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Abstract—We propose new coding schemes for secrecy over a
two-link compound channel. Firstly, a non-stochastic scheme is
developed based on diversity-deficient LDPC ensembles and a
source splitter. Secondly, a stochastic scheme is built from the
same splitter with the adjunction of a random sequence. These
coding structures achieve perfect secrecy in the algebraicand the
information-theoretic sense respectively.

I. I NTRODUCTION AND NOTATIONS

While the applications of Wyner’s wiretap channel model
[1] to physical-layer security have attracted much interest, see
for instance [2][3] and references therein, few constructive
and low complexity coding schemes have been developed [4].
Recent efforts exploiting powerful families of error-control
codes have nevertheless met some success in certain cases.
For instance, low-density parity check codes (LDPC) have
been shown to provide secrecy over erasure channels [5][6][7],
while Polar codes [8] and invertible extractors [9] have been
proven to ensure secrecy over some symmetric channels.
Several results also suggest the usefulness of LDPC codes and
lattice codes over the Gaussian wiretap channel [10][11][12].
However, all the aforementioned constructions only apply to
memoryless wiretap channels with full statistical knowledge
of the eavesdropper’s channel, which limits their scope of
applications. In this paper, we provide a first step towards more
robust designs by developing a coding scheme that provides
secrecy over a compound wiretap channel [13] in which the
eavesdropper gets to observe one of two channels.

Our compound channel has two identical links defined
by their transition probabilitiespY |X(y1|v) and pY |X(y2|w)
respectively, as depicted in Figure 1. These two links can
be any binary memoryless symmetric (BMS) channel,
v, w ∈ F

N/2
2 and y1, y2 ∈ YN/2, where Y is the output

alphabet as observed by the legitimate receiver. It is assumed
that a uniform binary source producesK binary elements.
The length-N codeword generated by a rate-K/N binary
encoder is divided into partsv and w to be transmitted in
parallel. For the sake of simplifying the notations, we decided
to use a unique letter to denote a random variable and any
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given value taken by that random variable. We apologize for
not keeping the notation rigour as Grimmett and Stirzaker.
The reader should figure out easily from the context whether
we are referring to a random variable or to a given value.

Regarding the eavesdropper, our study considers the worst
case scenario. Let the channel between Alice and Eve have
output z ∈ F

N/2
2 . Eve is reading a noiseless copy of one

of the two links, i.e.z = v or z = w. While assuring
that Bob has excellent performance, our aim is to prevent
Eve from determining the source bits, part of the source
bits, or any information derived from the source bits. Let
M = (a1, a2, . . . , aK) ∈ F

K
2 be the source message. In the

upcoming sections, two types of security are studied:

• Algebraic security. Given z, Eve must not be able to
find the value of an individual binary elementai, ∀i =
1 . . .K. This algebraic security is achieved by the means
of a non-stochastic LDPC encoder and a weight-2 splitter
as described in Section II.

• Information theoretic security . The system design must
guarantee a zero leakage, i.e. zero mutual information
I(M ; z) = 0 or equivalentlyH(M |z) = H(M). This
perfect secrecy is achieved via a stochastic encoding
including a random sequence as described in Section IV.
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Figure 1. Model of the two-link compound channel. The two links defined
by pY |X are identical. Eve has access to the input of one link only.

II. A NTI-DIVERSITY LDPC ENCODING

The reader is assumed to be familiar with LDPC codes
[14] and diversity methods for fading channels [15][16]. The



compound channel with two parallel links is very similar to
block fading channels considered in [17][18]. On a double
diversity fading channel, channel coding is supposed to exhibit
an error rate performancePe proportional to1/γ2 at high
signal-to-noise ratioγ. In such a case, the channel code is
said to be a full-diversity code. An example of full-diversity
code ensemble is the Root-LDPC ensemble [17][18].

In coding for double diversity on block fading channels,
three fundamental rules should be satisfied [17]:

• The coding rateR must satisfyR ≤ 1
2 .

• Let the parity-check matrix be divided into two equal
size sub-matrices,H = [H1|H2]. Under Maximum-
Likelihood decoding,H1 andH2 must have full rank.

