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Abstract—Code construction for a data transmission channel
with a limited number of degrees of freedom is a big challenge.
For codes on graphs, a solution based on rootchecks has been
proposed [1]. In this paper, we start by establishing a new proof
for full diversity equivalence between the block-fading and the
block-erasure channels. Then, we show how doping [2] can be
made via high-order rootchecks. This controlled doping will help
in increasing the diversity order of parity bits while boosting the
coding gain of information bits in full-diversity root-LDP C codes.
New ensembles of root-LDPC codes are designed such that 100%
of parity bits achieve full diversity.

I. I NTRODUCTION

Consider a data transmission channel with a limited number
of degrees of freedom. A transmitted codeword can be divided
into B blocks where each block is observing a different chan-
nel state. For a given signal-to-noise ratio, it is not possible
to guarantee a vanishing error probability at asymptotic code
length; Shannon capacity of such a non-ergodic channel is
zero [3]. We restrict our study to the worst caseB = 2 channel
states. As an example, the block-fading channel with binary
input and additive white Gaussian noise is defined by

yn = α1 · xn + ηn, for n = 1 . . .
N

2
, (1)

yn = α2 · xn + ηn, for n =
N

2
+ 1 . . .N. (2)

The code length isN bits, symbolsxn ∈ {−1, +1}, the ad-
ditive noise isη ∼ N (0, σ2), signal-to-noise ratio isγ = 1

2σ2

(hereγ = Es/N0 is a signal-to-noise ratio per symbol), and
the two fading coefficients are independent and identically
distributed,αi ∈ R

+. The fading distribution tail satisfies
p(α2

i ) ≈ 1 for α2
i ≪ 1. The all-zero codeword is assumed to

be transmitted and the value of fading coefficients is perfectly
known by the decoder. For a given fadingα ∈ R

+ and a
channel outputy, when noa priori information is available,
the log-likelihood ratio required for iterative probabilistic
decoding is

Λ = log
(

p(x=+1|y,α)
p(x=−1|y,α)

)

= log
(

p(y|x=+1,α)
p(y|x=−1,α)

)

= 2αy
σ2 ∝ (α2 + αη).

(3)

The caseα1 = α2 corresponds to a binary-input Gaussian
channel, i.e.Λ = α + η after division by the constant fading
coefficient. This case is equivalent to the study of an ergodic
channel without fading (α1 = α2 = 1). For α1 6= α2, it is not
possible to divide the messageΛ by α. Thus, in the general

case, after rewritingαη asη, a message at the decoder input
would be expressed asα2

1 + η1 andα2
2 + η2 for the first half-

codeword and the second half-codeword respectively.
For any finite non-zero value ofγ, according to (3), a zero
fading α = 0 is equivalent to a zero messageΛ = 0, and
an infinite fadingα = +∞ is equivalent to a full-confidence
messageΛ = +∞.
If Min-Sum decoding is applied on an LDPC code, instead of
Belief Propagation [4][5], messages propagating along graph
edges would always be expressed as

Λ = ξα2
1 + ζα2

2 + η, (4)

for any number of decoding iterations, whereξ and ζ are
integers representing the energy coefficients for both fading
states. On the other hand, a maximum likelihood (ML) decoder
maximizes the correlation metric

α1

∑

n≤N/2

ynxn + α2

∑

n>N/2

ynxn. (5)

As shown in [1], a code construction for ML decoding is not
necessarily suitable for iterative decoding. LetPe denote the
error probability after decoding, for a given type of the LDPC
decoder. The diversity order attained by an error-correcting
code for channel (1)&(2) is defined as [3]

d = − lim
γ→+∞

log(Pe)

log(γ)
. (6)

The error probability before decoding on channel (1)&(2) is
P0 ∝ 1/γ, for γ >> 1. For a general channel with an uncoded
error probabilityP0 ∝ 1/γd0, the state diversity order [6] for
a code construction is

ds = + lim
γ→+∞

log(Pe)

log(P0)
, (7)

and the total diversity order becomesd = ds × d0. Unless
otherwise stated, we assume thatd0 = 1 andd = ds.

Definition 1: Given a decoding algorithm and a non-ergodic
channel withB states, a code construction is said to befull-
diversity (FD) if the attained diversity order isd = B.
ForB = 2, the aim of code constructions in [1][2] was to build
full-diversity low-density parity-check codes at the maximum
coding rate1/2, a construction leading to an ensemble referred
to as root-LDPC codes. Examples of rate-1/3 full-diversity
root-LDPC codes forB = 3 and rate-1/2 maximum-diversity



root-LDPC codes forB = 4 can be also found in [1] and [2]
respectively.
It is unclear from (6) and Definition 1 whether diversity
order d and its full-diversity property are defined for the bit
error probabilityPeb or the word error probabilityPew ! For
a code lengthN < +∞, we havePeb ≤ Pew ≤ NPeb.
If log(N) = o(log(γ)) then Peb and Pew have an identical
diversity order. For simplicity, assuming thatN is finite or
increasing logarithmically with signal-to-noise ratio, we will
write Pe to denote both bit and word error probabilities.
Usually, Pe would representPeb when dealing with iterative
decoding and it refers toPew in ML decoding.
In the next section, we describe the erasure channel app-
roach for designing root-LDPC codes and we prove the FD-
equivalence between block-erasure and block-fading channels.
Diversity population evolution [2] is restated in section III and
doping of parity bits is studied. Section IV introduces different
code constructions for controlled doping. The paper ends with
experimental results of root-LDPC codes on fading channels
and the conclusions.

