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Abstract—We prove that the ensemble of random Generalized
Low-Density (GLD) lattices can attain the Poltyrev limit for
an alphabet size increasing polylogarithmically with the lattice
dimension. Our main theorem imposes no constraints on the
normalized minimum distance of the code associated to the lattice
ensemble, any asymptotically good code is suitable. This is a
great improvement with respect to the first theorem on Poltyrev
goodness of GLD lattices (2015). Our new bound is based on a
new method referred to as the buckets approach where we employ
the asymptotics of the restricted compositions of the Hamming
weight. The new bound has applications in many coding areas
beyond the specific lattice ensemble considered in this paper.

I. INTRODUCTION

Error-correcting codes [12] [15] are special mathematical

structures based on finite fields, while point lattices live in a

Euclidean space [4]. Both codes and lattices play an important

role in Information Theory, Computer Science, and many

related areas. Lately in Mathematics, researchers showed that

the densest sphere packings in R
8 and R

24 are lattice packings

from the Gosset and the Leech lattices respectively [18] [3].

A more recent advance by di Pietro et al. and Vatedka et

al. concerns capacity-achieving Low-Density Construction A

(LDA) lattices which are built from non-binary LDPC codes

(sparse codes [12]) via Construction A [4]. A new family of

lattices, known as Generalized Low-Density (GLD) lattices,

was introduced in 2014 following a similar construction in

finite fields [1]. In 2015, the performance of GLD lattices at

high signal-to-noise ratio (SNR) was studied to prove spectral

thinning [2] and their Poltyrev goodness was proven in [6]. As

stated by Erez and Zamir [9], Poltyrev goodness is a condition

to attain channel capacity. It relates to the quality of an infinite

lattice constellation that admits a vanishing error probability

under closest-point decoding for a noise variance as close as

possible to the highest limit established by Poltyrev [16].

In this paper, we describe a new method to analyze GLD

codes and better take into account the embedded permutations.

This method, called the buckets approach, is presented in

Section III. It handles each component code C0 as a bucket

randomly receiving apples (i.e. non-zero coordinates) from a

point with a given Hamming weight. Section IV recalls three

important results where the last lemma about integer points

with coordinates in pZ is refined. Finally, by combining all

previous results, Section V presents a new Poltyrev goodness

theorem stronger that the previous theorem published in [6]. A

brief overview of GLD lattices is provided in the next section.

The positive integer p is a prime number throughout this paper.

II. AN OVERVIEW OF GLD LATTICES

The key idea of a GLD construction is to improve a lattice,

e.g. increase its Hermite constant, by making intersections

of two or more sub-lattices. Moreover, in order to get low-

complexity decoding algorithms and be able to analyze the

structure, the intersecting lattices are made of the direct sum

of a small-dimensional lattice Λ0 ⊂ R
n0 .

Definition 1. (General GLD) A GLD lattice Λgld ⊂ R
n is

defined by the intersection of J sub-lattices,

Λgld =

J⋂
i=1

πi

(
Λ⊕L
0

)
, (1)

where L = n/n0 and {πi}Ji=1 are random permutations
(interleavers) uniformly selected from the symmetric group Sn.

Definition 2. (Construction-A GLD) Let Λ0 = C0[n0, k0]p +
pZn0 be a real integer lattice built via Construction A from a
code C0 of length n0 and dimension k0 defined over the prime
field Fp. The GLD lattice Λgld derived from Λ0 is

Λgld =
J⋂

i=1

πi

(C⊕L
0

)
+ pZn = Cgld + pZn. (2)

Figure 1 depicts the parity-check matrix of a GLD code

Cgld = ∩J
i=1πi

(C⊕L
0

)
with J = 3, π1 is the identity, π2 and

π3 are random. H0 is the (n0 − k0)× n0 parity-check matrix

of C0. The main structural difference of GLD codes compared

to LDPC codes lies on the fact that each [n0, n0 − 1, 2]p
check node of the latter is replaced by [n0, k0, d0]p code in the

former. In the special case when k0 = n0−1, LDA lattices [7]

become a class of GLD lattices [1].

π3

H0

H0

H0

π2

Fig. 1. Parity-check matrix of a GLD code with J = 3 direct sums.

