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Abstract—We describe a new family of integer lattices built Construction A also yields some of the best asymptotic ssher
from constructi_on A anq non-b_inary LDPC coqes._ An itera_tive packing densities [7].
message-passing algorithm suitable for decoding in high dien-~, hrinciple, non-integer lattices could be constructethwi
sions is proposed. This family of lattices, referred to as LB . - .
lattices, follows the recent transition of Euclidean codesrom the scheme presente.d below: we Sh?” StaY with Inte_gecmrtl
their classical theory to their modern approach as announce however (hence the title), because it is unlikely that pcady
by the pioneering work of Loeliger (1997), Erez, Litsyn, and usable non-integer lattices will realistically outperfointeger
Zamir (2004-2005). Besides their excellent performance aethe |attices. The underlying LDPC code will be chosen to be over
capacity limit, LDA lattice construction is conceptually Smpler 5 ime field: LDPC codes over non-binary alphabets have
than previously propos_ed _Iattlces based on multiple nestekinary b | . d with fields of ch .
codes and LDA decoding is less complex than real-valued mesg een mostly experlmentg with over fields o C, arac_teri;stlp
passing. but there are no theoretical obstacles to working with prime
fields and these are the ones most suitable for our purposes.
. INTRODUCTION Decoding complexity will be, as is usual in the area of iteeat
Coding over finite alphabet for the AWGN channel hadecoding, essentially linear in the lattice dimensionptjtoit
undergone a huge effort to achieve capacity with efficiemiill also grow with the finite field size.
decoding, and while this quest is arguably reaching its con-The paper is organized as follows: in Section Il we shall
clusion, the similar problem for infinite alphabet codingsharecall what we need from construction A in a somewhat
received much less attention and has been picking up sogemeralized setting. In Section Ill we specify our partcul
momentum only lately. It has been known for some timeonstruction and the channel and capacity we will be working
that lattices, the equivalent of linear codes, achieve {nowith. In Section IV we describe and discuss the lattice decod
constructively) capacity [13] [5] [6], but not many practic In Section V we discuss specifics and the choice of parameters
lattice coding schemes have been put forward that havewa also discuss simulation results. Finally, Section Viegiv
chance of approaching capacity. For large dimensions, tbencluding comments.
more promising lattices are inspired by LDPC coding. Among

existing propositions we find [17] [2] [18] that use latticeih Il. LATTICES AND CONSTRUCTIONA
an underlying binary code structure: the binary code isehos We will considern-dimensional lattices\ = Z"G with
to be amenable to iterative decoding techniques, i.e. drigd » x n generator matrice¢; and basis(by, ..., b,) written

to the LDPC or turbo-code families. We also find Sommer eis row vectors. Thevolume of the lattice is defined as
al’s Low-Density Lattice Codes (LDLCs) that do not have afiol(A) := |det(G)|. For anyx € A, its Euclidean normis
embedded binary code, but are constructed directly so as||tg| := \/z? + ... + 22 and we denote the latticainimum
be decodable by a scheme inspired by the LDPC techniquéistanceasdi, (A) := mingeao ||z||. Thefundamental gain
In the present work we try a somewhat different approadt a lattice A is defined as
to constructing efficiently decodable families of lattic&de (M)
again rely on an underlying finite-alphabet code structure, v(A) = %
but depart from the binary alphabet and use LDPC codes vol(A)
over non-binary alphabets. We shall call upon the celebirateet L. be a lattice of small dimensioA and let L’ be a
construction A technique [4] to obtain lattices from lineasublattice ofL such that the quotient/L’ is finite of prime
codes over finite alphabets. Note that construction A is noardinality p. The additive groupl/L’ injects naturally into
in itself a very restrictive scheme for lattice construntince the finite fieldF, through an additive group isomorphism, and
it has been used, relying on codes over large alphabetsw®e assume identification of the two abelian groups. We may
produce (non-constructively) capacity-achieving lasic[5]. define a latticeA of dimensionn = A/ in the following way,
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which is the general setting for construction A in Conway and 1ll. LDA L ATTICES AND THE GAUSSIAN CHANNEL

Sloane’s terminology [4]. Le€’ be anlF,-linear code of length |t js now the time to define the new family of lattices

¢, dimensionk andrate R = k/{: let 11 : L* — (L/L')" be e will deal with. By means of Construction A (see Section

the natural projection, the latticé is defined as: 1), any linear codeC' C F? can be used to build a lattice.
A={ze L* | (z) € C}. For our particular construction, we will také to be a Low-

Density Parity-Check (LDPC) code [8] and we will refer to

She resulting lattices as Integeow-Density A(LDA) lattices.

