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Abstract—We describe full-diversity constructions of real lat-
tices defined by their integer-check matrix, i.e. the inverse of their
generator matrix. In the first construction suited to maximum-
likelihood decoding, these lattices are defined by sparse (low-
density) or non-sparse integer-check matrices. Based on a special
structure of the lattice binary image, a second full-diversity lattice
construction is described for sparse integer-check matrices in
the context of iterative probabilistic decoding. Full diversity is
theoretically proved in both cases. Computer simulation results
also confirm that the proposed low-density lattices attain the
maximal diversity order.

I. INTRODUCTION

Error-correcting codes and modulation schemes are integral
parts of communication systems. Coded modulations which
combine these two functionalities were extensively studied in
the literature [1, Sec. 8.12]. Some coded modulation schemes
rely on infinite constellations (ICs). ICs are structures in the
n-dimensional Euclidean space that have no power constraints
and hence cannot be used directly for transmission over power-
constrained channels. Practical coded modulation schemes de-
rived from ICs use only those points of the constellation which
lie inside some specific region (known as shaping region) in
the Euclidean space.

An infinite lattice constellation, also known as a lattice [2],
is a constellation with a strong algebraic structure. A lattice
is a discrete additive sub-group of the real space. A lattice
codebook can be constructed from a lattice using a shaping
region which could be the Voronoi region of another lattice
or a sub-lattice [3]. Low-density lattice codes (LDLCs) are a
special class of lattices proposed by Sommer et al. in [4] which
can be decoded by iterative probabilistic message passing. An-
other family of iteratively decodable lattices has been recently
published in [5], where authors described a generalized low-
density construction. In this paper, we focus on LDLC without
using any shaping region.

We consider transmission using lattices over a general
non-ergodic fading (block-fading) channels for single-input
single-output systems. For such a channel model a codeword
of length n is divided into L blocks of equal length n/L
such that the fading within a given block is same whereas
it is different and independent across different blocks. Such a
channel has L degrees of freedom. If a lattice code is used
for transmission over such a block-fading channel and the
error probability at the output of the decoder is proportional to
1/γL (where γ is the signal-to-noise ratio) then such a lattice
code is said to have diversity order L or referred to as full-
diversity lattice. However, randomly constructed lattice codes
does not have full-diversity property. To the best of the authors
knowledge no effort has been in the literature to design full-
diversity lattice codes. Infinite constellations over multiple-
antenna fading channels are studied in [6].

In this paper we propose methods to construct LDLC which
exhibit full-diversity when decoded by maximum-likelihood
(ML) and iterative decoder. In first part, we give conditions
for a lattice to be full-diversity under ML decoding and then
propose full-diversity construction method for lattice codes.
This construction method can be used to generate sparse and
non-sparse lattice codes suitable for ML decoding. It has been
shown theoretically that such lattice codes indeed have full-
diversity property. In this second part, first the random LDLC
is analyzed through the low-density parity-check code derived
from binary image of LDLC. Using results from this analysis,
a method to construct full-diversity LDLC has been proposed.
Further, we also prove that such LDLC does exhibit full-
diversity property when decoded by the iterative probabilis-
tic decoding algorithm. Some simulation results for double-
diversity LDLC constructed for ML decoding and iterative
decoding are also provided which validate our theoretical
results.

The rest of the paper is structured as follows; the com-
munication model considered in this paper is described in
section II. Section III propose the full-diversity lattice code
suitable for ML decoding. Full-diversity LDLC suitable for
iterative decoding are proposed in section IV. Section V discuss
simulation results. We conclude in Section VI.

II. COMMUNICATION MODEL

We use R, Z and Q to denote the field of real numbers,
ring of integers and the field of fractions of Z respectively. A
a point lattice or simply lattice Λ ⊂ Rn is a free Z-module of
rank n in Rn. A point is an element that belongs to Λ. Any
point x = (x1, x2, . . . , xn)

T ∈ Λ can be written as an integer
linear combination of n points x =

∑n
i=1 zivi, where {vi} is

a Z-basis of Λ, vi,j ∈ R, and zi ∈ Z. A generator matrix G
for Λ is n× n matrix built from a basis {vi}, i ∈ {1, . . . , n}.
In column convention, let G = [vi,j ], then a lattice point is
written as x = Gz, where z ∈ Zn. The volume of the lattice
Λ is given by | det(G)|. For more information on lattices, we
refer the reader to [2].