The rate of a GLD code R is directly related to the rate

R0 = k0/n0 of the code C0 via R = 1 − J(1 − R0).
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The fundamental volume of a Construction A GLD lattice is

calculated by

V ol(Λgld) = pn−k = pn(1−R). (3)

Poltyrev [16] introduced an alternative to analyze the per-

formance of an infinite lattice constellation without a power

constraint over the Gaussian channel, referred to as Poltyrev
capacity or limit. Given the channel noise variance σ2, there

exists a sequence of n-dimensional lattices of constant volume

V for which the probability of decoding error can be made

as small as possible for a sufficiently large value of n, if and

only if

σ2 < σ2
max =

V 2/n

2πe
. (4)

In the sequel, for δ > 0, the noise variance will be related to

the limit σ2
max by

σ2 = σ2
max(1− δ)2 =

p2(1−R)

2πe
(1 − δ)2. (5)

The 2015 theorem by di Pietro et al. [6] showing that GLD

lattices are Poltyrev-capacity achieving is recalled below:

Theorem 1. (GLD lattices achieving Poltyrev limit) Consider
a random ensemble and suppose that p = nλ for some λ > 0.
Admit that the minimum Hamming distance of the random
GLD codes underlying GLD lattices is lower bounded by Δn,
for some 0 < Δ ≤ 1. Then for every 0 < δ < 1 such that

f(Δ) =
e
H(Δ)
Δ√
Δ

(1− δ) < 1, (6)

where Δ = dHmin(C)/n, a random lattice of the family can
be decoded under maximum likelihood (ML) decoding with
vanishing error probability for every channel noise variance
σ2 = σ2

max(1− δ)2.

In practice, it is possible to see that there are a few choices

for Δ, i.e., Δ > 0.98 such that the inequality in (6) holds.

Moreover, when δ → 0, it immediately follows that Δ → 1
and in conclusion, the only reasonable codes to be considered

are repetition codes, which is very constraining and would

make the construction of high-rate finite constellations fail.

In order to improve this drawback and to take better

advantage of the GLD code structure that underlies the lattice

construction (mainly the J permutations), we propose in the

upcoming sections an innovative approach to the Poltyrev-

achieving capacity GLD lattices.

III. THE BUCKETS APPROACH FOR PERMUTATIONS

Consider n/n0 shallow buckets each of capacity n0 apples,

n0 ≥ 1. The position of apples inside a bucket is taken into

account. Imagine that � apples are randomly thrown towards

the n/n0 buckets and no apples are falling outside, where

1 ≤ � ≤ n. Assume that an apple falls in any of the buckets

with equal probability. A bucket is said to be active if, after

throwing the � apples, it contains at least one apple.

Let B be the number of active buckets. B is a discrete

random variable taking values in the range [bmin, bmax], with

bmin = � �
n0
	 corresponds to b − 1 buckets being 100% full.

Obviously bmax = min{ n
n0
, �}. In the ensemble of GLD codes

considered in next sections, we shall have bmax = n
n0

because

of the asymptotic goodness property � > n
n0

proven in the last

section of this paper. An illustration is given in Figure 2 for

� = 5, b = 2 active buckets, and a total of n/n0 = 3 buckets.

Our objective in this section is to determine P{B = b}
after randomly throwing the � apples into the n/n0 buckets.

For b active buckets, the integer � can be written as the sum

of b integers,

� =

b∑
i=1

�i, �i ∈ [1, n0], (7)

where �i is the number of apples in the ith active bucket. The

sum in (7) is a restricted composition of the positive integer �
with a fixed number of parts, see Chapter 3 in [14] for more

details on compositions.

bucket 3bucket 1 bucket 2

Fig. 2. One configuration of five apples in three shallow buckets. � = 5,
n0 = 4, n/n0 = 3, and b = 2 active buckets.

• What is the number of restricted compositions given B = b?
Let f(t) =

∑n0

j=1 t
j be the enumerator polynomial for one

active bucket, i.e. tk corresponds to k apples inside the bucket.

Denote by c(�, b, n, n0) the number of restricted compositions

of � apples when B = b for a total of n/n0 buckets each

containing up to n0 apples. Since n and n0 are well defined

in the context of this paper, we drop them to simplify the

notations and we write c(�, b) for the number of restricted

compositions.