In our scenario, the information to be transmitted is rep-

Our strategy is to design efficiently decodable lattic
through the above construction when the cadés taken to

be an LDPC code ovef, and decoded through appropriatel¥esented by integer vectorse Z™. The uncoded system is

calibrated message-passing. i then the latticeZ™ of all integer points in the:x-dimensional
We shall focus mainly on two simple cases, namely whesn e Now. I bo 21 LDA Ietfine with emorator matrist
(L,L') = (Z,pZ) and (L, L') = (Z[i], pZ[i]) where(¢) = boce: MOW g ,

N 0 ‘ 2 Vo its points are thecodewordsto be sent through the channel
(a +bi) is a prime ideal ofZ[;] of norma” + b = p. nd z is encoded tor = zG € A. We are interested in

In the first case, which is one of the more classical forn%e behaviour ofA under theadditive white Gaussian noise
of construction A [4], it is well known that a generator matri ) .
[4] 9 (AWGN) channel, that is, the channel output is

for A has the form
= i s~ 2 ) —
G (Ik CIJ(B)) @) y=x+mn, withn;, ~N(0,0°), i=1,...,n. 4)

0 plns Following other authors, we will perfornmfinite lattice
where ([}, B) is ak x £ generator matrix in systematic formdecoding that is, our decoder makes no assumption on the
for the codeC’ and where? : F,, — Z is a natural embedding shaping region and decodes as if all points of the latticerevhe
of F,, into Z, typically with ®(F,,) = [-(p—1)/2,(p—1)/2]. good candidates to be the sent codeword. In this scenarie si
We havevol(A) = p"~* = pn(=1), with ¢ = n. a lattice has infinite energy, the usual concept of capacigd

In the second, Gaussian integer case, taking(foan F,,- its sense. Poltyrev introduced in [14] the notiorgeheralized
linear code of lengtl? and dimensiork of generator matrix capacity which is the maximum valu€',, such that we can
(I B), we have similarly, thah can be seen asZli]-module construct a lattice witmormalized logarithmic densitymaller

generated by thé x ¢ matrix than C, and arbitrarily small decoding error probability. In
/ I ®(B) concrete terms, it implies that there exists a lattice in big
G = 0 ok ®) enough dimensiom for which the decoding is possible with

where® is an embedding of,, into a suitable region oZ[i] arbitrary small error probability if and only if

via the isomorphisn¥, = Z[i]/(¢): in other words,®(F,) 5 Vol(A)% )

is a set of representatives f@fi]/(¢). To obtain a generator 0" S T T Oman ®)
matrix for the real lattice\ of dimension: = 2¢, simply apply \ye have

the transformation: + iy — (%, %) to every coordinate of )

G'. Inthis case we haveol(A) = p~* = pz"(=®) Figure1 2 _ 0?71, for (L, L) = (Z,p), 6)
shows a suitable representati@F,;) of Z[i]/(4 + 5i) as e p B, for (L, L) = (Z[i], ¢Z14]).

a constellation ofzZ[i] = Z%: a family of LDPC codes over

Z[i]/(4+5i) and their associated lattices will be experimentgd
with in the sequel.

In Section V, we will evaluate the performance of LDA
ttices as a function of the noise variance: the best &stic
are the ones which attain small symbol error rates for values
of the noise variance that are closedtf),,,..We will speak of
distance from capacity, meaning the distance of the channel
noise variance frona?2

IV. LDA L ATTICE DECODER

In small dimensions, typically less than 100, Sphere Decod-
ing of A is feasible after computing the Gram matrix from (2)
or (3) [20] [3]. For high dimensionsn(> 1000), there is no
method to handle lattice decoding besides iterative messag
passing algorithms [17] [18] [19]. The complexity of itevat
message passing is linearqn The critical parameter in our
case is the size of the finite field. Indeed, the-ary LDPC
codeC definingA can be decoded via belief propagation (BP)
or min-sum decoding [16]. Results shown in Section V are
obtained with BP. Decoding of an LDPC checknodednis

Note that replacing.[i] by the Eisenstein integers yields anade via the forward-backward algorithm on the syndrome
similar construction. trellis [1]. The trellis has? transitions in its largest section.

