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Abstract—We consider the problem of physical-layer network
coding when the channel exhibits block fading. Specifically, we
focus on the use of lattice codes in a compute-and-forward frame-
work for realizing physical-layer network coding. We construct a
novel lattice ensemble called the root-Low-Density Construction-
A (root-LDA) ensemble which uses Construction A with root-low-
density parity check (LDPC) codes. Using extensive simulations,
we show that the proposed lattice codes exhibit full diversity
when used over the block fading channels. In addition, their
performance is comparable to the performance of LDA lattice
codes optimized by the progressive edge growth algorithm over
the additive white Gaussian noise AWGN channel. This suggests
that root-LDA lattice codes provide a robust solution to the
problem of implementing physical layer network coding over
fading channels.

I. I NTRODUCTION

Physical-layer network-coding has drawn a lot of attention
recently due to its ability to achieve significantly higher mul-
tiplexing gains as compared to conventional relaying strate-
gies such as amplify-and-forward, compress-and-forward or
decode-and-forward. One way to effectively combine coding
and physical layer network coding is through the compute-
and-forward framework which adopts lattice codes at the
source nodes and directly computes an integer combination
of codewords or linear combination of messages over finite
field at each destination node [1], [2]. This paradigm has been
studied intensively in the literature (see for example [3] [4]
[5] and references therein).

Most of the work in the compute-and-forward literature
focuses on the case where the channel stays fixed throughout
the transmission, i.e., the channel is either an additive white
Gaussian noise (AWGN) channel or the channel exhibits quasi-
static fading. This assumption is too stringent to hold for
some applications where the channel coherence time may be
small and hence, a block fading model is more appropriate
in such situations. Previous works on the use of lattice codes
[1], [2] do not easily extend to the block fading case. On the
one hand, modern wireless communication has taught us that
coding schemes should exploit the diversity offered by block
fading channels. On the other hand, block fading channels
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destroy the algebraic structure required to directly decode
integer linear combinations of codewords. These conflicting
phenomena make it difficult to predict whether physical
layer network coding implemented through the compute-and-
forward framework still provides substantial gains over other
relaying strategies. In fact, naively using lattice codes which
perform well under quasi-static fading often performs worse
than amplify-and-forward in the presence of block fading.
Indeed, one of the most significant open problems in this
area is the design of compute-and-forward schemes that can
effectively implement physical layer network coding (decode
linear combinations) in the presence of block fading.

Very recently, Bakoury and Nazer have studied the block
fading case [6] and derived (information-theoretically) achiev-
able computation rates with infinite-dimensional lattice codes.
In [6], the construction of practical computation codes to
achieve full diversity is not investigated. Unlike [6], our
focus here is on constructing practical coding schemes which
exploit diversity for physical layer network coding (decoding
linear combinations) under iterative decoding. To the bestof
our knowledge, this is the first result that shows a coding
scheme that provides full diversity under iterative decoding
for decoding linear combinations.

To this end, we propose a novel lattice ensemble which
uses Construction A [7] with non-binary root-low-density
parity check (LDPC) codes proposed by Boutroset al. in [8].
The motivation behind this choice is that binary root-LDPC
codes have been shown to be able to achieve full diversity
orders under iterative decoding. Thus, one expects lattices
constructed upon non-binary root-LDPC codes can similarly
provide high diversity orders. This new lattice ensemble is
referred to as root-LDA lattice ensemble by following [9].
Extensive simulations are performed to verify the performance
of the proposed root-LDA lattice codes. For point-to-point
communication, we show that the proposed LDA lattice codes
provide comparable performance as compared to conventional
LDA lattice codes [9] optimized with progressive edge growth
(PEG) algorithm [10] when used over an AWGN channel,
whereas the proposed root-LDA lattice codes are able to
provide full diversity under iterative decoding when used
over block fading channel. We then perform simulations for
decoding linear combinations and show that the proposed root-
LDA lattice codes can indeed achieve full diversity under
iterative decoding for both the two-way relay channel (TWRC)
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Fig. 1. The two-way relay channel.

