) £ 0 and wa(c) # 0 for all non-zero codewords.

instantn as defined in (1)&(2). If x%ﬂﬂ is erased with probabilitye, the decoder can

Lemma 1:Under maximum-likelihood decoding, full di- distinguish betweef andc thanks toz; *~. The latter is non-

versity on the block-fading channel is achieved if and ongero and no other codeword has an identicd(* otherwise

if wi(c) # 0 andwsy(c) # 0 for all non-zero codewords w1 =0 by linearity. Thus, the ML decoder makes an error on

ceC[N, K. the block-BEC if and only if the two blocks are erased, i.e.
Proof: Assume there exists a codeword such that Pe = €.

wi(c) # 0 andwy(c) = 0. Then, (8) and the Union boundSufficient condition: Assume th&{ N, K] is FD on the block-

tell us thatd > 1. Using this same codeword, we can write &rasure channel. A similar reasoning leadsvidc) # 0 and

lower bound for the total error probability as follows wa(c) # 0 which is FD on the block-fading channel. =
P. > P0—c¢)=E,, {Q(\/Z'ywla%)] Proving FD-equivalence between the block-BEC and the
block-fading channel under ML decoding of a linear binary
> P(af <ad)-Q(y/2ywiad) (9) code seems quite simple as shown above. Does this property
1 1 hold under iterative decoding of LDPC codes? Let us analyze
> 5 Q(V2wr) + 0(;). (10) the channel behavior via the fading plane approach [10]. We

will prove FD-equivalence for any code equipped with any
decoding algorithm. The equivalence between fading and
erasure is intrinsic to the channel.

Hence, P, has diversity order/ < 1. This proves thatl = 1.
Similar reasoning is made fay; (¢) = 0 andwa(c) # 0. In-

equality (9) is found by splitting the integrff~ = [ + | jg,



for v > 1. The additional area defined k. = 7—12 (referred

to as the capacity threshold) corresponds to the case where
a unique fading event has probability less thvén The strip
under T, includes the ratd/2 binary-input capacity outage
boundary [10] for a 2-state block-fading Rayleigh channel.
The diversity-1 region is defined hy3 in the range[T., 7]

Diveray 20 e on anda? greater thari’,
1
- S P(af > Ty, T <oy < Ty) =~
Block-Fading Channel Y
The diversity-0 region is determined by taking both squared
Diversity-1 region fadings greater thaif’;,

P(af > Ty,03 > Tp) = 1.

Block-Erasure Channel

e —0 Finally, the choice ofT, = #gm (the erasure channel
@=1/2 threshold) will be justified below.
000000000000 What is the effect of block fading on the code performance

under a given decoding algorithm? Lat= Q(+/2a?~) and
o €2 = Q(y/2a37) be the uncoded error probabilities on the
Fig. 1. Fading plane showing the different diversity regidar the analysis block-fading channel.
of coding on the block-fading channel. e The diversity-0 region: of > Ty = 3log(y)/v, using
the upper bound)(z) < exp(—x?/2), we gete; < 1/43.
Similarly we havee; < 1/+3. Even without decoding,
Consider the top-right quarter of the bidimensional placg sympol-by-symbol hard decision at the channel output
where of represents the abscissa and represents the providesP, = - in this region! This diversity order of 3 for
ordinate. The channel is symmetric and we assume that js due to the factor 3 ;. A factor of 2 would have
C[N,K] is an LDPC code symmetric with respect o  peen sufficient to study the FD-equivalence, but we wanted to
and ay, i.e. the LDPC ensemble has an identical grapfinphasize that the diversity-0 region has no relevanceswhil
structure for both half-codewordsfv/ and 2 24+1- Hence, puilding a root-LDPC code.
it is sufficient to make the analysis far; < of. The fading e The diversity-2 region: In this region, a failure of the
plane is partitioned into regions as illustrated in Fig.hrée decoder, for any type of decoding algorithm, would generate
thresholds on the value of the squared fading are requireddiversity order of 2 which is the probability of the point
in increasing order they arg., 1., andTy. These thresholds (a2, 2) to belong to this region. Thus, from diversity order
will delimit regions at different diversity orders. Firgtllet point of view, the diversity-2 region has no influence on the
us recall that ifP, = K/v%, then—lim,_ lfogg(ge)) =d iff  performance of a root-LDPC code. From coding gain point
log(K) = o(log()), i.e. K can vary with the signal-to-noise of view, see (14), the decoding threshold should be opticize
ratio butlog(y) must dominatelog(K') in order to yield a on different points in the fading plane in order to approach
diversity equal tod. Any K in the form K = (log(v))’, the capacity outage boundary. The root-LDPC code design
jE€Zor K =jlog(y), j €N, is suitable for satisfying the in [1][2] took into account two areas in the fading plane,
propertylog(K) = o(log(7y)). the ergodic line and the very unbalanced regime. In [12], an
optimization in the fading plane has been made for random
We start by determining the limits of the diversity-2 regionLDPC ensembles at rate slightly less thigf2.
If both o? and a3 are less thary = 310e) (the choice of e The diversity-1 region: This is the most critical region in
the numerator for this full-diversity threshold will be fified the fading plane. As shown above, the diversity-0 and the
below), then diversity-2 regions have no influence on the diversity order
(3log(7))2 1 of an error-correcting code. On the contrary, a decoder that
— =, fails in the diversity-1 region would yield an error problii
v v P. = 1, ie. full diversity is lost. Let us focus on the sub-area
for v > 1, where= means that both sides have the sandefined bya? > T} and o3 in the range[T.,T.]. In that
diversity order. To get the whole diversity-2 region, we theesub-area, fory > 1, we havee; < Q(1/61log(y)) — 0 and
to add the area undes; < Tt for o > Ty and the symmetric ¢, > (. /_2 ) bute, < 1/2, this proves that, — 1/2.
part along the ordinate axis. Indeed, n log() -