A lattice code of dimension n can be defined using a lattice
Λ and a shaping region S ⊂ Rn where the codewords for the
lattice code are the lattice points that lie within the shaping
region S. The integer-check matrix for such a code is given
by H = G−1 = [hi,j ]. For lattice codes, the integer-check
equation for a codeword or lattice point x is given by

∑

j

hi,j xi ∈ Z, ∀i. (1)

The notion of code rate and therefore channel capacity is
not useful for lattices as the signal power can be made
arbitrarily large. For lattices used for transmission over additive



white Gaussian noise channel without restrictions, Poltyrev [7]
showed that there exists a lattice that can be correctly decoded
if and only if the noise variance is less than a threshold. We
refer to this threshold as Poltyrev threshold. Formally, Poltyrev
threshold can be defined as follows: There exists a lattice Λ
of high enough dimension-n for which the transmission error
probability over AWGN channel can be reduced to an arbitrary
low level if and only if σ2 < σ2

max [7][4] where σ2 is the noise
variance per dimension and Poltyrev threshold σ2

max is given
by

σ2
max =

| det(G)| 2

n

2πe
. (2)

The integer-check matrix of an LDLC considered in this paper
is a sparse matrix where | det(H)| = | det(G)| = 1. The cor-
responding iterative decoding algorithm whose complexity is
linear in block length is also proposed in [4]. More information
about LDLC can be found in [4].

The communication system considered in this paper is
assumed to have coherent detection along with perfect channel
state information at the receiver side only. We assume that the
fading channel is flat and hence without multiple paths [1].
Fading coefficients are assumed to be Rayleigh distributed and
are real non-negative, 0 ≤ α < +∞, p(α) = 2α exp(−α2).
We consider non-ergodic fading where the fading coefficients
will take L values only within a lattice point, usually L ≪ n.
Let Λ be a lattice of rank n in Rn and let x be a lattice point
then the general non-ergodic (block-fading) channel model
with diversity L is

yi = αjxi + ηi, j =

⌈

i

n/L

⌉

, i = 1, 2, . . . n, (3)

The fadings α1, α2, . . . , αL are independent and identically
distributed (i.i.d.) Rayleigh distributed fading coefficients and
ηi ∼ N (0, σ2).

Let γ be the signal-to-noise ratio (SNR) for an infinite
lattice constellation,

γ =
| det(G)| 2

n

σ2
. (4)

Definition 1. Consider a fading channel with L independent
fading coefficients per lattice point. Λ is a full-diversity lattice
under ML decoding if the point error probability Pe(Λ) at the
ML decoder output is proportional to 1

γL , for γ = 1
σ2 >> 1.

Recently, the authors in [8] introduced a Poltyrev outage
limit for infinite lattice constellations used over block-fading
(BF) channels. Poltyrev outage limit is defined as follows
[8]: if a given lattice Λ is used for transmission over a BF
channel with coefficients α1, . . . , αL then the lattice decoder
can decode correctly if and only if σ2 < σ2

max(α1, . . . , αL).
Otherwise, if σ2 > σ2

max(α1, . . . , αL) an outage occurs. For a
fixed fading, the noise variance defining Poltyrev limit is

σ2
max(α1, . . . , αL) =

∏L
l=1 α

2/L
l | det(G)| 2

n

2πe
. (5)

III. FULL-DIVERSITY CONSTRUCTION OF LDLC UNDER

ML DECODING

Let Λ be a real lattice of rank n defined by a n × n integer-
check matrix H . Assume that n is multiple of L, where L is

the diversity order of the block-fading channel. Let us write
H in the form

H =
[

H̃1 | H̃2 | . . . | H̃L

]

, (6)

where H̃j is a n × n/L matrix, j = 1 . . . L. In the above
expression of the integer-check matrix H , the channel is
assumed to have the same fading value αj affecting all n/L
lattice components associated to the columns of H̃j , as defined

in (3) in Sec. II. Using the L submatrices H̃j , let us build a
new shortened integer-check matrix Ψk of size n × ℓn/L by
combining ℓ submatrices out of L, for ℓ = 1 . . . L − 1. The
number of shortened integer-check matrices is

K =

L−1
∑

ℓ=1

(

L

ℓ

)

= 2L − 2. (7)

Also, for k = 1 . . .K , we define the function κ(k) as

κ(k) = i× n

L
(8)

for i that satisfies

i−1
∑

ℓ=1

(

L

ℓ

)

≤ k ≤
i

∑

ℓ=1

(

L

ℓ

)

, (9)

such that Ψk is a n× κ(k) matrix.

