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Abstract—We describe a new family of integer lattices built
from construction A and non-binary LDPC codes. An iterative
message-passing algorithm suitable for decoding in high dimen-
sions is proposed. This family of lattices, referred to as LDA
lattices, follows the recent transition of Euclidean codesfrom
their classical theory to their modern approach as announced
by the pioneering work of Loeliger (1997), Erez, Litsyn, and
Zamir (2004-2005). Besides their excellent performance near the
capacity limit, LDA lattice construction is conceptually simpler
than previously proposed lattices based on multiple nestedbinary
codes and LDA decoding is less complex than real-valued message
passing.

I. I NTRODUCTION

Coding over finite alphabet for the AWGN channel has
undergone a huge effort to achieve capacity with efficient
decoding, and while this quest is arguably reaching its con-
clusion, the similar problem for infinite alphabet coding has
received much less attention and has been picking up some
momentum only lately. It has been known for some time
that lattices, the equivalent of linear codes, achieve (non-
constructively) capacity [13] [5] [6], but not many practical
lattice coding schemes have been put forward that have a
chance of approaching capacity. For large dimensions, the
more promising lattices are inspired by LDPC coding. Among
existing propositions we find [17] [2] [18] that use latticeswith
an underlying binary code structure: the binary code is chosen
to be amenable to iterative decoding techniques, i.e. it belongs
to the LDPC or turbo-code families. We also find Sommer et
al.’s Low-Density Lattice Codes (LDLCs) that do not have an
embedded binary code, but are constructed directly so as to
be decodable by a scheme inspired by the LDPC techniques.

In the present work we try a somewhat different approach
to constructing efficiently decodable families of lattices. We
again rely on an underlying finite-alphabet code structure,
but depart from the binary alphabet and use LDPC codes
over non-binary alphabets. We shall call upon the celebrated
construction A technique [4] to obtain lattices from linear
codes over finite alphabets. Note that construction A is not
in itself a very restrictive scheme for lattice construction since
it has been used, relying on codes over large alphabets, to
produce (non-constructively) capacity-achieving lattices [5].

Construction A also yields some of the best asymptotic sphere-
packing densities [7].

In principle, non-integer lattices could be constructed with
the scheme presented below: we shall stay with integer lattices
however (hence the title), because it is unlikely that practically
usable non-integer lattices will realistically outperform integer
lattices. The underlying LDPC code will be chosen to be over
a prime field: LDPC codes over non-binary alphabets have
been mostly experimented with over fields of characteristic2,
but there are no theoretical obstacles to working with prime
fields and these are the ones most suitable for our purposes.
Decoding complexity will be, as is usual in the area of iterative
decoding, essentially linear in the lattice dimension, though it
will also grow with the finite field size.

The paper is organized as follows: in Section II we shall
recall what we need from construction A in a somewhat
generalized setting. In Section III we specify our particular
construction and the channel and capacity we will be working
with. In Section IV we describe and discuss the lattice decoder.
In Section V we discuss specifics and the choice of parameters;
we also discuss simulation results. Finally, Section VI gives
concluding comments.

II. L ATTICES AND CONSTRUCTIONA

We will considern-dimensional latticesΛ = Z
nG with

n × n generator matricesG and basis(b1, . . . , bn) written
as row vectors. Thevolume of the lattice is defined as
vol(Λ) := | det(G)|. For anyx ∈ Λ, its Euclidean normis
||x|| :=

√

x2
1 + . . . + x2

n and we denote the latticeminimum
distanceasdmin(Λ) := minx∈Λr0 ||x||. Thefundamental gain
of a latticeΛ is defined as

γ(Λ) :=
d2
min(Λ)

vol(Λ)2/n
. (1)

Let L be a lattice of small dimension∆ and let L′ be a
sublattice ofL such that the quotientL/L′ is finite of prime
cardinality p. The additive groupL/L′ injects naturally into
the finite fieldFp through an additive group isomorphism, and
we assume identification of the two abelian groups. We may
define a latticeΛ of dimensionn = ∆ℓ in the following way,



which is the general setting for construction A in Conway and
Sloane’s terminology [4]. LetC be anFp-linear code of length
ℓ, dimensionk and rate R = k/ℓ: let Π : Lℓ → (L/L′)ℓ be
the natural projection, the latticeΛ is defined as:

Λ = {x ∈ Lℓ | Π(x) ∈ C}.
Our strategy is to design efficiently decodable lattices

through the above construction when the codeC is taken to
be an LDPC code overFp and decoded through appropriately
calibrated message-passing.