P(af <Ty,a3 <Tp) =

In this extremal cases; = 0 is equivalent to a message

3log(y), 1 . 1 Ay = 400 ande; = 1/2 is equivalent to a message, = 0.
2 2 ~ _ - . . .
Play 2Ty, 0 <Te) = (1 v )72 T2 The fading channel is behaving like a block-erasure channel



the strip[T¢, T.]. The choice of the thresholf, is judicious Proposition 3: Let C be a binary code equipped with a
and makess, — 1/2. In the proof of Proposition (3), with given decoding algorithm. Full diversity on the block-enas
the addition of two decoding strategies, it is proven that tichannel results in full-diversity on the block-fading cheh
block-fading channel is identical to a block-erasure clednn Proof: Notations from the proof of the previous propo-
in the strip[T., T.]. sitions are used. In the strif inside the regioriR, we saw
thate; — 0 andes — 1/2. More precisely, in the strigs,

In [1][2], the block-erasure channel has been considerfldm 7 < of anda3 < 7. we have at largey
as a special case of the block-fading channel by forcing the 1
extremal valuesy} = +oco and a3 = 0, which is equivalent e1=Q(y/2a37) < =,
to A; = +oo and Ay = 0. In [11], a proof of full diversity v
is given for rootchecks in a product code on a block-fading ¢

1 1 1
is ai i i — —€=—-— 202+) < +o0 .
channel. Another proof is given in [1] for rootchecks in a 5 — €2 = 5 — Q(y/2a37) < st (\/W)

low-density parity-check code. In the sequel, we estaldish

Eﬁ)vzkp;ggrr:grclr:]gnenqelil|Va|ence betWeen the bIOCk BEC and tfgg‘ |S approach|ng1/2 at a speed— Then we adopt
Proposition 2: Let C be a binary code equipped with adhe f((j)llov(\;mgddecom?g straltlegy regardllr;g% in §: The
given decoding algorithm. Full-diversity on the block-iiagl ecoder decides to force all messages /g 0, i.e. it
channel results in full-diversity on the block-erasurerute. declares an erasure on all bits transmitted on the second
Proof: If full diversity is achieved by the decoder, then |tfad'ng Similarly, e, is vanishing at a speed with diversity
is achieved in the diversity-1 region. Therefore, full disity order equal to3. Hence, every bit transmitted on the first
is also achieved in the striff., T.] where the channel hasf"ld'ng is correct 4, = +oc) with probability greater than

block erasures. In a formal way, let us denote the divelsity- s and it is incorrect with probability less th&% Then,

region byR,, i=0,1,2. We get we adopt the following decoding strategy regardmﬁg The
decoder decides to force all messagesAtp = +oo, i.e.
all bits transmitted on the first fading are assumed to be
Pe = ZER e(ar, az)]; (1) correctly received This strategy would only add an extra
=0 error probability vamshmg ag which has no effect on the
whereP (a1,a2) is the conditional error probability andFp property becausé + 2 i 1.