For example, for L = 2, we have Ψ1 = H̃1, Ψ2 = H̃2, and

κ(1) = κ(2) = n/L. For L = 3, we have Ψ1 = H̃1, Ψ2 = H̃2,

Ψ3 = H̃3, Ψ4 = [H̃1|H̃2], Ψ5 = [H̃1|H̃3], Ψ6 = [H̃2|H̃3],
κ(1) = κ(2) = κ(3) = n/L, and κ(4) = κ(5) = κ(6) =
2n/L.

Definition 2. Consider a fading channel with L independent
fading coefficients per lattice point. Λ is a full-diversity lattice
under ML decoding if the point error probability Pe(Λ) at the
ML decoder output is proportional to 1

γL , for γ = 1
σ2 >> 1.

The purpose of this paper is to build low-density lattices such
that Pe ≈ Ke/γ

L at large signal-to-noise ratio, where Ke is
a non-negative real constant. The so-called coding gain [9] is
given by 1/ L

√
Ke. Maximizing the coding gain or equivalently

minimizing Ke is not the subject of this paper. Following
the above definition and using the K shortened integer-check
matrices, we can now state a simple lemma useful for proving
full-diversity.

Lemma 1. A lattice Λ is full-diversity under ML decoding on
an L-diversity block-fading channel if and only if Ψkx ∈ Zn

admits x = 0 ∈ Rκ(k) as unique solution, ∀k = 1 . . . 2L − 2.

The proof for Lemma 1 is based on a union bound on the
pairwise error probability P (0 → x) and omitted due to lack
of space.

Notice that Lemma 1 does not need H to be a low-density
matrix. It is valid for both sparse and non-sparse matrices.
It is possible to simplify Lemma 1 by reducing the number
of constraints to L instead of 2L − 2, as stated in Lemma
2. Nevertheless, we believe that Lemma 1 is more useful for
lattice construction than Lemma 2 because we usually start
constructing a lattice in a recursive way by imposing lower
diversity orders before reaching full-diversity. Consider the L
largest Ψk integer-check matrices, those whose size is n×(n−



n/L) and index is k = 2L − L− 1 . . . 2L − 2. Let us refer to
these matrices by Θk = Ψk+2L−L−2, for k = 1 . . . L.

Lemma 2. A lattice Λ is full-diversity under ML decoding on
an L-diversity block-fading channel if and only if Θkx ∈ Zn

admits x = 0 ∈ Rn−n/L as the unique solution, ∀k = 1 . . . L.

Proof for Lemma 2 is based on Lemma 1 and omitted due to
lack of space.

As a direct application, Lemma 1 is followed by Theorem
1 stating how to construct a full-diversity lattice under ML
decoding for L = 2. It is straighforward to generalize the
proposed construction to L > 2. In the rest of this paper, we
shall restrict the study to L = 2.

Theorem 1. Consider a double-diversity block-fading channel.
Let H=[hij ] be the n×n integer-check matrix of a real lattice
Λ of even rank n, where hij ∈ Q, the field of rationals. Let
us decompose H into four n/2× n/2 submatrices as follows

H =

[

A B
C D

]

.

Assume that A, B, C, and D have full rank.
Let θ1 and θ2 be two algebraic numbers of degree ≥ 2 such
that θ2/θ1 /∈ Q. Then, the two lattices defined respectively by
the integer-check matrices

[

θ1A θ1B
θ2C θ2D

]

and

[

θ1A θ2B
θ2C θ1D

]

(10)

are full-diversity lattices under ML decoding.

Proof: Consider the first constraint Ψ1x ∈ Zn, where
x ∈ Rn/2 and

Ψ1 =

[

θ1A
θ2C

]

.