At finite n and �, c(�, b) is given by [14] [8]

c(�, b) = [t�] (f(t))
b
= [t�](t+ t2 + . . .+ tn0)b, (8)

where the notation [tk]h(t) denotes the coefficient of tk of the

polynomial h(t). The number of integer compositions of � with

b parts restricted to [1, n0] can be linked to ordinary binomial

coefficients via a formula established in [11]. A more recent

alternative proof is based on the application of Theorem 1

in [8] which yields

c(�, b) =

b∑
j=0

(−1)j
(
b

j

)(
�− jn0 − 1

b− 1

)
. (9)

The sum in (9) should be evaluated with
(
n
k

)
= 0 for n ≤ 0.

For example, for n0 = 4, c(5, 2) = 4 because we can only

write 5 = 1 + 4 = 4 + 1 = 2 + 3 = 3 + 2, and c(10, 3) = 6
because 10 = 2 + 4 + 4 = 3 + 3 + 4 and their permutations.

For asymptotic values n � 1 and � � 1, the number of

restricted integer compositions of � with b parts is determined
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via the Daniels-Good theorem as proposed in [10] for comput-

ing the asymptotics of the entropy density function. Daniels-

Good theorem was proved by I.J. Good in 1957 [13] with

some improvement with respect to the previous version of

H.E. Daniels [5]. In the sequel, we adapt the notation to our

study to get the following lemma:

Lemma 1. (Asymptotics of the Number of Restricted Compo-
sitions) Let � ≥ b � 1. The number of compositions of � with
b parts where each part is restricted to [1, n0] is

c(�, b) =
f(t0)

b

t�0
√
2πbκ2(t0)

×
{
1 +O

(
1

b

)}
(10)

where f(t) =
∑n0

j=1 t
j , κ2(t) =

f ′′(t)
f(t) −

(
f ′(t)
f(t)

)2
+ f ′(t)

tf(t) , and
t0 is the unique non-negative real solution of the equation

tf ′(t) =
�

b
f(t). (11)

Proof: Let us apply Good’s Theorem 6.1 [13] after

checking that all its conditions are satisfied. From bmin = � �
n0

	
and bmax = min{ n

n0
, �} we derive that the ratio �

b is held

inside the constant interval [1, n0]. The convergence radius of

f(t) is infinity and all its coefficients are equal to 1. Thus, the

main conditions of Good’s theorem are all satisfied.

Now, define a new real variable

r =
�

b
∈ [1, n0]. (12)

The parameter t0 is solution of tf ′(t) = rf(t), or equivalently,

it is root of the following equation,

n0∑
j=1

(j − r)tj−1
0 = 0. (13)

Since the real r varies in the interval [1, n0], the coefficients of

the polynomial in (13) make a unique change in sign, so (13)

has a unique positive real root thanks to Descartes’ rule of

signs for r > 1, and t0 = 0 for r = 1. The application of

Theorem 6.1 from [13] gives (10).

The variable r = �/b shall be used in the next sections of

this paper. From (11), we get an expression for r,

r =
tf ′(t)
f(t)

=

∑n0

j=1 jt
j∑n0

j=1 t
j
, (14)

yielding r = (n0 + 1)/2 if t0 = 1, and

r =
n0t

n0+1
0 − (n0 + 1)tn0

0 + 1

(1− t0)(1− tn0
0 )

, for t0 �= 1. (15)

To summarize how c(�, b) behaves versus r: r = 1 corresponds

to t0 = 0 and c(�, b) = 1 (because � = b has a unique restricted

composition), r → n0 corresponds to t0 → +∞ and c(�, b) =
1 (also, � = bn0 has a unique restricted composition), and

finally (10) gives c(�, b) for 1 < r < n0.

• Now we are ready to determine P{B = b}. Given

the number of apples � =
∑b

i=1 �i and the number of

active buckets b, there exist
(
n0

�i

)
different configurations for

the ith bucket. For b selected buckets, the total number of

configurations becomes∑
{�i}:

∑
b
i=1 �i=�

b∏
i=1

(
n0

�i

)
, (16)

where the above sum has c(�, b) terms. The � apples may fall

into a total of n0 × n/n0 = n positions and b buckets should

be selected among n/n0, so we get

P{B = b} =

(
n/n0

b

)
(
n

�

) ∑
{�i}:∑b
i=1 �i=�

b∏
i=1

(
n0

�i

)
, (17)

for b ∈ [bmin, bmax]. Next, a bound on P{B = b} is derived.