=,|] denotes mathematical expectation with respect to the K

fadmg distribution made over the regid®;. Fori = 0 and ynder the two strategies described above, the block-fading
Ty = 310g(’y) , we have channel is identical to a block-erasure channel in the strip
o regionS defined bya} > Ty anda3 € [T, T.).
Er,[Pe(ar,a2)] < Er,[1]P"**(Ro) < —.
Now, consider a fading pointa?, a3) located aboveS as

where P"**(Ry) is the maximum of the conditonal errorshown in Fig. 2 We adopt the following decoding strategy in
proabability in the regioriRy. Similarly, for i = 2 and the the diversity-1 region:

judicious choice ofl. andT, If a2 > T, then force its value tm3 = T,, i.e. make a
1 projection of the fading point onto the stri. The projection
Er,[Pe(a1,a2)] < Er,[l] = —. does not need to be orthogonal! Any projection preserving
_ ‘ 7 a3 > Ty is valid. Under this third strategy, the block-fading
Thirdly, for i =1, channel in the regiorR, is converted into a block-erasure

channel in the striy. Therefore, if the decoder is FD on the

maxr . 1 max
Eri[Pe(ar, a0)] < Er, [IJP"**(R1) = ;Pe (R1), block-BEC, it is also FD on the block-fading channel. m

Finally, we obtain

111, Corollary 1: Under all types of decoders (ML, BP or Min-
Fes st y? + P (Ra), Sum), for any LDPC code, full diversity on the block-fading
which becomes channel is equivalent to full diversity on the block-erasur
1 1 channel.
P, < 2 + ;Pem“(Rl) (12) Proof: The full-diversity equivalence statement results

from combining the two previous propositions. This comglla
LetS C R, denote the block-erasure strip defineddy> 7 is also valid for non-LDPC codes such as Turbo codes [8],
and a3 € [T, T.]. If the decoder is FD on the block-fadingProduct Codes [11], etc. Indeed, the proofs of Propositins
channel, from (12) we findDé’”“”(Rl)éi. But P"**(S) < & 3 rely on intrinsic channel properties and nothing is retht
PMe*(R,), then the decoder is also full-diversity on the blockto the code structure. It's generalizationBofadings, B > 2,
erasure channel. B should be straightforward. ]



When all information bits are solvédafter one decoding
iteration, parity bits in root-LDPC codes observe a diugrsi
evolution via uncontrolled rootchecks. This phenomenon is
described in the next section and it is shown how this can
Project e fading pant further help information bits.

[}
I
] Diversity-0 region
I

® IIl. DIVERSITY POPULATION EVOLUTION

Information bits are divided into classésand2i. Similarly,
parity bits are grouped into two classgs and2p. The trans-
S S S mission order on the block-fading channel follows the clenn

LSS S AN S — . . . L.
///////////////// definition in (1)&(2). Double diversity foli is guaranteed by
Yrrriiirr s s )
rootchecks whose leaves are only connectetf @nd2p. The
matrix description is depicted in Fig. 4. Claksis connected
Fig. 2. Making a projection of the fading point onto the stfipThis allows to rootchecksle via an identity matrix (or any permutation
to extend full diversity from a block-erasure to a blockifay channel. matrix in general). Clasdi is also connected t@c via a
N/4 x N/4 random sparse matrik;. Classlp has no edges
to checknodedc, only to checknodegc via a N/4 x N/4
random sparse matri¥{;,. The structure is symmetric and

Corollary 2: For any LDPC code on a block-fading chantwo other sparse random matric&s, and H,, define edges
nel, full diversity under BP decoding results in full divitys linked to bits2i and 2p.
under Min-Sum decoding. In other words, the sub-optimal

A
T. T, Ty a?

decoder does not induce a loss in diversity! 1i 1p 2i 2p

Proof: The proof is based on the FD-equivalence property | l :
stated in Corollary 1 and applied to both BP and Min-Sum. I l O  Hao o Hpo | le
If the BP decoder is FD on the block-fading channel, then ., | l |

it is FD on the block-erasure channel. But BP and Min-Sum | | |
are identical on the block-erasure channel (the two algrst 1 l l
collapse into a unique algorithm). Now we have FD for Min- Hiy; | My | I | O 2c
Sum on the block-erasure channel which results in FD for ! ! !

