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Abstract— We study simple space-time coding techniques for
multiple-input multiple-output (MIMO) quasi-static chan nels
(2Tx and 4Tx) capable of achieving near outage limit perfor-
mance. The core of our space-time code is an h-π-diagonal state
multiplexer that guarantees full diversity and a quasi-optimal
coding gain on the MIMO channel. The whole range of word
error probability is attained at signal-to-noise ratios extremely
close to theoretical limits. In addition, at a fixed signal-to-noise
ratio, the word error probability is insensitive to the block length.

I. I NTRODUCTION

The MIMO technology is currently a great success in recent
wireless communications systems, mainly in some standards
and custom-enhanced versions of IEEE 802.11a/b/g. The most
famous space-time block coding (STBC) technique is the
scheme proposed by Alamouti [1]. It can be easily shown
that bit error probability conditioned on the channel realization
for Alamouti STBC on a2 × 1 MIMO channel is Peb =
Q(

√
yγ) = f(y), whereγ is the signal-to-noise ratio per bit,y

is a second order Nakagami distributed random variable [20]
representing the fading coefficients after orthogonal combining
at the receiver, andQ(x) is the Gaussian tail function [20].
Consider a frame of lengthn bits transmitted on a quasi-static
MIMO channel using Alamouti scheme. Then, the frame error
ratePe is

Pe =

∫ +∞

0

[1 − (1 − f(y))n] p(y)dy

By upper-bounding1−(1−x)n with min(1, nx) in the interval
[0, 1], and after cutting the integral into two parts at the point
y = a defined bynf(a) = 1 with γ >> 1, it can be shown
that

Pe ≤
(

2 log2(n
2 ) + 4 log(n

2 ) + 4
)

γ2

Similarly, Pe can be lower-bounded by a quantity that varies
aslog2(n). In general, for anyuncodedSTBC, the frame error
probability will increase aslogd(n) whered is the diversity
order. In order to approach the outage probability limit [19][5],
the frame error rate of any given coding scheme should be
independent of the block length [14], [15]. Therefore, such
space-time coding techniques will fail in approaching the out-
age capacity limit of the quasi-static MIMO channel. Algebraic
space-time codes [10] and any convolutionally/algebraically

coded STBC also fail in approaching the outage limit. Hence,
our objectives are

• Design a space-time code based on state multiplexing [8]
and turbo encoding [4][3] in order to achieve near outage
limit performance.

• Control the detection/decoding complexity and propose
relatively low complexity schemes.

• Make the word error probability insensitive to the block
length. This is the interleaving gain of turbo codes
translated to the field of non-ergodic fading channels as
discovered in [14], [15].

This work is a direct application of the work in [8] to MIMO
channels. Closely related research can be found in [2][9][16]
and other non-cited references due to the lack of space.

II. ENCODER AND CHANNEL STRUCTURES

The physical channel considered in this paper is a quasi-
static frequency non-selective MIMO channel withnt transmit
antennas andnr receive antennas. The channel state informa-
tion is only assumed at the receiver side for coherent detection.
The MIMO channel model is

y = zSH + ξ (1)

where z ∈ Z[i]Nt is a QAM modulation symbol vector,
S is a linear precodingNt × Nt unitary matrix (simply
called rotation), H is theNt × Nr channel matrix modeling
fading coefficients between transmit and receive antennas.The
additive white Gaussian noiseξ is assumed to be circularly
symmetric with zero mean. The dimension of transmitted
vectorsz is Nt = snt, wheres is the time spreading factor
of the rotationS. Similarly, we haveNr = snr.
Digital transmission is made as follows: Uniformly distributed
information bits are fed to a binary parallel turbo encoder.
Coded bits{ci} are then Gray mapped into QAM symbols
and transmitted on the MIMO channel given by (1). The
coherent MIMO detector computes an extrinsic information
Ξ(ci) based on the knowledge ofH , the received vectory,
and independenta priori information α(cj) for all coded
bits. Without loss of generality, we restrict our study to turbo
codes with two identical recursive systematic convolutional
(RSC) constituents separated by a pseudo-random interleaver
π of size N . The turbo coding rate isRc ∈ (0, 1). The
transmitted information rate is equal toR = Rcnt log2 M
bits per channel use, whereM is the cardinality of the