and the multiple-hop line network. Specifically, compute-and-
forward with root-LDA lattice codes can surpass amplify-and-
forward in the multiple-hop line network while compute-and-
forward with lattice codes that are not optimized for block-
fading channels cannot. Finally, it should be noted that a
physical layer network coding scheme should be robust against
different channel conditions, i.e., constant fading channel to
fast fading channel (or somewhere in between). Simulation
results suggest that the proposed codes exactly provide this
kind of robustness.

The rest of the paper is organized as follows. In Section II,
we state the problem of compute-and-forward over block
fading channels. In Section III, the proposed root-LDA lattice
ensemble is presented. We then apply the proposed root-LDA
lattices for function computation over block fading channels
in Section IV. This includes using the root-LDA lattices for
both the TWRC and the multiple-hop line network. Section V
concludes the paper.

A. Notations

Throughout the paper,R denotes the field of real numbers,
Z denotes the set of integers, andFp denotes finite field of
orderp. Vectors and matrices are written in boldface lowercase
and boldface uppercase, for examplex andX, respectively.

II. PROBLEM STATEMENT

A. Two-way relay channel

In this paper, although our goal is to design computation
codes with full diversity for compute-and-forward [1], we
particularly focus on the first phase (uplink) of the TWRC
for simplicity. It must be noted that the codes designed here
are not limited to the TWRC and are applicable to compute-
and-forward. As shown in Fig. 1, in this model, two source
nodesS1 andS2 wish to exchange information via the relay
node. Each source nodeSi encodes its messageui ∈ F

K
p to

the transmitted signalxi ∈ R
N that is subject to an input

power constraint

1

N
‖xi‖

2 =
1

N

N
∑

n=1

|xi[n]|
2 ≤ P, i = 1, 2. (1)

Unlike most of the work in the literature (see for example
[2] [11]), we consider a scenario where the channel coherence
time (l symbols) is less than the duration ofN symbols. Source
nodes and relay node are assumed to have perfect knowledge
of channel coherence time. Hence, the channel can be modeled
as a block fading channel withb , N/l independent fades thus
the signal received at relay is given by

y[n] = h
(j)
S1

x1[n] + h
(j)
S2

x2[n] + z[n],

n = 1, 2, . . . , N, j = 1 +

⌊

(n− 1)

l

⌋

, (2)

S2S1 R1 R2 R3

Fig. 2. The multiple-hop line network with 3 relay nodes

whereh(j)
Si

∈ R is fading coefficient ofj-th sub-block between
nodeSi and R and z[n] ∼ N (0, 1) is Gaussian noise. We
write the collection of thejth block of channel coefficients as
h(j) = [h

(j)
S1

h
(j)
S2

], j = 1, 2, . . . , b. These channel coefficients
are assumed to be perfectly known to the relay node but
unknown to both the transmitters.

The relay then formŝw an estimate of the functionw =
b1u1 ⊕ b2u2 whereb1, b2 ∈ Fp are chosen according to the
channel vectorh(j), j = 1, 2, . . . , b. The performance metric
considered throughout the paper is the symbol error rate (SER)
defined as

Pe , P {ŵ[n] 6= w[n]} . (3)

B. Multiple-hop line network

We consider information exchange on the line network
shown in Fig. 2 whereS1 andS2 wish to exchange information
through three relaysR1, R2, R3 forming a line network. A
two-way relay channel described in previous section consists
a sequence of three nodes(N1, N2, N3) whereN1 and N3

are source nodes andN2 is relay. The line network consists
of three two-way relay channels which are(S1, R1, R2),
(R1, R2, R3), and (R2, R3, S2), i.e., codewordx1 sent from
S1 experiences3 uplink channels and1 downlink channel
of TWRC to reach toS2 and codewordx2 sent fromS2

experiences3 uplink channels and1 downlink channel of
TWRC to reach toS1.

