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Abstract—We propose new coding schemes for secrecy over agiven value taken by that random variable. We apologize for
two-link compound channel. Firstly, a non-stochastic schee is not keeping the notation rigour as Grimmett and Stirzaker.
developed based on diversity-deficient LDPC ensembles and ape yeader should figure out easily from the context whether

source splitter. Secondly, a stochastic scheme is built fnro the ferring t d iabl t . |
same splitter with the adjunction of a random sequence. Thes we are referring to a random variable or {o a given value.

coding structures achieve perfect secrecy in the algebra@nd the
information-theoretic sense respectively. Regarding the eavesdropper, our study considers the worst

case scenario. Let the channel between Alice and Eve have
output z € ]Fév/z. Eve is reading a noiseless copy of one
While the applications of Wyner’s wiretap channel modaf the two links, i.e.z = v or z = w. While assuring

[1] to physical-layer security have attracted much interese that Bob has excellent performance, our aim is to prevent
for instance [2][3] and references therein, few constugcti Eve from determining the source bits, part of the source
and low complexity coding schemes have been developed [Eits, or any information derived from the source bits. Let
Recent efforts exploiting powerful families of error-cooit M = (a1, as,...,ax) € FX be the source message. In the
codes have nevertheless met some success in certain cagagsoming sections, two types of security are studied:

For instance, low-density parity check codes (LDPC) have, Algebraic security. Given z, Eve must not be able to
been shown to provide secrecy over erasure channels [B][6][ find the value of an individual binary elemeaf, Vi =
while Polar codes [8] and invertible extractors [9] haverbee 1. .. K. This algebraic security is achieved by the means
proven to ensure secrecy over some symmetric channels. of a non-stochastic LDPC encoder and a weight-2 splitter
Several results also suggest the usefulness of LDPC codes an s described in Section II.

lattice codes over the Gaussian wiretap channel [10][P][1 . Information theoretic security. The system design must
However, all the aforementioned constructions only apply t  guarantee a zero leakage, i.e. zero mutual information
memoryless wiretap channels with full statistical knovged I(M;z) = 0 or equivalentlyH(M|z) = H(M). This

of the eavesdropper's channel, which limits their scope of perfect secrecy is achieved via a stochastic encoding

applications. In this paper, we provide a first step towardsem including a random sequence as described in Section IV.
robust designs by developing a coding scheme that provides

secrecy over a compound wiretap channel [13] in which the

|. INTRODUCTION AND NOTATIONS

eavesdropper gets to observe one of two channels. Rate K/N = pv|x(y:|v) 2 Legitimate
Our compound channel has two identical links defined | Encoder Receiver
by their transition probabilitiegy | x (y1|v) and py|x (y2|w) (Alice) LW }lr—‘leX(yﬂw) Y2 | (Bob)

respectively, as depicted in Figure 1. These two links can
be any binary memoryless symmetric (BMS) channel,
v,w € FéV/Q and y1,y. € YV/2, where) is the output

alphabet as observed by the legitimate receiver. It is asdum ——., 'z | |||;gitimate
that a uniform binary source producés binary elements. e l fEC\?:)/er
Lo - - =

The lengthAN codeword generated by a rak&‘N binary
encoder is divided into p_arts_ a_nd w to be 'Fransmltted '_n Figure 1. Model of the two-link compound channel. The twddirdefined
parallel. For the sake of simplifying the notations, we dedi by pyx are identical. Eve has access to the input of one link only.

to use a unique letter to denote a random variable and any
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compound channel with two parallel links is very similar to L lp 2

block fading channels considered in [17][18]. On a double ! i i

diversity fading channel, channel coding is supposed tabéxh Ay I e T - le

an error rate performancg. proportional to1l/+% at high ! | i

signal-to-noise ratioy. In such a case, the channel code isH= | ______ R Lo R

said to be a full-diversity code. An example of full-divaysi i | |

code ensemble is the Root-LDPC ensemble [17][18]. Cy ' S v Ay I 2
In coding for double diversity on block fading channels, i : |

three fundamental rules should be satisfied [17]: - -

« The coding rateR must satisfyR < 1. K/2 (N=K)/2
o L_e‘t the pa”t)"_CheCk matrix be divided into t\A(O equai:igure 2. Parity-check matrix of an anti-root LDPC code fimlating double
size sub-matricesd = [H;|H,]. Under Maximum- diversity. Design rate ig, where < £ < 1.

Likelihood decoding,H, and H, must have full rank.

o Under iterative message-passing decoding, information

bits must be connected to root checknodes of order oneOUr System model is symmetric with respect to the LDPC
or higher. code and to the two-link channel. Thus, the right half gést
Security cannot be achieved with a full-diversity code onﬁz 2&1 s%_rrl:ctu;e rldenitlc;al $1 a:]terSW':Chrl:gincth?ang?dreRn
the two-link compound channel. Double diversity would legnd . eKe pressions aby a 2 are maintained for any
ﬂ[e5|gn rates; .

