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Abstract—This paper deals with generalized low-density
(GLD) lattices which have been recently shown to be an excellent
family of lattices for communication over the Gaussian channel.
Under iterative decoding, numerical results for GLD lattices show
an error rate per lattice coordinate extremely close to Poltyrev
theoretical limit of an infinite constellation. These results are
found for GLD ensembles with degree-2 variable nodes. In the
error floor region, the probability of error per lattice coordinate
decreases when the lattice dimension grows. This phenomenon is
similar to spectral thinning in parallel concatenated convolutional
codes (Turbo codes) also known as interleaving gain. The present
work aims to give the theoretical explanation of this error floor
decay as a function of the lattice dimension. Namely, we show
how spectral thinning applies to codes on graphs associated with
GLD lattices. This stands on the proof that the number of cycles
of small length in random bipartite graphs follows a Poisson
distribution. Our theorem on cycles is an adaptation of a theorem
by Béla Bollobás to irregular bipartite graphs.

I. INTRODUCTION

Random graphs theory [1] is nowadays used in many areas
in science and engineering. In coding theory [2], graph repre-
sentation of error-correcting codes started its golden era with
the pioneering work by Tanner [3]. Graph theory also played an
important role in Euclidean codes, mainly in point lattices [4].
The recent family of generalized low-density lattices [5] [6]
has a simple graph structure that allows decoding in high
dimensions (e.g. 106). The GLD graph is suitable for applying
iterative belief propagation (BP) decoding [7] to decode lattice
points over an additive white Gaussian noise (AWGN) channel.
It is also suitable to make a theoretical analysis under the
assumption of maximum-likelihood (ML) decoding.

Codes on graphs have a special behavior at finite length.
An extensive finite-length study for low-density parity-check
codes (LDPC) and turbo codes can be found in [7]. In general,
for turbo-like and LDPC-like codes, the error rate performance
plot can be divided into two regions: a waterfall region which
is due to large decoding failures and an error floor region
which is due to small failures. For example, some of the first
analyses of the ML performance of turbo codes concluded that
the bit error rate decreases as 1/n in the error floor region for
a turbo interleaver of size n. This 1/n enhancement factor in
the bit error rate was referred to as interleaving gain [11] or
spectral thinning [12]. See Lemma 6.52 on page 358 in [7]
for more details about the error floor of turbo codes under
ML decoding. Similarly, LDPC codes exhibit a 1/n spectral
thinning behavior under ML decoding over the AWGN channel
with binary input (BI-AWGN). See Lemma 4.177 on page 258
in [7]. Unfortunately, little is known about the error floor
scaling under BP decoding over the BI-AWGN channel. The

BP error floor is higher than the ML error floor for LDPC
codes because of the presence of pseudo-codewords. For turbo
codes, BP decoding performs very close to ML decoding.
Hence, the BP error floor shows a 1/n spectral thinning as
predicted by the ML analysis.

In all codes on graphs, the error floor small failures
are produced by short-length cycles. The code graph has
variables nodes that represent code symbols and check nodes
that represent the code constraints. Under ML decoding, we
are interested in codewords whose supports are cycles. As
proved by Bollobás [9] for non-bipartite graphs, dominant
configurations are those without shackles, i.e. it is enough
to consider primitive cycles [7]. Consequently, variable nodes
with degree 3 or higher should be excluded from these graph
configurations. In LDPC codes, only degree-2 bit nodes are
considered. Degree-2 bit nodes can be replaced by simple
edges, which leads to a non-bipartite check-node-only graph.
In standard turbo codes, all bit nodes have degree 2.

When analyzing cycles, variables nodes with degree 3 or
higher should also be excluded from GLD graph configura-
tions. We will see in the next section that a GLD ensemble with
degree-2 variable nodes shall give rise to a bipartite check-
node-only graph. This situation does not occur in LDPC-
like and turbo-like codes. Thus, GLD ensembles require the
generalization of known results for non-bipartite graphs to
bipartite graph configurations.

The analysis of GLD lattices on the AWGN channel is not
as simple as analyzing BP decoding of LDPC codes on the
binary erasure channel. Thus, after presenting GLD lattices
in Section II, their spectral thinning is defined under ML
decoding in Section III. In Section IV we generalize Bollabás
theorem [9] to bipartite graphs with irregular left and right
degree distributions. At asymptotic dimension n, for GLD
ensembles with an elementary lattice of minimum Hamming
weight 2, our theorem states that the GLD bipartite graph
has Poisson distributed cycles up to a length that does not
exceed log n. The Poisson parameter is given as a function
of the left and right degree distributions. Section V includes
computer simulation results in dimensions 103, 104, 105, and
106. They reveal a spectral thinning behavior where the error
rate per lattice coordinate is inversely proportional to the lattice
dimension at high signal-to-noise ratio. Spectral thinning in
GLD lattices is observed despite iterative BP decoding.

In this paper, we assume that the reader has enough
familiarity with lattices as algebraic structures and as infinite
constellations for the digital transmission of information over
the AWGN channel. In case of need, the reader should refer
to textbooks [4] and [8].