II. T HE ERASURE CHANNEL APPROACH FOR

NON-ERGODIC FADING CHANNELS

The channel model is a binary-input real-output channel as
defined in (1)&(2). Consider a linear binary codeC[N, K] of
dimensionK, lengthN , and coding rateK/N ≤ 1/2. Under
ML decoding, the pairwise error probability between the0
codeword and a non-zero codewordc can be upper bounded
by [7][8]

P (0→ c) ≤ 1

(1 + ω1(c)γ)
× 1

(1 + ω2(c)γ)
, (8)

where ω1(c) is the Hamming weight of the firstN/2 bits
in c and ω2(c) is the Hamming weight of the lastN/2 bits
in c. In our convention, the Hamming weight is equal to
the number of ’+1’ symbols in the transmitted codeword
x(c) = (x1, x2, . . . , xN ), xn being the channel input at time
instantn as defined in (1)&(2).

Lemma 1:Under maximum-likelihood decoding, full di-
versity on the block-fading channel is achieved if and only
if ω1(c) 6= 0 and ω2(c) 6= 0 for all non-zero codewords
c ∈ C[N, K].

Proof: Assume there exists a codewordc such that
ω1(c) 6= 0 and ω2(c) = 0. Then, (8) and the Union bound
tell us thatd ≥ 1. Using this same codeword, we can write a
lower bound for the total error probability as follows

Pe ≥ P (0→ c) = Eα1

[

Q(
√

2γω1α2
1)

]

≥ P (α2
1 ≤ α2

0) ·Q(
√

2γω1α2
0) (9)

≥ 1

γ
·Q(
√

2ω1) + o(
1

γ
). (10)

Hence,Pe has diversity orderd ≤ 1. This proves thatd = 1.
Similar reasoning is made forω1(c) = 0 and ω2(c) 6= 0. In-

equality (9) is found by splitting the integral
∫ ∞

0 =
∫ α2

0

0 +
∫ ∞

α2

0

,

and (10) is found by takingα2
0γ = 1. The functionQ(x) is

the standard Gaussian tail function.
Now let us assume thatω1(c) 6= 0 andω2(c) 6= 0, then from
(8) we get thatd ≥ 2. Since the channel hasB = 2 states,
we know thatd ≤ B [3], so d = 2. We can also lower bound
Pe by any pairwise error probabilityP (0→ c) and show that
d ≤ 2 in a similar way as in (9)&(10).
Let (x1, x2, . . . , xN ) = (x

N/2
1 , xN

N/2+1) be a codeword. A
block-erasure channel (block-BEC) is defined as follows: The
codeword is divided intoB = 2 blocks,xN/2

1 andxN
N/2+1. The

two blocks are independently erased by the channel. Let the
symbol ’?’ represent an unknown value (scalar or vector), then
the rigorous definition of the block-erasure channel becomes:

Definition 2: For0 ≤ ǫ ≤ 1, theB = 2 block-erasure chan-
nel is a memoryless vector channel defined by the following
transition probabilities:

P (?|xN/2
1 ) = P (?|xN

N/2+1) = ǫ.

P (x
N/2
1 |xN/2

1 ) = P (xN
N/2+1|xN

N/2+1) = 1− ǫ.

From the above definition and the first equality in (3), we
deduce that a messageΛ can take two possible values on
a block-erasure channel. If a block is erased, then all its
symbols have a channel messageΛ = 0. If a block is not
erased (perfectly copied at the channel output), then all its
symbols have a channel messageΛ = +∞. Also, for the
block-BEC, full diversity is equivalent toPe = ǫ2 [9], i.e. the
definition of diversity isd = limǫ→0

log(Pe)
log(ǫ) .

Proposition 1: For a linear binary codeC[N, K], under
maximum-likelihood decoding, full diversity on the block-
erasure channel is equivalent to full diversity on the block-
fading channel.

Proof: Necessary condition: Assume thatC[N, K] is FD
on the block-fading channel. Then, from Lemma (1) we have
ω1(c) 6= 0 and ω2(c) 6= 0 for all non-zero codewords.
If xN

N/2+1 is erased with probabilityǫ, the decoder can

distinguish between0 andc thanks toxN/2
1 . The latter is non-

zero and no other codeword has an identicalx
N/2
1 otherwise

ω1 = 0 by linearity. Thus, the ML decoder makes an error on
the block-BEC if and only if the two blocks are erased, i.e.
Pe = ǫ2.
Sufficient condition: Assume thatC[N, K] is FD on the block-
erasure channel. A similar reasoning leads toω1(c) 6= 0 and
ω2(c) 6= 0 which is FD on the block-fading channel.

Proving FD-equivalence between the block-BEC and the
block-fading channel under ML decoding of a linear binary
code seems quite simple as shown above. Does this property
hold under iterative decoding of LDPC codes? Let us analyze
the channel behavior via the fading plane approach [10]. We
will prove FD-equivalence for any code equipped with any
decoding algorithm. The equivalence between fading and
erasure is intrinsic to the channel.
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Block−Erasure Channel

Block−Fading Channel

Diversity−2 region

Diversity−0 region

Diversity−1 region

α2
2

Tf

Te

Tc

0
Tc Te Tf α2

1

Tf = 3 log(γ)
γ

Te = 1
γ log(γ)

Tc = 1
γ2

ǫ1 → 0

ǫ2 → 1/2

Fig. 1. Fading plane showing the different diversity regions for the analysis
of coding on the block-fading channel.

Consider the top-right quarter of the bidimensional place
where α2

1 represents the abscissa andα2
2 represents the

ordinate. The channel is symmetric and we assume that
C[N, K] is an LDPC code symmetric with respect toα1

and α2, i.e. the LDPC ensemble has an identical graph
structure for both half-codewordsxN/2

1 and xN
N/2+1. Hence,

it is sufficient to make the analysis forα2
2 ≤ α2

1. The fading
plane is partitioned into regions as illustrated in Fig.1. Three
thresholds on the value of the squared fading are required,
in increasing order they areTc, Te, andTf . These thresholds
will delimit regions at different diversity orders. Firstly, let
us recall that ifPe = K/γd, then− limγ→+∞

log(Pe)
log(γ) = d iff

log(K) = o(log(γ)), i.e. K can vary with the signal-to-noise
ratio but log(γ) must dominatelog(K) in order to yield a
diversity equal tod. Any K in the form K = (log(γ))j ,
j ∈ Z or K = j log(γ), j ∈ N , is suitable for satisfying the
propertylog(K) = o(log(γ)).