bidimensional QAM constellation. In the sequel, we will
call BO-channelthe binary-oriented channel with inputci

and outputΞ(ci) as observed by the turbo encoder and the
turbo decoder. Pseudo-random interleaving is performed prior
to QAM mapping in order to enable iterative probabilistic
MIMO detection [7][6] of the BO-channel. A total ofnt

independent pseudo-random binary interleavers are applied
and considered to be an intrinsic part of the BO-channel.

Definition 1: Under the genie condition (i.e. perfecta priori
information) in the BO-channel, the number of independent
binary-input non-ergodic fading sub-channels is denoted by
Dst and called thestate diversity.

Let ωH(c) denote the Hamming weight of a turbo codewordc.
We writeωH(c) =

∑Dst

i=1 ωi, whereωi is the partial Hamming
weight transmitted on the binary-input sub-channeli within
the BO-channel. The state diversitydst(c) achieved by the
codewordc is the number of non-zero partial weights. For
a given transmitter structure, the achievable state diversity
is dst = minc 6=0 dst(c). State diversity is upper-bounded by
[18][17]

dst ≤ ⌊Dst(1 − Rc) + 1⌋ ≤ Dst (2)

Definition 2: For a quasi-static MIMO channel, thechannel
diversity is defined asDch = ntnr, which is equal to the
intrinsic diversity order of the physical channel.

For a given transmitter structure, the achievable channel di-
versity is dch = limSNR→+∞ − log(Pe)/ log(SNR), where
SNR is the signal-to-noise ratio andPe is the error probabil-
ity. Channel diversity is upper-bounded by [11][12]

dch ≤ min
(

snr

⌊nt

s
(1 − Rc) + 1

⌋

, Dch

)

(3)

With a judicious choice of an error-correcting code and a linear
precoder, maximum diversity is easily attained (dch = Dch).
In general, a Nakagami distribution of orderDch/Dst is
associated to each binary-input sub-channel embedded within
the BO-channel. To illustrate the above definitions, we listthe
following examples:

• For nt = 2, nr = 1, Dch = 2, and without rotation
(s = 1). We getDst = 2.

• For nt = 2, nr = 2, Dch = 4. Without rotation (s = 1),
we haveDst = 2. With a cyclotomic rotation (s = 2),
we getDst = 1.

• For nt = 4, nr = 2, Dch = 8. Without rotation (s = 1),
we haveDst = 4. With a cyclotomic DNA rotation (s =
2), we getDst = 2.

The capacity-versus-outage approach is considered in this
paper. For a given signal-to-noise ratio, the outage limit in
terms of word error probability is given byP (I < R), where
I is the instantaneous mutual information betweenz andy per
channel use, i.e.I = I(H) = I(z;y|H)

s
bits.

III. C ODE MULTIPLEXING OVER CHANNEL STATES

In this paper, we restrict our study to the case of double
state diversityDst = 2 and half-rate turbo codeRc = 1/2. It
should be generalized without much difficulty to other values
of Rc and Dst. The systematic output of the turbo code is
denoted bys1 and its Hamming weight byω. The parity bit
generated by the first (resp. the second) RSC constituent is
denoted bys2 (resp.s3).

Definition 3: The multiplexer is an intelligent switch that
distributes turbo coded bitssi over the Dst parallel sub-
channels of the BO-channel.

Actually, the multiplexer should be called “de-multiplexer”
or equivalently “channel interleaver”. We have chosen the
word “multiplexer” in order to avoid any confusion with the
interleaver denoted byπ used inside the turbo code. Fig. 1
shows two important multiplexing examples. The two digits 1
and 2 represent the two states of the BO-channel. The symbol
X represents a punctured parity bit.

