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Abstract—This work investigates polar coding for block-fading
channels. We show that polarization does occur at infinity for
three types of channel multiplexers. Nevertheless, the polarization
process is not unique, as it is shaped by the choice of the
multiplexer. The fading-plane approach is used to study the
outage behavior of polar coding at a fixed transmission rate.
Two types of multiplexers are shown to provide full diversity at
finite and infinite code length.

I. I NTRODUCTION

The construction of codes on graphs for quasi-static fading
channels [3][4] proceeds from a random ensemble of low-
density parity-check codes [5] and makes it suitable for
fading by introducing a deterministic structure that guarantees
a high or a maximal diversity order for information bits.
In wireless communications [6][7], the standard binary-input
memoryless Gaussian channel (BIAWGN) corresponds to the
special and rare case (a zero-probability event) where all
fading coefficients are equal. For all binary-input memoryless
symmetric (BMS) channels, including the BIAWGN, many
asymptotically optimal channel coding methods do exist, such
as threshold saturation via spatial coupling [8] for convolu-
tional low-density parity-check codes [9], and channel polar-
ization which achieves capacity by converting the channel into
multiple extremal channels [2].

This paper presents an investigation of polar code design
for block-fading channels. Polar coding [2][10], which is
deterministic by construction, does not involve any random
ensemble as an extra degree of freedom for performance
optimization. Furthermore, in the rich recent literature on polar
codes, authors are mainly considering a single BMS channel.
On a block-fading (BF) channel, as described later in this
paper, polarization occurs on multiple parallel channels of the
same type, each having a different mutual information [1]. Our
work aims at answering the following basic questions:

• How does polarization operate on BF channels?
• Which permutation of coded bits (this is referred to

as achannel multiplexerin [11]) will yield the “best”
polarization on the BF channel?

• How does outage probability depend on signal-to-noise
ratio and polar code length? (Here we assume that infor-
mation transmission has a fixed rate, thus making outage
events possible.)
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In this paper, mutual information [1] is the main tool for
analysis. Our paper starts with a description of the main BF
channel features. Next, we introduce diagonal, horizontal, and
uniform permutations (Sections III and IV), and we explain
how polarization works on BF channels. Outage analysis and
mutual information functions are studied in Section V.

II. T HE BIAWGN CHANNEL WITH FADING

We first introduce the channel model and the notations.
Binary modulation and coherent detection are assumed [7].
The channel is defined by its input–output relationshipy =
αx + η, where x denotes the binary channel input,y its
real output,η a realization of additive white Gaussian noise
∼ N (0, σ2 = N0/2), andα the real nonnegative fading gain
subject to the constraintE[α2] = 1. The input symbolx takes
on values±√

REb = ±A, whereEb is the average energy
per bit, andR ∈ [0, 1] is the coding rate. The signal-to-noise
ratio (SNR) is denoted byγ = Eb/N0.

Due to channel symmetry, the study of mutual information
may suppose thatx = +

√
REb, i.e. the all-zero codeword is

sent. For a fixed fadingα, the conditional log-ratio quantity
L ∈ R at the channel output is

L = log(
p(y|α, x = +A)

p(y|α, x = −A)
=

2Aα

σ2
y ∼ N

(

4α2Rγ, 8α2Rγ
)

.

Let p = p(L|α) denote the conditional Gaussian probability
density function associated withL. The corresponding BMS
fading channel, denoted from now on asW (p), has mutual
information

I(p) = 1 − Ep[log2(1 + e−L))] = I(α2γ), (1)

whereEp[ · ] denotes mathematical expectation overp. The
first notationI(p) means thatI is a linear functional from
the L-density space to the real interval[0, 1]. The second
notationI(α2γ) indicates thatI is a real function of the real
instantaneous SNRα2γ.

On an ergodic fading channel, the fading is i.i.d. from one
channel use to another. TheL-density observed by the decoder
is p(L) =

∫ +∞

α=0 p(α)p(L|α)dα. For example, on an ergodic
Rayleigh fading channel wherep(α) = 2αe−α

2

, the output
L-densityp(L) is

1
√

4Rγ(1 +Rγ)
exp

(

L

2

(

1 − sgn(L)

√

Rγ + 1

Rγ

))

(2)



The capacityI(p(L)) of the BMS channel defined by the
densityp(L) given in (2) can be achieved using standard polar
coding techniques. The comparison of the ergodic Rayleigh
channel with the BIWGN would be interesting. Instead, we
are going to consider channels of typeW (p = p(L|α)) where
fading is constant over a period longer than a symbol duration.