II. GLD LATTICES AND THEIR GRAPHS

In this section we recall the definition of Generalized
Low-Density (GLD) lattices and their graphical representation.
GLD lattices were proposed for the first time in [5] and are
the transposition to the real Euclidean space R

n of GLD
codes [13], [14] defined over finite fields. Their capability of
achieving Poltyrev limit [15], with asymptotically vanishing
maximum likelihood decoding error probability of an infinite
constellation, was shown in [6]. We give below two definitions
for GLD lattices.

Definition 1: Let Λ1, . . . ,ΛJ ⊆ R
n be J real lattices of

rank n in R
n. A Generalized Low-Density (GLD) lattice is

defined as [5] [6]

Λ =

J
⋂

j=1

Λj . (1)

A GLD lattice coordinate belongs to J component lattices, i.e.
it has degree J in the graph representation. Then, the integer
J is referred to as the degree of variable nodes. In practice,
we usually consider component lattices with a sparse graph
representation. The second definition restricts the GLD family
to a sub-family built from an elementary lattice Λ0 by taking
Λj = πj(Λ

⊕L
0 ) where Λ⊕L

0 is the direct sum of L copies of
the elementary lattice.

Definition 2: Let Λ0 ⊆ R
n0 be a lattice of small dimension

n0, let L be a natural number, and let us call n = n0L.
Given J permutations π1 = id, π2, . . . , πJ of {1, 2, . . . , n},
a Generalized Low-Density (GLD) lattice is defined as [5] [6]

Λ =

J
⋂

j=1

πj

(

Λ⊕L
0

)

⊆ R
n, (2)

where πj(x1, x2, . . . , xn) =
(

xπj(1), xπj(2), . . . , xπj(n)

)

.

In the sequel, we use this second definition for GLD lat-
tices. As mentioned in the previous section, degree-2 variable
nodes are the only variable nodes involved in the analysis of
short cycles. From this point, we study the special case J = 2.
We write π2 = π so we have the following simple expression
for a GLD lattice

Λ = Λ⊕L
0

⋂

π(Λ⊕L
0 ). (3)

In GLD ensembles studied in this paper, we consider Λ0 built
from a non-binary Construction A,

Λ0 = C0[n0, k0]p + pZn0 , (4)

where p is a prime number, C0 is a linear code of length n0

and dimension k0 defined over the finite field Fp. C0 is called
the elementary code. Here, we assumed an injective mapping
from Fp into Z that assigns elements of Fp to elements of the

integer set {− p−1
2 , . . . ,−1, 0,+1, . . . ,+ p−1

2 }. The expression
Λ0 = C0 + pZn0 is an abuse of notation where C0 is the real
image of the code defined over the field Fp. The combination
of (3) and (4) gives

Λ = C⊕L
0

⋂

π(C⊕L
0 ) + pZn = CGLD + pZn, (5)

where CGLD is a linear GLD code [13] [14].

The GLD graph representation uses a standard notation
from coding theory as illustrated in Figure 1. A lattice coordi-
nate, known as a variable node, is represented by a circle. The
local constraint given by the elementary lattice Λ0 is drawn
as a square and is called a check node. An edge connects a
variable node to a check node if xi is the coordinate of a
point that belongs to Λ0. In that case, the point modulo p is a
codeword of C0. Hence, it is equivalent to refer to the check
node by the notation C0.

socket socket
edge

Lattice coordinate Elementary lattice

xi Λ0

xi C0

Figure 1. Notation for GLD graphs. The variable node xi connects to a
check node C0 when it is a coordinate of a point of Λ0.
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Figure 2. Tanner graph representation of a GLD ensemble including variable
nodes of degree J = 2 and check nodes of degree n0. Direct sum length
is L = 2. The elementary code C0 has parameters [n0 = 3, k0]p and
Λ0 = C0 + pZn. The GLD lattice dimension is n = n0L = 6.

An example in dimension n = 6 is shown in Figure 2. It
represents a GLD lattice as defined by (3). Parameters are n0 =
3 and L = 2. Notice how this GLD ensemble is different from
an LDPC ensemble [7]. In our case, the matching between
left sockets and right sockets involves a random permutation
of size n, while an LDPC ensemble with the same degree
distribution has a random permutation of size 2n. Also, in the
GLD ensembles, we have two classes of check nodes because
Λ is the intersection of two direct sums. The first class of
check nodes is connected to all variable nodes via an identity
matching as shown in Figure 2. Now, since all variable nodes
have degree 2, they can be dropped and implicitly included in
the edge connecting a check node from the first class to a check



node in the second class. Consequently, a bipartite check-node-
only graph for GLD ensembles can be constructed. It includes
L check nodes on each side as depicted in Figure 3.
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C0L
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L check nodes L check nodes
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Sockets matching is defined by π

n = n0 × L edges

C0

L
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Λ⊕L
0 Λ⊕L

0

Figure 3. Bipartite graph representation of a GLD ensemble including check
nodes only, valid for J = 2. The GLD ensemble has a total of 2L check
nodes. Lattice coordinates are associated to the edges.

III. SPECTRAL THINNING UNDER ML DECODING

There exist no tools for the theoretical analysis of iterative
BP decoding in the non-binary case, as for non-binary LDPC
codes. It is even more difficult to consider iterative BP decod-
ing of a lattice with integer or real coordinates. The analysis in
this section assumes ML decoding of a lattice on the AWGN
channel. Nevertheless, the predicted 1/n ML spectral thinning
is also observed under BP decoding of GLD lattices as revealed
in Section V. In the following, G(Λ) is the bipartite check-
node-only graph of Λ as described in the previous section.