Horizontal Multiplexer
s1 1 1 1 1 1 1
s2 2 X 2 X 2 X
s3 X 2 X 2 X 2

H-π-diagonal Multiplexer
s1 1 2 1 2 1 2
s2 2 X 2 X 2 X

π
−1(s3) X 1 X 1 X 1

Fig. 1. Multiplexers from [8]. Horizontal (top) and h-π-diagonal (bottom)
multiplexers for a rate 1/2 parallel turbo code. Both multiplexers are suitable
for a non-ergodic fading channel withDst = 2 states.

Proposition 1: Let C be a rate 1/2 parallel turbo
code transmitted on a 2-state channel and built from
RSC(g1(x), g2(x)). Under horizontal state multiplexing and
for any input weightω, the numberη of codewords inC with
incomplete state diversity is

η(ω, dst < 2) = 0 ∀ ω ≥ 2
Proof: For any non-zero turbo codeword, it is well-

known that the Hamming weight ofs1 is ω ≥ ωmin = 2
[3]. Also, the Hamming weight of boths2 and s3 must be
positive despite puncturing. Hence, it is trivial thatdst = 2
sinces1 is always transmitted on the first channel state and
(s2, s3) are transmitted on the second channel state.

The recursive systematic convolutional constituent has
constraint lengthν + 1. Its feedback generator polynomial is
g1(x) and its forward generator polynomial isg2(x).

Definition 4: A recursive systematic convolutional code is
said to be afull-span convolutional code if the generators
satisfydeg(gi(x)) = ν andgi(0) = 1, for i = 1, 2.
Trellis transitions outgoing from the 0-state and those
incoming to the 0-state will be calledfull-span transitions,
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RSC2 Trellis
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s3 = 1 s3 = 1

Fig. 2. Trellis error events for input weightω = 2. The two interleaving
configurations are indicated. Diversity is guaranteed by full-span transitions.

i.e. both bits are set to 1 on the transition label.

Proposition 2: Let C be a rate1/2 parallel turbo code
transmitted on a 2-state channel and built from a full-span
RSC(g1(x), g2(x)). Under h-π-diagonal state multiplexing
and for any input weightω, the numberη of codewords in
C with incomplete state diversity is

η(ω, dst < 2) = 0 ∀ ω ≥ 2

Proof: For ω = 2 and ω = 3: if a full-span transition
is interleaved (viaπ) into a full-span transition, then state
diversity is guaranteed. As shown in Figures (2) and (3), one
of the full-span transitions in RSC1 is converted into a full-
span transition in RSC2.
For ω ≥ 4: Consider the case whereω = 4. Except for
the unique interleaving configuration depicted in Fig. (4),all
turbo codewords exhibitdst = 2 due to full-span transitions.
Now, let χi(sj) ∈ {1, 2} denote the BO-channel state over
which the binary elementsj belonging to RSCi is transmitted.
We distinguish two cases when a critical configuration is
transmitted on the channel.
Case 1: error event in RSC1 starts at state 1,χ1(s1) = 1.
Diversity is guaranteed by RSC1 becauseχ1(s2) = 2.
Case 2: error event in RSC1 starts at state 2,χ1(s1) = 2.
Then, we distinguish two sub-cases:
Case 2.1: Information bits1 is set to 1 within the error event
and hits state 1 yieldingχ1(s1) = 1. Hence, diversity is
guaranteed by RSC1 without the help of RSC2.
Case 2.2: Information bits1 = 1 never hits state 1 in the trellis
event of RSC1,χ1(s1) 6= 1. This situation occurs because
equality is not satisfied in (2) whenRc = 1/2 andDst = 3,
i.e. it is possible to create RSC1 codewords that never hit state
1. Thanks to the structure of the h-pi-diagonal multiplexer, at
least one full-span transition in RSC2 hasχ2(s3) = 1 for
χ1(s1) = 2.
The same proof applies forω > 4.