III. PROPOSEDROOT-LDA L ATTICE CODES

In this section, we introduce the proposed root-LDA lattice
ensemble and study the performance. We use both the point-
to-point AWGN channel and the point-to-point block-fading
channel to examine the performance of the proposed scheme.
Note that the point-to-point block fading channel can be
derived from (2) by fixingx2[n] = 0 for all n and the point-
to-point AWGN channel can be obtained by further forcing
b = 1. In what follows, we extend the root-LDPC ensemble
proposed by Boutroset al. [8] to the non-binary case and then
present the proposed root-LDA lattice ensemble.

A. Non-binary root-LDPC codes

We first review the family of binary root-LDPC codes
which has been shown to be exhibit full diversity. We use
its corresponding Tanner graph [12] to describe the parity
check matrix of a root-LDPC code. The main idea behind
root-LDPC codes is to design connecting edges such that
each information bit would participate in rootchecks whereall
the other connected bits experience different fades and thus
guarantee full diversity order. For the ease of exposition,we
considerb = 2 and a regular(3, 6) root-LDPC ensemble in
the following. We will first demonstrate how to construct the
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Fig. 3. Rootchecks of a root LDPC code.

Tanner graph of a binary root-LDPC code [8] and then extend
it to the non-binary case.

In a binary root-LDPC code, full diversity is obtained by
following the criteria of rootchecks:

1) There are2 types of rootchecks denoted asCHK1 and
CHK2, the number of rootchecks for each type isN/4.

2) Type 1(2) rootcheck is connected with5 variable nodes
experiencing fadingh2 (h1) and1 variable node expe-
riencing fadingh1 (h2).

The main idea of this design is shown in Fig. 3 where we
can see that if onlyh1 (h2) is in deep fade, the information
from the other 5 bit nodes experiencingh2 (h1) would make
CHK1 (CHK2) reliable. So in order to make the code fails,
both h1 and h2 have to be in deep fade. The parity-check
matrix corresponding to Tanner graph thus designed is given
by

H =

[

I 0 H2i H2p

H1i H1p I 0

]

, (4)

where all the sub-matrices areN/4×N/4 matrices,I and0
are the identity and the zero matrices, respectively, and the
other four matrices are chosen to fulfill the degree profile.
The columns of the sub-matricesHji and Hjp correspond
to the information bits and parity bits experiencinghj for
j ∈ {1, 2}, respectively. We emphasize here that the firstN/4
rows correspond precisely to the type 1 rootcheck and the
secondN/4 rows correspond to the type 2 rootcheck.

In order to construct lattices from root-LDPC codes, we
first consider root-LDPC codes codes overFp. This can be
easily done (but not necessarily optimally) by considering(4)
as the skeleton of the parity check matrix of the non-binary
code and randomly choosing a non-zero element inFp for
replacing each 1 in the skeleton matrix. We refer codes thus
constructed as non-binary root-LDPC codes.

B. The proposed Root-LDA lattice code

We are now ready to state the proposed root-LDA lattices.
This family of lattices is constructed by using Construction A
[7] with non-binary root-LDPC codes. Specifically, letC be
an N -dimensional non-binary root-LDPC code overFp and
useM the natural mapping to map the codeword symbols
onto Z/pZ. Finally, tiling the results to the entireRN to get
a lattice of the form

Λ , M(C) + pZN , (5)

where the sum used above is the Minkowski sum. The fact
thatΛ is indeed a lattice can be easily shown by noticing that
M is an isomorphism andC is a linear code. Also note that
the name of the proposed lattice ensemble comes from [13]
where di Pietroet al. use the term LDA lattices to refer lattices
obtained from Construction A with regular LDPC codes.

So far, we have only discussed lattices instead of lattice
codes. One can use the approach in [14] or [15] to build nested
lattice codes. This approach first builds a pair of nested lattices
(Λf ,Λc) with Λc ⊂ Λf and then useΛf ∪V(Λc) as codebook
whereV(Λc) denotes the fundamental Voronoi region ofΛc.