The upper half is θ1Ax ∈ Zn/2, we get x ∈ θ−1
1 Qn/2. Simi-

larly, The lower half is θ2Cx ∈ Zn/2, we get x ∈ θ−1
2 Qn/2.

But since θ1Q ∩ θ2Q = {0} we obtain x = 0.
A similar reasoning can be made for Ψ2. Then, applying
Lemma 1 yields the full-diversity construction.

The weak condition θ2/θ1 /∈ Q enables us to use conjugate
algebraic numbers from the same number field, e.g., take

θ1 = 1+
√
5

2 and θ2 = 1−
√
5

2 in Q(
√
5). A stronger condition

may be defined as Q(θ1)∩Q(θ2) = Q and could be benefitial
for the coding gain but it is not required for full-diversity.
Furthermore, as shown in the next section, the same construc-
tion combining H , θ1, and θ2, leads to a full-diversity lattice
under iterative belief propagation decoding. A supplementary
condition on the binary image of H is required to accomplish
full-diversity with iterative decoding.

IV. FULL-DIVERSITY CONSTRUCTION OF LDLC UNDER

ITERATIVE DECODING

We keep restricting the study to the default diversity order
L = 2 unless otherwise stated. Hereafter, we consider only
real LDLC under iterative decoding, i.e., real lattices Λ with
a sparse n× n integer-check matrix H . The lattice constraint
Hx ∈ Zn admits a bipartite graph representation as follows:
(i) Draw n vertices (variable nodes) on the left representing
the n lattice components xj , j = 1 . . . n. (ii) Draw n verticles

(check nodes) on the right representing the n rows hi of H
that define the n LDLC constraints hi · x =

∑n
j=1 hijxj ∈ Z,

i = 1 . . . n. (iii) Link xj and hi by an edge if hij 6= 0. That
edge has a multiplicative weight hij .

The factor graph ([10], chapter 2) defined above is used
for iterative belief propagation of Λ [4]. Usually, H is regular
with d non-zero entries per row and d non-zero entries per
column, d << n. Let Hb be the incidence matrix of the factor
graph, i.e., Hb = [bij ] where bij = 1 if hij 6= 0 otherwise
bij = 0.

Definition 3. The binary image C(Λ) of Λ is a binary LDPC
code defined by its integer-check matrix Hb.

As a direct consequence, the binary image C(Λ) has
dimension 0 (0-rate) and length n. In general, for regular and
irregular LDLC, the degree distribution of the binary image
from an edge perspective [10] is given by λ(x) =

∑

i λix
i−1

on the left and ρ(x) =
∑

j ρjx
j on the left, where λ(1) =

ρ(1) = 1 and
∑

i
λi

i =
∑

j
ρj

j .

Definition 4. We say that Λ satisfies the Erasure Channel (EC)
condition if the LDPC code C(Λ) achieves full-diversity [11]
after a finite or an infinite number of decoding iterations.

The EC condition is a necessary condition (but not suf-
ficient) for Λ to achieve full-diversity. In a way similar to
the study of full-diversity LDPC codes, the so-called root-
LDPC [12][11], we redefine full-diversity under iterative belief
propagation. The symbol error probability referred to as Pes

is the error probability per lattice component:

Definition 5. Consider a fading channel with L independent
fading coefficients per lattice point. Λ is a full-diversity lattice
under iterative decoding if the symbol error probability Pes

at the iterative probabilistic decoder output is proportional to
1
γL , for γ = 1

σ2 >> 1.

Before analyzing the construction of Theorem 1 under iterative
decoding, let us take a look at LDLC lattices with a random
structure. For random lattices and asymptotically large n, C(Λ)
is an ensemble of 0-rate binary LDPC codes with left and
rigt degree distributions defined by the polynomials λ(x) and
ρ(x) respectively. If the degree distribution is well chosen, a
0-rate ensemble can achieve the capacity of an ergodic binary
erasure channel (BEC) with erasure probability ǫ0, for any
ǫ0 < 1. When Λ is transmitted on a block-fading channel with
diversity order L, the random 0-rate LDPC ensemble C(Λ) will
observe an ergodic binary erasure channel whose parameter is

ǫ0 =
n− n/L

n
= 1− 1

L
. (11)

This value of ǫ0 is in accordance with the size of the largest
integer-check matrices Θk used in Lemma 2 under ML decod-
ing.