Figure 1. A system of representatives #f]/(4 + 5¢)



For large p, checknode decoding should be done via Fashown later for our practical implementation, there is albiu
Fourier Transform [9]. We describe below the factor graptonstraint producing aa priori information(z;). Thus, the

of A and the messages propagating on its edges. right-to-left message received hy would be
A. Factor graph for Construction A P(x;|C,y\{yi}) o< m(z:) - Pl Cyy\{wi}) 9)
From the above description and the fact thatahgosteriori
21 e probability (APP) of a variable node is determined by the
% g g (I’écl) ¥ c‘. product of the two messages in the two opposite directions on
N any edge connected to (belief propagation on an a cyclic
22 S graph [16]), we can state the following lemma.
Y2 T2 I O(ca) c2 )(. .
o = o o = o Lemma 1. Let A = CIn, k], + pZ™ be an LDA lattice and
A x = (x1,2z2,...,2,) be a lattice point. A message passing
&1: decoder should maximiz&é PP(z;), for i = 1,...,n, where
ZI o(e) /\7. the a posterioriprobability for a lattice component is given by
Yn Tn Cn cn// S
® L ® ® i o -1 APP(x;) « P(x;|ly)m(z) P(ci|C, y\{vi})- (10)

C. Implementation

The summation oveZ in (8) decays very quickly around
The factor graph [12] is derived from the lattice structure? becagse of the exponential behaviour glver21 n (7). Cc_)n3|der
real intervaWV; = [y; —mo, y;+mo] whereo is the noise

given in Section Il. Messages and constraints are given ) ¢ 4 0 e RY We ch h that th
a Z-lattice transmitted over a memoryless AWGN channel. Ygriance from (4) andn € R*. We choosen such that the

is straightforward to extend t@[i]-lattices and other types of probability of the transmitted; being outside/V; is less than
memoryless channels. As shown in Figure 2, the constraifits “10 :
For examplen = 6.467 ande = 10~'Y. The observation for

are:
" . ... acode symbol becomes
« The channel where the output conditional distribution is y

yi ~ N(zi,0%),i=1,...,n. P(eily;) =~ Z P(xilys). (11)

o The lattice constraint given by Construction A, i&.is T EW;|Ti=c;
the union of cosets ofZ". We havez; = ®(c¢;) + pzi,
wherez; € Z, ¢; € Fp, andc = (c1,¢2,...,¢,) € C.

o The embeddingb of I, into the Euclidean space. For
(L,L") = (Z,pZ) and{ = n, the isomorphisnd(c;) is
simply defined as the element pf(p —1)/2, (p—1)/2]
that projects ont@; modulop. We will write ¢; instead
of ®(¢;) in order to simplify the notation.

« The LDPC constraint given byH}, = 0, whereH¢ is a wi(yi,ci) = |{x; € Wilz; = ¢; mod p}|. (12)
sparse(n — k) x n parity-check matrix.

Figure 2. Factor graph of a lattice from Construction A.

i.e. 2Q(m) < ¢ where@() is the Gaussian tail function.

Limiting the search for a lattice component = ¢; + pz; to
W, brings ana priori on z;. For a given symbol value; and
a given channel observatiay, the search for the unknown
z; I1s now restricted td(y; — ¢; — mo)/p, (y; — ¢; +ma)/pl.
The number of admissible integer translatianss . (y;, ¢;)
given by

Consequently, the prior o is given byn(z;) = 1/ (s, ¢i)-
B. Probabilistic messages for Construction A The implementation can be further simplified jif is large
Now, let us find the expressions of messages propagatffgPugh. Indeed, takingmo < p yields y;(yi,c;) = 1,

produced byz; is 2MOmaz < p, Whereo?, . is given by (6), which translates

) into pf* > 2m/+/2me.
P(x;]y;) o exp <_M), Vr; € 7. @) Summarizing, we decode an LDZ-lattice point coordi-

202 natewise as follows, for a fixed index=1,...,n:
Since we haver; = ¢; + pz; = ¢; mod p, the left-to-right  « Initialisation: computeP(z;|y;) (7) for all z; € W; and
message received hy is add them as described in (11) to get thevalues of
P(cily).
Plely)= > P(aily). (8) . Iterations apply Belief Propagation with inpuP(c;|y;)
zi€Llzi=ci to compute thep values of P(c;|C, y\{yi}).