Definition 3: Let x ∈ Λ be a non-zero lattice point. The
graphical support of x, denoted Supp(x), is the set of edges
of G(Λ) assigned to non-zero variable nodes xi.

The above definition is directly related to CGLD in (5).
Indeed, | Supp(x mod p)| = ω is the Hamming weight of the
corresponding codeword in CGLD. For a fixed GLD lattice Λ,
let ΘΛ(z) be the theta series of Λ as defined in [4] (q = eiπz),

ΘΛ(z) =
∑

x∈Λ

q‖x‖
2

=
∑

d≥0

τ(d)qd
2

, (6)

where τ(d) is the number of lattice points located at Euclidean
distance d from the origin. On the additive white Gaussian
noise channel with noise variance σ2, a union bound on the
point error probability Pe is derived from the theta series [16]:

Pe ≤
∑

x∈Λr{0}

Q

(‖x‖
2σ

)

≤ (ΘΛ(z)− 1) , (7)

where q = e−d2/(2σ2). For infinite GLD lattice constellations,
signal-to-noise ratio is defined by the ratio Vol(Λ)2/N/σ2 =
p2(1−RGLD)/σ2 [5] since average energy per point is infinite.

Upper bound (7) is useful when the theta series of Λ can be
determined. The method for estimating ΘΛ(z) or at least get an
expression of its expected value over the GLD ensemble is not
known yet, especially in high dimensions. In the following, we
suggest to modify the upper bound on Pe in order to decouple
the effect of CGLD from the influence of pZn. Consider a
lattice point x = c + pz, where c = (c1, . . . , cn) ∈ CGLD

and z = (z1, . . . , zn) ∈ Z
n, see (5). Denote by wH(ci) the

Hamming weight of ci. The squared norm of x is lower-
bounded as

‖x‖2 =

n
∑

i=1

(ci + zip)
2

=

n
∑

i=1

[

c2i + z2i p
2 + 2cizip

]

≥
n
∑

i=1

[

wH(ci) + z2i p
2 − p(p− 1)|zi|

]

= ω + p2‖z‖2 − p(p− 1)‖z‖1, (8)

where ω = wH(c) = | Supp(x mod p)|, ‖z‖2 =
∑n

i=1 z
2
i , and

‖z‖1 =
∑n

i=1 |zi|. The number of edges in G(Λ) associated
to non-zero symbols in c is ω. Given (7) and (8), and the well-
known inequality Q(x) ≤ exp(−x2/2) [16], the union bound
on the error probability per lattice coordinate becomes

Pes ≤
∑

x∈Λr{0}

| Supp(x)|
n

Q

(‖x‖
2σ

)

≤
∑

(ω,z) 6=(0,0)

| Supp(x)|
n

e−(ω+p2‖z‖2−p(p−1)‖z‖1)/8σ2

≤ A+B +A0B. (9)

The contribution of the cubic lattice pZn to errors is given by

B =
∑

z∈Znr{0}

exp

(−p2‖z‖2 + p(p− 1)‖z‖1
8σ2

)

. (10)

The contribution of the linear code CGLD to errors is given by

A =

n
∑

ω=ωmin

ω

n
τ(ω) exp

(

− ω

8σ2

)

. (11)

τ(ω) is the number of codewords of weight ω. Notice that we
used | Supp(x)| ≤ w + wH(z) and wH(z) ≤ n. Finally,

A0 =

n
∑

ω=ωmin

τ(ω) exp
(

− ω

8σ2

)

. (12)

Now the actions of CGLD and pZn being decoupled, we
use (9) for a noise variance far enough from Poltyrev limit (in
the error floor region), where σ2 < p2(1−RGLD)/(2πe) [15].
We prove below that the mean error term E[A] decreases as
1/n when the elementary code C0 has minimum Hamming
weight dH min(C0) = 2 and the GLD ensemble has J = 2
edges per variable node. We also show that B = o(E[A]).
For a well chosen p, thanks to the decoupling, we are able to
study cycles in G(Λ) without the interference of the graphical
support of points from pZn. The spectral thinning does not
appear in GLD ensembles if dH min(C0) ≥ 3 or J ≥ 3.



Theorem 1: Consider a GLD ensemble with lattice in-
stances Λ = C⊕L

0

⋂

π(C⊕L
0 ) + pZn = CGLD + pZn. Assume

the elementary code C0 has minimum Hamming weight 2. Let
p = β logn, where β > max{1, 16σ2}. For σ2 small enough,
we have

nE[Pes] = O (1) for n ≫ 1, (13)

i.e. the expected error probability per lattice coordinate de-
creases as 1/n at high signal-to-noise ratio. Expectation is
made over all permutations π of the GLD ensemble.

Proof: Notation is simplified by dropping the floor
function when converting reals into integers, e.g. ω = ⌊logn⌋
is written ω = logn. We start the proof by developing A given
in (11). For some ε small enough, let ωmax = (logn)1−ε be
the maximum cycle length to which applies Theorem 2 of
Section IV. Again, to make the proof more readable, we drop
the ε in the sequel.