Corollary 1. (Upper Bound of the Probability of Active
Buckets) The probability of b active buckets after throwing
� apples is bounded from above as

P{B = b} ≤

(
n/n0

b

)
(
n

�

) × c(�, b)×min{n�
0, n

bn0−�
0 }. (18)

Proof: The sum over the {�i} has c(�, b) terms and the

binomial coefficients satisfy
(
n0

�i

) ≤ min{n�i
0 , n

n0−�i
0 }. Then

the announced bound is straightforward.
Lemma 1 could be used for finite but large values of �. For

the main result of this paper at asymptotic dimensions, we

only need to bound c(�, b) from above in the expression of

the probability P{B = b}.

Proposition 1. (Upper Bound for the Composition Factor)
Consider the factor c(�, b)1/�. According to Lemma 1 for
� ≥ b � 1, c(�, b)1/� ∼ C(t0, r) where

C(t0, r) =
f(t0)

1/r

t0
. (19)

The composition factor satisfies C(t0, r) ≤ 2 for 1 ≤ r ≤ n0.

Proof: Recall that c(�, b) = 1 for r = 1 and r = n0.

Now consider 1 < r < n0. The sub-exponential terms in (10)

are dropped when � � 1. To demonstrate that C(t0, r) =
f(t0)

1/r

t0
≤ 2 it is equivalent to C(t0, r)

r ≤ 2r. For a fixed r

and a general t > 0, we have that

∂C(t, r)r

∂t
=

tf ′(t)− rf(t)

tr+1
= 0 ⇔ t = t0, (20)

from the hypothesis and the extreme point is unique. It still

remains to show that t0 is a global minimum. One can notice

that

lim
t→0

∂C(t, r)r

∂t
= −∞ and lim

t→+∞
∂C(t, r)r

∂t
= +∞. (21)

Therefore, t0 is a minimum of C(t, r)r and as a consequence,

for all t > 0, C(t0, r)
r ≤ C(t, r)r . Suppose the special

choice of t = 1
2 , then C

(
1
2 , r

)r
= f

(
1
2

) × 2r ≤ 2r because

f
(
1
2

) ≤ 1. and in particular, C(t0, r)
r ≤ C

(
1
2 , r

)r ≤ 2r,
as we wanted to prove.
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IV. PRELIMINARY BOUNDS AND INEQUALITIES

This section collects three relevant results from the literature

that are useful to describe our contributions and make this

paper almost self-contained. However, Lemma 4 about integer

points to be excluded is an improvement to similar results

found in [6] [7]. The first lemma below shall define the radius

of the decoding ball on a Gaussian channel.

Lemma 2. [7, Lemma 1] (Typical Norm of the Gaussian
Noise) Consider n i.i.d. random variables X1, . . . , Xn, each of
them following a Gaussian distribution of mean 0 and variance
σ2. Let ρ =

√
X2

1 + · · ·+X2
n. Then, for every ε > 0:

lim
n→∞P {ρ ≤ σ

√
n(1 + ε)

}
= 1. (22)

The next result is about the number of Z
n points located

inside a ball of radius ρ.

Lemma 3. [7, Lemmas 2&3] (Number of Integer Points in an
n−Dimensional Ball) Let Bc,n(ρ) denotes the n−dimensional
ball centered at c of radius ρ. Then,

|Zn ∩ Bc,n(ρ)| ≤ 1√
πn

(√
2πeρ√
n

(
1 +

√
n

2ρ

))n

. (23)

Consider an additive white Gaussian noise channel. Assume

that the transmitted lattice point is the all-zero point. Then, the

channel output is y = 0 + w ∈ R
n, where w is a Gaussian

vector with i.i.d N (0, σ2) components and σ2 defined by (5).

We define the decoding ball B = By,n(ρ) as the n-dimensional

ball centered on y with radius ρ. In the sequel, we take ρ as

ρ = σ
√
n(1 + ε) =

pJ(1−R0)

√
2πe

√
n(1− δ)(1 − ε). (24)

As proved in [7], points belonging to pZn \ {0} do not

compete with the transmitted point 0 inside the decoding ball

B, i.e. P{‖w − 0‖2 ≥ ‖w − z‖2} → 0. Here, we make a

similar proof but valid for any point in Z
n where one of its

non-zero components is a multiple of p.

