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Abstract—We compare the performance of short-length linear
binary codes on the binary erasure channel and the binary-
input Gaussian channel. We use a universal decoder that can
decode any linear binary block code: Gaussian-elimination based
Maximum-Likelihood decoder on the erasure channel and prob-
abilistic Ordered Statistics Decoder on the Gaussian channel. As
such we compare codes and not decoders. The word error rate
versus the channel parameter is found for LDPC, Reed-Muller,
Polar, and BCH codes at length 256 bits. BCH codes outperform
other codes in absence of cyclic redundancy check. Under joint
decoding, the concatenation of a cyclic redundancy check makes
all codes perform very close to optimal lower bounds.

I. INTRODUCTION

One of the main goals of Information Theory founded by
C.E. Shannon in 1948 is to make digital communications
over a noisy channel. Applications are found in nowadays
technology in fourth and fifth generations of mobile networks,
in digital video broadcast, in optical communications at the
Internet backbone, etc. Information Theory [1] predicts the
existence of good error-correcting codes that are capable of
achieving channel capacity. These optimal codes can transmit
at the highest possible information rate given the noise level
in the channel. In the past half century, mathematicians and
engineers built many families of error-correcting codes [2],
[3], to make true (or almost true) the performance predicted
by Information Theory. The latter is a theory for asymptoti-
cally long codes. At asymptotic length, the code analysis is
easier [4] (think about the law of large numbers). Also, in
some specific applications such as fiber optic communications
and data storage, huge packets of data are used allowing
the application of capacity achieving codes. In recent fifth
generation systems which are currently under construction,
engineers are interested in short length packets. In parallel, at
the theoretical side, researchers are studying the finite length
regime of codes (e.g. [6]). Our paper is dedicated to error-
correcting codes of short length, typically 256 bits. Phenomena
observed at asymptotic length (100 thousand bits and above)
like channel polarization [7] and threshold saturation [8] do
not have a practical effect at these short lengths.

In this work, we compare the performance of short-length
linear binary codes under equal-complexity identical decoding
conditions based on a universal decoder. Complexity is not

the main issue of this paper. We aim at comparing codes with
respect to their performance by means of the best possible
decoder which yields Maximum Likelihood (ML) or near
Maximum Likelihood error rates. Two channels are considered
for this performance comparison: the binary erasure channel
(BEC) and the binary input additive white Gaussian noise (BI-
AWGN) channel. The former channel corrupts the transmitted
codeword by erasing some of its bits, the latter adds white
Gaussian noise to the observed values corresponding to the
codeword bits. To recover the original information transmitted
over the channel, the receiver has to decode the corrupted
observation. Over the years, many decoding strategies have
been developed, often specific to one family of error-correcting
codes [3], [4], [9]. For our comparison, we use a univer-
sal decoder that can decode any linear binary block code:
Gaussian-elimination based ML decoder on the BEC and prob-
abilistic Ordered Statistics Decoder (OSD) on the BI-AWGN
channel. Moreover, the decoders under consideration are also
optimal/near-optimal whereas many decoding strategies are
sub-optimal, favoring decoding speed over performance. As a
result we compare codes and not decoders.

The paper is structured as follows. Notation and ML decoding
on the erasure channel are described in the next section. Sec-
tion III briefly explains OSD decoding and its improvements.
The list of linear binary block codes considered in this paper is
found in Section IV. Section V includes performance results in
terms of word error rate. Our conclusions on the performance
of short-length codes are drawn in the final section.

II. NOTATION AND ML DECODING ON THE BEC

The first scenario we consider is that of ML decoding on the
BEC channel. At the transmitter, a length-k binary information
message b = (b1, ..., bk), consisting of independent and iden-
tically distributed (i.i.d.) bits with P (bi = 0) = P (bi = 1) =
1/2, is encoded into a binary coded message c = (c1, ..., cn)
of length n using a linear binary block code C. The code C
is completely specified by its k × n generator matrix G [2].
In systematic form we have G = [Ik|P ], where Ik is the
k× k identity and P is a parity matrix defining the code. The
encoding operation can be written as c = bG = [b | p] with p
the parity bits corresponding to b. This codeword is transmitted
over the BEC channel with erasure probability ε such that
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at the receiver we get the sequence y with P (yi =?) = ε
and P (yi = ci) = 1 − ε, for i = 1 . . . n, i.e. the symbol
transmitted over the channel is erased with probability ε. At
the receiver, ML decision is performed to construct an estimate
b̂ = arg maxP (y|b) of the originally transmitted b, based on
the observation y.

