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Abstract—The non-ergodic fading channel is a useful model
for various wireless communication channels in both indoor and
outdoor environments. In this model, a codeword is divided
into multiple blocks such that fading is constant within a block
and independent across blocks. Building on Poltyrev’s work on
infinite lattice constellations for the Gaussian channel, we derive
a Poltyrev outage limit for lattices in presence of block fading.
We prove that the diversity order of this Poltyrev outage limit
is equal to the number of degrees of freedom in the channel.
An important application is lattice decoding of low-density
lattice codes. Under block fading, it is well known that both
sphere decoding and iterative decoding of low-density lattices
are dramatically complex. The newly defined Poltyrev outage
limit is used to declare an outage error without decoding, which
drastically improves the decoding runtime.

I. INTRODUCTION

Coded modulations are nowadays an integral part of almost
all communication systems. Channel coding and linear modu-
lation signal sets can be combined together in many different
ways [1]. Lattices in the real Euclidean space are a special case
of coded modulations. Lattices are infinite constellations of
points with a group structure [2]. With lattice points perturbed
by additive white Gaussian noise, Poltyrev showed that there
exists a lattice that can be correctly decoded if and only if the
noise variance is less than a threshold [5]. This threshold will
be called Poltyrev threshold in the sequel and corresponds to
data transmission at infinite rate. Its counterpart for finite-rate
data transmission is Shannon capacity [4].

A finite lattice constellation is a finite subset of a lattice
defined by the intersection of the lattice with a shaping region
centered at the origin. The shaping region itself can be defined
by the Voronoi region of another lattice or a sub-lattice [3].
It was shown that the capacity of a Gaussian channel can be
achieved via a finite lattice constellation [9]. In order to achieve
capacity, a lattice must have two properties: Gaussian goodness
and covering goodness. The Gaussian goodness means that the
lattice can achieve Poltyrev threshold. The covering goodness
is equivalent to a shaping with the best second order moment.
Hence, before attaining Shannon capacity with a finite constel-
lation, an infinite lattice constellation should attain Poltyrev
threshold. This is a main contribution from the infinite-rate
case to the finite-rate case. In this paper, we only focus on
infinite lattice constellations.

Poltyrev’s work does not restrict the dimension of the
infinite constellation that achieves a vanishing error probability.
Infinite constellations with a finite dimension were analyzed
by Ingber et al. in [6] over the Gaussian channel. Authors
in [7] studied the diversity-multiplexing tradeoff of infinite
constellations over multiple-antenna fading channels. In this

paper, we consider transmission using lattices over a single-
antenna block-fading (BF) channel. Using Poltyrev threshold,
we derive a Poltyrev outage limit for lattices over block-fading
channels. We prove that Poltyrev outage limit has diversity L
for a channel with L independent block fadings, i.e. Poltyrev
outage limit has full diversity. One of the most important
applications of Poltyrev outage limit is to detect inadmissible
channel states. Inadmissible fadings are deep fadings that cause
an outage event. We utilize Poltyrev outage limit to render
feasible the decoding of a low-density lattice in presence of
block fading. The rest of the paper is structured as follows.
Background information and notation are given in Section II.
Poltyrev outage limit for lattices over block fading channels
is derived in Section III. Section IV gives the proof for the
diversity order of the Poltyrev outage limit. Simulation results
for sphere decoding of low-density lattice codes are provided
in Section V before the conclusion in Section VI.

II. BACKGROUND AND NOTATION

A. Lattices

Let R be the field of real numbers, Z its ring of integers,
and Q the field of fractions of Z. A lattice Λ ⊂ Rn, also
called a point lattice, is a free Z-module of rank n in Rn.
An element belonging to Λ is called a point or equivalently a
vector. Any point x = (x1, x2, . . . , xn)T ∈ Λ can be written
as an integer linear combination of n points x =

∑n
i=1 zivi,

where {vi} is a Z-basis of Λ, vi,j ∈ R, and zi ∈ Z. The
n × n matrix G built from a basis is a generator matrix for
Λ. In column convention, let G = [vi,j ], then a lattice point is
written as x = Gz, where z ∈ Zn. The fundamental volume
of the lattice Λ is given by | det(G)|. For more information
on lattices, we refer the reader to [2].