The summation is cut into two parts, A = A1+A2, where

A1 =

ωmax
∑

ω=ωmin

ω

n
τ(ω) exp

(

− ω

8σ2

)

. (14)

ωmin = 4 because graphs with length-2 cycles are expurgated
from the ensemble, i.e. cycles in G(Λ) have length greater than
or equal to 4. A1 includes low-weight codewords of CGLD

which are given by short cycles, all of even length. Let Ck be
the set of all cycles in G(Λ) of length k. |Ck| = Xk (same
notation as in Section IV). Denote by S the power set of the
set of cycles Ck, for k = ωmin, . . . , ωmax,

S = 2{C4,C6,...,Clog n}.

Low-weight codewords counted in A1 are given by the fol-
lowing set

C = {c ∈ S : | Supp(c)| ≤ ωmax}.
For example, weight-10 codewords in C are built by union of
many cycles such that the final graphical support in G(Λ) has
10 edges. The number of weight-10 codewords is

τ(10) = X10 +X4X6.

Of course, there are many other partitions of 10 such as
10 = 5 + 5. But partitions with odd integers and those
involving 2 are not counted in C, which is equivalent to X2 = 0
and Xk = 0 for odd weight k. Let P(ω) be the set of all
partitions of the integer ω. For any ω in the range [ωmin, ωmax],
we have

τ(ω) =
∑

{ki}∈P(ω)

∏

i

Xki . (15)

From Theorem 2 in Section IV, we know that the Xk are
independent and Poisson distributed with mean E[Xk] = λk

given by (32). In the simple regular GLD ensemble defined in
the previous section, we have

λk =
(n0 − 1)k

k
. (16)

Hence, we get

E[τ(ω)] =
∑

{ki}∈P(ω)

∏

i

λki ≤ η(ω/2)λω, (17)

where η(ω) is the Hardy-Ramanujan-Rodemacher partition
function [17]. From (14) and (17), the expected value of A1

over all permutations defining the GLD ensemble satisfies

nE[A1] ≤
logn
∑

ω=4

ωη(ω/2)λω exp
(

− ω

8σ2

)

. (18)

Let us show that the right term series in (18) converges. At
large ω, the partition function behaves like [17]

η(ω) ∼ 1

4ω
√
3
exp

(

π

√

2w

3

)

. (19)

The general term of the series decreases like

exp
(√

ω
)

exp

[

−ω

(

1

8σ2
− log(n0 − 1)

)]

.

We conclude that, for σ2 < 1/8 log(n0 − 1), we have

nE[A1] = O(1). (20)

Our second step in this proof is to show that nE[A2] = O(1).

E[A2] =

n
∑

ω=log n

ω

n
E[τ(ω)] exp

(

− ω

8σ2

)

. (21)

The expected number of codewords E[τ(ω)] cannot be deter-
mined via (17) because Theorem 2 is valid up to ωmax =
(log n)1−ε only. We may be tempted to assume a binomial
weight distribution [18] [19] by taking the expected value to
be E[τ(ω)] =

(

n
ω

)

(p − 1)ω/pn−k. Unfortunately, logn is not
sufficient to have the weight distribution well approximated by
a binomial. We will proceed by upper-bounding without any
approximation.

Let g(s) be the moment generating function of the elemen-
tary code C0,

g(s) =
1 + a2e

2s + . . .+ an0
en0s

pk0
. (22)

In a way similar to [13] [14], the average weight distribution
for a non-binary GLD code satisfies [6]:

E[τ(ω)] ≤
(

pk0g(s)
)2L

e−2ωs

(

n
ω

)

(p− 1)ω
. (23)

We obtain

E[A2] ≤
n
∑

ω=logn

ω

n

(

pk0g(s)
)2L

e−2ωs

(

n
ω

)

(p− 1)ω
exp

(

− ω

8σ2

)

. (24)

The right term of the above inequality is analyzed in three
different intervals for ω.
1) The weight ω is in [logn, β1 logn], for some real β1 ≥ 1.
Indeed, for ω/n ≪ 1, we fix s = − 1

2 logn so (pk0g(s))2L

converges to e2a2/n0 . The term in the summation in (24)
behaves like

ω

n
exp

(

ω log

(

ω

p− 1

)

− ω

8σ2

)

.

Then logn ≤ ω ≤ p−1 guarantees that E[A2] vanishes with n.
The alphabet size is taken to be p = β1 log n+1. At ω = logn,

the summation term in (24) is O(1/n1+log β1+1/8σ2

).
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0

Figure 4. Illustrative sketch for a choice of the function s(ω) that guarantees
convergence for high-weight codewords, i.e. nE[A2] = O(1).

2) The weight ω is in [β2n, n], for some real β2 ≤ 1. For
s = 0, at ω = β2 logn, the summation term in (24) behaves
like

exp

(

n

[

2k0
n0

log p− β2 log(p− 1)− β2

8σ2

])

.

The signal-to-noise ratio should satisfy

1

8σ2
>

2k0/n0

β2
log p− log(p− 1)

to make E[A2] vanish. This inequality is valid in the whole
range [β2n, n]. It also requires that 1/σ2 increases as log logn.
When the difference between the two sides of the inequality
is log(n)/n then we get nE[A2] = O(1).
3) In this third case, we have ω ∈ [β1 logn, β2n]. As illustrated
in Figure 4, a linear function from − 1

2 logn to 0 is sufficient
to have nE[A2] = O(1). In fact, by taking β1 = β2 = 1,
all cases are merged into a unique case and no convergence
condition on 1

8σ2 is needed anymore. At this point of the proof,
for high-weight codewords, we have

nE[A2] = O(1). (25)

From (20) and (25), it is found that nE[A] = O(1). Our third
step in this proof is to show that nB = o(1).

