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Abstract—Random low-density parity-check (LDPC) ensem-
bles do not achieve full diversity on block-fading channels. To
cope with quasi-static fading, a special LDPC structure, known
as root-LDPC, has been introduced. A root-LDPC ensemble
guarantees that any information bit receives messages from all
channel states. Results in the literature show that the gap between
the root-LDPC boundary and the capacity boundary in the
fading plane is not small enough. In this paper, we propose to
saturate the whole root-LDPC boundary via spatial coupling. For
simplicity, we adopt an equivalent erasure channel model rather
than a block fading model. It is shown that spatial coupling of
parity bits only is sufficient to saturate the root-LDPC threshold
boundary in the erasure plane.

I. INTRODUCTION

The theory of error-correcting codes was limited to chan-
nels with errors and erasures that are independently located
inside a codeword [1], i.e. ergodic channels. Similarly, all
channels considered in modern coding theory are also ergodic
in nature [2][3][4]. The non-ergodic fading channel encoun-
tered in wireless communications requires a special coding ap-
proach [5][6]. Root-LDPC codes are low-density parity-check
codes specifically designed to tackle with non-ergodic (quasi-
static) fading [7][8]. The key idea is to bring more structure
to a random LDPC ensemble in order to let information bit
nodes receive belief-propagation (BP) messages including all
available fading states. Hence, a root-LDPC ensemble attains
a diversity order which is equal to the number of degrees of
freedom in the block-fading channel.

Recently, spatial coupling was shown to saturate the BP
threshold of LDPC ensembles on binary-input memoryless
channels [9][10]. The technique of forward layered coupling,
described in [11], shows a simple coupling method where local
edges and coupling edges are treated separately. In this paper,
we propose to apply forward layered coupling to root-LDPC
codes and study the effect of spatial coupling on their outage
boundary in the fading plane. For the sake of simplicity, the
fading plane approach is replaced by its equivalent counterpart,
the erasure plane approach. The interest in applying spatial
coupling to root-LDPC codes is motivated by the use of anti-
root LDPC ensembles for secure communications on multiple-
link channels [12][13].

The paper is organised as follows. Section II presents a
very brief summary of the root-LDPC code structure. The
reader is assumed to have a minimal background on coding
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for fading channels, mainly the notion of diversity [5][6]. The
density evolution (DE) analysis of uncoupled root-LDPC is
presented in Section III. To improve the threshold boundary
of root-LDPC, we propose a new spatial coupling structure
based on parity bits doping in Section IV. Section V presents
the threshold saturation result achieved by coupled root-LDPC
ensembles. The conclusions are finally drawn in Section VI.

II. ROOT-LDPC CODES

Root-LDPC ensembles are multi-edge-type LDPC ensem-
bles with specific properties [7]. For simplicity, let us con-
sider a rate-1/2 LDPC code of length N , where N bits are
transmitted on a block-fading channel with nc = 2 fading
coefficients per codeword. We define four classes of bits and
two classes of checks. N/4 information bits 1i and N/4 parity
bits 1p are transmitted on fading coefficient α1, whereas N/4
information bits 2i and N/4 parity bits 2p are transmitted on
fading coefficient α2. The design of root-LDPC codes is based
on a special type of checknode called rootcheck. A rootcheck
of type 1 for a bit transmitted on fading α1 is a check where all
other connected bits are transmitted on α2. The rootchecks of
type 2 are defined similarly. In order to guarantee full diversity
for information bits, information and parity bits are connected
to checks 1c and 2c as shown by the compact Tanner graph
of the rate-1/2 root-LDPC ensemble in Figure 1.
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Figure 1. Compact Tanner graph representation for a rate-1/2 root-LDPC
ensemble. If the bits transmitted on one fading are erased, the erased
information bits are recovered.

The rate-1/2 root-LDPC code described by the compact
Tanner graph in Figure 1 is full-diversity under iterative
message passing when transmitted on a 2-state block-erasure
channel. This root-LDPC code is also full-diversity under
iterative BP decoding when transmitted on a 2-state block-
fading channel [7]. This code is also MDS according to the
block-fading Singleton bound and has the highest coding rate
that attains a double diversity (see Sec. V in [8]).
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Figure 2. Parallel binary erasure channels where half of the bits are
transmitted through BEC(µ1) and the the other half of the bits are transmitted
through BEC(µ2).

III. DENSITY EVOLUTION OF ROOT-LDPC ENSEMBLES

This section summarises the DE equations of the infor-
mation and parity messages on two parallel BECs for the
uncoupled root-LDPC ensembles [7]. Consider the channel
model in Figure 2, where N bits are transmitted on two
parallel BECs with the erasure probabilities µ1 and µ2. N/2
bits are transmitted on BEC(µ1) and N/2 bits are transmitted
on BEC(µ2).