Poltyrev threshold can be stated as follows: There exists a
lattice Λ of high enough dimension n for which the transmis-
sion error probability over an additive white Gaussian noise
(AWGN) channel can be reduced to an arbitrary low level if
and only if σ2 < σ2

max [5],[8] where σ2 is the noise variance
per dimension and Poltyrev threshold σ2

max is given by

σ2
max =

| det(G)| 2
n

2πe
. (1)

An integer-check matrix of a lattice is the inverse of a
generator matrix, H = [Hi,j ] = G−1. The n integer-check
equations for a lattice point x are

∑
j Hi,j xj ∈ Z, for

i = 1 . . . n. Low-density lattice codes (LDLCs) are a special
class of lattices proposed by Sommer et al. in [8]. An LDLC is
defined by a sparse integer-check matrix in order to allow for
iterative decoding in high dimensions. Other families of lattices



built from sparse codes have been recently proposed, such
as lattices from Construction A with non-binary low-density
parity-check codes [10], referred to as LDA lattices. More
recently, a powerful family of GLD lattices for the AWGN
channel has been defined by the intersection of repeated and
interleaved lattices [11]. Standard LDLC, LDA, and GLD
lattices exhibit no diversity and should be modified as in (34)
in presence of block fading.

B. Non-Ergodic Fading Channel Model

We assume coherent detection with perfect channel state
information at the receiver side only. The fading channel is
flat, i.e., there are no multiple paths [1]. Fading coefficients are
real non-negative with a Rayleigh distribution. If α denotes a
fading coefficient, then p(α) = 2α exp(−α2) or equivalently
p(α2) = exp(−α2), for 0 ≤ α < +∞. It is worth noting that
results in this paper do not rely on this particular distribution of
fading, they are still valid for most usual fading distributions,
e.g. the Nakagami distribution of order m.

Let x be a lattice point. Consider the non-ergodic fading
where fading coefficients take only L values within a lattice
point, 2 ≤ L < n. The non-ergodic BF channel with diversity
L has the following mathematical model:

yi = αjxi + ηi, j =

⌈
i

n/L

⌉
, i = 1, 2, . . . n, (2)

where αj are independent and identically distributed (i.i.d.)
Rayleigh distributed fading coefficients and ηi ∼ N (0,σ2).

Let γ be the signal-to-noise ratio (SNR) for an infinite
lattice constellation,

γ =
| det(G)| 2

n

σ2
. (3)

Assuming maximum-likelihood (ML) decoding at the receiver
side, let Pe(Λ) be the point error probability. On the BF
channel defined by (2), the diversity order of Pe(Λ) is defined
by its slope at high SNR [1]

lim
γ→∞

− log(Pe(Λ))

log(γ)
. (4)

If f and g have the same diversity order then we denote this
by f(γ)

.
= g(γ), i.e. − log(f)

log(γ) = − log(g)
log(γ) for γ → ∞. Similarly

we introduce the notation with inequalities ≤̇ and ≥̇ .

Definition 1. Consider a BF channel with L independent
fading coefficients per lattice point. Λ is a full-diversity lattice
under ML decoding if Pe(Λ)

.
= 1

γL .

III. POLTYREV OUTAGE LIMIT FOR INFINITE LATTICE
CONSTELLATIONS

In his work on full-diversity low-density lattice codes, the
author of [13] could not get numerical results for dimensions
above 16. The sphere decoding algorithm [14] stuck on some
lattice points enduring moderately deep or very deep fading.
Also, the LDLC team of [7][8] could not get numerical results
for iterative decoding on the BF channel at high dimensions.
Furthermore, the result of a double-diversity infinite lattice
constellation in dimension 8 presented in [13] was compared
to a lattice with no diversity (i.e. diversity order of 1). No

attempt has been made in the literature to derive a limit for
the BF channel equivalent to that of Poltyrev for the Gaussian
channel.

Let α = diag (α1, . ,α1,α2, . ,α2, . . . ,αL, . ,αL) be the
n×n diagonal matrix including the L fading coefficients, each
repeated n/L times as defined by the model in (2). Given the
lattice generator matrix G, after going through the BF channel,
the new lattice added to the AWG noise has the generator
matrix Gnew = αG. The fundamental volume becomes

| det (Gnew) | = | det (G) |×
L∏

l=1

αn/L
l . (5)

For a fixed instantaneous fading α, after combining (1)
and (5), Poltyrev threshold becomes

σ2
max(α) =

∏L
l=1 α

2/L
l | det(G)| 2

n

2πe
. (6)

Decoding of the infinite lattice constellation is possible
with a vanishing error probability if σ2 < σ2

max(α) [5].
Hence, for variable fading, an outage event occurs whenever
σ2 > σ2

max(α). The Poltyrev outage limit Pout(γ) is then
defined by the following probability

Pout(γ) = P

(
σ2 >

∏L
l=1 α

2/L
l | det(G)| 2

n

2πe

)

= P

(
L∏

l=1

α2
l <

(2πe)L

γL

)
. (7)

Pout(γ) does not admit a closed-form expression but it
can be numerically estimated via the Monte Carlo method.
The point error rate after lattice decoding, for a given lattice
over a BF channel, can be compared to Pout(γ) to validate
the diversity order and the gap in signal-to-noise ratio. But
most importantly, the equality

∏L
l=1 α

2
l = (2πe)L

γL defines a
boundary in the fading space below which outage events occur.
This boundary shall be called Poltyrev outage boundary. In the
next section we prove that Pout(γ)

.
= 1

γL .

