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Abstract— We solve the problem of designing powerful low-
density parity-check (LDPC) codes with iterative decoding for the
block-fading channel. We present a new family of full-diversity
LDPC codes that exhibit near outage limit performance. This
family competes with multiplexed parallel turbo codes suitable
for non-ergodic channels and recently reported in the literature.

I. INTRODUCTION

The block-fading channel, first introduced in [14] and fur-
ther elaborated in [1], is a channel model which is particularly
relevant in wireless communications situations involving slow
time-frequency hopping (e.g., cellular networks and wireless
Ethernet) or multicarrier modulation using orthogonal fre-
quency division multiplexing (OFDM). Therefore, the design
of error-correcting codes for such channels is a relevant
and challenging problem. The outage probability defines the
information-theoretical limit on such non-ergodic wireless
channels and cannot be surpassed by the word error probability
of any coding scheme [14][1]. Classical random-like capacity-
achieving graph codes cannot approach the outage limit and
specifically designed codes become a must.

Two main parameters characterize the error rate perfor-
mance on block-fading channels: the diversity order and the
coding gain. The diversity order defines the slope of the error-
rate curve as a function of the signal-to-noise ratio on a
double logarithmic scale. Since the error probability of any
coding scheme is lower-bounded by the outage probability,
the diversity order is upper-bounded by the intrinsic diversity
of the channel given by the slope of the outage limit. When
full diversity is attained, the coding gain yields a measure of
signal-to-noise ratio distance to the outage limit.

It has been proven in [6] that the optimal achievable
diversity order with discrete input constellations is given by the
Singleton bound [13][10]. Coding schemes achieving the Sin-
gleton bound are termed blockwise maximum-distance separa-
ble (MDS). Blockwise MDS codes are outage-achieving over
the (noiseless) block-erasure channel [7]. However, blockwise
MDS codes are only necessary, but not sufficient to achieve
the outage probability limit in noisy block-fading channels.

Recently, a near-outage coding scheme has been proposed
based on a special permutation, the so-called h-π-diagonal
multiplexer [3][4][5], in conjunction with parallel turbo codes.
Multiplexers for convolutional and turbo codes [3] appeared

one decade after the analysis of random and periodic inter-
leaving of convolutional codes on the block-erasure channel
[12]. Random ensembles of low-density parity-check codes
designed for ergodic additive white gaussian noise channels
[17][9], despite the excellent decoding threshold of their irreg-
ular structures, are not full-diversity, and hence exhibit a poor
performance in presence of block-fading. Repeat-accumulate
codes that allocate bits to different channel states are full-
diversity [6], but they suffer from a poor coding gain and
cannot compete with multiplexed turbo codes.

In this work, we design a new family of LDPC codes based
on a special type of checknodes called rootchecks. These root-
LDPC codes are maximum-distance separable. Under iterative
message passing decoding, they achieve the outage probability
limit on block-erasure channels and they perform close to that
limit on Rayleigh block-fading channels.

The paper is organized as follows. Section II introduces
the channel model and the notations. LDPC codes with full
diversity under Maximum Likelihood (ML) decoding are dis-
cussed in section III. The new family of root-LDPC codes
suited for iterative decoding is described in the fourth section.
Section V presents the density evolution analysis of root-
LDPC in presence of block fading. The conclusions are finally
drawn in section VI.

II. CHANNEL MODEL AND NOTATIONS

We consider codewords of length N bits transmitted on a
block-fading channel with nc fading coefficients per codeword.
The length N is taken to be a multiple of nc. Let ` = N/nc

be the number of bits per fading block and let [r] denote
the integer part of a real r. Then, the received signal for a
transmitted symbol xi is

yi = αjxi + zi (1)

where yi ∈ R, i = 1 . . . N , and j = 1+[ i−1
` ]. The positive real

number αj is the fading coefficient at block j, j = 1 . . . nc.
The symbols xi belong to a BPSK alphabet, xi = ±√Es,
where Es is the average energy per symbol. The noise samples
are i.i.d with zi ∼ N (0, σ2), σ2 = N0

2 . We assume perfect
channel state information (CSI) at the receiver and that the
channel coefficients are i.i.d. Rayleigh distributed from block
to block and from codeword to codeword. Thus, when the
information rate is R bits per channel use, the average SNR
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Fig. 1. Codeword representation for a block-fading channel with nc = 2
states. Fading coefficients are independent from one codeword to another.
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Fig. 2. Parity-check matrix notations for a block-fading channel with nc = 2
states. The L − N/2 extra rows are added in order to enhance the coding
gain of a full-diversity code.

per symbol is given by γ = Es
N0

and the average SNR per
bit is Eb

N0
= γ/R. Fig. 1 gives an illustration for nc = 2 and

` = N/2.
In this work, we consider linear binary codes C(N, K)2 of

length N , dimension K, and rate R = K
N ≤ 1

nc
≤ 1

2 . The
code C is defined by its L × N parity-check matrix H . The
graph representation of C has L single-parity checknodes. It
is assumed that H has always full rank L, i.e. R = 1− L

N .
For a given non-zero codeword c ∈ C, we define the

Hamming weight vector (ω1, . . . , ωnc), where ωj is the partial
Hamming weight of coded bits undergoing fading αj . We also
define the minimum partial Hamming weight as

ω? = min
c∈C−{0}

(ω1, . . . , ωnc).