• Under iterative message-passing decoding, information
bits must be connected to root checknodes of order one
or higher.

Security cannot be achieved with a full-diversity code on
the two-link compound channel. Double diversity would let
Eve determine the missing link and hence all source bits will
be revealed. The LDPC code design for security should not
satisfy the rules listed above.

Definition 1: The anti-diversity concept refers to a code
design where the three fundamental diversity rules are inten-
tionally violated.

The LDPC code constructed via an anti-diversity concept
will be called an anti-root LDPC. We briefly describe the
structure of an anti-root LDPC. LetKN be the design rate (R is
the effective rate), then12 ≤ K

N ≤ R < 1. TheN binary digits
of a codeword are divided into four families. A family ofK/2
information digits1i and a family of(N −K)/2 parity digits
1p to be sent on the first link. Similarly, the two families2i
and2p are to be sent on the second link. The design rateK

N
is taken in the range[12 , 1). In the special caseKN = 1

2 , a
deficient diversity is assured by the last two rules.
Let H1, the left half part ofH , be written as a block matrix

H1 =

[

A1 B1

C1 S1

]

. (1)

The submatrixA1 of size (N − K)/2 × K/2 corresponds to
edges connecting bitnodes1i to a first type of checknodes1c.
The submatrixB1 of square size(N − K)/2 × (N − K)/2
corresponds to edges connecting bitnodes1p to the first type
of checknodes1c. In a similar fashion,C1 and S1 have the
same size asA1 andB1 respectively.C1 andS1 define edges
from 2i and2p to the second type of checknodes2c. Now, the
third rule is violated by takingB1 = I, whereI is the identity
matrix of size(N −K)/2. In the special caseKN = 1

2 , A1 and
I commute, then

det(H1) = det(C1 + S1A1). (2)

Forcing the equalityC1 = S1A1 makesH1 rank deficient,
i.e. now the second fundamental rule is violated. The general
structure of the anti-root LDPC ensemble is shown in Figure
2. The algebraic security is proved for a scramblerS1 of any
column and row weight greater than or equal to 1.

H =

1p 2p

1c

2c

1i 2i

A2S1

C2 S2

C1

A1

K/2 (N − K)/2

Figure 2. Parity-check matrix of an anti-root LDPC code for violating double
diversity. Design rate isK

N
, where 1

2
≤ K

N
< 1.

Our system model is symmetric with respect to the LDPC
code and to the two-link channel. Thus, the right half partH2

has a structure identical toH1 after switching checknodes1c
and2c. The expressions ofC1 andC2 are maintained for any
design rateK

N .
Definition 2: The anti-root LDPC ensemble is defined by

its low-density parity-check matrix in Figure 2 where

C1 = S1A1 and C2 = S2A2. (3)

The anti-root LDPC is systematic. Eve should not have
direct access to source digits [10]. Hence, a source splitter
S is placed between the source and the LDPC encoder. The
matrix S is K × K, non-singular, and sparse. Suppose that
S is regular with degreeds, i.e. the Hamming weight of all
rows and columns isds. Let u = (u1, u2, . . . , uK) ∈ F

K
2 be

the LDPC encoder input. Thenu = MS−1, or equivalently
M = uS. The latter is an operation that splits each source digit
into ds digits [19][20]. In this paper, we restrict the splitter to
have a degreeds = 2, except for one row and one column in
S that have a degree equal to 1.

Lemma 1:Consider a quasi-regular weight-2 non-singular
splitter S, except for one row and one column whose degree
is 1. Then,S is equivalent to a double diagonal splitterS0,