IV. DIVERSITY ORDER OF POLTYREV OUTAGE LIMIT

It is well known from Maximum Ratio Combining tech-
niques on fading channels [1] that P (

∑L
l=1 α

2
l < 1

γ ) has
diversity L. Is it true for

∏
l α

2
l ? Fortunately, the expression of

Poltyrev outage limit in (7) compares the product of squared
fadings to 1

γL , not to 1
γ . Roughly speaking, Pout(γ) behaves

like [P (α2
1 < 1

γ )]
L leading to diversity L. Let us make the

exact proof.

The proof of Pout(γ)
.
= 1

γL is made by induction; first for
the special case of L = 2 and later for an arbitrary value of L.
The constant term 2πe can be embedded into γ, so we have

Pout(γ)
.
= P

(
γL

L∏

l=1

α2
l < 1

)
. (8)

The equality in diversity is reached after proving a lower bound
and an upper bound for Pout(γ). In other words, Pout(γ)≥̇ 1

γL

and Pout(γ)≤̇ 1
γL is equivalent to Pout(γ)

.
= 1

γL . The reader



should be aware that a lower bound on the error probability
yields an upper bound on diversity, and vice versa.

Lemma 1. Consider a BF channel with diversity L = 2. The
Poltyrev outage limit defined by (7) satisfies Pout(γ)

.
= 1

γ2 .

Proof: We now prove Pout(γ)
.
= P

(
α2
1α

2
2 γ2 < 1

) .
= 1

γ2 .
Recall that a Rayleigh distributed random variable αi satisfies,
for any k > 0,

P

(
α2
i <

1

γk

)
.
=

1

γk
. (9)

1) Lower Bound:

P
(
α2
1α

2
2 γ2 < 1

)
= P

(
α2
1α

2
2 γ2 < 1 | α2

2 < 1
)
P
(
α2
2 < 1

)

+ P
(
α2
1α

2
2 γ2 < 1 | α2

2 > 1
)
P
(
α2
2 > 1

)
.

We lower bound by the first term to get

P
(
α2
1α

2
2 γ2 < 1

)
≥ P

(
α2
1α

2
2 γ2 < 1 | α2

2 < 1
)
P
(
α2
2 < 1

)

≥ P
(
α2
1 γ2 < 1

)
P
(
α2
2 < 1

)

.
= P

(
α2
1 γ2 < 1

)
,

which gives

P
(
α2
1α

2
2 γ2 < 1

)
≥̇ 1

γ2
. (10)

2) Upper Bound: To derive an upper bound on
P
(
α2
1α

2
2 γ2 < 1

)
, we plot the boundary α2

1α
2
2 = 1

γ2

which is a hyperbola as shown in blue in Fig. 1 (to be taken
for L = 2). We partition the total area under the outage
boundary into three regions: a) R is the area where α2

1 < 1
γ

and α2
2 < 1

γ ; b) T1 is the area where α2
1 < 1

γ and α2
2 > 1

γ but
α2
1α

2
2 < 1

γ2 ; and c) T2 is the area where α2
1 > 1

γ and α2
2 < 1

γ

but α2
1α

2
2 < 1

γ2 . The areas T1 and T2 are equal (for L = 2).
So we can write

P
(
α2
1α

2
2 γ2 < 1

)
= P (R) + 2P (T2) . (11)

Then we have

P (R) = P

(
α2
1 ∈

[
0,

1

γ

]
and α2

2 ∈
[
0,

1

γ

])

=

(
P

(
α2
1 ∈

[
0,

1

γ

]))2

=

(
P

(
α2
1 ≤ 1

γ

))2
.
=

1

γ2
.

(12)

We now introduce φ(x) = 1 − e−x which is required in the
sequel. For x ≥ 0, it can be shown that

φ(x) = 1− e−x ≤ min(1, x) . (13)

Now denote X = α2
1 and Y = α2

2. Then

P (T2) =
∫

T2

pX,Y (x, y) =

∫ ∞

x= 1
γ

∫ 1
xγ2

y=0
e−xe−ydx dy, (14)

after integrating over y, we get

P (T2) =
∫ ∞

x= 1
γ

(
1− e

− 1
xγ2

)
e−x dx. (15)

The previous integral has 1
xγ2 ≤ 1

γ ≤ 1 at high SNR. We get

φ

(
1

xγ2

)
≤ min

(
1,

1

xγ2

)
=

1

xγ2
.