In what follows, we discuss a decoding algorithm for the
proposed root-LDA lattice. This includes a message-passing
algorithm for determining the coset and a quantizer to quantize
the received signal to the nearest lattice point inside the
decoded coset. Letλ = M(c) + pk be the lattice point
transmitted. We first describe the message-passing algorithm
whose goal is to determinec corresponding toλ as follows.

Initialization : Recall that the channel model is the point-
to-point channel now. We first initialize the algorithm by
computing the following a posteriori probability (APP) for
eachn = 1, . . . , N ,

P(c[n] = v|y[n]) =
∑

χ∈Γv

P(h(j)χ|y[n]), (6)

whereΓv = {χ|χ = M(v) + pζ, ζ ∈ Z} and

P(h(j)χ|y[n]) ∝ exp(−
(y[n]− h(j)χ)2

2σ2
), (7)

wherej = 1+
⌊

(n−1)
l

⌋

. Note that in practice, one can choose
the setΓv to include only a finite number ofζ ∈ Z according
to y[n] for eachn in order to get a good approximation. For
example, one can chooseΓv to include 3 such numbers that
are closest toy[n].

Message Update: After initialization is done, standard
message update for variable nodes and check nodes overFp is
applied. The updated message forn-th variable node atm-th
iteration denotes as

P
(m)(c[n]|C,y\y[n]). (8)

Decision: At the end of this algorithm, the decision is made
based on

ĉ[n] = argmax
v

P
(m)(c[n] = v|C,y\y[n]))P(c[n] = v|y[n]).

(9)

Let ĉ be the output of the above message-passing algorithm.
The decoder then looks into the cosetM(ĉ) + pZN and
quantize the received signaly to the nearest point inside this
coset to form our estimatêλ.

C. Simulation results

In this section, we perform simulations to demonstrate the
performance of the proposed lattice codes and decoding algo-
rithm. For the sake of simplicity, we use hypercube shaping
to carve a lattice code from the proposed lattices. i.e., we set
Λc = pZN . The performance metric we consider is either
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codeword error rate (P(ĉ 6= c)) or SER (P(û[n] 6= u[n])) for
n ∈ {1, . . . ,K}. We use SNR to denote average information
symbol energy overN0 in dB. The fine latticeΛf considered
is a proposed root-LDA lattice with underlying codeC being
a (3, 6) root-LDPC code overF5. For comparison, we also
construct an LDA lattice code whose underlying code is a
non-binary LDPC code overF5 with parity check matrix
constructed by the PEG algorithm [10]. The codeword length
is N=1200 and information length isK=600 for both codes.
In Fig. 4, we consider the AWGN channel and plot the SER
where we observe comparable performance between these two
codes.

We then consider the block fading channel as shown in
Fig. 5 and 6. In Fig. 5, we plot the codeword error rate and
observe that the proposed root-LDA lattice code is roughly 8
dB better at rate10−4 over the LDA lattice code, also the slope
of root-LDA lattice code is 2 (as expected) while LDA lattice
code does not show double diversity at that point. Similar
observation can be made for the SER performance showing
in Fig. 6 which 7 dB gain is observed at SER10−4, again
the slope of the former is 2 while the latter does not show
double diversity at that point. . This is mainly because the root-
LDA lattice code designed specifically for fading channel can
achieve full diversity while LDA lattice code is not optimized
for fading channel. In Fig. 5, we also show the so called
information outage probability [8] defined as

Pout(α,R) = Pr{I(α,h) < R}, (10)

where α is signal-to-noise ratio andh = [h(1) . . . h(b)],
I(α,h) is the instantaneous input-output mutual information
between the input and output of the channel given

I(α,h) =
1

b

b
∑

i=1

IAWGN,p(αh
(j)2), (11)

IAWGN,p(s) is the input-output mutual information of an
AWGN channel with SNRs and input asZ hypercubically
shaped bypZN [16]. This information outage probability
is often used as a lower bound on codeword error rate.
Comparing the performance of the proposed root-LDA lattice
and the information outage probability, one can see that the
proposed scheme has the right slope and hence exploit all the
diversity offered by the channel. Also, the proposed scheme
approaches (less than 2dB) the information outage probability.