Maximum Likelihood decoding of a linear binary code on
the erasure channel is equivalent to filling bits, as much as
possible, among those erased by the channel. The verb fill is
equivalent to solve in this context. Let H be the (n− k)× n
parity-check matrix of C. The parity-check constraint Hct =
0 is true for every codeword c in C [2]. The linear system
Hct = 0 is used to fill erasures via Gaussian elimination. Let
w be the erasure weight, i.e. w is the number of erased bits
in the transmitted codeword c. Assume that C has parameters
(n, k, dH), where dH is its minimum Hamming distance. For
w ≤ dH − 1, all w erasures in any w positions can be filled
by an algebraic decoder or a ML decoder [3]. For non-trivial
binary codes, for dH ≤ w ≤ n−k, n−k being the rank of H ,
algebraic decoding fails because it is bounded by dH whereas
ML decoding based on solving Hct = 0 may fill a fraction
of the erased bits or all of them.

ML decoding via Gaussian elimination has an affordable
complexity, at least in software applications, for a code length
n as high as a thousand bits. The cost of solving Hct = 0 is
O(n× (n−k)2). Results shown in Section V are obtained for
a short length n = 256.

III. OSD DECODING ON THE BI-AWGN

The transmitter for the BI-AWGN channel is the same as
for the BEC channel, notation is inherited from the previ-
ous section. Before transmission on the BI-AWGN channel,
the coded message is mapped to a BPSK symbol sequence
s ∈ {−1,+1}n using the rule si = 2ci − 1. This symbol
sequence is transmitted over the AWGN channel characterized
by its single sided noise spectral density N0. At the output of
the channel, we receive r = s+w wherew = (w1, ..., wn) is a
set of i.i.d. real Gaussian random variables with zero mean and
variance σ2 = N0/2. Note that the symbols si are normalized
to unit energy such that the energy transmitted per information
bit equals Eb = n

k .

At the receiver soft-decision decoding is performed to con-
struct an estimate b̂ of the originally transmitted information
message b. For this estimate, the decoder makes use of
two vectors corresponding to the sign and magnitude of the
received signal r:
The hard-decision y = [bHD|pHD] where

yi =

{
0 for ri < 0

1 for ri ≥ 0

and the confidence values

αi = |ri| , i = 1 . . . n.

To understand that αi is indeed a measure for the confidence
of the received ri, it suffices to see that the log-likelihood ratio
is Λi = log P (ci=0|ri)

P (ci=1|ri) = 2ri
σ2 for the considered system.

A hard-decision decoder only uses the vector y to produce its
estimate b̂. The omission of the information contained in the
magnitude of r explains why hard-decision decoders perform
worse than soft-decision decoders (page 15 in [9]).

A. Soft-decision decoding using the OSD algorithm

Soft-decision decoding by the receiver is performed using
the OSD algorithm, an efficient most reliable basis (MRB)
decoding algorithm firstly proposed by Dorsch [10], further
developed by Fang and Battail [11], and later analyzed and
revived by Fossorier and Lin [12]. In the first step of the algo-
rithm, the received vector r is sorted in order of descending
confidence and the corresponding permutation π1 is applied
to the generator matrix G, yielding G′. Gaussian elimination
is now performed on G′ to construct the systematic G̃, note
that an additional permutation π2 may be necessary. We write
ỹ = π2 (π1 (y)) =

[
b̃HD | p̃HD

]
and α̃ = π2 (π1 (α)),

note that b̃HD corresponds to the most-reliable independent
positions of the received vector r.