Eve determine the missing link and hence all source bits wi o ) . . ,
be revealed. The LDPC code design for security should nPtDefm't'on.z' The_ anti-root LDF.)C. en_semble is defined by
Its low-density parity-check matrix in Figure 2 where

satisfy the rules listed above.
Definition 1: The anti-diversity concept refers to a code Ci=51A; and C; = S)A,. 3)
design where the three fundamental diversity rules areinte

. ) The anti-root LDPC is systematic. Eve should not have
tionally violated.

. - . djrect access to source digits [10]. Hence, a source gsplitte
The LDPC code constructed via an anti-diversity conceg,l is placed between the scg)urC([a aLd the LDPC encod:F The
will be called an anti-root LDPC. We briefly describe thematrix S'is K x K, non-singular, and sparse. Suppose .that
structure .Of an anti-root LDPC. L% be the deS|gn rate_t(!s S is regular with d;agre.'alS i.e. th’e Hamming weight of all
the effective rate), theé < % < R < 1. The N binary digits rows and columns i Le'tu — (u1,u k) € FX be
of a codeword are divided into four families. A family &f/2 5 Lo TR 2

: (U1, i, - .
i e and a iyl 3 /gy g ¢ LOFC OO, e 1S Lo eqnclrty
1p to be sent on the first link. Similarly, the two families . " P P 9

; . into d, digits [19][20]. In this paper, we restrict the splitter to
and2p are to be sent on the second link. The design |§§1te have a dggre[d ]i 2] except E)rpone row and one coplumn in
is taken in the rangéi, 1). In the special casdt = 1, a RN

deficient diversity is assured by the last two rules. S that have a degree equal to 1.

. . Lemma 1:Consider a quasi-regular weight-2 non-singular
Let Hy, the left half part offf, be written as a block matrix splitter S, except for one row and one column whose degree

H = [ A B } ) is 1. Then,S is equivalent to a double diagonal splitt&s,
G S S—TI.S,-1I, )

The submatrixA; of size (N — K)/2 x K/2 corresponds to
edges connecting bitnodés to a first type of checknodés:.
The submatrixB; of square sizd N — K)/2 x (N — K)/2
corresponds to edges connecting bitnotiedo the first type a; = Ui + Uig1, (5)
of checknodedc. In a similar fashionC; and S; have the o, ; — 1 K _ 1 and ax = ux. We force to zero the
same size asl; and B; respectivelyC; andS; define edges |5t source bitax = ux = 0. The exact message entropy is
frqm 2 and2p to the secon_d type of checknqdhs Now, the H(M) = K — 1 bits instead ofK{. The structure of the non-
third rule is violated by taking3, = I, where! is tr}e identity gtochastic coding scheme is shown in Figure 3. The splitter
matrix of size(N — K)/2. In the special casg; = 3, A1 and g it outputu = (14 & 2i) is dispatched at the LDPC encoder
I commute, then input such that thé<'/2 bits at odd positions go tbi and the
det(Hy) = det(Cy + Sy Ay). ) K/Q_ bits at.evep positipns go t. Thgs, Eve must know both
family of bits 17 and 27 in order to find the source message
Forcing the equalityC; = S1A4; makesH; rank deficient, M. Whenz = v, Eve knows all bitsli but the bits2:i are
i.e. now the second fundamental rule is violated. The géneedl missing. The anti-root LDPC does not allow Eve to find
structure of the anti-root LDPC ensemble is shown in Figueny of the missing bit®:. Similarly, whenz = w, the anti-
2. The algebraic security is proved for a scramtferof any root LDPC does not allow Eve to finti. The proof of the
column and row weight greater than or equal to 1. following theorem is based on (3) and (5).

wherell andIl are K x K permutation matrices.
In the sequel, we assume th&t= Sy, i.e. we have



w = (1i & 2i) @2 e
play)= Y gl = > =al Tyl (10)
j=1

= d.-2

— |
u Splitter S odd posTTTont Anti-Root 4’(117 lp) =v

M=uS | vositions| -PPC For a general anti-root ensemble with two distinct linkshe t

S sparse [ ;| Encoder —(2,2p) = w compound channel, density evolution may involve up to eight

message densities. In this section, due to the identicks lin

and to the LDPC code symmetry, DE equations require two

densities only: af is the probability density function of log-

ratio messages from bithodeéto checknod@c, from 1p to 2c,

Theorem 2:The anti-root LDPC ensemble of design ratfom 2Z to Ic, and f.rom2p tolc. b-gis th.e prqbability density