IV. ROOT-LDA LATTICE CODES FOR

COMPUTE-AND-FORWARD IN BLOCK FADING CHANNEL

We now study using the proposed root-LDA lattice codes
for the problem stated in Section II. Our main goal is to use
such codes to achieve full diversity for function computation.
Specifically,S1 and S2 adopt the same nested lattice code
and map their messagesu1 andu2 onto some lattice points
M(c1) + pk1 andM(c2) + pk2, respectively. At the relay,
the first thing must be done is to determine the functionw =
b1u1 ⊕ b2u2 according to the channel coefficients. To do this,
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Fig. 4. SER performance for point-to-point AWGN channel.
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Fig. 5. Codeword error rate performance for point-to-pointblock fading
channel withb = 2.
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Fig. 6. SER performance for point-to-point block fading channel with b = 2.
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we first find integer vectora = [a1, a2] such that the following
average computation rate is maximized:

R(h(1), . . . ,h(b), a) =

1

b

b
∑

j=1

1

2
log+





(

‖a‖2 −
P |h(j)Ha|2

1 + P‖h(j)‖2

)−1


 , (12)

where log+(x)
∆
= max(log(x), 0). Note that this rate ex-

pression can be easily derived by applying the (information-
theoretic) result in [1]b times. Then, we setb1 = a1 mod p
andb2 = a2 mod p. Note that here we are not claiming that
the above rate is achievable by the proposed scheme. The
intuition of choosing the function this way is that typically,
functions result in large rate in (12) would have low error
rates.

Once the functionw is determined, the relay first computes
the APP for eachn ∈ {1, . . . , N} given by

PAPP (v1, v2) =
∑

χ1∈Γv1

∑

χ2∈Γv2

P(h
(j)
S1

χ1+h
(j)
S2

χ2|y[n]), (13)

where

P(h
(j)
S1

χ1 + h
(j)
S2

χ2|y[n]) ∝ exp(−
(y[n]− h

(j)
S1

χ1 − h
(j)
S2

χ2)
2

2σ2
).

Given b1, b2, and APPs, we first try to decode the coset
M(cf ) + pZN where cf = b1c1 ⊕ b2c2 by computing for
eachn ∈ {1, . . . , N},

P(cf [n] = v|y[n]) =
∑

b1v1⊕b2v2=v

PAPP (v1, v2). (14)

The decoder then performs standard message update for check
nodes and variable nodes overFp. The updated message for
n-th variable node atm-th iteration is denoted as

P
(m)(cf [n]|C,y\y[n]). (15)

The decisionĉf [n] at m-th iteration is given by

ĉf [n] = argmax
v

P
(m)(cf [n] = v|C,y\y[n])P(cf [n] = v|y[n]).

After determining the cosetM(ĉf ) + pZN , we then quantize
the received signal to the nearest lattice point inside thiscoset.
Note that this last step is redundant ifpZN ⊆ Λc as in this
case, all the information we need is incf .

A. Simulation results for TWRC

We now investigate the performance of using the proposed
scheme for compute-and-forward (CF) through simulations.
We first consider the TWRC and compare the SER at the
relay of CF root-LDA lattice code, that of LDA lattice code,
and amplify-and-forward (AF) with root-LDA lattice code.
For all the schemes, we use hypercubic shaping and properly
scale the signal to make the transmitted signal satisfy the
power constraint. Note that although the main goal is only
to study the compute-and-forward paradigm, we still consider
the second (broadcast) phase of the TWRC here and in
the following simulation for completeness. Assumingcf is
correctly computed, it is encoded to a codewordxf subject
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Fig. 7. End-to-end SER performance for TWRC withb = 2.

to a power constraintP and forwarded back to the two
nodes together with the knowledge ofb1 andb2. The channel
is assumed to be reciprocal. One can then follow standard
approach in the literature (see [2] for example).