S = Π · S0 · Π
′

, (4)

whereΠ andΠ
′

areK × K permutation matrices.
In the sequel, we assume thatS = S0, i.e. we have

ai = ui + ui+1, (5)

for i = 1 . . .K − 1 and aK = uK . We force to zero the
last source bit,aK = uK = 0. The exact message entropy is
H(M) = K − 1 bits instead ofK. The structure of the non-
stochastic coding scheme is shown in Figure 3. The splitter
K-bit outputu = (1i & 2i) is dispatched at the LDPC encoder
input such that theK/2 bits at odd positions go to1i and the
K/2 bits at even positions go to2i. Thus, Eve must know both
family of bits 1i and 2i in order to find the source message
M . When z = v, Eve knows all bits1i but the bits2i are
all missing. The anti-root LDPC does not allow Eve to find
any of the missing bits2i. Similarly, whenz = w, the anti-
root LDPC does not allow Eve to find1i. The proof of the
following theorem is based on (3) and (5).
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Theorem 2:The anti-root LDPC ensemble of design rate
K
N ∈ [ 12 , 1) guarantees the algebraic security of the communi-
cation system between Alice and Bob.

Given the non-stochastic scheme which is algebraically
secure for any block lengthN , the next section studies the
asymptotic performance of Bob forN sufficiently large.

III. L EGITIMATE RECEIVER’ S PERFORMANCE

Many anti-root LDPC ensembles can be defined, a given
ensemble depends on how the submatricesA1, S1, A2, and
S2 are constructed. Due to the lack of space, we restrict
this section to a design rateKN = 1

2 and to A1 = Π1 and
A2 = Π2, whereΠ1 andΠ2 are uniformly chosen in the set
of K

2 × K
2 binary permutation matrices.

The asymptotic performance of Bob under iterative message
passing is found via density evolution (DE) [14]. The anti-root
LDPC defined by its parity-check matrixH in Figure 2 and
by (3) is a multi-edge type code on graphs. As in [17][18],
an extra difficulty arises because only the performance on
information bits is relevant. Hence, we define the following
polynomials to be used by DE at bitnodes and checknodes.
The global degree distribution ofH from an edge perspective,
at bitnodes and checknodes respectively, is [14]:

λ(x) =

db
∑

i=2

λix
i−1, and ρ(x) =

dc
∑

j=2

ρjx
j−1. (6)

In this section, it is assumed thatρj = 0 for j odd. We
introduce an edge-perspective polynomialλ̃(x) when one edge
is missing [18] and a node-perspective polynomialλ̊(x),

λ̃(x) =

db−1
∑

i=1

λ̃ix
i−1 =

d̄b

d̄b − 1

db−1
∑

i=1

i λi+1/(i+1) xi−1, (7)

λ̊(x) =

db
∑

i=2

λ̊ix
i−1 = d̄b

db
∑

i=2

λi/i xi−1, (8)

whered̄b is the average degree of bitnodes. The polynomials
ρ̃(x) andρ̊(x) are defined in a similar manner for checknodes.
Finally, two bivariate polynomials are necessary due to the
separation of a checknode into two parts for information and
parity bits on the same side ofH ,

ρ̊(x, y) =

dc
∑

j=2

ρ̊jx
(j−2)/2y(j−2)/2, (9)

ρ̂(x, y) =

(dc−2)/2
∑

j=1

ρ̂jx
j−1yj =

(dc−2)/2
∑

j=1

2jρ̊j

d̄c − 2
xj−1yj. (10)

For a general anti-root ensemble with two distinct links in the
compound channel, density evolution may involve up to eight
message densities. In this section, due to the identical links
and to the LDPC code symmetry, DE equations require two
densities only: a-f is the probability density function of log-
ratio messages from bitnode1i to checknode2c, from1p to 2c,
from 2i to 1c, and from2p to 1c. b- q is the probability density
function of log-ratio messages from bitnode1i to checknode
1c, from 1p to 1c, from 2i to 2c, and from2p to 2c. After
drawing the local neighborhood of each type of bitnodes (tree
representations omitted due to lack of space), we find the
following DE equations at decoding iterationm + 1:

qm+1 = µ ⊗ λ̊
(

ρ̂(fm, fm) ⊙ (qm)⊙2
)

,

fm+1 = µ⊗ (qm ⊙ ρ̊(fm, fm))⊗ λ̃
(

ρ̂(fm, fm) ⊙ (qm)⊙2
)

,

whereµ is the density at the channel output,⊗ and⊙ denote
convolution at bitnode and checknode levels.