During the OSD algorithm, test-error patterns (TEPs) ei of
increasing weight are generated. They are added to the hard-
decision information bits b̃HD on the MRB and the correspond-
ing codeword c̃i is obtained by re-encoding via the systematic
generator matrix G̃. The trivial TEP e0 = 0 results in the
order-0 OSD codeword c̃0 = (b̃HD + e0) · G̃ = b̃HD · G̃. The
TEP ej results in codeword c̃j = c̃0 + ej · G̃. Undoing the
permutations yields the estimate ĉj = π−11

(
π−12 (c̃j)

)
of the

original codeword c.

After every re-encoding operation, the Euclidean distance
between the OSD codeword ĉj and the received vector r is
calculated. If this distance is lower than that of the current
best OSD codeword, we select ĉj as the new best codeword
estimate. Note that for BPSK modulation, minimizing the
Euclidean distance is equivalent to minimizing the weighted
Hamming distance

WHDj =
∑

1≤i≤n
ĉj,i 6=yi

αi.

The OSD algorithm is terminated after a predetermined num-
ber of re-encodings. For example, in OSD order 2, the follow-
ing patterns are generated:

weight 0 weight 1 weight 2
000...000 000...001 000...011

000...010 000...101

000...100 000...110

...
...

100...000 110...000

It follows that in OSD order 1, 1 + k patterns are generated,
in OSD order 2 we generate 1 + k + 1

2k(k − 1) patterns,
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etc. Hence the complexity of the algorithm is O(kOSD order).
In [12] it was shown that order-l reprocessing is asymptotically
optimal (close to ML) for

l ≥ min {ddH/4− 1e , k} ,

such that the complexity is determined by both k and dH .
Choosing the OSD order lower than the optimal allows a
performance-complexity trade-off. In this paper, in Section V,
we compare codes at the best possible OSD decoding perfor-
mance.

B. Improvements

In the literature, several improvements to the original OSD
algorithm have been presented that aim to reduce the com-
plexity of the optimal decoder and offer a finer performance-
complexity trade-off [13]–[19]. In our implementation of
the algorithm we used the probabilistic necessary condition
from [17], the probabilistic sufficient condition [15], the
reference re-encoding scheme [17], the preprocessing rules
from [16], and the multiple biases diversity scheme from [18].

After having implemented these improvements, we can no
longer use the rule l ≥ min {ddH/4− 1e , k} to determine
the optimal OSD order. Furthermore, the parameters of the
improvements also have to be set. To determine if the decoder
performs (near-)optimally, we make use of an ML lower bound
calculated during computer simulation. Whenever the decoder
outputs an erroneous estimate of the originally transmitted
information word, the Euclidean distance between the original
codeword c and the received vector s is evaluated. If this
distance is larger than the distance between the decoder output
ĉ and s, then the ML decoder would also have made an
erroneous decision.

Figure 1 shows the simulated performance of the (256,115)
extended BCH code for two different choices of OSD param-
eters. The ML lower bound derived from the simulation with
near-optimal parameters is also shown. We conclude that the
second set of parameters leads to near-optimal results for this
particular code at these signal-to-noise (SNR) values. The sub-
optimal parameters, not considered in Section V, are however
suitable for some practical applications because they lead to
a decoding with a noticeably lower complexity at the expense
of only a small loss of performance.

IV. LIST OF CODES SUITED TO SHORT-LENGTH
ERROR-CORRECTION

We apologize for not considering convolutional codes and
turbo codes (parallel concatenated conv. codes) [20], [21].
Results on turbo codes will be included in a future work.

Given the recent research activity in the Coding community
[22], [24]–[27], we had to consider Polar codes and Reed-
Muller codes. Also, BCH codes are known to be good codes at
short length [2], [3]. Finally, LDPC codes from modern coding
theory [4] are included. The list of binary codes regarded for
performance comparison in the next section is:

10-4

10-3

10-2

10-1

 0.5  1  1.5  2
Eb/N0 (dB)

sub-optimal OSD parameters
near-optimal OSD parameters
ML lower bound

Figure 1. Word error rate versus signal-to-noise ratio for a (256,115) binary
BCH code. ML lower bound and word error rates for two sets of OSD
parameters are shown.