We shall focus mainly on two simple cases, namely when
(L, L′) = (Z, pZ) and (L, L′) = (Z[i], φZ[i]) where (φ) =
(a + bi) is a prime ideal ofZ[i] of norm a2 + b2 = p.

In the first case, which is one of the more classical forms
of construction A [4], it is well known that a generator matrix
for Λ has the form

G =

(

Ik Φ(B)
0 pIn−k

)

(2)

where(Ik B) is a k × ℓ generator matrix in systematic form
for the codeC and whereΦ : Fp → Z is a natural embedding
of Fp into Z, typically with Φ(Fp) = [−(p− 1)/2, (p− 1)/2].
We havevol(Λ) = pn−k = pn(1−R), with ℓ = n.

In the second, Gaussian integer case, taking forC an Fp-
linear code of lengthℓ and dimensionk of generator matrix
(Ik B), we have similarly, thatΛ can be seen as aZ[i]-module
generated by theℓ × ℓ matrix

G′ =

(

Ik Φ(B)
0 φIℓ−k

)

(3)

whereΦ is an embedding ofFp into a suitable region ofZ[i]
via the isomorphismFp

∼→ Z[i]/(φ): in other words,Φ(Fp)
is a set of representatives forZ[i]/(φ). To obtain a generator
matrix for the real latticeΛ of dimensionn = 2ℓ, simply apply
the transformationx + iy 7→

( x y
−y x

)

to every coordinate of
G′. In this case we havevol(Λ) = pℓ−k = p

1

2
n(1−R). Figure 1

shows a suitable representationΦ(F41) of Z[i]/(4 + 5i) as
a constellation ofZ[i] = Z

2: a family of LDPC codes over
Z[i]/(4+5i) and their associated lattices will be experimented
with in the sequel.

Figure 1. A system of representatives forZ[i]/(4 + 5i)

Note that replacingZ[i] by the Eisenstein integers yields a
similar construction.

III. LDA L ATTICES AND THE GAUSSIAN CHANNEL

It is now the time to define the new family of lattices
we will deal with. By means of Construction A (see Section
II), any linear codeC ⊆ F

n
p can be used to build a lattice.

For our particular construction, we will takeC to be a Low-
Density Parity-Check (LDPC) code [8] and we will refer to
the resulting lattices as IntegerLow-Density A(LDA) lattices.

In our scenario, the information to be transmitted is rep-
resented by integer vectorsz ∈ Z

n. The uncoded system is
then the latticeZn of all integer points in then-dimensional
space. Now, letΛ be an LDA lattice with generator matrixG;
its points are thecodewordsto be sent through the channel
and z is encoded tox = zG ∈ Λ. We are interested in
the behaviour ofΛ under theadditive white Gaussian noise
(AWGN) channel, that is, the channel output is

y = x + η, with ηi ∼ N (0, σ2), i = 1, . . . , n. (4)

Following other authors, we will performinfinite lattice
decoding, that is, our decoder makes no assumption on the
shaping region and decodes as if all points of the lattice where
good candidates to be the sent codeword. In this scenario, since
a lattice has infinite energy, the usual concept of capacity loses
its sense. Poltyrev introduced in [14] the notion ofgeneralized
capacity, which is the maximum valueC∞ such that we can
construct a lattice withnormalized logarithmic densitysmaller
than C∞ and arbitrarily small decoding error probability. In
concrete terms, it implies that there exists a lattice in big
enough dimensionn for which the decoding is possible with
arbitrary small error probability if and only if

σ2 <
vol(Λ)

2

n

2πe
=: σ2

max. (5)

We have

σ2
max =

{

1
2πep2(1−R), for (L, L′) = (Z, pZ),
1

2πep(1−R), for (L, L′) = (Z[i], φZ[i]).
(6)

In Section V, we will evaluate the performance of LDA
lattices as a function of the noise variance: the best lattices
are the ones which attain small symbol error rates for values
of the noise variance that are close toσ2

max.We will speak of
distance from capacity, meaning the distance of the channel
noise variance fromσ2

max.