% c [%, 1) guarantees the algebraic security of the commu pinction of log-ratio mes;ages from bitnodieto checknode
le, from 1p to 1¢, from 2i to 2¢, and from2p to 2¢. After

cation system between Alice and Bob. ) ) .
Given the non-stochastic scheme which is algebraicaﬁgawmg the local neighborhood of each type of bithodes(tre

secure for any block lengtlv, the next section studies the][ I[I)res_entanons 0”.““90' dge tod_lack of ;pace),. we find the
asymptotic performance of Bob fa¥ sufficiently large. ollowing DE equations at decoding iteration + 1.
"t =p (" ) © (@),
: i wdn =@ @ O s M) @A (P M) © (67)2),
Many anti-root LDPC ensembles can be defined, a given
ensemble depends on how the submatrides S1, A2, and wherey is the density at the channel outpat,and® denote
S, are constructed. Due to the lack of space, we restrimbnvolution at bithode and checknode levels.
this section to a design rat§ = 1 and to4; = II; and  Theorem 3:Consider a ratd-/2 anti-root LDPC ensemble.
Ao =TIy, wherell; andIl, are uniformly chosen in the setlf the ensemble is regular then DE reduces to one equation
of £ x £ binary permutation matrices. = p@ Mp(f™)), i.e. the anti-root LDPC has the same
decoding threshold as a regular fully-random LDPC ensemble
The asymptotic performance of Bob under iterative messagdn the regular case, the constraint in (3) did not weaken
passing is found via density evolution (DE) [14]. The amipr the LDPC code. For irregular ensembles, thresholds can be
LDPC defined by its parity-check matrik in Figure 2 and optimized by a judicious choice of(xz) and p(x).
by (3) is a multi-edge type code on graphs. As in [17][18],
an extra difficulty arises because only the performance on
information bits is relevant. Hence, we define the following A nNon-stochastic algebraically-secure encoding scherse ha

polynomials to be used by DE at bitnodes and checknod€§€n described in the previous sections and its performance
The global degree distribution df from an edge perspective,@nalyzed via density evolution. Now, we would like to re-

at bitnodes and checknodes respectively, is [14]: place qlgebraic security by perfect secrecy iq the info:nmat
theoretic sense. A perfectly secure stochastic encodimg-st

dy de . . . .
. . ture is proposed in this section.
_ 1—1 _ —1
Mz) = Z)‘im , and p(z) = ijxj - (6 " 1n the non-stochastic case, we hat{\/) = K (we omit
=2 =2 ax = 0 in order to simplify the notations). The conditional
In this section, it is assumed that = 0 for j odd. We message entropy was given by
introduce an edge-perspective polynonkat) when one edge . . . _
. o, H(M|z=v) = H(li|]z = H(2i|z =v,11) = H(2i|v).
is missing [18] and a node-perspective polynonmiat), (Mlz = wv) (Lilz = v) + H(2i]z = v, 17) (2ilv)

Figure 3. The non-stochastic encoder converts the sourssageM into
half codewordsy andw to be sent on each linkM € FX, v, w € ]Fév/z.

IIl. L EGITIMATE RECEIVER S PERFORMANCE

IV. STOCHASTIC ENCODING FORTWO LINKS

i1 a The information leakage betweenand 2i is unknown and
Y o - : o
5 3 e dy ) . - may depend on the particular choice of submatrices in&ide
— P S ) i—1
Alz) = Zl A dy — 1 Zl Pt /(1) 2, (7) Nevertheless, we always have< H(2i|v) < K/2. Similar
- - arguments can be made for= w and H (1i|w). In summary,

. b b . the non-stochastic coding scheme satisfies
Az) = Z)\ix’_l =dy Z)\i/i 1 (8) K
i=2 i=2 H(M|z) < 5 < K =H(M). (11)

whered, is the average degree of bitnodes. The polynomialsyr stochastic scheme will sacrifidé/2 bits in the message
p(:z:) andp(z) are _deflned ina s_|m|lar manner for checknodegy reducing the entropy of the messageHoM) = K/2 to
Finally, two bivariate polynomials are necessary due to thgnjeve perfect secrecy in the information theoretic seftee
separation of a checknode into two parts for information ary&tisfyingH(M|z) — H(M) = K/2.
parity bits on the same side ¢, The splitter input is modified to include both/ =
d, (a1,as,...,ax/2) and a zero sequence of lengity/2. Let
plz,y) = Zﬁsz*?)/Qy(j*?)/Q, 9) 7 = (r1,72,...,75/2) be a random sequence &f/2 in-
=2 dependent uniform binary digits. is added to both splitter



u= (1 & 2i) r splitter with the adjunction of a random sequence.
K Our work is related to methods in secret sharing such as the
M ——| Splitter S [+ (v1,02, ..., VK/2) material found in [21][22][23], but our channel model does n
t include feedback and our aim is to increase the information

/! (M,0) = uS| : o -
0 i (M, 0) = u Y '? =(wi,w2,...,wkp2)  rate rather than finding the worst channel conditions.
2
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