We start by determining the limits of the diversity-2 region.
If both α2

1 and α2
2 are less thanTf = 3 log(γ)

γ (the choice of
the numerator for this full-diversity threshold will be justified
below), then

P (α2
1 ≤ Tf , α2

2 ≤ Tf ) ≈ (3 log(γ))2

γ2

.
=

1

γ2
,

for γ ≫ 1, where
.
= means that both sides have the same

diversity order. To get the whole diversity-2 region, we need
to add the area underα2

2 ≤ Tc for α2
1 ≥ Tf and the symmetric

part along the ordinate axis. Indeed,

P (α2
1 ≥ Tf , α2

2 ≤ Tc) ≈ (1− 3 log(γ)

γ
)

1

γ2

.
=

1

γ2
,

for γ ≫ 1. The additional area defined byTc = 1
γ2 (referred

to as the capacity threshold) corresponds to the case where
a unique fading event has probability less than1

γ2 . The strip
underTc includes the rate-1/2 binary-input capacity outage
boundary [10] for a 2-state block-fading Rayleigh channel.
The diversity-1 region is defined byα2

2 in the range[Tc, Tf ]
andα2

1 greater thanTf ,

P (α2
1 ≥ Tf , Tc ≤ α2

2 ≤ Tf )
.
=

1

γ
.

The diversity-0 region is determined by taking both squared
fadings greater thanTf ,

P (α2
1 ≥ Tf , α2

2 ≥ Tf )
.
= 1.

Finally, the choice ofTe = 1
γ log(γ) (the erasure channel

threshold) will be justified below.

What is the effect of block fading on the code performance
under a given decoding algorithm? Letǫ1 = Q(

√

2α2
1γ) and

ǫ2 = Q(
√

2α2
2γ) be the uncoded error probabilities on the

block-fading channel.
• The diversity-0 region: α2

1 ≥ Tf = 3 log(γ)/γ, using
the upper boundQ(x) ≤ exp(−x2/2), we get ǫ1 ≤ 1/γ3.
Similarly we have ǫ2 ≤ 1/γ3. Even without decoding,
a symbol-by-symbol hard decision at the channel output
providesPe

.
= 1

γ3 in this region! This diversity order of 3 for
Pe is due to the factor 3 inTf . A factor of 2 would have
been sufficient to study the FD-equivalence, but we wanted to
emphasize that the diversity-0 region has no relevance while
building a root-LDPC code.
• The diversity-2 region: In this region, a failure of the
decoder, for any type of decoding algorithm, would generate
a diversity order of 2 which is the probability of the point
(α2

1, α
2
2) to belong to this region. Thus, from diversity order

point of view, the diversity-2 region has no influence on the
performance of a root-LDPC code. From coding gain point
of view, see (14), the decoding threshold should be optimized
on different points in the fading plane in order to approach
the capacity outage boundary. The root-LDPC code design
in [1][2] took into account two areas in the fading plane,
the ergodic line and the very unbalanced regime. In [12], an
optimization in the fading plane has been made for random
LDPC ensembles at rate slightly less than1/2.
• The diversity-1 region: This is the most critical region in
the fading plane. As shown above, the diversity-0 and the
diversity-2 regions have no influence on the diversity order
of an error-correcting code. On the contrary, a decoder that
fails in the diversity-1 region would yield an error probability
Pe

.
= 1

γ , i.e. full diversity is lost. Let us focus on the sub-area
defined byα2

1 ≥ Tf and α2
2 in the range[Tc, Te]. In that

sub-area, forγ ≫ 1, we haveǫ1 ≤ Q(
√

6 log(γ)) → 0 and

ǫ2 ≥ Q(
√

2
log(γ) ), but ǫ2 ≤ 1/2, this proves thatǫ2 → 1/2.

In this extremal case,ǫ1 = 0 is equivalent to a message
Λ1 = +∞ and ǫ2 = 1/2 is equivalent to a messageΛ2 = 0.
The fading channel is behaving like a block-erasure channelin
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the strip [Tc, Te]. The choice of the thresholdTe is judicious
and makesǫ2 → 1/2. In the proof of Proposition (3), with
the addition of two decoding strategies, it is proven that the
block-fading channel is identical to a block-erasure channel
in the strip[Tc, Te].

In [1][2], the block-erasure channel has been considered
as a special case of the block-fading channel by forcing the
extremal valuesα2

1 = +∞ and α2
2 = 0, which is equivalent

to Λ1 = +∞ and Λ2 = 0. In [11], a proof of full diversity
is given for rootchecks in a product code on a block-fading
channel. Another proof is given in [1] for rootchecks in a
low-density parity-check code. In the sequel, we establisha
new proof for FD-equivalence between the block-BEC and the
block-fading channel.

Proposition 2: Let C be a binary code equipped with a
given decoding algorithm. Full-diversity on the block-fading
channel results in full-diversity on the block-erasure channel.