IV. LDA L ATTICE DECODER

In small dimensions, typically less than 100, Sphere Decod-
ing of Λ is feasible after computing the Gram matrix from (2)
or (3) [20] [3]. For high dimensions (n ≥ 1000), there is no
method to handle lattice decoding besides iterative message
passing algorithms [17] [18] [19]. The complexity of iterative
message passing is linear inn. The critical parameter in our
case is the sizep of the finite field. Indeed, thep-ary LDPC
codeC definingΛ can be decoded via belief propagation (BP)
or min-sum decoding [16]. Results shown in Section V are
obtained with BP. Decoding of an LDPC checknode inC is
made via the forward-backward algorithm on the syndrome
trellis [1]. The trellis hasp2 transitions in its largest section.



For large p, checknode decoding should be done via Fast
Fourier Transform [9]. We describe below the factor graph
of Λ and the messages propagating on its edges.

A. Factor graph for Construction A
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Figure 2. Factor graph of a lattice from Construction A.

The factor graph [12] is derived from the lattice structure
given in Section II. Messages and constraints are given for
a Z-lattice transmitted over a memoryless AWGN channel. It
is straightforward to extend toZ[i]-lattices and other types of
memoryless channels. As shown in Figure 2, the constraints
are:

• The channel where the output conditional distribution is
yi ∼ N (xi, σ

2), i = 1, . . . , n.
• The lattice constraint given by Construction A, i.e.Λ is

the union of cosets ofpZ
n. We havexi = Φ(ci) + pzi,

wherezi ∈ Z, ci ∈ Fp, andc = (c1, c2, . . . , cn) ∈ C.
• The embeddingΦ of Fp into the Euclidean space. For

(L, L′) = (Z, pZ) and ℓ = n, the isomorphismΦ(ci) is
simply defined as the element of[−(p− 1)/2, (p− 1)/2]
that projects ontoci modulop. We will write ci instead
of Φ(ci) in order to simplify the notation.

• The LDPC constraint given bycHt
C = 0, whereHC is a

sparse(n − k) × n parity-check matrix.

B. Probabilistic messages for Construction A

Now, let us find the expressions of messages propagating
left to right in the factor graph. The left-to-right message
produced byxi is

P (xi|yi) ∝ exp

(

− (yi − xi)
2

2σ2

)

, ∀xi ∈ Z. (7)

Since we havexi = ci + pzi ≡ ci mod p, the left-to-right
message received byci is

P (ci|yi) =
∑

xi∈Z|xi≡ci

P (xi|yi). (8)

Now we describe messages propagating right to left. The right-
to-left message produced byci is the LDPC extrinsic informa-
tion P (ci|C, y\{yi}) determined by multiplying all messages
from its neighbouring checknodes [16]. The outgoing message
from zi is 1 in the absence ofa priori information. As

shown later for our practical implementation, there is a hidden
constraint producing ana priori informationπ(zi). Thus, the
right-to-left message received byxi would be

P (xi|C, y\{yi}) ∝ π(zi) · P (ci|C, y\{yi}) (9)

From the above description and the fact that thea posteriori
probability (APP) of a variable nodeυ is determined by the
product of the two messages in the two opposite directions on
any edge connected toυ (belief propagation on an a cyclic
graph [16]), we can state the following lemma.

Lemma 1. Let Λ = C[n, k]p + pZ
n be an LDA lattice and

x = (x1, x2, . . . , xn) be a lattice point. A message passing
decoder should maximizeAPP (xi), for i = 1, . . . , n, where
thea posterioriprobability for a lattice component is given by

APP (xi) ∝ P (xi|yi)π(zi)P (ci|C, y\{yi}). (10)

C. Implementation

The summation overZ in (8) decays very quickly around
yi because of the exponential behaviour given in (7). Consider
the real intervalWi = [yi−mσ, yi+mσ] whereσ2 is the noise
variance from (4) andm ∈ R

+. We choosem such that the
probability of the transmittedxi being outsideWi is less than
ε, i.e. 2Q(m) < ε whereQ() is the Gaussian tail function.
For example,m = 6.467 andε = 10−10. The observation for
a code symbol becomes

P (ci|yi) ≈
∑

xi∈Wi|xi≡ci

P (xi|yi). (11)

Limiting the search for a lattice componentxi = ci + pzi to
Wi brings ana priori on zi. For a given symbol valueci and
a given channel observationyi, the search for the unknown
zi is now restricted to[(yi − ci − mσ)/p, (yi − ci + mσ)/p].
The number of admissible integer translationszi is µi(yi, ci)
given by

µi(yi, ci) := |{xi ∈ Wi|xi ≡ ci mod p}|. (12)

Consequently, the prior onzi is given byπ(zi) = 1/µi(yi, ci).
The implementation can be further simplified ifp is large
enough. Indeed, taking2mσ ≤ p yields µi(yi, ci) = 1,
for all yi and all ci. The latter condition is satisfied when
2mσmax ≤ p, whereσ2

max is given by (6), which translates
into pR ≥ 2m/

√
2πe.