Now we describe messages propagating right to left. The-righ « Final decision for everyz; € }V;, compute the product
to-left message produced byis the LDPC extrinsic informa- in (10) and find ther; = #; that maximizes it.

tion P(c;|C,y\{y:}) determined by multiplying all messages An alternative strategy for the final decision consists in
from its neighbouring checknodes [16]. The outgoing messataking asz; the closest tgy; representant of the class modulo
from z; is 1 in the absence ofi priori information. As p that maximizes the extrinsic probabilit®(c;|C, y\{v:}).



Notice that, whernp is large enough (or when the noise is We will focus for a moment on this kind of lattice and
weak enough, too), the width of the windoW; is smaller show how to implement the good choice of the coefficients in
thanp itself and the classes modujoare represented by atthe particular case for which we show the simulation results
most one integer aroung, as anticipated before, and the twan the next subsection. With this parameters, one can see
different strategies for the final decision eventually cide. that d..;,(Cspc) cannot be greater thag3. The condition
dmin(Cspc) # 1 is an immediate consequence of the fact that
V. OPTIMIZATION AND DECODING PERFORMANCE all thea,’s are non-zero. We can find how to avoid a Euclidean
In this section, we present some details on the choice minimum distance of/2 as follows: let(zy, . . ., ) be a point
the LDPC codes for the construction of the LDA lattices thaif C'spc of smallest Euclidean norm;
we have tested; after that, we conclude with some simulation
. . . _ 2 2
results and the comparison with the performance of alreadﬂmm(CSPC) =2 — ittty = V2

known lattice families. = r,x; ==+1, Ji,je{l,...,s}
The core of the lattice is of course tpeary LDPC code and anday = 0 Vk £ i, j
its choice may be optimized. In the classical binary sefting e
an LDPC code is identified by its parity-check matrix andy,...,zs) must satisfy the parity-check equation, that be-
equivalently, by the associated Tanner graph. When thésntrcomes
of the parity-check matrix are non-binary, the Tanner griaph +a; +a; =0, a; = *aj.

built as usual, and in addition, a label is associated toyever »
edge; this label is equal to the corresponding non-zergyenflliS means that the condition
in the.pa_tri.ty-check ma_trix of the code (see for.exgmple [19]) a; # %a;, Vi,j € {1,..., s} (13)
Optimizing the choice of thep-ary code coincides with
optimizing the related labeled Tanner graph. In the binasgffices to iMpos@,i,(Cspc) > V2.
case, this is often reduced to choosing a graph without smallOur simulations have directed us towards the cheiee5:
cycles. In the case gf-ary LDPC codes, we also choose irin this case the first value gffor which we may haveél,,;, >
a clever way the non-zerp-ary entries of the parity-check v/2 is p = 11 and experimentally, this has turned out to be
matrix (that is, thep-ary labels of the graph edges). This aspetitie optimum choice op for regular LDPCs.
has a significant impact on iterative decoding and has nat bee .
previously considered. The “non-triviality” of the grapibels 5: 12NNer graph construction
guarantees the existence of better codes with respect ito the Generally, random graphs give good performance, provided
binary equivalents, resulting in a more powerful and imgiav that one manually removes alcycles and guarantees a girth
Construction A. of at least6. We have anyway preferred to use LDPC codes
whose corresponding graph is built by means of the Progres-
A. Choice of the coefficients for the parity-check equationsgjye Edge-Growth algorithm (PEG) [10]. This algorithm bksil
In order to make a good choice for the coefficients of th&e graph edge by edge, in an iterative manner that locally
parity-check matrix- of the LDPC code, we investigate themaximizes the current girth of the graph during construrctio
single parity-check (SPC) codiefined by each parity-checkExperimentally, we have seen that PEG-obtained graph allo

equation (the rows ofi). Formally, we define to reach better symbol error rates (SER), thanks to a “déeper
i error floor region with respect to random graphs. At the same
Cspo = {z = (21,...,25) € F} | iz + ...+ as2s =0} time, in the waterfall region of random graphs, PEG-obtdine

as the SPC code associated with then-zerocoefficients 9r@Phs have very similar performance.