Example with RSC(7, 5)8
Critical configurations: Let us give an example of critical
configurations forω = 4 as defined in the proof of prop. 2.
When χ1(s1) = 1 and χ1(s2) = 2, the RSC trellis is
represented by the transition matrix
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Fig. 3. Trellis error events for input weightω = 3. The six interleaving
configurations are equivalent to two distinct configurations.
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Fig. 4. A critical configuration for full-span outgoing and incoming
transitions. Input weightω = 4.

A1 =

2

6

4

0 0 D1D2LW 0
D1D2LW 0 L 0

0 D1LW 0 D2L

0 D2L 0 D1LW

3

7

5

Whenχ1(s1) = 2 andχ1(s2) = X , the transition matrix is

A2 =

2

6

4

0 0 D2D3LW 0
D2D3LW 0 L 0

0 D2LW 0 D3L

0 D3L 0 D2LW

3

7

5

The complete weight enumeratorT (W, D, L) of simple er-
ror events is given by the top left entry of the product
A1A2A1A2 . . . or A2A1A2A1 . . . depending on the position
of the outgoing transition. A critical configuration is given by
a product of typeA2(A1A2)

ℓ for an event of length2ℓ + 1.
For ℓ = 1 . . . 3 no critical configurations are found. Forℓ = 4,
we have

T (W, D, L) = . . . + (2D1D
5
2D

4
3 + D8

2D
2
3)L

9W 4 + . . .

Therefore, the shortest critical event forω = 4 has length
L = 9. It includes 4 information bits withχ1(s1 = 1) = 2,
4 parity bits withχ1(s2 = 1) = 2, and 2 punctured bits with
χ1(s2 = 1) = X .
At this point, based on the study ofη, the reader sees no
difference between h-π-diagonal and horizontal multiplexers.
Indeed, propositions (1) and (2) state that both multiplexers
achieve full state diversity. The error rate performance depends
on the achieved diversity and on the so-calledcoding gain
or product distancedefined by the productω1ω2 of partial
Hamming weights. Now, it should be clear that horizontal
multiplexing shows a great unbalance betweenω1 and ω2.
As an example, for input weightω = 2, consider RSC(7,5)
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Fig. 5. BPSK modulation,nt = 2, nr = 1.
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Fig. 6. QPSK modulation,nt = 2, nr = 1.

error events of lengthL = 4 + 3i and total Hamming weight
wH = 6+2i, i = 0 . . . (N−4)/3. For horizontal multiplexing,
ω1 = 2 and ω2 = 4 + 2i. Therefore, its coding gain behaves
as O(N). For h-π-diagonal multiplexing,ω1 = ω2 = 3 + i.
Hence, the coding gain of h-π-diagonal multiplexing increases
as O(N2). The loss is even more dramatic forω = 3.
The latter is neglected on the Gaussian channel since its
contribution to the error rate performance isO(1/N). On
non-ergodic fading channels, whenω = 3, turbo codewords
satisfying wH(s2) >> 1 and wH(s3) >> 1 will suffer
from the unbalance of horizontal multiplexing. A comparison
between h-π-diagonal and horizontal multiplexers is illustrated
in Fig. 6 with 2 transmit antennas and a QPSK modulation.

IV. WORD ERROR RATE PERFORMANCE(2TX)

In this section, computer simulations are made fornt = 2
and without linear precoding (s = 1) on the quasi-static MIMO
channel. The rate 1/2 turbo code is built from RSC(17, 15)8
and a pseudo-random interleaverπ of size N . All curves
include word error rate versus signal-to-noise ratio per bit.
Fig. 5 shows the performance of a BPSK modulation with 2
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Fig. 8. 8-PSK modulation,nt = 2, nr = 2.

transmit and 1 receive antenna, andN = 400. No further
comment. Fig. 6 shows a similar situation with a QPSK
modulation. The performance with 2 transmit and 2 receive
antennas is given in Fig. 7. Notice that the word error rate is
roughly the same forN = 400 and N = 6400. Finally, the
performance of 8-PSK is illustrated in Fig. 8 and compared
to both outage limits (discrete and Gaussian inputs).