In a way similar to how the theta series of Zn is expressed
with the Jacobi theta function θ3(z) of Z (see [4]), we rewrite
the summation in (10) to get

B =

(

∑

z1∈Z

exp

(−p2z21 + p(p− 1)|z1|
8σ2

)

)n

− 1

=

(

1 + 2 exp

( −p

8σ2

)

+ 2 exp

(−2p2 − 2p

8σ2

)

+ . . .

)n

− 1.

Now take p = β logn with β > 16σ2. For this choice of p, B
tends to zero like 2n−β/8σ2+1 so we obtain

nB = o(1).

The method used for A to prove nE[A] = O(1) can also be
applied to the error term A0 to prove that E[A0] = O(1). Fi-
nally, from (9), given that B is not involved in the expectation
over the GLD ensemble, Pes satisfies

nE[Pes] ≤ nE[A] + nB + E[A0]nB = O(1).

IV. DISTRIBUTION OF CYCLES IN RANDOM BIPARTITE

GRAPHS

We prove here Theorem 2, which is an adaptation to
bipartite graphs of some results that Bollobás provided for
random graphs in [9]. Notice that this section is self-consistent
and can be read independently from the rest of the paper.
Theorem 2 is used in the proof of Theorem 1 to derive
nE[A1] = O(1) for spectral thinning. The reader should note
that σ in this section denotes the union of groups in a bipartite
configuration and the integer k here is the length of a cycle in
the bipartite graph. We tried to adopt as much as possible the
notation used in [9].

Lemma 1: Suppose that k = o(logn) and consider a
sequence of constant {ai}ni=1 ⊆ N

∗ such that M = maxi{ai}.
Then,

k!

(

∑

S⊆{1,2,...,n}
|S|=k

∏

i∈S

ai

)

∼
(

n
∑

i=1

ai

)k

,

where the asymptotic relation has to be intended with respect
to n.

Proof: We will find the result by induction on k. The base
case k = 1 is a trivial equality. Then, let us suppose that the
lemma is true for a general k and show it for the case k + 1:
first of all, notice that

(k + 1)!

(

∑

S⊆{1,2,...,n}
|S|=k+1

∏

i∈S

ai

)

≤
(

n
∑

i=1

ai

)k+1

. (26)

Then, using the induction step in (27), we have

(

n
∑

i=1

ai

)k+1

=

(

n
∑

i=1

ai

)(

n
∑

i=1

ai

)k

∼ k!

(

n
∑

i=1

ai

)(

∑

S⊆{1,2,...,n}
|S|=k

∏

i∈S

ai

)

(27)

= k!

(

a1

(

∑

S⊆{1,2,...,n}
|S|=k

∏

i∈S

ai

)

+ . . .+

+ an

(

∑

S⊆{1,2,...,n}
|S|=k

∏

i∈S

ai

))

= k!

(

(k + 1)

(

∑

S⊆{1,2,...,n}
|S|=k+1

∏

i∈S

ai

)

+

+

n
∑

i=1

ai

(

ai
∑

S⊆{1,2,...,n}r{i}
|S|=k−1

∏

j∈S

aj

))

≤ (k + 1)!

(

∑

S⊆{1,2,...,n}
|S|=k+1

∏

i∈S

ai+



+

∑n
i=1 a

2
i

k + 1

(

∑

S⊆{1,2,...,n}
|S|=k−1

∏

j∈S

aj

))

≤ (k + 1)!

(

∑

S⊆{1,2,...,n}
|S|=k+1

∏

i∈S

ai

)(

1 +
nM2

(

n
k−1

)

Mk−1

(k + 1)
(

n
k+1

)

)

∼ (k + 1)!

(

∑

S⊆{1,2,...,n}
|S|=k+1

∏

i∈S

ai

)(

1 +
Mk+1

(k + 1)n

)

. (28)

(26) and (28) are enough to conclude.

Let G = (V, P,E) be an undirected bipartite graph: V is
the set of left vertices, P the set of right vertices and E ⊆
V × P is the set of edges. Moreover, let dVi (resp. dPj ) be
the degree of node i ∈ V (resp. j ∈ P ). Suppose also that
|V | = nV and |P | = nP = αnV for some rational constant
α. Without loss of generality, suppose that ∆V = dV1 ≥ dV2 ≥
. . . dVnV

≥ 2 and ∆P = dP1 ≥ dP2 ≥ . . . dPnP
≥ 2 and let us

call ∆ = max{∆V ,∆P }. The total number of vertices in the
graph is n = nV + nP . All the asymptotic relations provided
below are meant to be for n tending to infinity.

We are interested in studying random bipartite graphs when
the two sequences d

V = {dVi }i and d
P = {dPj }j are fixed

for given nV and nP . More precisely, we would like to
describe the asymptotic distribution of cycles of even length
k in a random bipartite graph with fixed degree sequences
and we focus our attention on k = o(log n). We will derive
this distribution from the study of its analogue in bipartite
configurations:

Definition 4: A bipartite configuration is a triplet F =
(W,Q,D), in which W = ∪nV

i=1Wi and Q = ∪nP

j=1Qj are
unions of groups and D is the set of edges. Every group Wi

(resp. Qj) is a set of dVi (resp. dPj ) vertices. An edge in D is a
couple of two vertices, one in W and one in Q, and all edges
are pairwise disjoint. In other words, the degree of a vertex of
a configuration is always 1, while a group Wi (resp. Qj) has
total degree dVi (resp. dPj ).