Define the degree distribution polynomials as

λ(x) =
db∑

i=2

λix
i−1 ρ(x) =

dc∑

j=2

ρjx
j−1 (1)

The definitions of the degree polynomials λ̊(x), ρ̊(x), λ̃(x),
and ρ̃(x) are as in [7]. Let us define the six message densities
for a root-LDPC ensemble as follows:

• f1 is the density of message 1i → 2c.

• q1 is the density of message 1i → 1c.

• f2 is the density of message 2i → 1c.

• q2 is the density of message 2i → 2c.

• g1 is the density of message 1p → 2c.

• g2 is the density of message 2p → 1c.

DE equations for the six message densities qm1 , fm
1 , gm1 ,

qm2 , fm
2 , and gm2 can be found by drawing the local neigh-

borhood of each type of bitnodes at decoding iteration m+ 1
as:
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where the multi-edge-type fractions are defined as functions
of the average bitnode degree d̄b:

fe = 1− ge =
d̄b − 1

2d̄b − 1
(8)

For regular ensembles with bitnode degree db and check
node degree dc, λ̊(x) = λ(x), ρ̊(x) = ρ(x), λ̃(x) = λ(x)/x,

and ρ̃(x) = ρ(x)/x. Consequently, q1(x) = g1(x) and q2(x) =
g2(x). Then, we have four density evolution equations. And
λ(x) and ρ(x) are monomials:

λ(x) = xdb−1 ρ(x) = xdc−1 (9)

Then, DE equations for BEC(µ1) and BEC(µ2) can be
written as:
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Recall that for root-LDPC, only the information bits are
connected to rootchecks and have full-diversity. Thus, the
threshold bound is determined by the convergence of the
densities f1 and f2 associated with the messages 1i → 2c
and 2i → 1c respectively.

As we show in Section V, the gap between the threshold
boundary of root-LDPC and the capacity boundary of the
channel is not small enough. In [11], a forward layered
spatial coupling technique is proposed to improve the threshold
boundary of random LDPC ensembles. In the next section,
we apply the forward layered spatial coupling to root-LDPC
ensembles in order to improve the coding gain and saturate
the threshold bound.

IV. SPATIAL COUPLING OF ROOT-LDPC ENSEMBLES

In this section, in order to improve the coding gain, we
propose a spatial coupling structure for root-LDPC based on
the coupling structure in [11] for random LDPC ensembles.

Construction of the partially-coupled root-LDPC en-
semble: Our spatial coupling structure is similar to [11]. L
copies of (db, dc) root-LDPC ensembles are placed in spatial
positions l = 1, 2, ..., L to form a chain of length L. Then,
extra edges are added to couple the ensembles. In order to
simplify the construction, only parity bitnodes are coupled
to the checknodes in the next spatial position resulting in
a partial-coupling scheme as shown in Figure 3. To our
knowledge, this is the first time partial coupling is applied
to LDPC ensembles for parity bits doping. For termination at
the right end, extra check nodes are placed at the (L+1)-Th.
spatial position.

In addition to the local message densities defined in Section
III, we have four more coupling messages. Let us define the
coupling message densities as follows:

• n1 is the density of message 1p(l) → 2c(l + 1).

• n2 is the density of message 2p(l) → 1c(l + 1).

• kl+1
1 is the density of message propagating backward

2c(l + 1) → 1p(l).
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Figure 3. Forward layered spatial coupling of root-LDPC. The chain is terminated at the right end by the checks placed at the spatial position L+ 1. Since
only the parity bits are coupled to the checks, this is a partial coupling scheme.

• kl+1
2 is the density of message propagating backward

1c(l+ 1) → 2p(l).

Proposition 1: Let (db, dc) denotes the degrees of bitnodes
and checknodes of the uncoupled regular LDPC ensemble and
(dbs, dcs) denotes the degrees of the extra edges for coupling
the parity bitnodes and the checks. Then, DE equations for
forward layered spatially coupled root-LDPC ensemble are
given by (14) – (18) for bit node types 1i and 1p. DE equations
for bit node types 2i and 2p can be derived by changing the
node types and indices accordingly.
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• Coupling messages (forward)
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• Coupling messages (backward)
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Proof: A reader who is familiar with the modern coding
theory [4] can derive the DE equations from the local tree
neighbourhood of the nodes shown in Figure 4 – Figure 8.

Since information bits are connected to rootchecks, the
diversity order of the information bits is 2. To improve the
coding gain of the information bits, we create more parity bits
of diversity order 2 by using a root-LDPC(2π) family instead
of a root-LDPC(4π) family (for more information about the
root-LDPC(2π) and root-LDPC(4π) families refer to [8]).

Similar to root-LDPC, the threshold boundary of coupled
root-LDPC is determined by the convergence of the densi-
ties associated with the local messages 1i(l) → 2c(l) and
2i(l) → 1c(l). In fact, we have L layered threshold boundaries
corresponding to L copies of the root-LDPC in the chain.

kl+1
1
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1pl

1il+1 1pl+1 2il+1 1pl

Figure 4. Local tree neighbourhood of checknode 2c. This tree is used to
determine the evolution of the backward coupling message kl+1

1 .