Definition 1: An error-correcting code is said to be full-
diversity if ω? > 0.

The highest achievable rate for a full-diversity code is
R = 1

nc
determined from the Singleton bound [13][10][6].

Furthermore, the word error probability of a nc-diversity code
decreases as 1/γnc at high SNR [15].

The block-fading channel is not information stable [19],
and therefore its Shannon capacity is zero since there is an
irreducible probability that the decoder makes a word error.
In the limit of large block length, this probability is the
information outage probability defined as [14][1]

Pout(γ, R) = Pr{I(γ, α) < R} (2)

where I(γ, α) is the instantaneous input-output mutual in-
formation between the input and output of the channel given
by

I(γ, α) =
1
nc

nc∑

i=1

IAWGN(γα2
i ), (3)

IAWGN(s) is the input-output mutual information of an
AWGN channel with SNR s per symbol. The block-fading
channel is also commonly referred to as non-ergodic since, as
nc does not tend to infinity, I(γ, α) is a random variable.

The information outage probability Pout(γ,R) represents
the best achievable word error rate for large enough word
length. Therefore, any code aiming at approaching Pout(γ,R)
should have a word error probability that, for large enough
length, becomes independent of the code length [4][6].

Unless otherwise stated, we will focus our study to a coding
rate R = 1/2 (or slightly smaller than 1/2) and a non-ergodic
Rayleigh fading channel with nc = 2 states per codeword, as
depicted in Figures 1 and 2. Most of our results are easily
extendable to nc ≥ 3 and R ≤ 1/3.

III. FULL-DIVERSITY LDPC CODES UNDER MAXIMUM
LIKELIHOOD DECODING

In this section, we study LDPC codes in presence of block-
fading under maximum likelihood decoding. It is shown that
designing full-diversity LDPC codes under ML decoding is
straightforward. Although ML decoding is unfeasible in prac-
tice, it gives a valuable insight for the coding structure suitable
for non-ergodic channels. This section terminates with the
negative result that ML-designed full-diversity codes, under
iterative decoding, fail to guarantee diversity due to badly
located pseudo-codewords.

Following the notations given in the previous section, the
L×N parity-check matrix H is written as H = [H1 |H2]. The
left and right parts H1 and H2 are L× N

2 . The vector space
generated by the N

2 left columns is denoted S1. Similarly S2

is the vector space generated by the N
2 right columns.

Proposition 1: Consider a binary code C with rate R ≤ 1
2 ,

i.e. L ≥ N
2 . The code C is full-diversity if and only if H1 and

H2 are both full rank.
Proof: If dimS1 = N

2 then a non-zero codeword
cannot have its support on H1 because all columns in H1

are independent. Hence ω1 > 0 for any non-zero codeword.
Similarly ω2 > 0 when dimS2 = N

2 . Finally, ω1 > 0 and
ω2 > 0 for all non-zero codewords yields ω? > 0.

The full-rank property of the above proposition has been
firstly published in [8]. Its extension to coding rate 1/3 with
H = [H1 | H2 | H3] is obtained by imposing that all matrices
[H1 | H2], [H1 | H3], and [H2 | H3] have a full rank.
Generalization to R = 1

nc
is straightforward.

Proposition 2: Consider a binary code C with rate R = 1
2 ,

i.e. L = K = N/2. If C is full-diversity then ω? = 1.
Proof: If C is full-diversity then dimS1 = dimS2 =

N
2 . Any column from H1 can then be written as a linear

combination of columns from H2. This is also valid for any
column belonging to H2. Hence non-zero codewords with
ωi = 1 exist for both i = 1 and i = 2 if the coding rate
is exactly equal to 1/2.

The minimum partial Hamming weight must be increased in
order to improve the coding gain of C. Proposition 2 suggests
that the only solution is to slightly decrease the coding rate.



For example, adding two extra rows to H yields ω? = 2 under
ML decoding.

Proposition 3: Consider a binary code C with rate R ≤
1/2. If C is full-diversity then R = 1

2 − 2
N attains ω? = 2.