ai,...,as € Fp ~ {0} of a row of Ho. We say that this C. Simulation results

row hasdegreeequal tos. ) i )
Ve will show here some simulation results and compare

Note that the message-passing decoder applies MAP dec ) . ) . .
ing to the individual SPC codes. Contrary to the binary Castz]em with what is known in the literature about other fansilie

there are many choices for an SPC code and they may hadf jpttices used for the transmission of information.
In Figure 3, the distance from capacity is represented

strong influence over MAP decoding. In particular, (7) shows ) X
that the minimumEuclideandistance of the SPC code will 2 Mentioned at the end of Section Ill. The values of the

be an important parameter and we choose to optimize it. Tﬂgranjeters that we fix in the following are the ones that
Euclidean minimum distance is defined as experimentally have given the best results till now. The bam

of decoding iterations has been fixed to at m2ad in all
dmin(Cspc) == min [|® ()| simulations.
2€Cspon{0} Let us start with an LDA lattice obtained by classigal
(where® is defined in Section Il). Experiments confirm thaary Construction A. We have only investigated regular LDPC
coefficientsa;’s that maximized,i,(Cspc) Yield a signifi- codes and similarly to the case of binary LDPC's constructed
cantly improved performance over randaiyis for construc- as binary images of-ary LDPCs [15], we have found that
tion A with (L, L") = (Z, pZ). a degree2 per variable node yields the best results. As
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Figure 3. Symbol error rate versus distance to Poltyre lianiLDA lattices.

(2]

mentioned before, the most interesting case to come up ws
that of a(2, 5)-regular code withlp = 11.

As described in Section V-B, the graph is built using they,
PEG algorithm, with the slight modification with respect to
[10] that the check nodes degree distribution is fixed, tdwe T [°!
non-zero entries of the parity-check equation are chosen as
described in Section V-A. Fig. 3 shows that fo= 1000, we  [6]
attain a SER of less thar0—¢ at 1.5 dB from capacity. This
corresponds to an improvement of abd.2 dB better with
respect to the performance of LDLC [19] at a SER16f°.

With a similar lattice in dimensiom = 5000, we attain
a SER of less thari0=® at 1 dB from capacity, which
corresponds to an improvement of more thaf dB with
respect to Irregular LDPC lattices and of about dB with
respect to Regular LDPC lattices (see [2]).

In dimensionn = 10000, our LDA Z-lattice provides a SER
of 1076 at 0.75 dB from capacity, which is better than what[ll]
LDLC do [19].

An even more interesting result is given by the perfor-
mance of LDAZ][i]-lattices (construction A with(L, L) = [12]
(Z[i], pZ]i]). As in the previous examples, the Tanner graph
is (2,5)-regular, while the prime ideal used for the modul@3]
operation is(4 + 5i), corresponding tgp = 41. In (real)
dimensionn = 1000 (¢ = 500), a SER of aboutl0~? is
attained atl.25 dB from capacity, equalling the performance
of Turbo lattices [18], while, fom = 10000 (¢ = 5000), the [13]
same SER is attained at abaut dB from capacity.

[10]

[14]
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VI. CONCLUSION AND FUTURE WORK [16]

In this paper, we considered LDA lattices built from Conl17]
struction A with p-ary low-density parity-check codes. The
LDA factor graph and a simple iterative decoding algorithri18]
have been described. Computer simulations for LDA lattices

. ‘ . 9]
over the ringsZ and Z[i] showed a close-to-capacity per-
formance that exceeds or matches previous propositions ]
moderate dimensions (= 1000, 10000). Also, LDA decoding
utilizes belief propagation to infer integer lattice compats. |
A direct extension would be the construction of LDA lattices
represented by the union of cosets of a well selected ideal in

ring of Eisenstein integefw].

Construction A is a special case of multilevel coded modula-
tions [11] [21]. For LDA lattices, it has one coded level with
the p-ary LDPC code and one uncoded level given j#”
with its infinite cardinality. Comparison to coded modubzis
with finite constellations should be done later after buidgi
and shaping finite LDA constellations.
v _— The main application of LDA lattices in this paper was error
s correction on a Gaussian channel, but other numerous paltent
e applications exist such as physical layer network codingj an
physical layer security.
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