Summarizing, we decode an LDAZ-lattice point coordi-
natewise as follows, for a fixed indexi = 1, . . . , n:

• Initialisation: computeP (xi|yi) (7) for all xi ∈ Wi and
add them as described in (11) to get thep values of
P (ci|yi).

• Iterations: apply Belief Propagation with inputP (ci|yi)
to compute thep values ofP (ci|C, y\{yi}).

• Final decision: for everyxi ∈ Wi, compute the product
in (10) and find thexi = x̂i that maximizes it.

An alternative strategy for the final decision consists in
taking asx̂i the closest toyi representant of the class modulo
p that maximizes the extrinsic probabilityP (ci|C, y\{yi}).



Notice that, whenp is large enough (or when the noise is
weak enough, too), the width of the windowWi is smaller
than p itself and the classes modulop are represented by at
most one integer aroundyi, as anticipated before, and the two
different strategies for the final decision eventually coincide.

V. OPTIMIZATION AND DECODING PERFORMANCE

In this section, we present some details on the choice of
the LDPC codes for the construction of the LDA lattices that
we have tested; after that, we conclude with some simulation
results and the comparison with the performance of already
known lattice families.

The core of the lattice is of course thep-ary LDPC code and
its choice may be optimized. In the classical binary setting,
an LDPC code is identified by its parity-check matrix and,
equivalently, by the associated Tanner graph. When the entries
of the parity-check matrix are non-binary, the Tanner graphis
built as usual, and in addition, a label is associated to every
edge; this label is equal to the corresponding non-zero entry
in the parity-check matrix of the code (see for example [19]).

Optimizing the choice of thep-ary code coincides with
optimizing the related labeled Tanner graph. In the binary
case, this is often reduced to choosing a graph without small
cycles. In the case ofp-ary LDPC codes, we also choose in
a clever way the non-zerop-ary entries of the parity-check
matrix (that is, thep-ary labels of the graph edges). This aspect
has a significant impact on iterative decoding and has not been
previously considered. The “non-triviality” of the graph labels
guarantees the existence of better codes with respect to their
binary equivalents, resulting in a more powerful and improved
Construction A.

A. Choice of the coefficients for the parity-check equations

In order to make a good choice for the coefficients of the
parity-check matrixHC of the LDPC code, we investigate the
single parity-check (SPC) codedefined by each parity-check
equation (the rows ofHC ). Formally, we define

CSPC := {x = (x1, . . . , xs) ∈ F
s
p | a1x1 + . . . + asxs = 0}

as the SPC code associated with thenon-zerocoefficients
a1, . . . , as ∈ Fp r {0} of a row of HC . We say that this
row hasdegreeequal tos.

Note that the message-passing decoder applies MAP decod-
ing to the individual SPC codes. Contrary to the binary case,
there are many choices for an SPC code and they may have a
strong influence over MAP decoding. In particular, (7) shows
that the minimumEuclideandistance of the SPC code will
be an important parameter and we choose to optimize it. The
Euclidean minimum distance is defined as

dmin(CSPC) := min
x∈CSPCr{0}

||Φ(x)||

(whereΦ is defined in Section II). Experiments confirm that
coefficientsai’s that maximizedmin(CSPC) yield a signifi-
cantly improved performance over randomai’s for construc-
tion A with (L, L′) = (Z, pZ).

We will focus for a moment on this kind of lattice and
show how to implement the good choice of the coefficients in
the particular case for which we show the simulation results
in the next subsection. With this parameters, one can see
that dmin(CSPC) cannot be greater than

√
3. The condition

dmin(CSPC) 6= 1 is an immediate consequence of the fact that
all theai’s are non-zero. We can find how to avoid a Euclidean
minimum distance of

√
2 as follows: let(x1, . . . , xs) be a point

of CSPC of smallest Euclidean norm;

dmin(CSPC) =
√

2 ⇐⇒
√

x2
1 + . . . + x2

s =
√

2

⇐⇒ xi, xj = ±1, ∃ i, j ∈ {1, . . . , s}
andxk = 0 ∀k 6= i, j.