For simplicity, we restrict our attention, as we did in [3],
to a BF channel with two distinct fading values. This choice
implies that, within a codeword of lengthN bits,N/2 symbols
are affected by a fading gainα1, and the remainingN/2 by a
fading gainα2. The two random variablesα1 andα2 are i.i.d.
There are

(

N
N/2

)

possible associations of the two gainsα1, α2

with theN symbol positions, each corresponding to a subset
of the permutations ofN symbols. Each such permutation
may be embedded into the code itself, while keeping the
channel unchanged, or embedded into the channel in the form
of a multiplexer, while the code structure is left invariant.
Throughout this paper, we follow the second viewpoint.

The two conditionalL-densities at the output of our BF
channel arep1 = p(L1|α1) for the channelW (p1) with fading
α1, and p2 = p(L2|α2) for the channelW (p2) with fading
α2. p1 and p2 are Gaussian, viz.,L1 ∼ N

(

4α2
1Rγ, 8α

2
1Rγ

)

and L2 ∼ N
(

4α2
2Rγ, 8α

2
2Rγ

)

. We assume no specific
probability distribution for the fading coefficientsαi ∈ R

+,
which may be for example Rayleigh-, or Rice-, or Nakagami-
distributed. The only constraint we impose is the behavior of
the tail of p(α) near the origin, which is assumed to yield
P(α2γ ≤ 1) = O(γ−d0) asγ → ∞. The exponentd0 may be
called the channel intrinsic diversity order. The main goalof
full-diversity coding, as discussed in [3], is to achieve a state
diversity [12] of order two, i.e., an error probability after
decoding which decays asγ−2d0 .

By considering the standard2 × 2 polarization kernel
G2 = [ 1 0

1 1 ], a codeword of lengthN = 2n bits is generated as
X = (X1, X2, . . . , XN) = (U1, U2, . . . , UN)G⊗n

2 , Xi ∈ F2

and Ui ∈ F2. The real transmitted symbol for a bitXi is
x = (1 − 2Xi)

√
Rγ. We hasten to mention thatX does not

include the bit-reversal matrix used in [2]. The order of bits
in codewordX is the natural order after polar coding at the
multiplexer (MUX) input. Also, the encoding circuit shown
in Figures 2 and 3 is the mirrored version of those found
in the literature. The mirrored version is convenient for the
BF channel and it is made possible thanks to the property
(

G⊗n
2

)−1
= G⊗n

2 .
Fig. 1 illustrates the two parallel fading channels withL-

densitiesp1 and p2. The polarization process will directly
depend on the order of symbols as defined by the multiplexer.
Changing the multiplexer may completely reshape the polar-
ization of the BF channel, as shown in the following sections.

Finally, let us recall some notations used to combineL-
densities. Density evolution usually employed for the asymp-
totic study of low-density parity-check codes ensembles [5]
is also one of the methods for polar codes construction [13].
The standard convolution of two densities, associated to the
sumL1 +L2 of two log-ratio messages, is written asp1 ⊛ p2.

Two parallel

fading channels

1

2

MUX

Polar

Code

y = α1x+ η

y = α2x+ η

Xi

M(i) ∈ {1, 2}
W (p1)
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Figure 1. Model of polar coding on a BF channel.

The latter is the usual operation at bitnode level in codes on
graphs. At checknode level, the sum of two bits (inF2) has
the log-ratio messageL = 2 tanh−1(tanh(L1

2 ) tanh(L2

2 )) and
its density is written asp1 �p2, also known as R-convolution.

III. POLARIZATION WITH DIAGONAL MULTIPLEXING

Assume that the polar code has lengthN = 2n bits. As
recalled in the previous section, the bits in the codeword
X = UG⊗n

2 have a natural order. Let us define the set
ℵN = {1, 2, . . . , N} ⊂ N. Now, the diagonal multiplexer
is equivalent to the mappingMd : ℵN → N, given by
Md(i) = 1 for i odd andMd(i) = 2 for i even. Through
the multiplexer, the binary elementXi is transmitted over
the channelW (pMd(i)) with fading coefficientαMd(i), where
L-densitiesp1 and p2 have been introduced in the previous
section. Diagonal multiplexing on the two parallel channels
W (p1) andW (p2) is shown in Fig. 2 forN = 8.
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Figure 2. Illustration of diagonal multiplexing forN = 8 bits. The switch
in the multiplexer does the sequence of positions(12121212).

For a better understanding of the polarization process, the
notion of splitting is recalled and the notion of combining
is introduced. In the definitions below,L-densities are not
necessarily Gaussian. We have generalL-densities consistent
with the conditionp(−x) = p(x)e−x [5].