Proof: If full diversity is achieved by the decoder, then it
is achieved in the diversity-1 region. Therefore, full diversity
is also achieved in the strip[Tc, Te] where the channel has
block erasures. In a formal way, let us denote the diversity-i
region byRi, i=0,1,2. We get

Pe =

2
∑

i=0

ERi
[Pe(α1, α2)], (11)

where Pe(α1, α2) is the conditional error probability and
ERi

[] denotes mathematical expectation with respect to the
fading distribution made over the regionRi. For i = 0 and
Tf = 3 log(γ)

γ , we have

ER0
[Pe(α1, α2)] ≤ ER0

[1]Pmax
e (R0) ≤̇

1

γ3
.

where Pmax
e (R0) is the maximum of the conditonal error

proabability in the regionR0. Similarly, for i = 2 and the
judicious choice ofTc andTf ,

ER2
[Pe(α1, α2)] ≤ ER2

[1]
.
=

1

γ2
.

Thirdly, for i = 1,

ER1
[Pe(α1, α2)] ≤ ER1

[1]Pmax
e (R1)

.
=

1

γ
Pmax

e (R1),

Finally, we obtain

Pe ≤̇
1

γ3
+

1

γ2
+

1

γ
Pmax

e (R1),

which becomes

Pe ≤̇
1

γ2
+

1

γ
Pmax

e (R1) (12)

Let S ⊂ R1 denote the block-erasure strip defined byα2
1 ≥ Tf

and α2
2 ∈ [Tc, Te]. If the decoder is FD on the block-fading

channel, from (12) we findPmax
e (R1)≤̇ 1

γ . But Pmax
e (S) ≤

Pmax
e (R1), then the decoder is also full-diversity on the block-

erasure channel.

Proposition 3: Let C be a binary code equipped with a
given decoding algorithm. Full diversity on the block-erasure
channel results in full-diversity on the block-fading channel.

Proof: Notations from the proof of the previous propo-
sitions are used. In the stripS inside the regionR1, we saw
that ǫ1 → 0 and ǫ2 → 1/2. More precisely, in the stripS,
from Tf ≤ α2

1 andα2
2 ≤ Te we have at largeγ

ǫ1 = Q(
√

2α2
1γ) ≤ 1

γ3
,

1

2
− ǫ2 =

1

2
−Q(

√

2α2
2γ) ≤ 1

√

π log(γ)
+ o(

1
√

log(γ)
).

ǫ2 is approaching1/2 at a speed 1√
log(γ)

. Then, we adopt

the following decoding strategy regardingα2
2 in S: The

decoder decides to force all messages toΛ2 = 0, i.e. it
declares an erasure on all bits transmitted on the second
fading. Similarly, ǫ1 is vanishing at a speed with diversity
order equal to3. Hence, every bit transmitted on the first
fading is correct (Λ1 = +∞) with probability greater than
1− 1

γ3 and it is incorrect with probability less than1γ3 . Then,
we adopt the following decoding strategy regardingα2

1: The
decoder decides to force all messages toΛ1 = +∞, i.e.
all bits transmitted on the first fading are assumed to be
correctly received. This strategy would only add an extra
error probability vanishing as1γ3 which has no effect on the
FD property because1γ3 + 1

γ2

.
= 1

γ2 .

Under the two strategies described above, the block-fading
channel is identical to a block-erasure channel in the strip
regionS defined byα2

1 ≥ Tf andα2
2 ∈ [Tc, Te].

Now, consider a fading point(α2
1, α

2
2) located aboveS as

shown in Fig. 2 We adopt the following decoding strategy in
the diversity-1 region:
If α2

2 > Te then force its value toα2
2 = Te, i.e. make a

projection of the fading point onto the stripS. The projection
does not need to be orthogonal! Any projection preserving
α2

1 ≥ Tf is valid. Under this third strategy, the block-fading
channel in the regionR1 is converted into a block-erasure
channel in the stripS. Therefore, if the decoder is FD on the
block-BEC, it is also FD on the block-fading channel.

Corollary 1: Under all types of decoders (ML, BP or Min-
Sum), for any LDPC code, full diversity on the block-fading
channel is equivalent to full diversity on the block-erasure
channel.

Proof: The full-diversity equivalence statement results
from combining the two previous propositions. This corollary
is also valid for non-LDPC codes such as Turbo codes [8],
Product Codes [11], etc. Indeed, the proofs of Propositions2
& 3 rely on intrinsic channel properties and nothing is related
to the code structure. It’s generalization toB fadings,B > 2,
should be straightforward.
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Diversity−2 region

Diversity−0 region

Project the fading point

Tf

Te

Tc

0
Tc Te Tf α2

1

α2
2

Fig. 2. Making a projection of the fading point onto the stripS. This allows
to extend full diversity from a block-erasure to a block-fading channel.

Corollary 2: For any LDPC code on a block-fading chan-
nel, full diversity under BP decoding results in full diversity
under Min-Sum decoding. In other words, the sub-optimal
decoder does not induce a loss in diversity!

Proof: The proof is based on the FD-equivalence property
stated in Corollary 1 and applied to both BP and Min-Sum.
If the BP decoder is FD on the block-fading channel, then
it is FD on the block-erasure channel. But BP and Min-Sum
are identical on the block-erasure channel (the two algorithms
collapse into a unique algorithm). Now we have FD for Min-
Sum on the block-erasure channel which results in FD for
Min-Sum on the block-fading channel.

Root-LDPC codes proposed in [1] include special check-
nodes referred to as rootchecks. A rootcheck is depicted
in Fig. 3. TheN -length 1/2-rate root-LDPC containsN/2
rootchecks, one for each information bit. If the bit at the root
is erased, it is immediately solved from the rootcheck leaves in
one decoding iteration. Using FD-equivalence of Corollary1,
it is proven that a root-LDPC code attains full diversity on a
block-fading channel.

Channel message

rootcheck

All leaves are transmitted on α1

Λ2 = 0

Λ1 = +∞

υ

The root bit υ is transmitted on α2

Fig. 3. Rootcheck for an information bit in a root-LDPC code.Other check-
nodes connected to the information bitυ are not shown in this illustration.