Proof: The proof is based on the special parity-check
matrix structure given in Fig. 3. Adding a single parity
checknode to all columns of H1 and another checknode to
all columns of H2 makes ω? ≥ 2. Proposition 4 proves that
ω? cannot exceed 2 by the addition of 2 extra rows only.

The price of ω? = 2 is negligible for large code length N .
If we now require ω? = 3 we have the following result.

Proposition 4: Consider a binary code C with rate R ≤
1/2. If ω? = 3 then R ≤ 1

2 − log2(N/2)
N .

Proof: Let h1, h2 ∈ S1 be two distinct columns in H1.
If ω? = 3 then h1 +h2 does not belong to S2. Hence h1 must
not belong to h2 + S2. This is possible only if 2L is greater
than |h2 + S2| = N

2 × 2N/2.
Proposition 5: There exists a full-diversity binary code with

ω? ≥ 3 and R = 1
2 − 2 log2(N/2+1)

N .
Proof: The proof is trivial. Such a code is defined by

the parity-check matrix depicted in Fig. 4. The presence of
a Hamming code whose minimum distance is 3 prevents a
partial Hamming weight equal to 2.

111.......................111   000.........................000
000.......................000   111.........................111

S1 S2

H =

N

H1 H2
L =

N

2
+ 2

Fig. 3. ML-designed full-diversity LDPC code with ω? = 2.
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Fig. 4. ML-designed full-diversity LDPC code with ω? ≥ 3.

We now show the word error rate performance of ML-
designed full-diversity LDPC codes and compare it to the
outage capacity limit. The results are illustrated in Figure 5
for nc = 2, and the (3, 6) ensemble using the constructions
outlined above. As we can see, under iterative decoding, an
ML-designed LDPC code does not guarantee diversity and
shows a unit slope. This is caused by pseudo-codewords [11]
whose support is restricted to H1 or H2. Hence, the minimum
partial pseudo-weight is zero when iterative belief propagation

decoding is applied. On the other hand, full diversity is
guaranteed when a fake ML decoder is used.
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Fig. 5. Rate 1/2 ML-designed LDPC codes with iterative decoding on a
Rayleigh block-fading channel. A random LDPC code (not shown above)
performs as poor as an ML-designed code with ω? = 1. The genie ML is a
fake decoder that knows if errors occur on H1 or H2 positions.

IV. FULL-DIVERSITY LDPC CODES FOR ITERATIVE
BELIEF PROPAGATION DECODING

The design of low-density parity-check codes suitable for
iterative decoding is based on graphical tools [2][18]. The
graphical representation can then be translated into a matrix
description or a log-ratio probability density evolution.

The solution is simple when starting to solve an extremal
case. Let us assume that the fading coefficients αi belong
to the set {0, +∞}. In this case, the block-fading channel is
converted into a block-erasure channel. The reader may refer
to Fig. 6 where the outage boundaries are illustrated (see [4]
for more details).
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Fig. 6. Outage boundaries in the fading plane for a 2-state block-fading
channel. Two conditions are necessary in order to approach the outage limit: a-
Reducing the gap on the ergodic line requires an excellent decoding threshold,
b- Reducing the gap at infinity requires a full-diversity code (Maximum
Distance Separable) on a block-erasure channel.



Our approach is to find a graph construction with bitnodes
and checknodes such that the connecting edges guarantee full
diversity. For simplicity, we consider the case of the (3, 6)
LDPC ensemble with nc = 2. Generalizations to other degree
distributions and rates will be treated further on. The reader is
referred to Fig. 7 for more details on the notation employed in
this section. Two examples of local graphs where diversity is
not guaranteed are shown in Fig. 8. The checknodes defining
an LDPC code are single-parity check codes, and hence they
cannot afford more than one erased bit. For example, if α1 = 0
then the checknodes in Fig. 8 are not able to recompute the
erased bit because it is connected to bitnodes which are also
erased (i.e., undergoing the same fading coefficient). Notice
also that the design must be symmetric, i.e. any analysis with
respect to α1 is valid for α2 and permuting the two fading
coefficients yields an equivalent design.

The two unique local graphs that guarantee full diversity
in presence of block erasures are drawn in Fig. 9. The
immediate consequence is the definition of rootchecks. We
start by building a regular (3,6) structure where bitnodes
have degree 3 and checknodes have degree 6, and then we
generalize to any (λ(x), ρ(x)) degree distribution [17]. A
checknode Φ connected to bits ϑ1, ϑ2, . . . , ϑ6 is written as
Φ(ϑ1, ϑ2, . . . , ϑ6).