Lemma 4. (Integer Points to be Excluded) Let z =
(z1, . . . , zn) ∈ Z

n such that zi ∈ pZ \ {0} for some i. Then

lim
n→∞P{‖w‖2 ≥ ‖w − z‖2} = 0. (25)

Proof: Force to zero all components of z which are not

multiple of p to get z̃ ∈ pZn \ {0}. We have,

P{‖w‖2 ≥ ‖w − z‖2} ≤ P{‖w‖2 ≥ ‖w − z̃‖2}. (26)

Now, in a standard fashion [7, Eq. (28)], after using (5),

the right term in the above inequality can be bounded from

above by 2nQ
(

p
2σ

) ≤ 2n exp
(

πep2R

4(1−δ)2

)
, where Q(x) ≤

exp(−x2/2) is the Gaussian tail function. The upper bound

decreases to 0 if p = nλ for λ > 0.

Note that (25) is also true for p = (log n)a if 2aR ≥ 1.

V. IMPROVED BOUNDS FOR GLD LATTICES

The GLD lattices ensemble considered in this section is

similar to the ensemble of LDA lattices in [7] and GLD

lattices in [6]. We follow the model Λgld of (2) where the

J direct sums are randomly permuted with respect to each

others. The instances of C0 in a direct sum are independent

and randomly selected via their (n0 − k0) × n0 parity-check

matrix H0. In each instance, the entries of H0 are random

variables uniformly distributed in Fp. Finally, the GLD lattices

ensemble is a Construction A of the GLD codes ensemble.

Closest-point decoding is performed over an additive

white Gaussian noise channel. This decoding is also re-

ferred to as Lattice Decoding in Information Theory, or

Maximum-Likelihood (ML) Decoding in Communication The-

ory. Lemma 2 and ρ in (24) guarantee that the 0 transmitted

point is inside the decoding ball B. Lemma 4 tells us that,

despite their presence or not inside B, integer points with at

least one component multiple of p do not induce any decoding

error. A decoding error may occur if a non-zero point of Z
n

inside B belongs to Λgld. Let Pe be the probability of error.

Then, we have

Pe ≤
∑

x∈Zn∩B
P{x ∈ Λgld}. (27)

The summation in the above inequality should not consider

integer points excluded by Lemma 4 (they have no incidence

on decoding errors). The main result of this paper is to

prove that Pe vanishes when n → ∞ for any σ2 < σ2
max

and p increasing with n, without any extra constraint on

normalized minimum distance Δ > 0. In [6], the technique

consisted of expressing the bound of the error probability

as
∑n

�=Δn F (ω)�, where ω = �/n, and to show that this

upper bounding function goes to zero. Nevertheless, the special

structure of the GLD code was not fully taken into account,

so the key idea is to establish a new upper bound of the form∑n
�=Δn[

∑bmax

b=bmin
Fp(ω, r)

�]J , with r = �
b defined in (12).

Theorem 2. (GLD Lattices Achieve Poltyrev Limit with a > 0
and any Δ > 0) Consider the random GLD lattices ensemble
described previously. Suppose that p = (logn)a for some
exponent a > 1

2R . Moreover, assume that the minimum
Hamming distance of the random GLD codes underlying the
GLD lattices is lower bounded by Δn for some constant
Δ > 0. Then, for every 0 < δ < 1, a random lattice of the
family can be ML decoded with vanishing error probability
for every channel noise variance σ2 = σ2

max(1− δ)2.

Proof: The proof is based on Corollary 1, Proposition 1,

Lemma 3, and (27). We start by splitting the sum in (27)

according to the Hamming weight W (x) of x mod p. The

total number of apples in all buckets shall be � = W (x).

Pe ≤
n∑

�=�Δn	

∑
x∈Z

n∩B:
W (x)=�

P{x ∈ Λgld}. (28)

From Definition 2, x is a lattice point if and only if x mod p
belongs to the GLD code, which is equivalent to x mod p
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belonging to the J permuted direct sums C⊕L
0 . We obtain

P{x ∈ Λgld} = (P{x mod p ∈ C⊕L
0 })J . (29)

Now, we use the buckets approach to take into account the

random permutations in the ensemble. Conditioning on b
active buckets, i.e. b elementary codes C0 are receiving a

non-zero weight, then P{x mod p ∈ C⊕L
0 } = (p−(n0−k0))b.