When all information bits are solved1 after one decoding
iteration, parity bits in root-LDPC codes observe a diversity
evolution via uncontrolled rootchecks. This phenomenon is
described in the next section and it is shown how this can
further help information bits.

III. D IVERSITY POPULATION EVOLUTION

Information bits are divided into classes1i and2i. Similarly,
parity bits are grouped into two classes1p and2p. The trans-
mission order on the block-fading channel follows the channel
definition in (1)&(2). Double diversity for1i is guaranteed by
rootchecks whose leaves are only connected to2i and2p. The
matrix description is depicted in Fig. 4. Class1i is connected
to rootchecks1c via an identity matrix (or any permutation
matrix in general). Class1i is also connected to2c via a
N/4×N/4 random sparse matrixH1i. Class1p has no edges
to checknodes1c, only to checknodes2c via a N/4 × N/4
random sparse matrixH1p. The structure is symmetric and
two other sparse random matricesH2i andH2p define edges
linked to bits2i and2p.

H =

1p 2p

1c

2c

1i 2i

H1i H1p

H2i H2p

N/4

Fig. 4. The parity-check matrix for a1/2-rate root-LDPC, it shows 4 classes
of bits and 2 classes of checks.

Now we distinguish two ensembles [2] of root-LDPC codes
(other ensembles will be defined later in this paper).

• Root-LDPC(2π) ensemble: A unique set of edges is
generated for theN/4 × N/2 submatrix[H1i|H1p] and
another set of edges is generated for theN/4 × N/2
submatrix [H2i|H2p]. This ensemble is defined by two
edge permutations (2π). In the sequel, this ensemble will
be referred to asRoot-LDPC-I .

• Root-LDPC(4π) ensemble:Four different set of edges
are generated for the four submatricesH1i, H1p, H2i,
and H2p respectively. This ensemble is defined by four
edge permutations (4π). In the next section, 4 ensembles
derived from Root-LDPC(4π) will be defined.

The absence of rootchecks for parity bits does not necessarily
lead to incomplete diversity. For example, full-diversitypro-
duct codes [11] always show full diversity on both information
and parity bits. The proof that any FD product code must solve
all its bits after 3 decoding iterations is based on high-order

1This is an abuse of terminology. Instead of saying ’full’ or ’double
diversity’, we may say that the binary element has been solved. It is permitted
because of the erasure-fading FD-equivalence.
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rootchecks [11]. An illustration of a second-order rootcheck
is given in Fig.5. One or more leaf-bits are connected to a
first-order rootcheck. After two decoding iterations the bit at
the top of the second-order rootcheck is solved. The random
structure of the root-LDPC matrix may create such high-
order rootchecks, a phenomenon nameduncontrolled diversity
doping for parity bits or equivalentlydiversity population
evolution (DPE). The DPE behavior depends on the two
subgraphs defined by the submatricesH1p andH2p.

Channel message

rootcheck
2nd−order

1st−order
rootcheck

Λ2 = 0
υ

+∞

Λ2 = 0

+∞

+∞

Λ1 = +∞

Fig. 5. A second-order rootcheck for an information bit or a parity bit in a
root-LDPC code. Two decoding iterations are needed to achieve full diversity.

Let pm be the fraction of parity bits attaining full diversity
at iterationm in a root-LDPC-I ensemble. Suppose that the
degree distribution of the root-LDPC-I is defined by the
polynomials λ(x) and ρ(x) from an edge perspective for
bitnodes and checknodes respectively. It has been shown in
[2] that

pm+1 = 1− λ(1 − ρ̃(fe + (1− fe)pm)), (13)

where ρ̃(x) is the new distribution obtained by deleting
one edge from every checknode, the multiedge fraction is
fe = d̄b−1

2d̄b−1
, andd̄b is the average bitnode degree. Expression

(13) show how the population of FD parity bits evolves with
decoding iterations. Atm = 0 we havep0 = 0 since all
parity bits are erased, thenp∞ is determined as the first fixed
point at the right from the origin.

How p∞, the final fraction of full-diversity parity bits, can
influence the performance of the root-LDPC ensemble?
First answer (trivial): On vector channels and channels with
interference (MIMO [13], CDMA [14], and ISI channels
[15]) improving the performance of parity bits should boost
the a priori information (known as extrinsic information)
delivered to the interference cancellation detector.
Second answer (less trivial): Diversity population evolution
results in coding gain evolution (CGE), the key idea is in the
main difference between the block-erasure channel and the
block-fading channel.

On a block-erasure channel, if a binary element is solved
by one checknode, there is no need to solve it again via
another checknode. In other words, using (3) and (4), if a
bit 2i is erased by the channel becauseΛ2 = α2

2 = 0, its
rootcheck will deliver a message includingΛ1 = α2

1 = ∞.
The final message would have the formΛ = ξα2

1 + ζα2
2.

But sinceα2
1 = ∞, the energy coefficientξ has no effect on

the block-erasure channel. Coding gain does not exist on a
block-erasure channel. Indeed, a code achieving full diversity
on block-BEC will also attain the outage limit [9].

On a block-fading channel, the total performance depends
on the diversity order and the so-called coding gain. At large
signal-to-noise ratio, we have [3]

Pe ≈
K

γd
=

1

(g · γ)d
, (14)

where g is the coding gain. There is no analytical method
to determineg for a given root-LDPC instance or for a
given root-LDPC ensemble! The coding gaing depends on
the energy coefficientsξ and ζ. Increasingξ should also
increaseg. If a bit 2i is badly received becauseα2

2 < Tf , its
rootcheck will deliver a high-confidence message based on
α2

1 > Tf . The general formΛ = ξα2
1 + ζα2

2 + η shows us that
immunity against additive noiseη is reinforced by doping
the energy coefficientξ. If another checknode is capable of
delivering a high-confidence message (i.e. solve the same
bit twice) this would incrementξ by 1. If a bitnode has
degreedb, the maximum value forξ is db − 1, it corresponds
to the case where all neighboring checknodes are solving
the bitnode. As a conclusion, it is beneficial to solve a bit
many time via different checknodes on a block-fading channel.