V. L INEAR PRECODING VIA DNA ROTATIONS (4TX)

In the case ofnt = 4 transmit antennas, we haveDst = 4.
Maximum state diversity in (2) cannot be attained withRc =
1/2 if Dst = 4. Therefore, we add a linear precoder in order to
downgradeDst from 4 to 2. This does not affect the physical
channel diversityDch. If the rotation hass = 4, i.e. a full
spreading unitary precoder as usually studied in the literature,
thenDst will reduce to 1. Also, MIMO detection complexity
increases exponentially withs. The solution to maintainDst =
2 is given by Dispersive Nucleo Algebraic (DNA) precoders
proposed in [12][13] fors ≤ nt. We build below a cyclotomic
DNA rotation with a spreading factor equal tos = 2 time
periods.
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antennas. Linear precoding via a cyclotomic DNA rotation

The first step is to build a4×4 precoder that is optimal under
iterative decoding [11]. As an example, the cyclotomic unitary
matrix S given in (V) satisfies the so-calledGenie conditions:

• Vector (θi,1, θi,2) is orthogonal to vector(θi,3, θi,4) on
any row i, i = 1 . . . 4.

• Vectors(θi,1, θi,2) and (θi,3, θi,4) have equal norms.

The two Genie conditions can also be established by a maxi-
mum likelihood decoding analysis and the assumption of ideal
channel interleaving [12][13].

SCyclo = [θij] =
1

2

2

6

6

4

1 1 ej6π/15 −ej6π/15

ej2π/15 jej2π/15 −ej8π/15 jej8π/15

ej4π/15 −ej4π/15 ej10π/15 ej10π/15

ej6π/15 −jej6π/15 −ej12π/15 −jej12π/15

3

7

7

5

The second step is to place the orthogonal nucleotides inside
an 8 × 8 matrix and separate them with null nucleotides. We
obtain the following rotation fornt = 4 and s = 2 (see
proposition (2), page 54, in [12])

SDNA =

2

6

6

6

6

6

6

6

6

6

4

θ11 θ12 0 0 θ13 θ14 0 0
0 0 θ11 θ12 0 0 θ13 θ14

θ21 θ22 0 0 θ23 θ24 0 0
0 0 θ21 θ22 0 0 θ23 θ24

θ31 θ32 0 0 θ33 θ34 0 0
0 0 θ31 θ32 0 0 θ33 θ34

θ41 θ42 0 0 θ43 θ44 0 0
0 0 θ41 θ42 0 0 θ43 θ44

3

7

7

7

7

7

7

7

7

7

5

Now, let us observe the MIMO channel withSDNA. The QAM
vector z = (z1, z2, . . . , z8) goes through the precoder before
H . Consider the lattice pointzSH without adding Gaussian
noise. The reader would notice thatzi is transmitted via the
1st and 2nd Tx antennas ifi is odd, and via the 3rd and 4th
Tx antennas ifi is even. Consequently, the DNA precoder
converts the4 × nr MIMO channel onto two2 × nr MIMO
channels. Binary elements mapped tozi wheni is odd (resp.i
is even) will be sent through the first BO-subchannel (resp. the
second BO-subchannel). As a final illustration, Fig. 9 shows
the error rate of BPSK modulation with 4 transmit and 2
receive antennas.

VI. CONCLUSION

We described simple space-time coding techniques for
MIMO channels (2Tx and 4Tx) capable of achieving near
outage limit performance. Low word error probabilities are
obtained at signal-to-noise ratios extremely close to minimal
achievable limits. Also, at fixed signal-to-noise ratio, the word
error probability is insensitive to block length.
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