From now on, let k ∈ 2N be such that k = o(log n). It
should be clear from the notion of a cycle in a graph what a
k-cycle of a configuration is. Formally:

Definition 5: A k-cycle (or a cycle of length k)
of a bipartite configuration is given by k groups
Wi1 ,Wi2 , . . . ,Wik/2

, Qj1 , Qj2 , . . . , Qjk/2
and k edges

e1, e2, . . . , ek such that for every l = 1, 2, . . . , k/2 the edge
e2l−1 connects the groups Wil and Qjl and the edge e2l
connects the groups Qjl and Wil+1

(with Wik/2+1
= Wi1 ).

Let σ = σW ∪ σQ be the union of two unions of groups
of a bipartite configuration, both of them made of k/2 groups
and such that σW ⊆ W and σQ ⊆ Q. We denote by |σW |
(resp. |σQ|) the number of groups that compose σW (resp.
σQ) and we define w(σW ) =

∏

i:Wi⊆σW
dVi (d

V
i − 1) (resp.

w(σQ) =
∏

j:Qj⊆σQ
dPj (d

P
j − 1)). Then, consider the quantity

Ck(d
V ,dP ) =

1

k
(k/2)!2

∑

σ=σW ∪σQ

|σW |=|σQ|= k
2

(w(σW )w(σQ)) .

Ck(d
V ,dP ) is exactly the number of k-sets of pairs of

vertices that can be a cycle of length k in a bipar-
tite configuration. Moreover, for a given number q ∈
2N, let us define d

V − q/2 (resp. d
P − q/2) to be

the sequence {0, 0, . . . , 0, dVq/2+1, d
V
q/2+2, . . . , d

V
nV

} (resp.

{0, 0, . . . , 0, dPq/2+1, d
P
q/2+2, . . . , d

P
nP

}). We have the following
property:

Lemma 2: For asymptotically large n = nV +nP , for any
fixed q ∈ 2N, for ∆ = O(log n), and for k = o(log n),

Ck(d
V ,dP ) ∼ 2k

k

(

nV
∑

i=1

(

dVi
2

)

)k/2




nP
∑

j=1

(

dPj
2

)





k/2

(29)

and

Ck(d
V ,dP ) ∼ Ck

(

d
V − q

2
,dP − q

2

)

. (30)

Proof: By definition, one has

Ck(d
V ,dP ) =

1

k
(k/2)!2

∑

σ=σW ∪σQ

|σW |=|σQ|=k
2

(w(σW )w(σQ))

=
1

k
(k/2)!2

(

∑

σW⊆W
|σW |=k

2

2k/2
∏

i:Wi⊆σW

(

dVi
2

)

)

·

·
(

∑

σQ⊆Q

|σQ|= k
2

2k/2
∏

j:Qj⊆σQ

(

dPj
2

)

)

∼ 2k

k

(

nV
∑

i=1

(

dVi
2

)

)k/2




nP
∑

j=1

(

dPj
2

)





k/2

,

by Lemma 1; this proves (29). For (30), let A = ∪nV

i=q/2+1Wi

and B = ∪nP

j=q/2+1Qj ; we have:

Ck

(

d
V − q

2
,dP − q

2

)

=

=
1

k
(k/2)!2

∑

σ=σW∪σQ⊆A∪B

|σW |=|σQ|=k
2

(w(σW )w(σQ))

=
1

k
(k/2)!2

(

∑

σW⊆A
|σW |= k

2

w(σW )

)(

∑

σQ⊆B

|σQ|= k
2

w(σQ)

)

= Ck(d
V ,dP )+

− 1

k
(k/2)!2

(

∑

σW⊆W
∃Wi⊆WrA
|σW |= k

2

w(σW )

)(

∑

σQ⊆B

|σQ|= k
2

w(σQ)

)

+

− 1

k
(k/2)!2

(

∑

σW⊆A
|σW |= k

2

w(σW )

)(

∑

σQ⊆Q
∃Qj⊆QrB

|σQ|= k
2

w(σQ)

)

+

− 1

k
(k/2)!2

(

∑

σW⊆W
∃Wi⊆WrA
|σW |= k

2

w(σW )

)(

∑

σQ⊆Q
∃Qj⊆QrB

|σQ|= k
2

w(σQ)

)



= Ck(d
V ,dP ) (1− f(n)) .

for a certain f(n) which is the sum of the three big terms
above, divided by Ck(d

V ,dP ). The proof is concluded be-
cause f(n) = o(1):

f(n) ≤
kq
(nV −q/2

k/2−1

)

∆k
V

(nP−q/2
k/2

)

∆k
P

4
(

nV

k/2

)(

nP

k/2

) +

+

(nV −q/2
k/2

)

∆k
V kq

(nP−q/2
k/2−1

)

∆k
P

4
(

nV

k/2

)(

nP

k/2

) +

+
k2q2

(nV −q/2
k/2−1

)

∆k
V

(nP−q/2
k/2−1

)

∆k
P

8
(

nV

k/2

)(

nP

k/2

)

≤ kq∆4k

4nV
+

kq∆4k

4nP
+

k2q2∆4k

16nV nP
= o(1).