Definition 1: (Splitting [2]) Let W (p) be a BMS channel.
The polarization kernelG2 splits W (p) into two channels
W+ = W (p⊛ p) andW− = W (p� p).



Definition 2: (Combining) LetW (p1) andW (p2) be two
BMS channels. The polarization kernelG2 convertsW (p1)
andW (p2) into W+ = W (p1 ⊛ p2) andW− = W (p1 � p2).
This notion of combining has been brought out in [14] within
the general framework of polarization acceleration.

FromX = UG⊗n
2 , as described in Fig. 2, the polarization

process starts by combining the two parallel fading channels
W (p1) andW (p2) with mutual informationI(p1) = I(α2

1γ)
andI(p2) = I(α2

2γ) respectively. Similar to splitting [2], there
is no mutual information loss in combining:

I(p1) + I(p2) = I(p1 ⊛ p2) + I(p1 � p2). (3)

Combining leads to MRC and SDC channels described below.
• The Maximum Ratio Combining (MRC) Channel.
The MRC channel isW+ = W (p1 ⊛ p2). The density after
convolution p1 ⊛ p2 ∼ N (4R(α2

1 + α2
2)γ, 8R(α2

1 + α2
2)γ)

is equivalent to a messageL1 + L2 ∝ (α1y1 + α2y2). This
operation is known as Maximum Ratio Combining [6][7].
The mutual information isI(p1 ⊛ p2) = I((α2

1 + α2
2)γ).

• The Selection Diversity Combining (SDC) Channel.
The SDC channel isW− = W (p1 � p2), where
p1 = p(L1|α1) and p2 = p(L2|α2) as in the MRC
case above. ItsL-densityp1 � p2 corresponds to the message
L = 2 tanh−1(tanh(L1

2 ) tanh(L2

2 )). At low error rates, a
good approximation would be|L| = min(|L1|, |L2|), i.e.
the confidence value is imposed by the worst message.
Selecting the channel with the highest fading value is known
as Selection Diversity Combining [6][7]. Here, the opposite
operation is made, yet the name SDC is maintained.

Proposition 1:For any point(α1, α2) in the fading plane
R

+ ×R
+, polarization occurs on a BF channel with diagonal

multiplexing asn→ ∞. The number of perfect channels is a
fraction 1

2I(α
2
1γ) + 1

2I(α
2
2γ) of N .

Proof: Let ℓ = 1 . . . n denote the splitting and combining
steps. Atℓ = 1, the kernelG2 starts combining the two fading
channelsW (p1) andW (p2). This operation is illustrated in
black color on the right in Fig. 2. After combining, two
independent and parallel polarization processes are engaged
for ℓ = 2 . . . n. The SDC channelW (p1 � p2) involves
N/2 bits and polarizes as any BMS [2]— this first process
is shown in blue color on Fig. 2. The number of perfect
channels is a fractionI(p1 � p2) of N/2. Similarly, the
second polarization process, illustrated in red color, involves
N/2 bits under the MRC channelW (p1 ⊛ p2) and yields a
fraction I(p1 ⊛ p2) of perfect channels. Finally, we obtain
1
2I(p1�p2)+

1
2I(p1⊛p2) = 1

2I(α
2
1γ)+

1
2I(α

2
2γ) as a fraction

of N . QED.

IV. H ORIZONTAL AND UNIFORM MULTIPLEXING

The horizontal multiplexer is built from the mappingMh :
ℵN → N, given by Mh(i) = 1 for 1 ≤ i ≤ N/2 and
Mh(i) = 2 for N/2 < i ≤ N . Horizontal multiplexing
on the two parallel channelsW (p1) andW (p2) is shown in
Fig. 3 forN = 8.
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Figure 3. Illustration of horizontal multiplexing forN = 8 bits. The switch
in the multiplexer does the sequence of positions(11112222).

The uniform multiplexer makes a random equiprobable
selection between positions 1 and 2 of the switch. Its mapping
Mu satisfiesP(Mu(i) = 1) = P(Mu(i) = 2) = 1

2 ,
∀i ∈ ℵN .

Proposition 2:For any point(α1, α2) in the fading plane
R

+ × R
+, polarization occurs on a BF channel with both

horizontal and uniform multiplexing asn → ∞. The number
of perfect channels is a fraction12I(α

2
1γ) + 1

2I(α
2
2γ) of N .