With this result, (15) can be upperbounded as

P (T2) ≤
∫ ∞

x= 1
γ

1

xγ2
e−x dx =

∆

γ2
, (16)

where ∆ is defined as

∆ =

∫ ∞

x= 1
γ

e−x

x
dx. (17)

Solving (17) using integration by parts yields

∆ = e−
1
γ ln(γ) +

∫ ∞

1
γ

ln(x)e−xdx. (18)

With e−
1
γ ≤ 1 and ln(x) ≤ x, (18) can be upperbounded as

∆ ≤ ln(γ) +
1

γ
e−

1
γ + e−

1
γ (19)

Substituting the upper bound on ∆ in (16),

P (T2) ≤
ln(γ) + 1

γ e
− 1

γ + e−
1
γ

γ2
⇒ P (T2) ≤̇

1

γ2
(20)

Using (12) and (20) in (11), we have

P
(
α2
1α

2
2 γ2 < 1

)
≤̇ 1

γ2
(21)

which is the desired upper bound.
It can be concluded from the upper bound and lower bound
as given in (10) and (21) that

P
(
α2
1α

2
2 γ2 < 1

) .
=

1

γ2
.

Now the previous lemma is generalized by induction to an
arbitrary value of diversity order L ≥ 2.

Theorem 1. Consider a BF channel with diversity L ≥ 2. The
Poltyrev outage limit defined by (7) satisfies Pout(γ)

.
= 1

γL .

Proof: Let us assume that the theorem statement is true
for L− 1, i.e.

P

(
L−1∏

i=1

α2
i γ(L−1) < 1

)
.
=

1

γ(L−1)
. (22)

Now, let us prove it for a diversity order L. As for Lemma 1,
we derive upper and lower bounds for Pout(γ).

1) Lower Bound: In a way similar to the proof of the
lower bound in Lemma 1, the term with α2

Lγ > 1 is dropped,
so we have

Pout(γ)
.
= P

(
L−1∏

i=1

α2
i γ(L−1) α2

Lγ < 1

)

≥ P

(
L−1∏

i=1

α2
i γ(L−1) < 1

)
P
(
α2
Lγ < 1

)

≥̇ 1

γ(L−1)γ
=

1

γL
,



α2
L

α2
1 · · ·α2

L−1

1
γ

1
γL−1

R

T1

T2

Fig. 1: Boundary in the fading plane defined by a constant
product of squared fadings at a given SNR, α2

1α
2
2 · · ·α2

L = 1
γL .

The area under the Poltyrev outage boundary is partitioned into
three regions R, T1, and T2.

which gives the required lower bound with diversity L. The
upper bound relies on the partitioning of the area under the
outage boundary.

2) Upper Bound: We partition the area under the outage bound-
ary into three regions: a) R is the area where

∏L−1
i=1 α2

i < 1
γL−1

and α2
L < 1

γ ; b) T1 is the area where
∏L−1

i=1 α2
i < 1

γL−1 and
α2
L > 1

γ but
∏L

i=1 α
2
i < 1

γL ; and c) T2 is the area where
∏L−1

i=1 α2
i > 1

γL−1 and α2
L < 1

γ but
∏L

i=1 α
2
i < 1

γL . The areas
T1 and T2 are not equal for L > 2. With this, we get

Pout(γ)
.
= P (R) + P (T1) + P (T2). (23)

P (R) = P

(
α2
L ∈

[
0,

1

γ

]
and α2

1 · · ·α2
L−1 ∈

[
0,

1

γ(L−1)

])

= P

(
α2
L ≤ 1

γ

)
P

(
α2
1 · · ·α2

L−1 ≤ 1

γ(L−1)

)

.
=

1

γL
. (24)

The last equality is derived from (9) and (22). For the
calculation of P (T1) and P (T2), let X =

∏(L−1)
i=1 α2

i and let
Y = α2

L.
Calculation of P (T1):

P (T1) =
∫ ∞

y= 1
γ

e−y dy

∫ 1
yγL

x=0
pX(x) dx (25)

From (22) we get,
∫ 1

yγL

x=0
pX(x) dx = P

(
L−1∏

i=1

α2
i <

1

yγL

)
.
=

1

yγL
.

