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Abstract—Lattices from Construction A and non-binary codes
are considered. These lattices are built from number fields as
coset codes of the ring of integers OK modulo an ideal I.
Diversity of a Construction-A lattice Λ on block-fading channels
is guaranteed by the chain I

m
⊂ Λ ⊂ O

m
K . We study how the

code alphabet size should be chosen in order to avoid error floors
on the Gaussian channel due to the sublattice I

m. Our aim is to
get Construction-A lattices that are good for both Gaussian and
block-fading channels.

I. CONSTRUCTION A AND CODES ON GRAPHS

Low-density lattices codes [19] brought new tools from

modern coding theory to the theory of lattices in Euclidean

spaces. Such modern tools combined to integer lattices from

Construction A proposed by Leech and Sloane [16] pro-

duce very efficient ensembles of lattices. The recent success

in building high-dimensional fast-decodable LDA and GLD

lattices [10], [7], [11], motivated us to investigate methods

for building full-diversity lattices via Construction A. On the

Gaussian channel, in absence of fading, LDA lattices can

achieve Shannon capacity under lattice decoding [11]. LDA

lattices [10] and some of their cousins in the GLD family [7]

are built by Construction A:

Λ = Φ(C[n, k]p) + pZn. (1)

Here, the lattice Λ has rank n in Rn, p is a prime integer,

and C[n, k]p is a linear code of length n and dimension k,

0 < k < n, defined over the finite field Fp. If C is a

low-density parity-check (LDPC) code over Fp [14], [9],

then Λ is referred to as an LDA lattice. If C is a generalized

low-density (GLD) code over Fp [8], then Λ is referred to

as a GLD lattice. The map Φ : Fp → Z/pZ ⊂ Z is a group

homomorphism that embeds Fp in Z.

For Construction-A lattices, two sufficient conditions should

be met for finite lattice constellations in order to attain

Shannon capacity [12], [22]: 1- Gaussian goodness which

is equivalent to lattices attaining Poltyrev limit given by

the highest noise variance σ2
max = vol(Λ)2/n

2πe [17], and 2-

Covering goodness which is equivalent to spherically shaped

constellations in high dimensions. In all cases, the prime p
increases as nλ where λ admits a lower bound that depends on

the coding rate R = k/n of C. For random lattices built from

random non-binary codes C[n, k]p, we have λ > (1 + R)−1,

see Theorem 2 in [11]. For LDA lattices where C is a non-

binary LDPC code whose Tanner graph has an expansion

factor of D, λ is to be greater than 1
1−R , see Theorem 3

in [11]. In practice, the symbol error rate of LDA lattices

is close enough to Poltyrev limit under iterative message-

passing decoding (Belief Propagation). In some cases, for

GLD lattices, a spectral thinning is proven, i.e. the symbol

error probability scales as 1/n similar to standard Turbo

codes based on convolutional codes. Also, the value of p
implemented in practical iterative decoders is not as high as

nλ. We believe that proofs in [12] and [11] could be improved

to yield a smaller prime p but the huge proof length is an

obstacle. Under iterative decoding, the value of p is selected

large enough to guarantee that Λ in (1) is not perturbed by

its sublattice pZn. In other words, the distance inside a coset

should be larger than the distance between two cosets labeled

by C. The next section investigates how the alphabet size p
should be selected to guarantee a good performance of the

sublattice pZn.

II. ALPHABET SIZE WITHOUT DIVERSITY

The error probability of the one-dimensional integer lattice

pZ is given by the following Lemma.

Lemma 1: Let Λ ⊂ Rn be a real lattice built via Construc-

tion A as in (1). Then, its sublattice pZn has the following

error probability per dimension (per lattice coordinate) on a

Gaussian channel

Pe(pZ) = 2Q

(
√

∆
πe

2
p2R
)

, (2)

where ∆ ≥ 1 is the SNR-distance to Poltyrev limit and Q(x)
is the Gaussian tail function [1].