In Fig. 7, the simulation results forb = 2 is shown.
One observes that both AF with root-LDA lattice code and
CF with root-LDA lattice code provide diversity order of 2
while CF with LDA lattice code cannot achieve this diversity.
Moreover, in this TWRC, AF outperforms CF as it does not
decode the received signal at the relay and hence does not
incur self-interference. However, the fact that AF does not
compute (decode) also means that it cannot clean any noise.
i.e., the noise gets accumulated. This drawback will become
pronounced when we consider networks with multiple hops.

B. Simulation results for multiple-hop line network

We consider a protocol [2] shown in Fig. 8.xi,j denotesj-
th codeword sent fromSi. This protocol is in the initialization
mode during the first2 slots then turn to operating mode
from the3rd slots. The description of this protocol under the
operating mode is as follows:

• In odd number slots,S1, S2, andR2 transmit while rest
of nodes listen

• In even number slots,S1, S2, andR2 listen while rest of
nodes transmit.

• S1 and S2 transmit new codewords whenever they al-
lowed to transmit.

Note that the power constraint for source nodesSi and relay
nodesRi is subject toP . In Fig. 8, we use an example to
illustrate the transmission protocol. For the ease of presen-
tation, we set the channel coefficients to be 1 for example;
however, for the simulation shown later, we allow the channel
to be block fading channel. In slot 1, the received signals
at R1 and R3 correspond tox1,1 and x2,1 originated from
S1 andS2, respectively, where we usexi,j to denote thejth
codeword fromSi. In slot 2, R1 and R3 forward x1,1 and
x2,1, respectively, andR3 computes the linear combination
x1,1 + x2,1 . The above steps conclude the initialization
process. We then consider the operating mode. We only look
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Fig. 9. SER performance of the 4-hop line network withb = 2.
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Fig. 8. The transmission protocol proposed in [2].

at information flow fromS1 to S2 and the signal model for
the other direction can be obtained similarly. In slot 3,R2

forwards the previously computed codewordx1,1 + x2,1 to
R3. Meanwhile,S1 andS2 transmit new codewordsx1,2 and
x2,2 to R1 andR3, respectively.R3 then computes and the
linear combinationx2,2 + x1,1 + x2,1. In slot 4,R3 forwards
x2,2 + x1,1 + x2,1 to S2 where x1,1 can be extracted out
from this function and side information atS2. In slot 5,
R2 forwards codewordx1,2 + x2,2 + 2(x1,1 + x2,1) to R3.
S1 transmits codewordx1,3 to R1. In slot 6, R3 forwards
x2,3+x1,2+x2,2+2(x1,1+x2,1) to S2. S2 can obtainx1,2 by
cancel out side information and previously decoded codeword
x1,1. This process keeps going until the end of transmission.

The same three schemes are adopted and their end-to-end
SER performances are compared in Fig. 9. One can see that
similar to the TWRC, the schemes with the proposed root-
LDA lattice code enjoy diversity order of 2 while the one with
LDA lattice code cannot. Moreover, the AF strategy perform
worse than the CF ones due to the noise accumulation. The
gap between CF and AF is expected to be larger as the number
of hops increases.

V. CONCLUSION

We have proposed the family of root-LDA lattices which is
obtained by Construction A with non-binary root-LDPC codes.
We have then used these lattices to construct nested lattice
codes for compute-and-forward over block fading channel.
Extensive simulations have been performed to confirm that the
proposed scheme achieves full diversity under iterative decod-
ing for physical-layer network-coding and thus outperforms
conventional lattice codes which do not take diversity order
into account.
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