(25) can be rewritten as

P (T1)
.
=

1

γL

∫ ∞

y= 1
γ

e−y

y
dy. (26)

Since 1
γ → 0, the exponential integral is given by [12],
∫ ∞

y= 1
γ

e−y

y
dy = 0.5772 + ln(γ) + o

(
1

γ

)
.

Then, we have for the area T1

P (T1)
.
=

ln(γ)

γL

.
=

1

γL
. (27)

Calculation of P (T2):

P (T2) =
∫ 1

γ

y=0
e−y dy

∫ 1
yγL

x= 1

γ(L−1)

pX(x) dx.

∀ϵ > 0, let L0 = L− ϵ and y0 = 1
γL0

then P (T2) is given by

P (T2) =
∫ y0

y=0
e−y dy

∫ 1
yγL

x= 1

γ(L−1)

pX(x) dx

+

∫ 1
γ

y0

e−y dy

∫ 1
yγL

x= 1

γ(L−1)

pX(x) dx (28)

The upper limit of the inner integral goes to 0 because

1

yγL
≤ 1

y0γL
=

1

γ(L−L0)
=

1

γϵ
.

In the first term of (28), the inner integral is upperbounded
by 1. In the second term of (28), the inner integral is found
by applying (22) twice. We reach an upper bound for P (T2),

P (T2) ≤ T2 (29)

where

T2
.
=

∫ y0

y=0
e−ydy +

∫ 1
γ

y0

e−y

[
1

yγL
− 1

γL−1

]
dx

≤ y0 +
1

γL

∫ 1
γ

y0

e−y

y
dy ≤̇ 1

γL−ϵ
+

1

γL

∫ 1
γ

y0

e−y

y
dy .

(30)

The evaluation of the exponential integral in (30) gives [12]
∫ 1

γ

y0

e−y

y
dy = (L0 − 1) ln(γ) + o

(
1

γ

)
. (31)

Then, from (29), (30), and (31), ∀ϵ > 0

P (T2) ≤̇
1

γL−ϵ
+

(L − ϵ− 1) ln(γ)

γL

.
=

1

γL−ϵ
(32)

Using (24), (27), and (32), we get the upper bound

Pout(γ) ≤̇
1

γL
. (33)

Similar to the case of L = 2, we conclude from the lower
bound and the upper bound derived above that

Pout(γ)
.
=

1

γL
.



V. SIMULATION RESULTS

To illustrate Poltyrev outage limit and its great advantage
for lattice decoding, we show computer simulations for low-
density lattices in dimension 64. We use the low-density
lattices by Boutros in [13]. Particularly, we use a full-diversity
LDLC (FD-LDLC) proposed in Theorem 1 of [13] that
achieves full diversity under ML decoding for L = 2.

The integer-check matrix H of such LDLC is described as
follows. Let H = [hij ] be the n × n parity-check matrix of
a real lattice Λ of even rank n, where hij ∈ Q, the field of
rationals. Let us decompose H into four n/2×n/2 submatrices
as follows.

H =

[
A B
C D

]
.

Assume that A, B, C, and D have full rank. Let θ1 and θ2
be two algebraic numbers of degree ≥ 2 such that θ2/θ1 /∈ Q.
Then, the two lattices defined respectively by the integer-check
matrices

[
θ1A θ1B
θ2C θ2D

]
and

[
θ1A θ2B
θ2C θ1D

]
(34)

are full-diversity lattices under ML decoding. We utilize the
integer-check matrix with dimension n = 64 constructed
according to the second matrix of (34) for our simulation where
we select θ1 = 1 and θ2 =

√
2.

We do not use any shaping region for the selected
LDLC. The infinite LDLC constellation is decoded using the
sphere decoding algorithm [14]. The outage boundary defining
Pout(γ) is used to detect inadmissible fading coefficients. If the
channel state is under the outage boundary, an error is declared
without running the sphere decoder. This leads to a drastic
reduction in the decoding runtime (figures are not shown in
this paper due to lack of space). As mentioned before, it would
have been impossible to decode the FD-LDLC in dimension
64 without establishing Pout(γ). Computer simulation results
are illustrated in Fig.2. Double diversity is clearly observed
for Pout(γ) and the FD-LDLC infinite constellation.

VI. CONCLUSION

In this paper, we defined a Poltyrev outage limit for lattices
in presence of block fading. We proved that its diversity
order is equal to the number of degrees of freedom in the
BF channel. An important application is lattice decoding of
low-density lattice codes. The outage boundary of the newly
defined Poltyrev outage limit is used to declare an outage error
without decoding, which makes tractable the decoding of low-
density lattices on the BF channel.
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Fig. 2: ML decoding of double-diversity LDLC in dimension
n = 64. The plot also shows Poltyrev outage limit and a
standard LDLC.
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