Theorem 3:Consider a rate-1/2 anti-root LDPC ensemble.
If the ensemble is regular then DE reduces to one equation
fm+1 = µ ⊗ λ(ρ(fm)), i.e. the anti-root LDPC has the same
decoding threshold as a regular fully-random LDPC ensemble.

In the regular case, the constraint in (3) did not weaken
the LDPC code. For irregular ensembles, thresholds can be
optimized by a judicious choice ofλ(x) andρ(x).

IV. STOCHASTIC ENCODING FORTWO L INKS

A non-stochastic algebraically-secure encoding scheme has
been described in the previous sections and its performance
analyzed via density evolution. Now, we would like to re-
place algebraic security by perfect secrecy in the information-
theoretic sense. A perfectly secure stochastic encoding struc-
ture is proposed in this section.

In the non-stochastic case, we hadH(M) = K (we omit
aK = 0 in order to simplify the notations). The conditional
message entropy was given by

H(M |z = v) = H(1i|z = v) + H(2i|z = v, 1i) = H(2i|v).

The information leakage betweenv and 2i is unknown and
may depend on the particular choice of submatrices insideH .
Nevertheless, we always have0 < H(2i|v) ≤ K/2. Similar
arguments can be made forz = w andH(1i|w). In summary,
the non-stochastic coding scheme satisfies

H(M |z) ≤
K

2
< K = H(M). (11)

Our stochastic scheme will sacrificeK/2 bits in the message
by reducing the entropy of the message toH(M) = K/2 to
achieve perfect secrecy in the information theoretic senseafter
satisfyingH(M |z) = H(M) = K/2.

The splitter input is modified to include bothM =
(a1, a2, . . . , aK/2) and a zero sequence of lengthK/2. Let
r = (r1, r2, . . . , rK/2) be a random sequence ofK/2 in-
dependent uniform binary digits.r is added to both splitter
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Figure 5. Splitter structure for stochasting encoding for two and three links
respectively. The sparse graph represents the expression(M, 0) = uS where
S is sparse with degree 2.

outputs. The stochastic structure is shown in Figure 4 where
the splitter output fillsK/2 bits in v andK/2 bits in w. The
remainingN −K bits in v andw will be equal to parity bits
of an LDPC encoder. The analysis below is valid for a two-
link anti-root LDPC and for two separate length-N/2 LDPC
codes. The splitter structure is also illustrated in Figure5. In
a straightforward manner, Theorem 4 can be generalized to an
eavesdropper reading one link out ofL links, for anyL ≥ 2.

Theorem 4:The stochastic encoding scheme yields
H(M |z) = K

2 = H(M) on a two-link compound channel,
i.e. it is perfectly secure in the information-theoretic sense.

Proof. A sketch of the proof is given. Notice that the zero
sequence at the splitter input makes2i a permuted version
of 1i. So H(2i|z, 1i) = 0. The equivocation isH(M |z) =
H(1i, 2i|z) = H(1i|z) + H(2i|z, 1i) = H(1i|z). Consider
z = v. For the case of two separate length-N/2 codes, we
haveH(1i|v) = H(1i|1i + r) = H(1i) = K/2. For an anti-
root LDPC,H(1i|v) = H(1i|1i + r, 1p), the latter is equal to
H(1i|1i + r) = K/2 because1p is a function of1i + r only
thanks to the splitter. Similar proof is made forz = w. �.

V. CONCLUSION

We proposed two original coding schemes for secure
communication over a two-link compound channel. A non-
stochastic scheme has been developed based on diversity-
deficient LDPC ensembles and a source splitter. The anti-
root LDPC code guarantees perfect algebraic security. Its joint
structure makes it twice longer than two separate LDPC codes
for each link and forbids Eve from correcting channel errors
whenz = y1 or z = y2. The second scheme is stochastic and
attains perfect information-theoretic secrecy. It is built from a

splitter with the adjunction of a random sequence.
Our work is related to methods in secret sharing such as the
material found in [21][22][23], but our channel model does not
include feedback and our aim is to increase the information
rate rather than finding the worst channel conditions.
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