Proof: The proof is similar to that for the diagonal multiplexer
but with a big difference in the polarization process. (i) For
horizontal multiplexing, two splitting processes of length n−1
start in parallel on bothW (p1) andW (p2). As for any BMS
channel, this leads to the polarization ofW (p1) andW (p2)
separately, whenn≫ 1. At the final step, a combining process
recombines densities from the two splitting processes such
that mutual information pairs are converted as follows:(0, 0)
and(1, 1) are unchanged,(1, 0) and(0, 1) are both converted
into (0, 1). This leads to the announced result. In Fig. 3, the
polarization ofW (p1) via ann − 1-stage splitting is shown
in blue color, the one forW (p2) is shown in red. The final
combining stage is drawn in black on the left side. (ii) For the
uniform multiplexer, because of the equiprobable selection of
W (p1) andW (p2), the polar code observes a channel with
L-density 1

2p1 + 1
2p2. SinceI(p) is a linear functional, we

find a standard polarization of a BMS channel with mutual
information 1

2I(p1) + 1
2I(p2). QED.

Polarization on BF channels will be analyzed via the fading
plane tool, as described in the next section.

V. FADING PLANE ANALYSIS OF POLARIZATION

In the sequel, we fix the coding rate toR = 1
2 , which is the

largest achievable rate of a full-diversity code for the channel
considered here [3]. For a given point(α1, α2) in the fading
planeR

+ ×R
+, a mutual information outage (MIO) occurs if

1
2I(α

2
1γ) + 1

2I(α
2
2γ) < R = 1

2 .



Definition 3: The MIO regionRo(C, γ) for the BF channel
is Ro(C, γ) =

{

(α1, α2) : I(α2
1γ) + I(α2

2γ) ≤ 1
}

. The MIO
boundary isBo(C, γ) =

{

(α1, α2) : I(α2
1γ) + I(α2

2γ) = 1
}

.
The symbolC stands for capacity. An illustration ofBo is
given in Fig. 4 below.
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Figure 4. Mutual information outage boundaryBo(C, γ) (red curve), for
γ = 7dB. We also showBo(C, gγ) (blue curve) for SNR gap g=1.5dB.

At high SNRγ, the MIO probability has double state diver-
sity orderPo(C, γ) =

∫

Ro(C,γ)
p(α1)p(α2)dα1dα2 ∝ 1

(γd0)2
.

For example, in Rayleigh channels (d0 = 1), Po(C, γ) ≈ 4
γ2

and 73% of this outage is due to ”unbalanced fading” [4].
Unbalanced fading plays a critical role also on general fading
channels. Indeed, the probability of a fading area located near
the tails of Bo(C, γ) varies as 1

(γd0)1
, whereas the fading

area near the origin has probabilityO( 1
(γd0)2

). Thanks to the
symmetry in polar coding (⊛ and � are Abelian operators),
it is sufficient to assume that0 ≤ α2 ≤ α1 <∞.
Let t = α1

α2

∈ [1,∞) be the unbalance factor. Now, we make a
parametric representation of the lower part ofBo(C, γ) under
the ergodic line. Fort = 1 the point is on the intersection
of Bo and the ergodic line. By increasingt, the fading point
moves to the right and downwards.

Proposition 3: Let t = α1

α2

≥ 1. On the outage boundary
Bo(C, γ), we haveI(α2

1γ) = I(χ(t)) andI(α2
2γ) = I(ψ(t)),

both being independent of SNRγ.
Proof: We haveI(α2

1γ) + I(α2
2γ) = 1 when (α1, α2) ∈

Bo(C, γ). Introducing the unbalance factort, we getI(α2
1γ)+

I(
α2

1
γ

t2 ) = 1. The unbalance factor can be solved as

t =

(

α2
1γ

I−1 (1 − I(α2
1γ)

)

1

2

= χ−1(α2
1γ), (4)

which is equivalent toα2
1γ = χ(t). Similarly, I(t2α2

2γ) +
I(α2

2γ) = 1, thent can be solved as

t =

(

I−1
(

1 − I(α2
2γ)
)

α2
2γ

)
1

2

= ψ−1(α2
2γ), (5)

which is equivalent toα2
2γ = ψ(t). QED.

From the proof of proposition 3, at a fixed SNRγ, the
parametric representation ofBo(C, γ) is given by fading points
with squared components(α2

1 = χ(t)
γ , α2

2 = ψ(t)
γ ).