Min-Sum on the block-fading channel. [ ]

Root-LDPC codes proposed in [1] include special check- _ _ )
nodes referred to as rootchecks. A rootcheck is depictgl - The parity-check matix forb/2-rate footLDPC, it shows 4 classes
in Fig. 3. The N-length 1/2-rate root-LDPC containsV/2 '
rootchecks, one for each information bit. If the bit at thetro Now we distinguish two ensembles [2] of root-LDPC codes
is erased, it is immediately solved from the rootcheck lsane (giher ensembles will be defined later in this paper).
one decoding iteration. Using FD-equivalence of Corollary
it is proven that a root-LDPC code attains full diversity on a

block-fading channel.

o Root-LDPC(2r) ensemble: A unique set of edges is
generated for theV/4 x N/2 submatrix[H;|H,] and
another set of edges is generated for fhig4 x N/2
submatrix [H;|H2p). This ensemble is defined by two
edge permutations £3. In the sequel, this ensemble will

Channel message be referred to aRoot-LDPC-I.

A2=0 o Root-LDPC(4n) ensemble:Four different set of edges

are generated for the four submatricls;, Hip,, Ho;,

and Ho, respectively. This ensemble is defined by four
edge permutations 4. In the next section, 4 ensembles
rootcheck derived from Root-LDPC(#) will be defined.

The absence of rootchecks for parity bits does not necéssari

Ay = 400 lead to incomplete diversity. For example, full-diversjiyo-
P ALEES SETRRE (EERN . duct codes [11] always show full diversity on both infornoati
0] O: and parity bits. The proof that any FD product code must solve

All leaves are transmitted on a all its bits after 3 decoding iterations is based on higheord
The root bit v is transmitted on a2
1This is an abuse of terminology. Instead of saying 'full’ atotible
Fig. 3. Rootcheck for an information bit in a root-LDPC co@gher check- diversity’, we may say that the binary element has been doltés permitted

nodes connected to the information bitare not shown in this illustration. because of the erasure-fading FD-equivalence.



rootchecks [11]. An illustration of a second-order roothe On a block-erasure channel, if a binary element is solved
is given in Fig.5. One or more leaf-bits are connected tok®y one checknode, there is no need to solve it again via
first-order rootcheck. After two decoding iterations thedti another checknode. In other words, using (3) and (4), if a
the top of the second-order rootcheck is solved. The randduin 2i is erased by the channel becausge = a3 = 0, its
structure of the root-LDPC matrix may create such highieotcheck will deliver a message including = o} = co.
order rootchecks, a phenomenon namadontrolled diversity The final message would have the forin = ¢a? + (a3.
doping for parity bits or equivalentlydiversity population But sincea? = oo, the energy coefficieng has no effect on
evolution (DPE). The DPE behavior depends on the twthe block-erasure channel. Coding gain does not exist on a
subgraphs defined by the submatridés, and Ho,,. block-erasure channel. Indeed, a code achieving full dityer
on block-BEC will also attain the outage limit [9].

Channel message

fa =0 On a block-fading channel, the total performance depends
+o0 on the diversity order and the so-called coding gain. Atdarg
signal-to-noise ratio, we have [3]
2nd-order
rootcheck ~ 5 _ 1
/ ‘\m i =@ 74 (1)
S : where g is the coding gain. There is no analytical method
7 : A2 =0 to determineg for a given root-LDPC instance or for a
+oo given root-LDPC ensemble! The coding gajndepends on
Tsiorder the energy coefficients and ¢. Increasing¢ should also
rootcheck increasey. If a bit 2i is badly received because < T, its
/ \ rootcheck will deliver a high-confidence message based on
S a3 > Ty. The general form\ = £af + (a3 +n shows us that
i_O O: immunity against additive nois@ is reinforced by doping
Ar=d4o0 the energy coefficienf. If another checknode is capable of