Definition 2: Let ϑ be a binary element transmitted on
fading α1. A rootcheck of type 1 for ϑ is a checknode
Φ(ϑ, ϑ1, . . . , ϑ5) where all bits ϑ1, . . . , ϑ5 are transmitted on
fading α2.
We define similarly rootchecks of type 2.

���
�

���
�

bit on fading 1

bit on fading 2

bit on fading 1 connected to a rootcheck

bit on fading 2 connected to a rootcheck

single−parity checknode

Fig. 7. Notations for graph representation.

Fig. 8. Two examples of bad configurations under belief propagation
decoding on a block-fading channel.

Using definition (2), we consider a rate 1/2 LDPC code
of length N . Information bits are splitted into two classes,

���
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���
�

Φ Φ

ϑ ϑ

ϑ1 ϑ5 ϑ1 ϑ5

Fig. 9. The two unique good configurations (rootchecks) under belief
propagation decoding on a block-fading channel.
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Fig. 10. Tanner graph for a regular (3,6) root-LDPC code of rate 1/2. An
irregular structure (λ(x), ρ(x) can be easily plugged on edges connected to
non-root checknodes.

N/4 bits called 1i are transmitted on α1 and N/4 bits called
2i are transmitted on α2. Parity bits are also partitioned into
two sets 1p and 2p. Finally, we connect all information bits to
rootchecks in order to guarantee full diversity when word error
probability is measured on those bits. The protection of parity
bits is abandoned. This design produces the bipartite Tanner
graph drawn in Fig. 10. Its extension to rate 1/3 is portrayed
in Fig. 12. Integers positioned near edges indicate the degree
of a node along those edges. The structure of H for a root-
LDPC code is directly derived from its Tanner graph and is
given in Fig. 11. The N/4 × N/4 identity matrix is written
twice in connections 1i ↔ 1c and 2i ↔ 2c. Two all-zero

1
1

1

1

0

1
1

1

1

0

H =

1p 2p

1c

2cH1i H1p

H2i H2p

1i 2i

Fig. 11. Parity-check matrix for a regular (3,6) root-LDPC code of rate 1/2.
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Fig. 12. Tanner graph for a regular (4,6) root-LDPC code of rate 1/3.
The introduction of any (λ(x), ρ(x) irregularity is always possible on edges
connected to non-root checknodes.

N/4 ×N/4 sub-matrices prohibit any edge of type 1p ↔ 1c
and 2p ↔ 2c. The other 4 sub-matrices are all sparse, H1i and
H2i are random sparse matrices of Hamming weight 2 per row
and per column. Similarly, H1p and H2p are random sparse
matrices of Hamming weight 3 per row and per column.

An irregular version of a root-LDPC code can be built from
a left degree distribution λ(x) and a right degree distribution
ρ(x) by appropriately modifying the weight distribution of
the 4 sub-matrices H1i, H2i, H1p, and H2p. Equivalently,
the degree distribution changes the distribution of edges con-
nected to non-rootchecks in the Tanner graph. Irregularity has
no influence on the diversity order because rootchecks are
maintained. Irregularity should enhance the coding gain by
pushing the code boundary near the outage capacity limit on
the ergodic line.

Proposition 6: Consider a rate R = 1
2 root-LDPC code

with degree distribution (λ(x), ρ(x)) transmitted on a 2-state
block-erasure channel. Then, under iterative message passing
decoding, the root-LDPC code is full-diversity.

Proof: The two fading coefficients α1 and α2 are
independent and take two possible values {0,+∞}. Examinig
the Tanner graph in Fig. 10, we observe that only outage event
occurs when α1 = α2 = 0 (both blocks erased). Indeed,
when α1 = 0 and α2 = +∞, it is straighdforward to see
that information bits 1i are determined using rootchecks 1c.
Similarly, when α1 = +∞ and α2 = 0, information bits 2i
are determined using rootchecks 2c.

On a block-erasure channel, let ε be the probability of αi

being equal to 0. From the proof of proposition (6) above, we
find that the outage probability of a root-LDPC code is ε2, i.e.
the code attains the outage limit of the block-erasure channel.
In general, it has been shown in [7] that a full-diversity code
on a block-erasure channel is outage achieving.

Now we study the general case of Rayleigh block-fading.
Some simple facts from communication theory on the 4th
order χ2 distribution are exposed in Appendix A. In the sequel,
we use the notations of Appendix A when analyzing the
diversity metric in log-ratio messages.

Proposition 7: Consider a 1/2-rate (λ(x), ρ(x)) root-LDPC
code transmitted on a 2-state Rayleigh block-fading channel.
Then, under iterative belief propagation decoding, the root-
LDPC code is full-diversity.