All functions involved in BF channel polarization can be
determined and studied versus the unbalance factort, where
fading is located onBo(C, γ). The mutual information of the
MRC channel isI(p1⊛p2) = I((α2

1+α2
2)γ) = I(χ(t)+ψ(t))

and is plotted versust in Fig. 5. For the SDC channel,
I(p1 � p2) = 1−I(p1 ⊛ p2) is also shown on Fig. 5. Perusal
of these plots shows that MRC and SDC channels are already
close to an extremal channel, mainly in the critical unbalanced
regime for larget. At the first splitting step for MRC and SDC,
we get∆1(I) = I(W+) − I(W−) = 2(I(2χ(t) + 2ψ(t)) −
I(χ(t)+ψ(t))) and∆2(I) = 2(I((p1 �p2)

⊛2)−I(p1 �p2))
respectively. These functions are different but they have very
close numerical values as shown in Fig. 5. In the unbalanced
regime, we also find a good behavior of these∆ functions, i.e.
smaller∆ implies that mutual information converges towards
0 or 1. The uniform multiplexer has a unique∆ function
because it has a single polarization process. For the uniform
multiplexer, we can write

∆(I) = I((α2
1 + α2

2)γ) +
1

2
I(2α2

1γ) +
1

2
I(2α2

2γ) − 1.

The above expression corresponds to the curve in the middle
of Fig. 5, it is seen that it is very close to12 for all t. It
should be clear that the uniformly multiplexed BF channel is
not naturally pre-polarized like the diagonally or the horizon-
tally multiplexed one. For horizontal multiplexing, a behavior
similar to the diagonal is illustrated in Fig. 6.
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∆2(I) encountered in polarization with diagonal multiplexing.

After n steps, i.e., with a polar code of lengthN = 2n, let
Ii be the mutual information of channeli. For a given fading
point at SNRγ, the sequence of mutual information values
sorted in increasing order will be denoted byĨi, i = 1 . . .N .

Definition 4: The MIO region for a length-N polar code is
Ro(A, γ) =

{

(α1, α2) :
∑N

i=N/2+1 Ĩi ≤ 1
2 − 1

N

}

. The MIO

boundary isBo(A, γ) =
{

(α1, α2) :
∑N

i=N/2+1 Ĩi = 1
2 − 1

N

}
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(The symbolA stands for Arıkan). The rate12− 1
N corresponds

to the loss of 1 bit out ofN/2. The MIO probability for a polar
code becomesPo(A, γ) =

∫

Ro(A,γ)
p(α1)p(α2)dα1dα2.

Proposition 4:(Sufficient Condition) For largeN , if there
exists a finiteg ∈ R

+ such that
∑N

i=N/2+1 Ĩi ≥ 1
2 − 1

N for all
(α1, α2) ∈ Bo(C, gγ), thenPo(A, γ) ≤ Po(C, gγ). In other
words, the polar code has full diversity and its coding gain is
at a gap of at most10 log10(g)dB from the BF channel MIO
probability.
Proof: Since the polar code is achieving a rate higher
than 1

2 − 1
N on the outage boundaryBo(C, gγ), then we

can write that Bo(C, gγ) 6⊂ Ro(A, γ), which leads to
Ro(A, γ) ⊂ Ro(C, gγ), then after integration over the fading
distribution we getPo(A, γ) ≤ Po(C, gγ). QED.

In practice, the sufficient condition in Prop. 4 can be easily
verified with the help of the parametric description of the
outage boundary from Prop. 3. Some relevant numerical results
are given in Table I. The gap is infinite for uniform multiplex-
ing at finite N . Diagonal multiplexing slightly outperforms
horizontal multiplexing.

LengthN Diagonal Horizontal Uniform

256 1.65 dB 1.90 dB > 6 dB
4096 1.40 dB 1.60 dB > 6 dB

Full diversity (N < ∞) Yes Yes No
Full diversity (N = ∞) Yes Yes Yes

Table I
GAP BETWEEN MUTUAL INFORMATION OUTAGE PROBABILITIESPo(A)

AND Po(C), AS DEFINED IN PROP. 4, FORMd , Mh , AND Mu .

VI. CONCLUSIONS AND FUTURE WORK

Answering the three questions raised in the introduction, we
were able to describe how block-fading channel polarization
operates in conjunction with diagonal, horizontal, and uniform
multiplexers (the question whether a less trivial multiplexer
may exhibit a better performance at finite code lengths is
left to future work). Diagonal and horizontal multiplexersare
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Figure 7. Uniform multiplexer. Mutual information sum for the bestN/2
channels,2/N ×

PN
i=N/2+1

Ĩi, versus the unbalance factort.

found to have full diversity at finite code lengths. The failure
of the uniform multiplexer to achieve full diversity cannot
be deduced from Prop. 4, which involves only a sufficient
condition, but can be observed from Fig. 7, where the achieved
rate is plotted versus the unbalance factort. Finally, all
multiplexers do polarize for any fading-gain pair at infinite
length, i.e., the channel outage probability for rate-1/2 can be
achieved with a zero signal-to-noise ratio gap.
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