(x1, . . . , xs) must satisfy the parity-check equation, that be-
comes

±ai ± aj = 0, ai = ±aj.

This means that the condition

ai 6= ±aj , ∀i, j ∈ {1, . . . , s} (13)

suffices to imposedmin(CSPC) >
√

2.
Our simulations have directed us towards the choices = 5:

in this case the first value ofp for which we may havedmin >√
2 is p = 11 and experimentally, this has turned out to be

the optimum choice ofp for regular LDPCs.

B. Tanner graph construction

Generally, random graphs give good performance, provided
that one manually removes all4-cycles and guarantees a girth
of at least6. We have anyway preferred to use LDPC codes
whose corresponding graph is built by means of the Progres-
sive Edge-Growth algorithm (PEG) [10]. This algorithm builds
the graph edge by edge, in an iterative manner that locally
maximizes the current girth of the graph during construction.
Experimentally, we have seen that PEG-obtained graphs allow
to reach better symbol error rates (SER), thanks to a “deeper”
error floor region with respect to random graphs. At the same
time, in the waterfall region of random graphs, PEG-obtained
graphs have very similar performance.

C. Simulation results

We will show here some simulation results and compare
them with what is known in the literature about other families
of lattices used for the transmission of information.

In Figure 3, the distance from capacity is represented
as mentioned at the end of Section III. The values of the
parameters that we fix in the following are the ones that
experimentally have given the best results till now. The number
of decoding iterations has been fixed to at most200 in all
simulations.

Let us start with an LDA lattice obtained by classicalp-
ary Construction A. We have only investigated regular LDPC
codes and similarly to the case of binary LDPC’s constructed
as binary images ofq-ary LDPCs [15], we have found that
a degree2 per variable node yields the best results. As
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Figure 3. Symbol error rate versus distance to Poltyrev limit for LDA lattices.

mentioned before, the most interesting case to come up was
that of a(2, 5)-regular code withp = 11.

As described in Section V-B, the graph is built using the
PEG algorithm, with the slight modification with respect to
[10] that the check nodes degree distribution is fixed, too. The
non-zero entries of the parity-check equation are chosen as
described in Section V-A. Fig. 3 shows that forn = 1000, we
attain a SER of less than10−6 at 1.5 dB from capacity. This
corresponds to an improvement of about0.2 dB better with
respect to the performance of LDLC [19] at a SER of10−5.

With a similar lattice in dimensionn = 5000, we attain
a SER of less than10−6 at 1 dB from capacity, which
corresponds to an improvement of more than0.2 dB with
respect to Irregular LDPC lattices and of about0.8 dB with
respect to Regular LDPC lattices (see [2]).

In dimensionn = 10000, our LDA Z-lattice provides a SER
of 10−6 at 0.75 dB from capacity, which is better than what
LDLC do [19].

An even more interesting result is given by the perfor-
mance of LDA Z[i]-lattices (construction A with(L, L′) =
(Z[i], φZ[i]). As in the previous examples, the Tanner graph
is (2, 5)-regular, while the prime ideal used for the modulo
operation is(4 + 5i), corresponding top = 41. In (real)
dimensionn = 1000 (ℓ = 500), a SER of about10−5 is
attained at1.25 dB from capacity, equalling the performance
of Turbo lattices [18], while, forn = 10000 (ℓ = 5000), the
same SER is attained at about0.7 dB from capacity.

VI. CONCLUSION AND FUTURE WORK

In this paper, we considered LDA lattices built from Con-
struction A with p-ary low-density parity-check codes. The
LDA factor graph and a simple iterative decoding algorithm
have been described. Computer simulations for LDA lattices
over the ringsZ and Z[i] showed a close-to-capacity per-
formance that exceeds or matches previous propositions for
moderate dimensions (n = 1000, 10000). Also, LDA decoding
utilizes belief propagation to infer integer lattice components.
A direct extension would be the construction of LDA lattices
represented by the union of cosets of a well selected ideal in

the ring of Eisenstein integersZ[ω].
Construction A is a special case of multilevel coded modula-
tions [11] [21]. For LDA lattices, it has one coded level with
the p-ary LDPC code and one uncoded level given bypZ

n

with its infinite cardinality. Comparison to coded modulations
with finite constellations should be done later after building
and shaping finite LDA constellations.
The main application of LDA lattices in this paper was error
correction on a Gaussian channel, but other numerous potential
applications exist such as physical layer network coding and
physical layer security.