Proof: As indicated in the design of a root-LDPC before
proposition 6, the diversity order of a root-LDPC code does
not depend on its left or right degree distribution. This can also
be proved via the evolution trees in the next section. Thus, we
restrict this proof to a regular (3,6) LDPC. The extension to
the irregular case is trivial.

Let Λa
i , i = 1 . . . δ − 1, be the input log-ratio probabilistic

messages to a checknode Φ of degree δ. The output message
Λe for an optimal belief propagation is

Λe = 2 th−1

(∏

i

th
(

Λa
i

2

))
(4)

where th(x) is the hyperbolic tangent function. Superscripts
a and e stand for a priori and extrinsic, respectively. In
order to simplify the proof, we will show that a sub-optimal
belief propagation decoder is able to achieve diversity order
2. Therefore, if a sub-optimal decoder achieves full-diversity,
the optimal decoder also achieves full-diversity. We consider
the min-sum decoder. The output message produced by a
checknode Φ is now approximated by

Λe = min(|Λa
i |)

∏

i

sign(Λa
i ) (5)

a) First decoding iteration: We first study the output
after one decoding iteration. The all-zero codeword is assumed
to be transmitted. The channel cross-over probability associ-
ated to fading αj , j = 1, 2, is

εj = Q
(√

2γα2
j

)

The channel message for a bit ϑ transmitted over fading
coefficient α is

Λ0 = log
(

p(y|ϑ = 0, α)
p(y|ϑ = 1, α)

)
=

2αy

σ2
=

2
σ2

(α2 + αz) (6)

where y = α + z and z ∼ N (0, σ2) (assuming Es = 1). At
the first decoding iteration, all input messages Λa

i in (5) have
an expression identical to (6).

An information bit ϑ of class 1i has Λ0 = 2
σ2 (α2

1+α1z0). It
also receives 3 messages Λe

i , i = 1 . . . 3 from its 3 neighboring
checknodes. The total a posteriori message corresponding to
ϑ is Λ = Λ0 +Λe

1 +Λe
2 +Λe

3. Let Λe
1 be the extrinsic message

generated by the rootcheck of class 1c connected to ϑ. The
error rate Pe(1i) on class 1i is given by the negative tail of
the density of Λ messages. The addition of Λe

2 + Λe
3 to Λ0 +

Λe
1 cannot degrade Pe(1i) because the convolution with the

density of messages from non-rootchecks can only physically



upgrade the resulting density. Thus, it is sufficient to prove
that message Λ0 + Λe

1 brings full diversity. The expression of
Λe

1 is found by applying (5). Input messages to the rootcheck
are negative with probability ε2. Then

Λe
1 = S1

2
σ2

(α2
2 + α2z1)

where

S1 =
∑

i even

(
n

i

)
εi
2(1− ε2)4−i −

∑

i odd

(
n

i

)
εi
2(1− ε2)4−i

We obtain

Λe
1 = (1− 2ε2)4

2
σ2

(α2
2 + α2z1)

The partial a posteriori log-ratio message becomes

Λ0+Λe
1 =

2
σ2

(
α2

1 + (1− 2ε2)4α2
2

)
+ α1z0+(1−2ε2)4α2z1)

The embedded metric Y = α2
1 + (1 − 2ε2)4 α2

2 guarantees
full-diversity. At high SNR (i.e. Eb/N0 → +∞), Y behaves
exactly like α2

1 + α2
2.

b) Further decoding iterations: As can be seen from the
decoding tree of a bitnode 1i in Fig. 15 the diversity order 2
is maintained after the first iteration. Indeed, at the input of
the rootcheck, information bits of class 2i have already full-
diversity and parity bits 2p bring always a term proportional to
α2

2. The density of message Λ0+Λe
1 can only be upgraded with

respect to the first iteration. Hence, full diversity is preserved.

The proof of the previous proposition is based in showing
that the information bits have diversity 2. In the following, we
examine the diversity of the parity bits. A parity bit ϑ of class
1p has Λ0 = 2

σ2 (α2
1 + α1z0). It also receives 3 messages Λe

i ,
i = 1 . . . 3 from its 3 neighboring checknodes all of class 2c.
The total a posteriori message of ϑ is Λ = Λ0+Λe

1+Λe
2+Λe

3.
Now let us determine the nature of Λe

i based on input messages
to a checknode Φ of class 2c as illustrated in Figures 10 and
16. The node Φ is not a rootcheck. We need to determine the
metric Y embedded in its output message. In the case α2 ≤ α1

(this happens with probability 1/2), it can be shown that, after
one decoding iteration, the extrinsic message produced by Φ
satsifies

Λe
i =

{
S 2

σ2 (α2
2 + α2z) with probability G4 ≥ 1

16

S 2
σ2 (α2

1 + α1z) with probability 1−G4 ≤ 15
16

where the function G is defined in Appendix B. On the
opposite, when α2 ≥ α1, it can be shown that