For simplicity, in the process of counting the number of
cycles in a random configuration we would like to have a
nice correspondence between the number of cycles and the
number of involved edges. More precisely, we would like to
be able to say that, if we consider t2 2-cycles, t4 4-cycles, . . .,
tk k-cycles in a configuration, then these cycles correspond
to q =

∑

i=2,4,...,k iti different edges and q different groups.
This is true if we restrict our analysis only to configurations
without r-shackles:

Definition 6: An r-shackle is a set of l+ 1 ≤ r+1 edges
that connect vertices of some l different groups.

Attention: in [9], Bollobás calls shackles some particular cases
of 2-shackles. We do not need to deal with them here and for
us a shackle is simply a general r-shackle for which we do
not need to specify r.

Let us call m the total number of edges of a bipartite
configuration. m =

∑nV

i=1 d
V
i =

∑nP

j=1 d
P
j . Notice that

2min{nV , nP } ≤ m ≤ n∆, (31)

which means that m grows at least linearly fast in n. There are
exactly m! different bipartite configurations for given degree
sequences d

V and d
P . More generally, if we fix q edges

of a configuration, we define Nq as the number of different
configurations that contain those edges. Thus, Nq = (m− q)!.

Lemma 3: Given a set of q edges {e1, e2, . . . , eq} that
do not contain an r-shackle, let N∗(e1, e2, . . . , eq) be the
number of configurations that contain these edges and at
least one r-shackle; moreover, let N∗

q be the maximum of
N∗(e1, e2, . . . , eq) over all the possible choices of q different
edges. Then, if ∆ = O(log n), and for every fixed q and r,

N∗
q = o(Nq).

Proof: We will prove this lemma by induction on r. In
bipartite configurations, since edges always go from right to
left (or vice versa), there cannot exist 1-shackles. For this
reason, we start treating the base case r = 2. A 2-shackle
is formed by two groups (one in W and one in Q) connected
by three (parallel) edges. Then, when we fix q edges without
shackles, there are two possible ways of adding at least a
shackle to the configuration:

1) either the shackle involves (at least) one of the already
fixed q edges: there are at most q(∆V − 1)(∆P − 1)Nq+1

configurations that satisfy this hypothesis;
2) or the shackle involves only other edges than the fixed

ones: there do not exist more than 3!nV nP

(

∆V

3

)(

∆P

3

)

Nq+3

configurations that satisfy this second possibility.
Merging the two cases and recalling (31):

N∗
q

Nq
≤ q∆2

m− q
+

3!n2∆6

(m− q − 2)3
= o(1).

We are ready to treat the induction step for a more general
r. Observe that we can divide r-shackles into two different
categories: the ones which are also l-shackles for some l < r
and the ones which are not. For the first category, the result
is proved by the induction hypothesis; hence, let us focus
on N∗

q (r), the number of configurations with q fixed edges
(without shackles) that contain at least one r-shackle which is
not an l-shackle for every l < r. In the rest of the proof, let
us call the latter a proper r-shackle. We are left to show that
N∗

q (r) = o(Nq).

First of all, consider an r-shackle that involves only one
vertex in one of its groups. If we take out from the shackle that
vertex and the corresponding edge, then we obtain an (r− 1)-
shackle. This proves that a proper shackle involves at least two
vertices in every group that it contains.

Now, as for the case r = 2, two different situations can be
considered:
1) if the proper r-shackle does not involve the q already
fixed edges: we treat this case only for even r (the odd case
basically corresponding to the same computation and being
easily deducible); the number of configurations satisfying this
hypothesis is at most

(

nV

r/2

)(

nP

r/2

)

r2

4
(r/2)!2∆2(r+1)Nq+r+1.

This bound can be explained as follows: the binomial coef-
ficients come from the choice of the r groups forming the
shackle. By definition, all the groups have to be connected; the
fact that the configuration is bipartite and that by hypothesis
there is no group of degree 1 implies that there must exist a
connected path through all the groups (which means fixing
r − 1 edges): this can be done in at most (r/2)!2∆2(r−1)

different ways. Finally, we have to fix the two remaining edges,
that must involve the initial and final group of the fixed path
(because they cannot have degree 1): this can be done in at
most ∆4r2/4 different ways.
2) If the proper r-shackle involves at least one of the q already
fixed edges: an argument similar to the previous one (again,
for even r, but easily generalizable) tells that in this case the
number of possible configurations is bounded by

q

(

nV

(r − 2)/2

)(

nP

(r − 2)/2

)

r2

4
((r − 2)/2)!2∆2rNq+r.

When we put together the two previous cases, we obtain that

N∗
q (r)

Nq
≤ nrr2 (r/2)!2∆2(r+1)

4(m− q − r)r+1
+

qnr−2r2 ((r − 2)/2)!2∆2r

4(m− q − r + 1)r
,

in which both addenda are o(1).