After summing over all values of b, where bmin, bmax, and

P{B = b} depend on �, we reach

P{x mod p ∈ C⊕L
0 } =

bmax∑
b=bmin

P{B = b}
(

1

p(n0−k0)

)b

(30)

and combining (28), (29), with the above equation, it leads to

Pe ≤
n∑

�=�Δn	

∑
x∈Z

n∩B:
W (x)=�

(
bmax∑

b=bmin

P{B = b}
pb(n0−k0)

)J

≤
n∑

�=�Δn	

(
n

�

)
|Z� ∩ By,�(ρ)|

(
bmax∑

b=bmin

P{B = b}
pb(n0−k0)

)J

. (31)

We use Corollary 1 and Proposition 1 to bound P{B = b},

and Lemma 3 to count integer points inside the �-dimensional

ball (due to W (x) = �). The binomial coefficients
(
n
�

)
and(

n/n0

b

)
are bounded via the famous inequalities from Lemma 7,

Chapter 10 in [15]. After some algebraic manipulations and

after dropping sub-exponential terms, the final bound becomes

n∑
�=Δn

⎡
⎢⎢⎢⎢⎢⎣

bmax∑
b=bmin

⎛
⎜⎜⎜⎜⎜⎝
e
H(ωn0/r)

ωn0 C(t0, r)min

{
n0, n

n0

r −1

0

}
p
(n0−k0)

(
1
r− 1

n0

)
ω

1
2J e

H(ω)
ω

J−1
J︸ ︷︷ ︸

Fp(ω,r)

κ

⎞
⎟⎟⎟⎟⎟⎠

�⎤⎥⎥⎥⎥⎥⎦

J

where κ = (1 − δ)(1 − ε) and ω = �/n. Fp(ω, r) is the

fraction without the exponent � and not including the κ factor.

F1(ω, r) shall denote Fp(ω, r) at p = 1. In the trivial case

ω = 1, F1(1, n0) is 1: the bound of Pe includes (1−δ) inside

κ which guarantees a vanishing Pe for any σ2 < σ2
max (δ > 0).

For Δ ≤ ω < 1, we claim that F1(ω, n0) is always less

than 1. Indeed,

F1(ω, n0) =

[√
ω exp

(
H(ω)

ω
(J − 1− J

n0
)

)]−1/J

. (32)

Except for n0 = 3 (J = 2 and k0 = 2) where Δ should

be greater than 0.16036, all other admissible values of the

GLD code parameters (i.e. R = 1 − J(1 − R0) > 0) yield

F1(ω, n0) < 1 for any Δ > 0. This condition allows to have

F1(ω, r) < 1 in a range rc(ω) < r ≤ n0. Hence, Pe vanishes

when n → ∞ for r in this high range near n0 and Δ ≤ ω < 1.

For r ≤ rc(ω) and Δ ≤ ω < 1, we use the fact that F1(ω, r)
is bounded from above by a constant. The reader may easily

check that F1(ω, r) ≤ exp( 1
Δn0

)×2×n0/Δ
1/2J . In this case,

the increasing p in the denominator and � → ∞ will push Pe

towards 0. An alphabet size p increasing polylogarithmically

in n can do the job by forcing Fp(ω, r) to be less than 1.

VI. CONCLUSIONS

GLD lattices built via Construction A over the ring Z

with p-ary GLD codes are considered in this paper. We

present an innovative method to compute the probability of

active elementary codes within the GLD code. The buckets

approach utilizes restricted compositions of an integer to find

the distribution of active elementary codes. Asymptotics are

found via the Daniels-Good theorem. The new upper bound

on the probability of error of a GLD lattice ensemble is

established in the proof of Theorem 2. Besides the gain at

high weight due to J (number of intersecting direct sums),

our new bound includes a power of the alphabet size allowing

the ensemble to attain Poltyrev capacity with a polylogarithmic

growth. The new theorem corresponds to reasonable values of

the normalized minimum distance Δ for practical applications.

Extensions of this buckets approach to other cases in Coding

and Information Theory are very promising.
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