• Reed-Muller codes: The code length is n = 2`. Take
Arikan’s kernel G2 [22] and build its Kronecker product
` times, i.e. build G⊗`2 . Then, select the k rows of largest
Hamming weight to get the k × n generator matrix.

• Polar codes: As for Reed-Muller codes, k rows are
selected from G⊗`2 . These rows correspond to highest mu-
tual information channels after ` splittings. The generator
matrix of the Polar code is found by exact splitting and
adapted to each value of the channel parameter. For the
BI-AWGN channel, we used density evolution [4] to split
the channel and construct the code [23].

• BCH codes: Standard binary primitive (n, k, t) BCH
codes are built from their generator polynomial [2], [3].
An extension by one parity bit is made to get an even
length.

• LDPC codes: Regular (3,6) low-density parity-check
codes are built from a random bipartite Tanner graph [4].
Length-2 cycles are avoided, the number of length-4
cycles is reduced, but no other constraint was applied
to the graph construction.

The use of a cyclic redundancy check (CRC) code to improve
list decoding of polar codes was introduced by I. Tal and
A. Vardy [24]. Here, given the universal nature of Gaussian
elimination for ML decoding on the BEC and the universal
nature of OSD decoding on the BI-AWGN channel, the CRC
code was jointly decoded with all of the codes listed above
to investigate its influence on the performance. By jointly we
mean that a unique generator matrix is used for decoding.
This joint matrix is simply the product of the CRC matrix
with the generator matrix of the original code C. Let G be
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the k×n generator matrix of C. Let GCRC be the (k−m)×k
generator matrix of the CRC code, where m is the degree of
the CRC polynomial. Then, joint OSD decoding is based on
the following generator matrix:

GCRC ×G.

The serial concatenation has the CRC as outer code and the
original error-correcting code C as inner code. It is clear that
the CRC will scramble the original matrix G making any
code C look like a random code. We considered m = 16
redundancy bits and the CRC-CCITT code with generator
polynomial

g(x) = x16 + x12 + x5 + 1.

V. PERFORMANCE RESULTS

We ran computer simulations to obtain the performance of
binary codes listed in the previous section. Randomly gen-
erated data is transmitted using the systems described in
sections II and III. At every considered value of ε for the
BEC and Eb/N0 for the BI-AWGN channel, codewords were
generated, transmitted, and decoded until 100 word errors
occurred. During the computer simulation on the BI-AWGN
channel, the ML lower bound was also recorded but we omit
it from the figures to keep the graphs as clear as possible.
The OSD parameters were chosen such that the performance
is near-ML and the ML lower bound (almost) coincides with
the actual simulated performance of the code.

Lower bounds on the optimal performance of finite-length
codes exist for both the BEC and BI-AWGN channel. On
the figures we include for the BEC the Polyanskiy-Poor-
Verdú (PPV) bound on the maximal achievable rate, from
Theorem 53 in [6],

Pew ≈ Q

(
1− ε−R√
ε(1− ε)

√
n

)
,

where Pew is the word error probability at coding rate R,
length n, and BEC parameter ε. Q(.) is the Gaussian-tail
function. Computer simulations below take n = 256 and
R = 1/2 or close to 1/2. On the BI-AWGN channel, we
include the word error probability of optimal spherical codes,
by C.E. Shannon [5],

Pew ≈
1√
nπ

1√
1 +G2 sin θ0

×

[
G sin θ0 exp

(
− REb

N0
+ 1

2

√
2REb

N0
G cos θ0

)]n
√

2REb

N0
G sin2 θ0 − cos θ0

,

where G = 1
2

[√
2REb

N0
cos θ0+

√
2REb

N0
cos2 θ0 + 4

]
. The cone

half-angle θ0 is computed by solving

2nR ≈
√

2πn sin θ0 cos θ0
sinn θ0

.

The two above approximations from [5] are extremely
accurate for lengths n ≥ 100.

Figure 2 shows the word error rate versus the channel erasure
probability for LDPC, Polar, RM, and BCH codes, all under
ML decoding on the BEC. The performance of the LDPC
code under iterative belief-propagation (BP) decoding is also
included. No CRC is used for this performance comparison.
The binary (256,131) BCH code is outperforming all other
codes. Notice that the regular-(3,6) binary LDPC code has an
excellent behavior.