Proof: In the one-dimensional lattice pZ, the minimum

Euclidean distance is p and each point has 2 neighbors. Then,

Pe(pZ) = 2Q
( p

2σ

)

= 2Q

(
√

p2

4σ2

)

. (3)

But σ2 = σ2
max/∆ = vol(Λ)2/n

∆×2πe . Notice that the noise level

affecting pZ is identical to that affecting the lattice Λ. From

Construction A, the fundamental volume of Λ is vol(Λ) =
pn−k = pn(1−R) which yields 1

σ2 = ∆ × 2πe/p2(1−R). Sub-

stituting the expression of 1
σ2 in (3) gives the error probability

Pe(pZ) stated by this lemma.

The distance to Poltyrev limit is usually expressed in

decibels, ∆(dB) = 10 log10(∆). The error probability per

lattice point on a Gaussian channel, where additive noise is

independent and identically distributed from one dimension to

another, satisfies

Pe(pZ
n) = 1− (1− Pe(pZ))

n ≤ nPe(pZ). (4)



Figure 1 shows the variation of the alphabet size p based

on expressions (2) and (4). It is surprising to see that small

values of p are good enough, e.g. p = 11 or p = 13 for

R = 1/3 used at n = 1 million in GLD lattices under iterative

decoding [7]. If lattice decoding is to be considered, the current

theory established for LDA lattices yields huge values, e.g. for

R = 1/3 we get p > n1.5 [11].
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Figure 1. Performance of the integer cubic lattice pZn as a sublattice of
Λ = C[n, k]p + pZn. The plot shows the alphabet size p versus the coding
rate R for a fixed error probability per lattice coordinate (Pe(pZ)) and a
fixed error probability per lattice point (Pe(pZn)). The distance to Poltyrev
limit is taken to be ∆(dB) = 0.1, 0.5, 1.0dB for Pe(pZ) = 10−6 and
∆(dB) = 0.5dB for Pe(pZn) = 10−2.

Furthermore, at Pe(pZ) = 10−6 and Pe(pZ
n) = 10−2,

pmin = limR→1(p) = 3. Hence, binary codes for Con-

struction A cannot reach this level of performance. Ternary

codes (at least) are necessary at high coding rate. Note that

LDA lattices require R > 1
2 to achieve Shannon capacity

of the Gaussian channel in the proof given in [11]. Finally,

we complete this section with a proposition describing the

behavior of p2R as logarithmic in the lattice dimension when

the performance constraint is on the point error probability.

A constraint on the symbol error probability (per coordinate)

does not need p to increase with n. The proof of the following

proposition is based on (2) & (4), x =
√

∆πe
2 p2R ≥ 2, and

the inequality Q(x) > x
(1+x2)

√
2π

e−x2/2 [1].

Proposition 1: Let Λ ⊂ Rn be a real lattice built via Con-

struction A as in (1). Assume that its point error probability

Pe(Λ) is bounded above by 10−2. Then the alphabet size

satisfies (necessary condition)

p2R >
4

∆πe
[− log(1− (1− 10−2)

1
n ) + log(x)] (5)

≈ 4

∆πe
[log(n)− log(10−2)], (6)

where log is the natural logarithm function.

III. CONSTRUCTION A FROM NUMBER FIELDS

Lattices built from (1) have no diversity; there exists a

lattice point with a unique non-zero coordinate making the

diversity order equal to 1. This lack of diversity is the result

of pZn ⊂ Λ. Instead of building Λ as a coset code from the

partition chain Zn/Λ/pZn, we may use Λm
OK

/Λ/Λm
I where

ΛOK
= σ(OK) ⊂ R[K:Q] is a lattice built from the ring of

integers OK of a number field K = Q(θ) of degree [K : Q],
ΛI = σ(I) is a lattice associated to an ideal I of OK such that

the quotient ring has order |OK/I| = p, and m = n/[K : Q].
Construction A from a number field becomes

Λ = Φ(C[m, k]p) + Λm
I . (7)

In the above expression, Λ ⊂ Rn has rank n, the code

C[m, k]p ⊂ Fm
p has dimension k, 0 < k < m, and the

homomorphism Φ : Fp → ΛOK
⊂ R[K:Q] embeds the prime

field Fp in the real space R[K:Q]. The canonical embedding

σ : OK → R[K:Q] converts the ring of integers OK and its

ideals into lattices of dimension [K : Q], see [18] and [4]

for more details. Examples will be given below for quadratic

number fields.