The diversity population evolution (DPE) tracks the frac-
tion of full-diversity bits with the number of decoding itera-
tions. The DPE renders a standard Density Evolution (DE) on
the BEC, where ǫ0 = 1− 1

L , and

ǫi+1 =

(

1− 1

L

)

λ
(

1− ρ(1− ǫi)
)

. (12)



The necessary condition EC for full-diversity is achieved if
ǫi → 0 when i → +∞, i being the decoding iteration number.
From (12) it is easy to prove the following propositions:

Proposition 1. Consider a regular random LDLC ensemble
with degree d ≥ 2. For L = 2, the EC condition for full-
diversity is satisfied iff d ≤ 7.

The above proposition tells us that the diversity tunnel is
open for all regular random LDLC ensembles when 2 ≤ d ≤ 7.
The tunnel is closed for d ≥ 8.

Proposition 2. Consider a regular random LDLC ensemble
with degree d = 3. The EC condition for full-diversity is
satisfied iff 2 ≤ L ≤ 6.

The above proposition tells us that a 3-regular random
LDLC can never be full-diversity for L ≥ 7.

Irregular random LDLC may be useful to increase the fraction
of full-diversity lattice components at the first decoding itera-
tions and to increase the upper limit for achievable d and L. As
an example, λ(x) = 0.418683·x+0.162635·x2+0.418683·x5

and ρ(x) = x2 has a better DPE tunnel than the fully 3-regular
case.

Now, we can state an equivalent to Theorem 1 in the iterative
decoding context. The construction mentioned here is given
for L = 2 and any average weight d ≥ 2.

Theorem 2. Consider a double-diversity block-fading channel.
Let H=[hij ] be the n×n integer-check matrix of a real lattice
Λ of even rank n, where hij ∈ Q, the field of rationals. Let
us decompose H into four n/2× n/2 submatrices as follows

H =

[

A B
C D

]

.

Assume that the binary image of H has the following structure:

Hb =







Π1 0 B2 Π4

B1 Π2 Π3 0
0 Π6 Π7 B4

Π5 B3 0 Π8






.

where Πi are permutation matrices and Bi are regular random
matrices with weight d− 2.
Let θ1 and θ2 be two algebraic numbers of degree ≥ 2 such
that θ2/θ1 /∈ Q. Then, the two lattices defined respectively by
the integer-check matrices

[

θ1A θ1B
θ2C θ2D

]

and

[

θ1A θ2B
θ2C θ1D

]

(13)

are full-diversity lattices under iterative probabilistic decoding.

Proof: Let us assume that the lattice Λ is constructed
according to one of the matrix given in (13) and d = 3.
Since the error probability of the iterative decoder for LDLC
is independent of the transmitted codeword [4], we can fur-
ther assume that some random point x = (x1, . . . , xn) was
transmitted. Let us select check node i which is connected to
variable nodes j1, j2, j3.

The integer-check equation for the check node j for the
point x can be written as follows

hi,j1xj1 + hi,j2xj2 + hi,j3xj3 = z , (14)

where z ∈ Z. For ease of exposition, the subscript i is dropped
and j1, j2, j3 is replaced with 1, 2, 3, respectively. If (14) is
divided with hj3 then it can be written as

x3 = h̃1x1 + h̃2x2 + h̃3z , (15)

where h̃1 = −h1

h3

, h̃2 = −h2

h3

and h̃3 = 1
h3

.

Point x is transmitted over a BF channel with coefficients
α1 and α2. The noise variance satisfiesσ2 < σ2

max(α1, α2)
where σ2

max(α1, α2) is calculated according to (5). The con-
struction proposed in (13) enforces that for a given integer-
check j exactly one component out of x1, x2, x3 would be
affected by one of the channel coefficient whereas remaining
two components would be affected by the other channel coef-
ficient. With this lets assume that the components x1, x2 are
affected by α1 and x3 is affected by α2. Then the components
for the received point y can be given by

y1 = α1x1 + η1, y2 = α1x2 + η2, y3 = α2x3 + η3, (16)

where ηk ∼ N (0, σ2), k ∈ {1, 2, 3} is the noise.