: . - L delivering a high-confidence message (i.e. solve the same
Fig. 5. A second-order rootcheck for an information bit oraaity bit in a . . . . .
root-LDPC code. Two decoding iterations are needed to eetiidl diversity. bit twice) this would increment by 1. If a bitnode has
degreed,, the maximum value fof is d, — 1, it corresponds
Let p,, be the fraction of parity bits attaining full diversityto the case where all neighboring checknodes are solving
at iterationm in a root-LDPC-I ensemble. Suppose that ththe bitnode. As a conclusion, it is beneficial to solve a bit
degree distribution of the root-LDPC-I is defined by th&any time via different checknodes on a block-fading channe
polynomials A(z) and p(z) from an edge perspective for
bitnodes and checknodes respectively. It has been shown ihetwv be a bitnode from clask. Assume that is connected
[2] that to one rootcheckl; from classlc and to another checknode
- ¥, from the clas=2c. The checknodd, includes parity bits
Pmt1=1=A1=p(fe + (1= fe)pm)), (13) from class1p as leaves. Thanks to DPE, it is possible to
where p(x) is the new distribution obtained by deletingsolve those parity bits, then the checknollg will solve v
one edge from every checknode, the multiedge fraction again, i.e£ = 2. The checknod@, is a high-order rootcheck
fe= d; L andd, is the average bitnode degree. Expressidor v. Diversity on parity bits generates a gain doping for
(13) show how the population of FD parity bits evolves witlinformation bits. In other words CGE is linked to DPE vyia .
decoding iterations. Atn = 0 we havep, = 0 since all
parity bits are erased, then, is determined as the first fixed Consider the root-LDPC-I ensemble defined by its degree
point at the right from the origin. distribution A\(x) andp(z). Assume that the channel is block-
BEC then apply density evolution [4][5] on the graph struetu
How p.., the final fraction of full-diversity parity bits, can Modify the density evolution algorithm by saving the number
influence the performance of the root-LDPC ensemble?  of times a bit is solved, i.e. save and propagate the value of
First answer (trivial): On vector channels and channelfiwit. The obtained algorithm is a CGE algorithm [2]. It is a
interference (MIMO [13], CDMA [14], and ISI channelsnumerical method for finding how evolves with iterations.
[15]) improving the performance of parity bits should boodn the steady state, after an infinite number of decoding
the a priori information (known as extrinsic information)iterations, it is possible to find a lower bound farWe know
delivered to the interference cancellation detector. that a fractionp,, of parity bits is solved. We assume that
Second answer (less trivial): Diversity population evionot every checknode connected to an information bit delivets '+
results in coding gain evolution (CGE), the key idea is in thas energy coefficient each time all its leaf-bits are solved.
main difference between the block-erasure channel and fhes is a lower bound because the contribution of 3rd-order
block-fading channel. rootchecks and beyond is not counted for. The lower bound




on the total energy coefficient has PMF [2] When 17 and 1p are erasedq; = 0 and as = oo, 1i is

n s determined after one iteration via the top left identity in
Fu(6=n+1)= L < Te > URIC)) H, then at the second iteration the firat/8 bits 1p are
n! \1—m, oz e=(1—m2) determined via the top left matrix iff,.
wherel < ¢ <d —1 andme = p (fe + (1 = fe)pso)- Before defining new ensembles, let us freeze the choice of

From the above expression, we can find the PME given  g,pmatricess;; and Ho; (defined in Fig.4). It is supposed
A(z) and p(x). This doping is uncontrolled and determiningpat 7, and H,; belong to the set ofV/4 x N/4 random
the optimal degree distribution in terms @f, and¢ is out of binary matrices with Hamming weight equal to 3 per row (so

the scope of this paper. In general, the PMFSomproves g the weight per column). We will use the notation
with p. (it is not monotonic because of the influence of

M) and p(z)). As suggested in [2], we will force parity Hyi = Hu(]3,3).
bits to be solved after some number of decoding iterations
embedding extra high-order rootchecks in the code strectu
This controlled doping is described in the next section.

%ur independent edge permutations are needed to construct
f{h-, Hy;, Hpy in Hyp, and Hy, in Hypy. Thus, the ensemble
defined byH as in Fig.6 is a root-LDP@r) ensemblé

IV. CONTROLLED DOPING INROOT-LDPC CODES

In this section, only quasi-regular root-LDPC codes ar,
considered. We propose new ensembles of root-LD
codes by modifying the original (3,6)-regular root-LDPC-I H,, = pr(11,57‘?)_
ensemble. The purpose of controlled and uncontrolled dppin ) ) )
is to improve the energy coefficient of information bits"C€ We are studying quasi-regular codés,, in root-

after solving parity bits. Hence, a parity bit is firstly sety LPPC-Il has a weight of 3 per row. Half of its columns
from a set of information bits and other previously solve§2ve Weight 1 and the others have weight 2 (average is 1.5).

parity bits. Then, the parity bit should transmit a highfOr the whole matrix structur#, we haved, = 3 andd,. = 6.

confidence message to a new information bit. Uncontrolled " _ . L
doping recorded in [2] corresponds to a DPE steady-state”TOPOSition 4: Uncontrolied doping of parity bits in the
parameterp,, — 7.82% for a (3.6)-regular root-LDPC. Ensemble root-LDPC-Il admitss, = 2 — /3 = 26.8%.