Let υ be a bitnode from class1i. Assume thatυ is connected
to one rootcheckΨ1 from class1c and to another checknode
Ψ2 from the class2c. The checknodeΨ2 includes parity bits
from class1p as leaves. Thanks to DPE, it is possible to
solve those parity bits, then the checknodeΨ2 will solve υ
again, i.e.ξ = 2. The checknodeΨ2 is a high-order rootcheck
for υ. Diversity on parity bits generates a gain doping for
information bits. In other words CGE is linked to DPE viap∞.

Consider the root-LDPC-I ensemble defined by its degree
distributionλ(x) andρ(x). Assume that the channel is block-
BEC then apply density evolution [4][5] on the graph structure.
Modify the density evolution algorithm by saving the number
of times a bit is solved, i.e. save and propagate the value of
ξ. The obtained algorithm is a CGE algorithm [2]. It is a
numerical method for finding howξ evolves with iterations.
In the steady state, after an infinite number of decoding
iterations, it is possible to find a lower bound forξ. We know
that a fractionp∞ of parity bits is solved. We assume that
every checknode connected to an information bit delivers ’+1’
as energy coefficient each time all its leaf-bits are solved.
This is a lower bound because the contribution of 3rd-order
rootchecks and beyond is not counted for. The lower bound
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on the total energy coefficient has PMF [2]

F∞(ξ = n + 1) =
1

n!

(

πe

1− πe

)n
[

xn ∂nλ̃(x)

∂xn

]

x=(1−πe)

where1 ≤ ξ ≤ db − 1 andπe = ρ̃ (fe + (1− fe)p∞).
From the above expression, we can find the PMF ofξ given
λ(x) and ρ(x). This doping is uncontrolled and determining
the optimal degree distribution in terms ofp∞ andξ is out of
the scope of this paper. In general, the PMF ofξ improves
with p∞ (it is not monotonic because of the influence of
λ(x) and ρ(x)). As suggested in [2], we will force parity
bits to be solved after some number of decoding iterations by
embedding extra high-order rootchecks in the code structure.
This controlled doping is described in the next section.

IV. CONTROLLED DOPING IN ROOT-LDPC CODES

In this section, only quasi-regular root-LDPC codes are
considered. We propose new ensembles of root-LDPC
codes by modifying the original (3,6)-regular root-LDPC-I
ensemble. The purpose of controlled and uncontrolled doping
is to improve the energy coefficient of information bits
after solving parity bits. Hence, a parity bit is firstly solved
from a set of information bits and other previously solved
parity bits. Then, the parity bit should transmit a high-
confidence message to a new information bit. Uncontrolled
doping recorded in [2] corresponds to a DPE steady-state
parameterp∞ = 7.82% for a (3,6)-regular root-LDPC.
The best fractionp∞ of full-diversity parity bits recorded in
[2] was about17% for some irregular root-LDPC-I ensembles.

Controlled doping can achieve a fractionp∞ as high as
100%. The matrix given in Fig.4 is modified by introducing
a smaller identity (or a permutation) matrix for parity bits.
Fig. 6 shows the matrix for a root-LDPC code with50% of
controlled doping.

H =

1p 2p

1c

2c

1i 2i

N/8

Fig. 6. Root-LDPC with controlled doping. Half of the paritybits are forced
to full diversity after 2 decoding iterations.

The submatrixH1p has the following form

H1p =

[

I O
Hpp

]

, (15)

whereI is an identity/permutation matrix,O is theN/4×N/4
zero matrix, andHpp is a N/8×N/4 random sparse matrix.

When 1i and 1p are erased,α1 = 0 and α2 = ∞, 1i is
determined after one iteration via the top left identity in
H , then at the second iteration the firstN/8 bits 1p are
determined via the top left matrix inH1p.

Before defining new ensembles, let us freeze the choice of
submatricesH1i and H2i (defined in Fig.4). It is supposed
that H1i and H2i belong to the set ofN/4 × N/4 random
binary matrices with Hamming weight equal to 3 per row (so
is the weight per column). We will use the notation

H1i = H1i(l3,
←→
3 ).

Four independent edge permutations are needed to construct
H1i, H2i, Hpp in H1p, andHpp in H2p. Thus, the ensemble
defined byH as in Fig.6 is a root-LDPC(4π) ensemble2.

Definition 3: The ensemble root-LDPC-II is a root-
LDPC(4π) ensemble withH1p defined by (15) and

Hpp = Hpp(l1.5,
←→
3 ).

Since we are studying quasi-regular codes,Hpp in root-
LDPC-II has a weight of 3 per row. Half of its columns
have weight 1 and the others have weight 2 (average is 1.5).
For the whole matrix structureH , we haved̄b = 3 andd̄c = 6.

Proposition 4: Uncontrolled doping of parity bits in the
ensemble root-LDPC-II admitsp∞ = 2−

√
3 = 26.8%.

Proof: The proof is very similar to the one for (13). It
is mainly based on the erasure channel approach. InHpp,
the local bitnode distribution from a node perspective is
λ̊(x) = 1

2 + 1
2x. Thus, from edge perspective we have

λ(x) = 1
3 + 2

3x. The row distribution isρ(x) = x2. At
iteration 0, 50% only of parity bits are erased (thanks to 50%
of controlled doping). So we havep0 = 1

2 . Then, evolution in
the tree graph of the ensemble yields

(1− pm+1)

2
=

1

2
· λ(1 − ρ(1− (1− pm+1)

2
)).