We are finally ready to state and prove the main theorem
of this section:

Theorem 2: Consider a random bipartite graph G =
(V, P,E) with m edges. Suppose that the degree sequences
d
V = {dVi }i and d

P = {dPj }j are fixed for given nV and

nP , with ∆ = O(log n). For every even k = o(logn), the
number of cycles of length k in the random graph follows a
Poisson distribution with parameter

λk ∼ 1

k

(

nV
∑

i=1

(

dVi
2

)

)k/2

·





nP
∑

j=1

(

dPj
2

)





k/2

·
(m

2

)−k

. (32)

Proof: Let G be the set of all bipartite graphs G =
(V, P,E), let Φ be the set of all bipartite configurations
F = (W,Q,D), let Φ0 ⊆ Φ be the set of all bipartite
configurations without r-shackles, and let Ω be the set of
bipartite configurations without parallel edges between two
groups. We turn all of this sets into probability spaces with
uniform distribution.

Consider the map ϕ : Ω → G that assigns to every
configuration F ∈ Ω the graph G that has an edge between
i ∈ V and j ∈ P if and only if there is an edge in the
configuration between Wi and Qj . For a random G, let Xl(G)
be the random variable describing the number of l-cycles in G,
for l ∈ 2N and l ≥ 4. If Xl(F ) is the analog random variable
for a configuration F , the map ϕ shows that Xl(G) and Xl(F )
have the same distribution over G as over Ω. Therefore, our
job is done if we show that over Ω the Xl(F ) asymptotically
follow a Poisson distribution with parameter λk and in (32).

Let E = EΦ0
[t2, t4, . . . , tl] be the expectation over Φ0 of

the number of t-tuples that consist of t2 2-cycles, t4 4-cycles,
. . ., tl l-cycles (for l = o(log n)), with t =

∑

k=2,4,...,l tk.
Because of the absence of r-shackles (we can suppose r to be
big enough), these cycles contain q =

∑

k=2,4,...,l ktk different

edges (and q different groups: q/2 in W and q/2 in Q). Then,
using the notation N∗

q as in Lemma 3 and defining Mq =
Nq −N∗

q , we have

E = EΦ0
[t2, t4, . . . , tl] ≤





∏

k=2,4,...,l

(

Ck(d
V ,dP )

tk

)





Nq

M0

and

E ≥





∏

k=2,4,...,l

(

Ck(d
V − q/2,dP − q/2)

tk

)





Mq

M0
.

Now, Lemma 3 implies that Mq = Nq−N∗
q ∼ Nq = (m−q)!.

Applying this and Lemma 2 to the previous inequalities, we
obtain that

E ∼
∏

k=2,4,...,l

Ck(d
V ,dP )tk

tk!
m−ktk =

∏

k=2,4,...,l

λtk
k

tk!
, (33)

where
λk = Ck(d

V ,dP )m−k.

Again, we use Lemma 2 to derive

λk ∼ 1

k

(

nV
∑

i=1

(

dVi
2

)

)k/2

·





nP
∑

j=1

(

dPj
2

)





k/2

·
(m

2

)−k

.

Note that the right hand side of (33) is the binomial
moment of a joint Poisson distribution with parameters
λ2, λ4, . . . , λl. Theorem C.33 in [7, p. 497] and Theorem 1.23
in [1, p. 26] imply that asymptotically the random variables
X2(F ), X4(F ), . . . , Xl(F ) follow independent Poisson distri-
butions with Xk(F ) having mean λk. Since by Lemma 3
|Φ0| ∼ |Φ|, the Xk(F ) have the same distribution over Φ
and, repeating the argument for t2 = 0, the distribution is the
same over Ω, too. This ends the proof.

V. COMPUTER SIMULATIONS

Consider the non-binary elementary code C0 of length
n0 = 3 and dimension k0 = 2 defined over the field F11

by the parity-check matrix (4 5 10). Its moment generating
function is g(s) = (1 + 30e2s + 90e3s)/121. The finite field
is mapped to the integer set {−5, . . . ,+5} as described in
Section II. The small lattice is

Λ0 = [3, 2]11 + 11Z3.

Finally, a lattice instance from the GLD lattice ensemble
is Λ = Λ⊕L

0

⋂

π(Λ⊕L
0 ), where π is a randomly chosen

permutation of size n = n0L = 3L. For Monte Carlo
simulations, we took n = 103 − 1, 104 − 1, 105 − 1, and
106 − 1. A GLD instance is decoded via message passing (or
belief propagation [7]) on its bipartite graph. At the check
node level, incoming messages are processed by an 11-state
trellis forward-backward algorithm [20] to produce soft output
messages. One decoding iteration corresponds to the decoding
of all 2L check nodes. We allow up to 400 decoding iterations
per lattice point.

As shown in Figure 5, the error probability per lattice coor-
dinate decreases as 1/n in the error floor region. For dimension
106, the error floor can be improved by taking p = 13 instead
of 11. We deliberately considered an elementary code with a
weak minimum Hamming distance in order to attain a waterfall
performance at 0.3 dB only from Poltyrev limit.

VI. CONCLUSIONS

Generalized low-density lattice ensembles with variable
nodes of degree 2 and an elementary code of minimum weight
2 are studied in this paper. Our first theorem states that the
error floor decreases as 1/n. The proof of this theorem is
based on a new decoupling technique. Our second theorem,
an improvement of a well-known theorem proved by Bollobás,
states that the length of short cycles in bipartite random graphs
is Poisson disributed and gives the expression of its mean. Our
result is valid for cycles with length up to log(n)1−ε.
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