The best fraction.. of full-diversity parity bits recorded in Proof: The proof is very similar to the one for (13). It

[2] was aboutl 7% for some irregular root-LDPC-I ensembles!S Mainly based on the erasure channel approachijp,

the local bithode distribution from a node perspective is
\ _ 1 1 ;
Controlled doping can achieve a fractipn, as high as Az) = L2 Jg 37, Thus, from edge perspective \;ve have
100%. The matrix given in Fig.4 is modified by introducing(#¥) = 5 + 5. The row distribution isp(z) = z=. At
a smaller identity (or a permutation) matrix for parity bitsiteration 0, 50% only of parity bits are erased (thanks to 50%

Fig. 6 shows the matrix for a root-LDPC code wish% of of controlled doping). So we ha\m_) = % Then, evolution in
controlled doping. the tree graph of the ensemble yields

Definition 3: The ensemble root-LDPC-Il is a root-
PC({~r) ensemble withH;, defined by (15) and

(1 B p’"H‘l) o 1 )\(1 - p(]. - (1 - p'rrH—l)))'

L 1p 21 2p 2 2 9
l I l O Finally, ps. is solution of the polynomiak? — 4x + 1. The
— le valid root isps = 2 — v/3 = 26.8%. [

From proposition (4), we find that0 + $26.8 = 63.4% is the
total fraction of full diversity parity bits for root-LDP@k-
That fraction is7.82% for the original (3,6)-regular root-
O 2c LDPC-I. In the new ensemble, uncontrolled doping (13.4%) is
dominated by controlled doping (50%). Now, for finite length
N, we would like to experimentally find the performance of

N/ a code chosen from the root-LDPC-II ensemble. Decoding
Fig. 6. Root-LDPC with controlled doping. Half of the parhts are forced 1S Made via a standard BP. Apparently, there should be no
to full diversity after 2 decoding iterations. weakness in the ensemble for finidé.
The submatrixi,, has the following form Definition 4: For finite length, a root-LDPC code is said
to be FD-Encodableif 1p and2p parity bits can be uniquely
I O
Hy) = H , (15)
pp 2This is a relaxed root-LDP@(r) when compared to the one defined in [2].

. . . . L. Here, it is possible to have a differeatx) polynomial for1i and1p. Also,
wherel is an identity/permutation matrix) is the N/4x N/4 1 ard'is no restriction on the minimal checknode degree r&laed ensemble

zero matrix, andH,,, is a N/8 x N/4 random sparse matrix. has a non-zerg.



determined froms and2: information bits, while maintaining never fail because information bits are covered by two iitkent
full diversity for information bits. matrices facing botli;, and Hy,,.

It is obvious that a code is FD-Encodable iff;, and After terminating the Gaussian elimination algorithm, all
H,, are both full-rank binary matrices. In the ensemblprevious parity bits switched to information bits posison
root-LDPC-II, the following patterns appear in the rows oWwill be forced to zero in order to maintain full diversity
H,,: All ones at one side off,,, 111|000 and 000|111, (this is shortening). IfL;,L, column permutations occurred
occuring with probability1/8. Two ones at one side ofin H;, and H,, respectively, then the new rate becomes
H,,, 110|100 and 100|110, occuring with probability3/8. (L = L + Lo):

Unfortu.nately, for largeV, the right N/8 x N/8 part of H, K—1 N/2-N/32 15

would include N/64 zero rows on average. Consequently, R= N_L < N = N/32 =37

H,, is not full-rank and its rank is diminished by at least

N/64 for N > 1. Codes in the root-LDPC-Il ensemble ardrom K = N/2 andL = L, + L, > 2- N/64, for largeN. ®
not FD-Encodable!

We would like to force doping in a root-LDPC without rate

This rank deficiency issue may also occur in other root-LDPI@ss due to rank deficiency. Let us define a new ensemble
ensembles [16] involved with doping, when the graph codeferred to as root-LDPC-III.
is designed to bring diversity to its parity bits and then to
bring back coding gain for its information bits. The authiors ~ Definition 5: The ensemble root-LDPC-IIl is a root-
[16] discovered this weakness when attempting to encode ldDPC(67) ensemble withH,, defined by (15) and
instance from a root-LDPC ensemble, where high-confidence
messages have been forced back from FD parity bits to Hy =[B[C],
information bits. In some general root-LDPC ensemble, lgihere
us make a simple observation @fy,, when a fractiorp,. of B=DB(]1,T) and C =C(]2,2)
bits is well known PN
4 0 4 0 A C(]2, 2) binary matrix is always rank deficient (just
Hy, = [ I } = [ B C ] (16) add all rows). Thus(' is slightly modified by making one