Finally, p∞ is solution of the polynomialx2 − 4x + 1. The
valid root isp∞ = 2−

√
3 = 26.8%.

From proposition (4), we find that50+ 1
226.8 = 63.4% is the

total fraction of full diversity parity bits for root-LDPC-II.
That fraction is 7.82% for the original (3,6)-regular root-
LDPC-I. In the new ensemble, uncontrolled doping (13.4%) is
dominated by controlled doping (50%). Now, for finite length
N , we would like to experimentally find the performance of
a code chosen from the root-LDPC-II ensemble. Decoding
is made via a standard BP. Apparently, there should be no
weakness in the ensemble for finiteN .

Definition 4: For finite length, a root-LDPC code is said
to beFD-Encodableif 1p and2p parity bits can be uniquely

2This is a relaxed root-LDPC(4π) when compared to the one defined in [2].
Here, it is possible to have a differentλ(x) polynomial for1i and1p. Also,
there is no restriction on the minimal checknode degree. Therelaxed ensemble
has a non-zerop∞.
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determined from1i and2i information bits, while maintaining
full diversity for information bits.
It is obvious that a code is FD-Encodable iffH1p and
H2p are both full-rank binary matrices. In the ensemble
root-LDPC-II, the following patterns appear in the rows of
Hpp: All ones at one side ofHpp, 111|000 and 000|111,
occuring with probability1/8. Two ones at one side of
Hpp, 110|100 and 100|110, occuring with probability3/8.
Unfortunately, for largeN , the rightN/8×N/8 part of Hpp

would include N/64 zero rows on average. Consequently,
H1p is not full-rank and its rank is diminished by at least
N/64 for N ≫ 1. Codes in the root-LDPC-II ensemble are
not FD-Encodable!

This rank deficiency issue may also occur in other root-LDPC
ensembles [16] involved with doping, when the graph code
is designed to bring diversity to its parity bits and then to
bring back coding gain for its information bits. The authorsin
[16] discovered this weakness when attempting to encode an
instance from a root-LDPC ensemble, where high-confidence
messages have been forced back from FD parity bits to
information bits. In some general root-LDPC ensemble, let
us make a simple observation onH1p when a fractionp∞ of
bits is well known

H1p =

[

A O
Hpp

]

=

[

A O
B C

]

, (16)

where A is (p∞N)/4 × (p∞N)/4. The submatrixA has
full rank because the corresponding parity bits have been
solved from information bits, by controlled or uncontrolled
doping. If A has a special structure such that high-confidence
messages are going back to information bits from its proper
checknodes, then it is possible to select a full-rank submatrix
C to make the code FD-Encodable. Unfortunately, if doping
checknodes have been created by forcing to zero some rows
in C then the code is no more FD-Encodable. It results in
the obligation of permuting parity bits with information bits.
Thus, 1p bits becoming information bits do not necessarily
guarantee a full-diversity code. Two types of solutions are
given below to overcome the rank deficiency problem.

Proposition 5: A code instance chosen in the Root-LDPC-
II ensemble becomes FD-encodable via the application of a
permutation-restricted Gaussian elimination and code shorten-
ing. The new coding rateR satisfiesR ≤ 15

31 .
Proof: Encoding is made by writingH in its systematic

form (we are not taking into account fast encoding methods).
Hence, a Gaussian elimination procedure is applied onH
to create anN/2 × N/2 identity instead of the submatrix
containingH1p and H2p. While processing a column within
H1p, each time a1 is not found on that column under the
diagonal, the procedure is forced to switch with a valid column
from the set covering2i bits. Similarly, while processingH2p,
if 1 is not found in a column under the diagonal, we switch the
current column with another valid column in the sets covering
1i bits. This permutation-restricted Gaussian elimination will

never fail because information bits are covered by two identity
matrices facing bothH1p andH2p.
After terminating the Gaussian elimination algorithm, all
previous parity bits switched to information bits positions
will be forced to zero in order to maintain full diversity
(this is shortening). IfL1,L2 column permutations occurred
in H1p and H2p respectively, then the new rate becomes
(L = L1 + L2):

R =
K − L

N − L
≤ N/2−N/32

N −N/32
=

15

31
,

from K = N/2 andL = L1 +L2 ≥ 2 ·N/64, for largeN .

We would like to force doping in a root-LDPC without rate
loss due to rank deficiency. Let us define a new ensemble
referred to as root-LDPC-III.

Definition 5: The ensemble root-LDPC-III is a root-
LDPC(6π) ensemble withH1p defined by (15) and

Hpp = [ B | C ],

where
B = B(l1,

←→
1 ) and C = C(l2,

←→
2 ).

A C(l 2,
←→
2 ) binary matrix is always rank deficient (just

add all rows). Thus,C is slightly modified by making one
column of unit weight and one row of unit weight. The edge
permutation definingC is generated such thatC has full rank.
Therefore, it is always possible to build an FD-Encodable
instance from the rate-1/2 root-LDPC-III ensemble. As a
convention, we will keep the notationC(l2,

←→
2 ) even if one

row has a unit weight and one column has a unit weight. For
the whole matrix structureH , this ensemble also has average
bitnode degreēdb = 3 and average checknode degreed̄c = 6.

The root-LDPC-III ensemble embeds 50% of controlled
doping. The top left part ofH1p is forcing 50% of parity bits
to full diversity after two decoding iterations. At this point,
we would like to establish a result similar to Proposition (4).
Before establishing such an intriguing statement, let us take
a deeper look atC(l2,

←→
2 ).

Proposition 6: Let C(l 2,
←→
2 ) be a full rankN/8 × N/8

matrix. Then, the bipartite graph defined byC is isomorphic
to a simple chain, i.e.C can be written as a double diagonal
after row and column permutations.