The iterative decoder for LDLC initialize the variable
nodes with probability density function (pdf) calculated from
components of the received point. The pdf for components
x1, x2, x3 can be calculated as follows from (16),

fi(t) ∼ N
(

yi
α1

,
σ2

α2
1

)

, i = 1, 2; f3(t) ∼ N
(

y3
α2

,
σ2

α2
2

)

.

During the first half of the first iteration, the check node i
sends message pdf p12(t) to variable node x3. Assume z = 0
in (15), we get partial check node message p̃12(t) from which
p12(t) can be derived. The p̃12 is calculated from (15),

p̃12(t) ∝ f1

(

t

h̃1

)

∗ f2
(

t

h̃2

)

Here ∗ denotes the convolution operation. The convolution
of n Gaussians with mean values m1, . . . ,mn and variances
σ1, . . . , σn, respectively, is a Gaussian with mean m1 + . . .+
mn and variance σ1 + . . .+ σn [13][4]. Hence,

p̃12(t) ∼ N





y1h̃1 + y2h̃2

α1
,

(

h̃2
1 + h̃2

2

)

σ2

α2
1



 . (17)

Now p12 can be derived from (17) as follows [4],

p12(t) =
∞
∑

z=−∞

p̃12

(

t− h̃3z
)

. (18)

In the second half of the first iteration, the variable node
x3 multiplies channel pdf f3(x3) and check node message p12
to generate updated pdf q3. The multiplication of Gaussian
mixtures also gives a Gaussian mixture. It is possible that the
multiplication of the Gaussians at variable node generates a
mixture of Gaussians with multiple peaks because p12 contain
multiple peaks. However, here we assume that only the largest
peak is retained from this mixture whereas other peaks are
attenuated to zero. Due to this operation the resulting decoder
is sub-optimal iterative decoder. Exact calculation of mean and
variance of multiplication of the Gaussians can be found in [4].



(a) Point Error Rate Performance without POL, with POL defined

by
∏L

l=1 α
2
l

=
(2πe)L

γL , and with POL+1.3 margin defined by
∏L

l=1 α
2
l

= 1.3×
(2πe)L

γL .

(b) Runtime comparison at different values of signal-to-noise ratio. A huge
POL gain in runtime is observed at n = 64.

Fig. 1: ML decoding of double-diversity LDLC with dimension n = 64.

Lets assume that after multiplication and removal of
smaller peaks, the only remaining peak in q3 corresponds to
the peak in p12 for which z = 0. Then,

q3(t) ∼ N
(

m3, σ
2
3

)

, (19)

where

m3 =
((y1h̃1 + y2h̃2)α1) + (y3α2)(h̃

2
1 + h̃2

2)

α2
1 + α2

2(h̃
2
1 + h̃2

2)
, (20)

and σ2
3 is the variance of q3. Exact equation for σ2

3 is omitted
here. From (20),

m3 ∝ (h̃1y1 + h̃2y2)α1 + (h̃2
1 + h̃2

2)α2y3

= (α1x3 + h̃1η1 + h̃2η2)α1 + (h̃2
1 + h̃2

2)α2(α2x3 + η3).

Therefore,

m3 ∝ (α2
1 + ω1α

2
2)x3 + η′. (21)

where ω1 = h̃2
1+h̃2

2 and η′ = (h̃1η1+h̃2η2)α1+(h̃2
1+h̃2

2)α2η3.
We would like to decide x3 from m3 given in (21) but this
equation informs us that this decision has error rate behaving
like 1/γ2 (See Proakis [1]) because of the generalized χ2

distribution of order 4 in (α2
1 + ω1α

2
2). The 4-th order

χ2 distribution guarantees the double diversity for the sub-
optimal iterative decoder. Since the sub-optimal iterative de-
coder achieves full-diversity, the original iterative decoder is
also guaranteed to achieve it.

The above analysis assume z = 0 however, it remains valid
also for z ∈ Z\{0} as for any other value of z only ω1 and/or
η′ in (21) would be affected and χ2 distribution of order 4
appearing in (21) would remain intact.

The proposed construction method in Theorem 2 can be
extended to arbitrary values of channel diversity L. Other full-
diversity constructions may also exist but we described one of
the simplest method in Theorem 2.

V. SIMULATION RESULTS

In this section we report computer simulation results for the
LDLC codes contructed according to Theorem 1 and Theorem
2. We consider a channel with diversity order L = 2 in our
simulations.