pp column of unit weight and one row of unit weight. The edge
where A is (pooN)/4 x (poN)/4. The submatrixA has permutation defining’' is generated such théat has full rank.
full rank because the corresponding parity bits have be&herefore, it is always possible to build an FD-Encodable
solved from information bits, by controlled or uncontralle instance from the rate-1/2 root-LDPC-III ensemble As a
doping. If A has a special structure such that high-confidencenvention, we will keep the notatioi(] 2, 2 ) even if one
messages are going back to information bits from its propmw has a unit weight and one column has a unit weight. For
checknodes, then it is possible to select a full-rank subrnatthe whole matrix structuréf, this ensemble also has average
C to make the code FD-Encodable. Unfortunately, if dopinbjtnode degred, = 3 and average checknode degrke= 6.
checknodes have been created by forcing to zero some rows
in C then the code is no more FD-Encodable. It results ifhe root-LDPC-IIl ensemble embeds 50% of controlled
the obligation of permuting parity bits with informationt®i doping. The top left part of,,, is forcing 50% of parity bits
Thus, 1p bits becoming information bits do not necessarilyo full diversity after two decoding iterations. At this pbj
guarantee a full-diversity code. Two types of solutions amge would like to establish a result similar to Propositioi. (4
given below to overcome the rank deficiency problem. Before establishing such an intriguing statement, let ke ta

a deeper look af’(] 2, 2
Proposition 5: A code instance chosen in the Root-LDPC-
Il ensemble becomes FD-encodable via the application of aProposition 6: Let C(] 2, 2 ) be a full rankN/8 x N/8
permutation-restricted Gaussian elimination and codetshe matrix. Then, the blpart|te graph defined byis isomorphic
ing. The new coding raté satisfiesk < é—i’ to a simple chain, i.eC' can be written as a double diagonal
Proof: Encoding is made by writind? in its systematic after row and column permutations.

form (we are not taking into account fast encoding methods). Proof: The subgraph defined by hasN/8 bitnodes and
Hence, a Gaussian elimination procedure is appliedFbn N/8 checknodes. All vertices have degree equal to 2 except
to create anN/2 x N/2 identity instead of the submatrix for one bitnode and one checknode. If the subgraph contains
containing H,,, and Hs,. While processing a column within a cycle, then the rows of' associated to checknodes of that
H,,, each time al is not found on that column under thecycle will sum to zero and’' cannot be full-rank. Thus, the
diagonal, the procedure is forced to switch with a valid omiu subgraph has no cycles. Consequently, it is isomorphic to a
from the set coveringi bits. Similarly, while processingf,,, simple chain as depicted in Fig.7. [ ]
if 1 is not found in a column under the diagonal, we switch thHEhe chain acts like a 2-state machine (an accumulator)it ca
current column with another valid column in the sets covgrirbe properly terminated by transmitting a copy of the last bit
14 bits. This permutation-restricted Gaussian eliminatiath w The termination of the two chains in the root-LDPC-IIl would



have a negligible cost in coding rate, e.f.—= 0.499 instead parity bits after receiving grouped and cross-grouped tinpu

of R = 1/2 for code lengthV = 2048. bits. These encoding circuits can be directly built from the
structure of the LDPC matrix. Drawings of encoding circuits
are not given in this paper. The reader is invited to sketeh th
encoder circuit for root-LDPC-IV (relatively simple) beto

c(12,2)=| 11 making the circuit for root-LDPC-III (the drawing needs an
1 additional complexity).
11
17 1p 29 2p
[Fo{Fro{irofro{1o I | | 10]
Fig. 7. The weight-2 full-rank binary random matriX is equivalent to a : : :__ - _: 1c
simple chain. This is an example with 5 vertices from eactetyp | l l I
o | \ | 1
Proposition 7: Consider an FD-Encodable instance of the [~ 777~ J: I A :L ______ J: _______
root-LDPC-IIl ensemble. Thep,, = 1 = 100%, i.e. all parity ! I } O w w
bits attain full diversity after a sufficient number of deaugl - B | 2c
iterations. | L | ]
Proof: For a given checknode in the chain, the first ! |
bit is solved by the left graph and the second bit is solved i+14214+...=100% doping