V. RESULTS

In this section, we present the outage boundaries of rate-
1/2 random LDPC ensembles, uncoupled root-LDPC ensem-
bles, and coupled root-LDPC ensembles in the erasure plane
for two parallel erasure channels BEC(µ1) and BEC(µ2) shown
in Figure 2.

The capacities of the erasure channels BEC(µ1) and
BEC(µ2) are C1 = 1−µ1 and C2 = 1−µ2 respectively. When
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the two parallel channels are used uniformly, the capacity is
the average of C1 and C2

C =
1

2
(C1 + C2) = 1− 1

2
(µ1 + µ2) (19)

For rate-1/2, the capacity limit is achieved when C = R =
1/2. Then, the capacity bound of the channel is given by the
straight line µ1 + µ2 = 1.

Consider a random (3, 6)-LDPC ensemble. When µ1 =
µ2, we have the standard DE equation for the (3, 6)-LDPC
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Figure 8. Local tree neighbourhood of bitnode 1p. This tree is used to
determine the evolution of the local message gl1.

ensemble
x = µ

(
1− (1− x)5

)2 (20)

and the BP threshold for µ1 = µ2 = µ is 0.429. Since
the LDPC ensemble is random, a bit is transmitted through
BEC(µ1) or BEC(µ2) equiprobably. So, the random LDPC is
undergoing an average channel BEC((µ1 + µ2)/2). Then, the
corresponding DE equation is

x =
µ1 + µ2

2

(
1− (1− x)5

)2 (21)

and the ergodic threshold for the random (3, 6)-LDPC en-
semble is given by the line (µ1 + µ2)/2 = 0.429. Similarly,
the ergodic threshold for the random (4, 8)-LDPC ensemble is
given by the line (µ1 + µ2)/2 = 0.383.

In the erasure plane, the (µ1, µ2) points under the threshold
boundary cause the DE equations to converge and the (µ1, µ2)
points above the threshold boundary result in the divergence
of the DE equations. Thus, outage occurs when the (µ1, µ2)
points are above the threshold boundary.

The threshold boundary of the uncoupled (3, 6) root-LDPC
is shown Figure 9. The threshold boundary of the uncoupled
(3, 6) root-LDPC is close to the ergodic threshold of the
random (3, 6)-LDPC except for the cases where µ1 = 0
or µ2 = 0. As the uncoupled root-LDPC has full diversity,
(µ1, µ2) = (1, 0) and (µ1, µ2) = (0, 1) are on the threshold
boundary of the uncoupled (3, 6) root-LDPC. However, the
gap between the threshold boundary of the uncoupled (3, 6)
root-LDPC and the capacity boundary of the channel is not
small enough.

The threshold boundary improvement achieved by the
proposed spatial coupling scheme is presented in Figure 10
for chain length L = 60. The chain length should be large
enough, i.e. L ≥ 50, so that the spatial coupling effect can
be observed and the rate converges to the targetted rate. For
larger values of L, the threshold boundary does not change.
For simplicity, the parity bitnodes and checknodes are coupled
with single edges, i.e. dbs = dcs = 1. Although we have L
threshold boundaries for L copies of the root-LDPC in the
chain, the threshold boundaries are very close to each other.
Thus, we plot a single boundary.

Figure 10 shows the threshold boundary of coupled (4,8)
root-LDPC. Although only a partial coupling scheme is applied
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Figure 9. BEC threshold boundaries for random (3, 6)-LDPC and uncoupled
(3, 6) root-LDPC ensembles in the erasure plane.

by parity bits doping, the threshold boundary is very close to
the capacity boundary of the channel. This significant threshold
saturation is due to the coding gain introduced by spatial
coupling. Figure 10 also shows that the coupled (4, 8) root-
LDPC ensemble has full diversity.

Note that, random rate-1/2 LDPC ensembles cannot
achieve full diversity [8], which means that when all the bits
transmitted through BEC(µ1) are erased, it is not possible to
recover these erased bits from the bits transmitted through
BEC(µ2) and vice versa. Thus, the ergodic threshold boundary
lines for random LDPC ensembles do not pass through the
points (1, 0) and (0, 1) in the erasure plane as shown in Figure
9 and Figure 10.

Increasing the degrees of the bitnodes and checknodes
deteriorates the threshold boundary of the random LDPC under
BP decoding as presented in Figure 9 and Figure 10.

VI. CONCLUSIONS

A novel spatial coupling scheme is proposed for root-
LDPC ensembles. Local protographs are coupled by new edges
connected to their parity bits only. As expected from parity
bits doping [8], coupling parity bits is greatly enhancing the
coding gain of information bits. The spatially-coupled root-
LDPC ensembles achieve threshold boundaries very close to
the capacity boundary (saturation) in the erasure plane. This
behaviour in the erasure plane will automatically result in a
saturation of the root-LDPC outage boundary on a real block-
fading channel with additive noise.
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