REFERENCES

[1] L. R. Bahl, J. Cocke, F. Jelinek and J. Raviv, “Optimal decoding for
linear codes for minimizing symbol error rate,”IEEE Trans. on Inf.
Theory, vol. 20, no. 2, pp. 284–287, March 1974.

[2] I. J. Baik and S. Y. Chung, “Irregular low-density parity-check lattices,”
in Proc. of IEEE Intern. Symp. of Inf. Theory 2008, pp. 2479–2483, July
2008.

[3] L. Brunel and J. J. Boutros, “Lattice decoding for joint detection in
direct-sequence CDMA systems,”IEEE Trans. on Inf. Theory, vol. 49,
no. 4, pp. 1030–1037, April 2003.

[4] J. H. Conway and N. J. Sloane,Sphere packings, lattices and groups,
third edition, Springer-Verlag, 1999.

[5] U. Erez and R. Zamir, “Achieving1

2
log(1 + SNR) on the AWGN

Channel with Lattice Enconding and Decoding,”IEEE Trans. on Inf.
Theory, vol. 50, no. 10, pp. 2293–2314, Oct. 2004.

[6] U. Erez, S. Litsyn and R. Zamir, “Lattices which are good for (almost)
everything,”IEEE Trans. on Inf. Theory, vol. 51, no. 10, pp. 3401–3416,
Oct. 2005.

[7] P. Gaborit and G. Zémor, “On the construction of dense lattices with a
given automorphisms group,”Ann. de l’Institut Fourier, vol. 57, no. 4,
pp. 1051–1062, 2007.

[8] R. G. Gallager.Low-density parity-check codes, PhD thesis, Massachus-
sets Institute of Technology Press, 1963.

[9] C. R. P. Hartmann and L. D. Rudolph, “An optimum symbol-by-symbol
decoding rule for linear codes,”IEEE Trans. on Inf. Theory, vol. 22,
no. 5, pp. 514–517, Sept. 1976.

[10] X.-Y. Hu, E. Eleftheriou and D. M. Arnold, “Regular and irregular
progressive edge-growth tanner graphs,”IEEE Trans. on Inf. Theory,
vol. 51, no. 1, pp. 386–398, Jan. 2005.

[11] H. Imai and S. Hirakawa, “A new multilevel coding methodusing error-
correcting codes,”IEEE Trans. on Information Theory, vol. 23, no. 3,
pp. 371–377, May 1977.

[12] F. Kschischang, B. Frey and H.-A. Loeliger, “Factor graphs and the sum-
product algorithm,”IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 498–519,
Feb. 2001.

[13] H.-A. Loeliger, “Averaging bounds for lattices and linear codes,”IEEE
Trans. on Inf. Theory, vol. 43, no. 6, pp. 1767–1773, Nov. 1997.

[14] G. Poltyrev, “On coding without restrictions for the AWGN channel,”
IEEE Transactions on Information Theory, vol. 40, no. 2, pp. 409–417,
March 1994.

[15] C. Poulliat, M. Fossorier, and D. Declercq, “Design of non binary LDPC
codes using their binary image: algebraic properties,”Proc. of IEEE
Intern. Symp. of Inf. Theory 2006, pp. 93–97, July 2006.

[16] T. Richardson and R. Urbanke,Modern coding theory, Cambridge
University Press, 2008.

[17] M.-R. Sadeghi, A. H. Banihashemi and D. Panario, “Low-density parity-
check lattices: construction and decoding analysis,”IEEE Trans. on Inf.
Theory, vol. 52, no. 10, pp. 4481–4495, Oct. 2006.

[18] A. Sakzad, M.-R. Sadeghi and D. Panario, “Turbo lattices: construction
and performance analysis,” available on arxiv.org, 2011.

[19] N. Sommer, M. Feder and O. Shalvi, “Low-density latticecodes,”IEEE
Trans. on Inf. Theory, vol. 54, no. 4, pp. 1561–1585, April 2008.

[20] E. Viterbo and J. J. Boutros, “A universal lattice code decoder for fading
channels,”IEEE Trans. on Inf. Theory, vol. 45, no. 5, pp. 1639–1642,
July 1999.

[21] U. Wachsmann, R.F.H. Fischer, and J.B. Huber, “Multilevel codes:
theoretical concepts and practical design rules,”IEEE Trans. Inform.
Theory, vol. 45, no. 5, pp. 1361–1391, July 1999.