by the right graph. In BCJR terminology [17], the forward ) ) o )
. . . . . .Fig. 8. Root-LDPC-V with full controlled doping. All parithits will acquire
processing is solving the first bit and the backward Proagssk diversity after a large number of decoding iterations.
is solving the second bit. Hence, all bits in the chain aahiev
full diversity. The combination of the identity matrix in éh
top left part of H;,, and the chain in the bottom right part of V. EXPERIMENTAL RESULTS
H,,, yields a 100% doping for parity bits. u On a block-fading channel with binary input, the word
error rate (WER) performance of codes from Root-LDPC-I
From the proof given above, we see that the two bits inghd Root-LDPC-IIl ensembles are compared. As expected,
checknode are solved by the antecessor subchain and tte WER for parity bits behaves like /v in absence of
posterior subchain respectively, not by the checknodéf.itsejoping. For Root-LDPC-IIl, the WERs of information and
Then any checknode in the chain will send back a higiyarity bits are superimposed and decrease/ag.
confidence message to information bits. The root-LDPCslll i
capable of enhancing the energy coefficients of informatiome second context shows the WER for codes from ensembles
bits without rank deficiency. root-LDPC-I & Il versus a fully random ensemble. The latter
is a (3,6)-regular code. The channel is quasi-static MIM@ wi
Other interesting ensembles can also be constructed. Baransmit antennas and two receive antennas. For this ehann
example, the chain can be extended to cover the entire maig haved, = 2, d, = 2, andd = 4. The doping of Root-
Hy,. The root-LDPC-IV ensemble is defined by LDPC-lII translates into true gain. Also, as expected, thiyf
Hyy = Hip(12 ?) random ensemble cannot guarantee a full diverdity- 4.
P Pyl Transmit diversity is guaranteed for root-LDPC codes witho
i.e. Hy, is a full chain of lengthV/4 bits. The root-LDPC-V the use of linear precoders or block space-time codes.
ensemble, already indicated in [2], includes identity icas
all along its diagonal as shown in Fig.8. The three root- VI. CONCLUSIONS ANDPERSPECTIVES
LDPC ensembles lll, IV, and V are all exhibiting a 100% In this paper, we gave a new proof for the full-diversity
doping,i.e. all parity bits are full-diversity. It is obwis that equivalence between block-fading and block-erasure aann
root-LDPC-V has faster convergence than root-LDPC-I\Diversity Population Evolution and Doping in root-LDPC
On the contrary, the chain memory in the root-LDPC-I\¢ode ensembles are reviewed and high-order rootchecks are
is better in terms of coding gain for information bitsintroduced. Finally, different code ensembles are progpose
Therefore, we consider the root-LDPC-Ill ensemble as tled analyzed for the block-fading channel. Rank deficiency
most suitable in terms of both decoding speed and coding gdim the LDPC matrix for some type of controlled doping is
solved by shortening, or avoided by the use of a simple chain
Finally, it is worth to mention that the graph/matrix struet graph. Simulation results are shown for single-antenna and
of these three root-LDPC ensembles makes it possible rtailtiple-antenna block-fading channels.
build an encoding circuit based on repetitors, interlesver
multiple-input xor gates for grouping, crossing wires for A normal continuation of this work would be a mixing
mixing information bits within the two streams of parity it of controlled and uncontrolled doping with irregular degre
and two accumulators generating a part of parity bits or alistributions in order to optimize thresholds with respext



Word Error Rate for root-LDPC-I and root-LDPC-IIl, N=2048, BPSK on 2-state fading channel
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Info, root-LDPC-I (No Doping) —+—
Parity, root-LDPC-I (No Doping) ---x---
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Fig. 9. Root-LDPC-I code versus Root-LDPC-III code on a kiading (6]

channel for code lengttv = 2048 bits. Full diversity corresponds = 2
in this example.

(7]

Word Error Rate for root-LDPC-I Il versus Random LDPC, N=2048, BPSK on MIMO 2x2

107 == 5
o : * ‘ Info+Parity, Fully Random LDPC —— [8]
- k> Info, root-LDPC-I (No Doping) ---x---
g - S Info, root-LDPC-III (Half Chain) ---%---
2 \ Outage Limit for BPSK input on MIMO 2x2 &
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Fig. 10. Root-LDPC-I & Ill codes versus fully random LDPC orvAMO
2x2 channel. Similar behavior is observed for both BPSK amER. Full
diversity corresponds td = 4 in this example. [14]

the capacity outage boundary in the fading plane. The sim;gjfg]
chain example can also be generalized to more elaborajt]
state machines such as time-variant [18] or time-invariaﬁg]
convolutional codes. Finally, for finite length (small andan
erate), uncontrolled doping of parity bits also depends on
the distribution of stopping sets [19] in the graph. The ir38l
fluence of optimized graphs, such as progressive-edge lgrowt
graphs [20], should be investigated. [19]
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