As mentioned in Sec. II, for a given SNR value γ, the
Poltyrev outage limit (POL) gives a upper bound on the σ2

and consequently a lower bound on the value of
∏L

l=1 αl. If

the value of
∏L

l=1 αl is below this limit (i.e., an inadmissible
fading channel states) then even an optimal ML decoder would
almost surely make a decoding error. Hence, it is possible
for ML decoder to output an error without decoding when
channel is in inadmissible fading state. This fact is utilized
here to speed up the ML decoder of full-diversity LDLC. In
all simulations, we count up to 400 erroneous points for each
SNR value.

Under ML decoding, we utilize the integer-check matrix
with dimension n = 64 constructed according to the second
matrix of (10) where we select θ1 = 1 and θ2 =

√
2. We do

not use any shaping region for the selected LDLC and decode
using the ML decoder proposed in [14]. We use a PC with
Intel Xeon E5-2687W CPU clocked at 3.10 GHz. Along with
point error rate (PER) results for these LDLCs, we also report
results for total run time required to complete simulations.

Simulation results for the aforementioned LDLC are shown
in Fig. 1. In our simulations, we compare the point error rate
(PER) and simulation runtime for programs that do not utilize
POL with those where POL is utilized to declare error without
decoding. We report four results using the sphere decoder
[14] for ML decoding : 1) Random LDLC from [4]; 2) FD-
LDLC, POL is not used 3) FD-LDLC, POL is used to detect
inadmissible fading channel states ; and 4) FD-LDLC, POL is
multiplied by a constant and the new value is used to detect
inadmissible fading channel states. Pout(γ) is the POL for
L = 2. The curve for PER is parallel to that of POL and



Fig. 2: Iterative decoding of double-diversity LDLC with
dimension n = 100.

just 0.1dB away from it.

When random LDLC is used over BF channel, the PER
for such LDLC is not proportional to 1

γ2 at high SNR values

and this fact can be observed from Fig. 1(a).

We compare average runtimes required to decode a point
in Fig. 1(b). It can be observed that when either the POL (case
3) or a scaled POL (case 4) is used for simulations, we get
significant improvements in terms of runtime. The impact on
runtime of ML decoding which utilizes POL is clearly visible
for the selected LDLC. For this LDLC, it is not possible to
simulate the PER performance for SNR values higher than
25dB without using POL in a feasible amount of time. The blue
lines for SNR range 28dB to 40dB in Fig. 1(b) are saturated
to the maximum possible runtime and are shown for reference
only. Also for SNR values less than 25dB, the runtime with
POL is only 10% of the runtime required without using POL.
The difference in runtime between case 3 (POL only) and case
4 (scaled POL) for this particular LDLC is also very high.

For simulation using iterative decoder, we utilize the
integer-check matrix with dimension n = 100 constructed
according to the first matrix of (13) where we select θ1 = 1
and θ2 = 1√

2
. Again we do not use any shaping region. We

use the iterative decoder for LDLC proposed in [4].Simulation
result for this LDLC is given in Fig. 2. The curve for PER is
parallel to that of POL (Pout(γ)) and hence this code exhibit
diversity order of 2. In this case, the PER is around 1.5dB
away from Pout(γ). However, we expect the PER to approach
POL as dimension n increases.

VI. CONCLUSIONS AND PERSPECTIVES

We proposed construction methods for full-diversity lat-
tices based on the integer-check matrix, the inverse of the
lattice generator matrix. The first construction method is valid

under ML decoding for both sparse and non-sparse integer-
check matrices. The second construction method for full-
diversity LDLC is based on sparse integer-check matrices and
is valid for iterative decoding. Furthermore, we proved that

lattice codes constructed according to the proposed methods
do achieve full-diversity. We also verified the full diversity of
our low-density lattices using computer simulations.

Theorem 1 is easily extendable to any diversity order L
greater than 2 since it is based on two Lemmas with an
arbitrary L. The extension of Theorem 2 to L ≥ 2 requires
an adequate choice of the binary image matrix Hb. Finally,
the work in this paper focuses on the diversity only. Future
work should take into account the coding gain of low-density
lattices. For example, for a given L, find the matrix weight d
that maximizes coding gain under ML and iterative decoding.
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