Λe
i =

{
S 2

σ2 (α2
2 + α2z) with probability G4 ≤ 1

16

S 2
σ2 (α2

1 + α1z) with probability 1−G4 ≥ 15
16

We conclude that, for parity bits, with a probability greater
than 1

2 × 15
16 , the output message has diversity order one. De-

spite the presence (with a non-zero probability) of diversity-2
messages, the error probability of parity bits will be dominated
by weak messages with diversity 1. The above arguments are
still valid for further decoding iterations.
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Fig. 13. Regular (3,6) root-LDPC codes with iterative decoding on a 2-state
Rayleigh block-fading channel. Word error rate is measured on information
bits. 100 erroneous words have been counted for each point.

Finally, we look at the minimum partial Hamming weight
ω? under belief propagation decoding.

Corollary 1: A root-LDPC code with R = 1/2 satisfies
ω? = 1 under iterative belief propagation decoding.

Proof: Consider an information bit ϑ of class 1i. Let
δb ≥ 2 be the degree of ϑ. At high SNR, the log-ratio message
produced by its rootcheck has an embedded metric α2

1 + α2
2.

Consider the δb−1 non-root checknodes connected to ϑ. Since
parity bits of class 1p dominate the error probability at the
input of 2c checknodes, then its metric will be α2

1. Finally,
the a posteriori log-ratio message associated to ϑ will contain
a metric δbα

2
1 +α2

2. Hence, the equivalent ω? parameter under
iterative decoding is 1.

In Fig. 13, we illustrate the performance of the (3, 6) root-
LDPC ensemble. As we observe, the performance is similar for
all ranges of N and it is also close to the outage probability
of the channel. This effect was also observed with repeat-
accumulate codes [6] and parallel turbo codes [3][4][5].

V. DENSITY EVOLUTION IN PRESENCE OF BLOCK-FADING

The evolution of message densities [16][18] under iterative
decoding is described with the means of six evolution trees
for a binary root-LDPC code. The evolution trees represent
the local neighbourhood of a bitnode in an infinite length code
without graph cycles. Figures 14, 15, and 16 show the local
neighbourhoods of classes 1i and 1p. Similar evolution trees
can be drawn for classes 2i and 2p. Full-diversity is guaranteed
in presence of fading thanks to messages 1c → 1i (resp. 2c →
2i) as indicated in the proof of proposition 7. Irregularity is
defined by the standard polynomials λ(x) and ρ(x) [17]. The
polynomial λ(x) is replaced by λ̃(x) = λ(x)/x each time
an edge is isolated at the input of a bitnode. In addition, the
polynomial ρ(x) is replaced by ρ̃(x) = ρ(x)/x each time an
edge is isolated at the input of a checknode. The following
notations are used in root-LDPC density evolution where the
superscript integer m denotes the decoding iteration:



• qm
1 (x) and qm

2 (x): Probability density functions of log-
ratio messages on the edges 1i → 1c and 2i → 2c
respectively, see Fig. 14.

• fm
1 (x) and fm

2 (x): Probability density functions of log-
ratio messages on the edges 1i → 2c and 2i → 1c
respectively, see Fig. 15.

• gm
1 (x) and gm

2 (x): Probability density functions of log-
ratio messages on the edges 1p → 2c and 2p → 1c
respectively, see Fig. 16.

• Let X1 ∼ p1(x) and X2 ∼ p2(x) be two independent
real random variables. The density function of X1 + X2

obtained by convolving the two original densities is
written as p1(x)⊗p2(x). The notation p(x)⊗n denotes the
convolution of p(x) with itself n times. The expression
λ(p(x)) represents the density function

∑
i λi p(x)⊗i−1.

• Let X1 ∼ p1(x) and X2 ∼ p2(x) be two indepen-
dent real random variables. The density function p(y)
of the variable Y = 2th−1(th(X1

2 )th(X2
2 )) obtained

through a checknode is written as p1(x) ¯ p2(x) and is
called R-convolution. The notation p(x)¯n denotes the R-
convolution of p(x) with itself n times. The expression
ρ(p(x)) represents the density function

∑
i ρi p(x)¯i−1.

Proposition 8: Consider an ergodic additive white gaussian
noise channel (i.e. α1 = α2 = 1). Under iterative decoding, a
(λ(x), ρ(x)) root-LDPC code has the same decoding threshold
as a random (λ(x), ρ(x)) LDPC code.