Figure 3 shows the same codes on the BEC concatenated with
the 16-bit CRC code given in Section IV. The horizontal scale
in Figure 3 is from 0.44 to 0.5 only! All codes exhibit a
performance within a small range of error rate. As mentioned
in Section IV, the CRC scrambles the original generator matrix
and the universal decoder (Gaussian elimination or OSD) does
a joint decoding of both codes.

It is worth mentioning that the BCH code has dimension
k = 115, hence its coding rate is higher than other codes
and its PPV bound moves up with respect to the PPV bound
at rate 1/2. This explains why the BCH code appears to be
weaker, in fact it is closer to its PPV bound than the other
codes.

The word error rate on the binary-input Gaussian channel is
plotted on Figures 4 and 5, without and with CRC respec-
tively. Figure 4 also includes the LDPC code under iterative
belief-propagation (BP) decoding. With or without CRC, the
(256,128) BCH code has the best performance versus the
signal-to-noise ratio. As on the BEC, the CRC makes all codes
behave almost like random codes, so the SNR gap between the
worst and the best codes is very small.

VI. CONCLUSIONS

We have compared the performance of four different short-
length linear binary codes on the binary erasure channel (BEC)
and the binary-input Gaussian (BI-AWGN) channel. The word
error rate versus the channel parameter was plotted for LDPC,
Reed-Muller, Polar, and BCH codes. In both channel scenarios,
a universal, optimal/near-optimal decoder was used: the ML
decoder for the BEC (via Gaussian elimination) and the
OSD soft-decision decoder for the AWGN channel. From the
computer simulation results, we conclude that the BCH code
outperforms Reed-Muller, Polar, and LDPC codes on both
channels. This behavior changes when we concatenate codes
with a 16-bit CRC and perform joint decoding. As a result,
the performance curves of the different codes lie much closer
together and the choice of a good error-correcting code is not
so critical.
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10-4

10-3

10-2

10-1

100

 0.25  0.3  0.35  0.4  0.45  0.5

epsilon

Regular LDPC (256,128) - BP
Polar code (256,128) - ML
RM code (256,128) - ML
Regular LDPC (256,128) - ML
BCH code (256,131) - ML
PPV bound R = 128/256

Figure 2. Word error rate versus channel erasure probability. Performance comparison of codes at length 256 and rate 1/2. No CRC. The RM code is weak
at length n = 256, however it behaves very close to LDPC and BCH at n = 128.

10-4

10-3

10-2

10-1

 0.44  0.45  0.46  0.47  0.48  0.49  0.5

epsilon

Polar code + CRC (256,112) - ML
RM code + CRC (256,112) - ML
Regular LDPC + CRC (256,112) - ML
BCH code + CRC (256,115) - ML
PPV bound R = 112/256

Figure 3. Word error rate versus channel erasure probability. Performance comparison of codes with length 256 and rate 1/2. A 16-bit CRC is concatenated
with all codes. The horizontal scale is stretched to let us distinguish the small difference between codes.
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10-2

10-1

100

 0.5  1  1.5  2  2.5  3  3.5
Eb/N0 (dB)

Regular LDPC (256,128) - BP
Polar code (256,128) - OSD

RM code (256,128) - OSD
Regular LDPC (256,128) - OSD

BCH code (256,131) - OSD
Optimal spherical code

Figure 4. Word error rate versus signal-to-noise ratio. Performance comparison of codes with length 256 and rate 1/2. No CRC.
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10-4

10-3

10-2

10-1

 0.5  1  1.5  2  2.5
Eb/N0 (dB)

Polar code + CRC (256,112) - OSD
RM code + CRC (256,112) - OSD

Regular LDPC + CRC (256,112) - OSD
BCH code + CRC (256,115) - OSD

Optimal spherical code

Figure 5. Word error rate versus signal-to-noise ratio. Performance comparison of codes with length 256 and rate 1/2. A 16-bit CRC is concatenated with
all codes. Codes with CRC cannot improve further due to the optimal spherical code bound (gap of 0.1-0.3 dB).
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