Proof: The subgraph defined byC hasN/8 bitnodes and
N/8 checknodes. All vertices have degree equal to 2 except
for one bitnode and one checknode. If the subgraph contains
a cycle, then the rows ofC associated to checknodes of that
cycle will sum to zero andC cannot be full-rank. Thus, the
subgraph has no cycles. Consequently, it is isomorphic to a
simple chain as depicted in Fig.7.
The chain acts like a 2-state machine (an accumulator), it can
be properly terminated by transmitting a copy of the last bit.
The termination of the two chains in the root-LDPC-III would
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have a negligible cost in coding rate, e.g.,R = 0.499 instead
of R = 1/2 for code lengthN = 2048.

1
1 1

1 1
1 1

1 1

C(l2,
←→
2 ) ∼=

Fig. 7. The weight-2 full-rank binary random matrixC is equivalent to a
simple chain. This is an example with 5 vertices from each type.

Proposition 7: Consider an FD-Encodable instance of the
root-LDPC-III ensemble. Thenp∞ = 1 = 100%, i.e. all parity
bits attain full diversity after a sufficient number of decoding
iterations.

Proof: For a given checknode in the chain, the first
bit is solved by the left graph and the second bit is solved
by the right graph. In BCJR terminology [17], the forward
processing is solving the first bit and the backward processing
is solving the second bit. Hence, all bits in the chain achieve
full diversity. The combination of the identity matrix in the
top left part ofH1p and the chain in the bottom right part of
H1p yields a 100% doping for parity bits.

From the proof given above, we see that the two bits in a
checknode are solved by the antecessor subchain and the
posterior subchain respectively, not by the checknode itself.
Then any checknode in the chain will send back a high-
confidence message to information bits. The root-LDPC-III is
capable of enhancing the energy coefficients of information
bits without rank deficiency.

Other interesting ensembles can also be constructed. For
example, the chain can be extended to cover the entire matrix
H1p. The root-LDPC-IV ensemble is defined by

H1p = H1p(l2,
←→
2 ),

i.e. H1p is a full chain of lengthN/4 bits. The root-LDPC-V
ensemble, already indicated in [2], includes identity matrices
all along its diagonal as shown in Fig.8. The three root-
LDPC ensembles III, IV, and V are all exhibiting a 100%
doping,i.e. all parity bits are full-diversity. It is obvious that
root-LDPC-V has faster convergence than root-LDPC-IV.
On the contrary, the chain memory in the root-LDPC-IV
is better in terms of coding gain for information bits.
Therefore, we consider the root-LDPC-III ensemble as the
most suitable in terms of both decoding speed and coding gain.

Finally, it is worth to mention that the graph/matrix structure
of these three root-LDPC ensembles makes it possible to
build an encoding circuit based on repetitors, interleavers,
multiple-input xor gates for grouping, crossing wires for
mixing information bits within the two streams of parity bits,
and two accumulators generating a part of parity bits or all

parity bits after receiving grouped and cross-grouped input
bits. These encoding circuits can be directly built from the
structure of the LDPC matrix. Drawings of encoding circuits
are not given in this paper. The reader is invited to sketch the
encoder circuit for root-LDPC-IV (relatively simple) before
making the circuit for root-LDPC-III (the drawing needs an
additional complexity).

H =

1p 2p

1c

2c

1i 2i

1

2
+

1

4
+

1

8
+ . . . =100% doping

Fig. 8. Root-LDPC-V with full controlled doping. All paritybits will acquire
full diversity after a large number of decoding iterations.

V. EXPERIMENTAL RESULTS

On a block-fading channel with binary input, the word
error rate (WER) performance of codes from Root-LDPC-I
and Root-LDPC-III ensembles are compared. As expected,
the WER for parity bits behaves like1/γ in absence of
doping. For Root-LDPC-III, the WERs of information and
parity bits are superimposed and decrease as1/γ2.

The second context shows the WER for codes from ensembles
root-LDPC-I & III versus a fully random ensemble. The latter
is a (3,6)-regular code. The channel is quasi-static MIMO with
2 transmit antennas and two receive antennas. For this channel,
we haved0 = 2, ds = 2, and d = 4. The doping of Root-
LDPC-III translates into true gain. Also, as expected, the fully
random ensemble cannot guarantee a full diversityd = 4.
Transmit diversity is guaranteed for root-LDPC codes without
the use of linear precoders or block space-time codes.

VI. CONCLUSIONS ANDPERSPECTIVES

In this paper, we gave a new proof for the full-diversity
equivalence between block-fading and block-erasure channels.
Diversity Population Evolution and Doping in root-LDPC
code ensembles are reviewed and high-order rootchecks are
introduced. Finally, different code ensembles are proposed
and analyzed for the block-fading channel. Rank deficiency
in the LDPC matrix for some type of controlled doping is
solved by shortening, or avoided by the use of a simple chain
graph. Simulation results are shown for single-antenna and
multiple-antenna block-fading channels.

A normal continuation of this work would be a mixing
of controlled and uncontrolled doping with irregular degree
distributions in order to optimize thresholds with respectto
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Fig. 9. Root-LDPC-I code versus Root-LDPC-III code on a block-fading
channel for code lengthN = 2048 bits. Full diversity corresponds tod = 2
in this example.
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Fig. 10. Root-LDPC-I & III codes versus fully random LDPC on aMIMO
2x2 channel. Similar behavior is observed for both BPSK and QPSK. Full
diversity corresponds tod = 4 in this example.

the capacity outage boundary in the fading plane. The simple
chain example can also be generalized to more elaborated
state machines such as time-variant [18] or time-invariant
convolutional codes. Finally, for finite length (small and mod-
erate), uncontrolled doping of parity bits also depends on
the distribution of stopping sets [19] in the graph. The in-
fluence of optimized graphs, such as progressive-edge growth
graphs [20], should be investigated.
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