Proof: The two fading coefficients are equal to unity. One
can notice that the six evolution trees degenerate to a unique
tree and all densities become identical, qm

1 (x) = qm
2 (x) =

fm
1 (x) = fm

2 (x) = gm
1 (x) = gm

2 (x) for any decoding iteration
m. Thus, density evolution of a root-LDPC code reduces
to a classical density evolution of a random code given by
pm+1(x) = λ(ρ(pm(x))).

Proposition 9: Consider a non-ergodic block-fading chan-
nel with two states. For fixed fading coefficients (α1, α2),
density evolution equations of a (λ(x), ρ(x)) root-LDPC code
are

qm+1
1 (x) = µ1(x)

⊗ λ (qm
2 (x)¯ ρ̃ (fe fm

1 (x) + ge gm
1 (x)))

fm+1
1 (x) = µ1(x)

⊗ λ̃ (qm
2 (x)¯ ρ̃ (fe fm

1 (x) + ge gm
1 (x)))

⊗ ρ (fe fm
1 (x) + ge gm

1 (x))
gm
1 (x) = qm

1 (x) ∀m
where the multi-edge type fraction is

fe = 1− ge =
∑

i
λi

i∑
i

λi

(i−1) +
∑

i
λi

i

and µ1(x) is the gaussian density at the output of the chan-
nel with fading α1. Similar density evolution equations are
obtained after the permutation of the two fading numbers.

Proof: The above equations are directly derived from
local neighbourhoods of bitnodes in the graph representation
of the LDPC code.

To demonstrate the performance of LDPC codes via density
evolution in presence of non-ergodic fading, we illustrate the

1 1 3 1 1 3
2i 1i 1p 2i 1i 1p

2c 2c

1i

1c

ρ(x)/x ρ(x)/x

λ(x)

channel α1

Fig. 14. Local neighbourhood of bitnode 1i. This tree is used to determine
the evolution of messages 1i → 1c.

1 1 3 32

1

2i 1i 1p 2p

2c 1c

1i

2c

ρ(x)/x ρ(x)

channel α1

2i

λ(x)/x

Fig. 15. Local neighbourhood of bitnode 1i. This tree is used to determine
the evolution of messages 1i → 2c.

results from proposition 9 versus the outage capacity limit.
Three codes are shown in Fig. 17: a random regular (3,6)
code, a root regular (3,6) code, and an irregular root LDPC
with left and right degree distributions from [17] given by
the polynomials λ(x) = 0.24426x + 0.25907x2 + 0.01054x3 +

0.05510x4 + 0.01455x7 + 0.01275x9 + 0.40373x11 and ρ(x) =

0.25475x6 + 0.73438x7 + 0.01087x8.
We now refer back to the outage boundary representation

in the fading plane (see Fig. 6). Let α0 be the fading value
defined by the intersection of the BPSK outage boundary
and the ergodic line. For rate 1/2, this intersection point
satsifies Ib(α2

0
Eb

N0
) = 1

2 , where Ib(x) = IAWGN(Rx) is the
average mutual information on an additive white gaussian
noise channel with a binary input and a signal-to-noise ratio
per bit x.

Let αth denote the fading value defined by the intersection
of the LDPC code outage boundary and the ergodic line. Then
we have

α2
th =

Eb
N0 th
Eb
N0

,



1 2 2 1 2 2
2i 1i 1p 2i 1i 1p

2c 2c

1p

2c

ρ(x)/x ρ(x)/x

λ(x)

channel α1

Fig. 16. Local neighbourhood of bitnode 1p. This tree is used to determine
the evolution of messages 1p → 2c.

where Eb

N0 th
is the decoding threshold of the LDPC code over

the ergodic AWGN channel. Finally we obtain

αth = α0

√√√√
Eb

N0 th

I−1
b ( 1

2 )
= α0

√
∆

where ∆ in the signal-to-noise ratio gap separating the decod-
ing threshold and the capacity limit on the ergodic gaussian
channel. To better understand the gain due to irregularity
illustrated in Fig. 17, we evaluate the ratio αth

α0
.

• For the regular (3,6) LDPC code, the threshold is 1.09dB
on the ergodic gaussian channel. Hence, αth

α0
= 1.107.

• For the irregular LDPC code given above, the threshold
is 0.37dB on the ergodic gaussian channel. Hence, αth

α0
=

1.045.
Using the best irregular code proposed in [17] with a

threshold of 0.25dB yields αth
α0

= 1.007. Hence, with αc/α0

close to 1, the area between the outage capacity boundary and
the code outage boundary reduces in the neighbourhood of the
ergodic line. Nevertheless, the code outage boundary is still
uncontrolled in the critical region between the ergodic line
and the block-erasure channel. In order to achieve the outage
probability limit, a full-diversity capacity-achieving code is
necessary but may not be sufficient.

VI. CONCLUSIONS

We designed a new family of outage-approaching full-
diversity LDPC codes, the root-LDPC codes. The design
of this family was motivated by the failure of both ML-
designed and irregular capacity-approaching LDPC codes to
guarantee diversity under iterative decoding. As in the case of
multiplexed parallel turbo codes, the word error rate of root-
LDPC is quasi-insensitive to block length.

APPENDIX A: CODING GAIN OF A 4TH ORDER
UNBALANCED χ2 DISTRIBUTION

Without loss of generality, we limit our description to a
diversity order of 2. All results are easily extendable to rate
1/nc coding on a channel with diversity order nc. In the
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Fig. 17. Infinite length random-LDPC versus root-LDPC codes under
iterative decoding on a block-fading channel with nc = 2.

context of ML decoding, the Euclidean distance between two
codewords is proportional to ω1α

2
1 + ω2α

2
2. A fading α2

i is
Rayleigh distributed, i.e. pα2(x) = e−x. The latter is a central
χ2 distribution of order 2 with parameter σ2 = 1/2 (see
[15]). Diversity 2 is achieved with a χ2 distribution of order 4.
Hence, a full-diversity code must satisfy ω1 > 0 and ω1 > 0
in order to get the order-4 χ2 distributed metric ω1α

2
1 +ω2α

2
2.

Once maximum diversity is guaranteed, the maximization of
the product ω1ω2 improves the coding gain.

The above simple facts are still valid in the context of
iterative probabilistic decoding. Let Λ be the a posteriori
probability log-ratio of a binary element b. Achieving full-
diversity under iterative decoding is equivalent to letting Λ
behave as the metric Y = aα2

1 + bα2
2, where a and b are

two positive real numbers. The energy of Y is normalized,
a + b = 1. The exact mathematical expression relating Λ
to Y depends on the type of iterative algorithm used for
decoding, e.g. Λ ∝ Y + ν where ν is an additive noise. To
understand the influence of the product ab on the performance,
one should study the error probability associated to Y , i.e.
P (Y < T ) = F (a, b, T ). When a = b = 1/2, the order-4 χ2

distribution is balanced and its probability density function is

pY (y) = 4ye−2y (7)

When a 6= b = 1−a, the order-4 χ2 distribution is unbalanced
and its probability density function is

pY (y) =
(e−y/a − e−y/b)

2a− 1
(8)

The expression of P (Y < T ) = F (a, b, T ) is obtained after
integrating pY (y). The diversity order and the coding gain
embedded in Y appear when T << 1. For a balanced χ2

distribution, we have

F (a, b, T ) = 1− e−2T (1 + 2T ) = 2T 2 + o(T 2) (9)

For an unbalanced χ2 distribution, we obtain

F (a, b, T ) = 1− ae−T/a − be−T/b

2a− 1
=

T 2

2ab
+ o(T 2) (10)
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In Fig. 18, the performance function F (a, b, T ) is plotted
versus γ = 1/T on a double logarithmic scale for different
values of a and b. The slope is always 2 (i.e. ∝ 1/γ2) for
all positive values of a and b. The function F degenerates to
T +o(T ) when b = 0 (diversity order equal to 1 instead of 2).
Notice also that an unbalanced χ2 distribution with a = 3/4
and b = 1/4 generates a coding loss about 0.65 dB. This loss
is slightly higher (about 0.75dB) when considering P (Λ < 0)
for Λ ∝ Y + ν since additive noise depends on the fading
coefficients as shown in section IV.

APPENDIX B: THE BIDIMENSIONAL CUMULATIVE DENSITY
FUNCTION G = P (|X2| < |X1|)

Consider two real gaussian random variables X1 ∼
N (α2

1, α
2
1σ

2) and X2 ∼ N (α2
2, α

2
2σ

2). Assume that X1

and X2 are independent. We define the multivariate function
G(α1, α2, σ

2) = P (|X2| < |X1|). The G function is given by

the integral expression

G = 1−
∫ ∞

0

dt√
2πα2

1σ
2

(
e
− (t−α2

1)2

2α2
1σ2 + e

− (t+α2
1)2

2α2
1σ2

)

(
Q

(
t− α2

α2σ

)
+ Q

(
t + α2

α2σ

))
(11)

where Q(x) is the gaussian tail function. A 3D plot of G is
illustrated in Fig. 19. The main properties of G are:
• G(α, α, σ2) = 1/2 for all σ2 > 0.
• G is a non-decreasing function of α1 and a decreasing

function of α2. Hence, G ≤ 1/2 if α1 ≤ α2 and G ≥ 1/2
if α2 ≤ α1.

• For fixed σ2 and α2, G → 1 when α1 → +∞.
• For fixed σ2 and α1, G → 0 when α2 → +∞.
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