The Construction-A lattice Λ in (7) has the same diversity

as ΛOK
and ΛI because of the chain Λm

I ⊂ Λ ⊂ Λm
OK

. This

diversity is L = r1 + r2 [4], where (r1, r2) is the signature of

K = Q(θ), i.e. the minimal polynomial µθ(x) of θ has degree

[K : Q] = r1 + 2r2, it has r1 real roots and 2r2 complex

roots. Of course, any finite constellation carved from Λ will

also have a diversity L ≥ r1+r2. Another way to get diversity

L ≥ 2 is to utilize root-LDPC codes [6] in Construction A.

For a root-LDPC code C[n, k]p, diversity is guaranteed by root

checknodes for an alphabet not exceeding p values per real

dimension. This does not guarantee that Λ in (1) has diversity

L ≥ 2 but a well-chosen finite constellation may attain that

diversity order as in the case of root-LDA lattices [21]. In the

current paper, we are interested by the intrinsic diversity of

the lattice itself.

Let us show a simple example for p = 11 and [K : Q] = 2.

Consider the real quadratic field K = Q(
√
d) for d ≥ 2. Its

ring of integers is OK = Z[φ] where {1, φ} is an integral basis.

Let µφ(x) = x2 + µ1x+ µ0 be the minimal polynomial of φ.

If d 6= 1 mod 4 then φ =
√
d, its conjugate is φ̄ = −

√
d, and

µφ(x) = x2 − d. If d = 1 mod 4 then φ = (1 +
√
d)/2, its

conjugate is φ̄ = (1−
√
d)/2, and µφ(x) = x2−x−(d−1)/4.

Let I = gOK be a principal ideal with generator g. Then,

N(I) = |OK/I| is equal to the algebraic norm |N(g)| of

g (in absolute value). Assume g = g0 + g1φ then N(g) =
(g0 + g1φ)(g0 + g1φ̄) and g should satisfy |N(g)| = p. The

code C[m, k]p can now select a sequence of m cosets in the

quotient ring OK/I to make a lattice point in real dimension

n = 2m. More precisely, the Z-module OK is converted into

a bidimensional lattice via σ : OK → R2, where σ(a+ bφ) =
(a+ bφ, a+ bφ̄) for a, b ∈ Z. The lattice ΛOK

= σ(OK) has

a generator matrix (in row convention):

GOK
=

(

1 1

φ φ̄

)

. (8)



The sublattice ΛI = σ(I) has a generator matrix:

GI =

(

g ḡ

gφ ḡφ̄

)

(9)

=

(

g0 + g1φ g0 + g1φ̄

−g1µ0 + (g0 − g1µ1)φ −g1µ0 + (g0 − g1µ1)φ̄

)

In the special case of real quadratic number fields, the

fundamental volume of ΛI is given by [18] [4]:

vol(ΛI) = | det(GI)| = N(I)×| det(GOK
)| = p

√

dK, (10)

where the field discriminant is dK = d if d = 1 mod 4 and

dK = 4d if d 6= 1 mod 4.

Take d = 5 and g = −1+3φ. We get |OK/I| = p = 11, the

minimum squared Euclidean distance of ΛI is d2Emin(I) = 23
and its Hermite constant γI is

γI =
d2Emin(I)
vol(ΛI)

=
23

11
√
5
≈ 0.9351. (11)

Take d = 14 and g = 5 + φ. We get |OK/I| = p = 11,

d2Emin(I) = 78, and

γI =
39

11
√
14

≈ 0.9476. (12)

Both lattices from Q(
√
5) and Q(

√
14) have a Hermite

constant less than 1. The Hermite constant is also known

as the fundamental gain of a lattice [13]. Recall that pZ
has a fundamental gain equal to 1. The loss in fundamental

gain for ΛI is small when K = Q(
√
5) or K = Q(

√
14).

Unfortunately, in the next section, we will see that an extra

loss is due to the degree [K : Q] itself (the fact that m = n/2).

We complete this section with the illustration of ΛOK
and ΛI

for K = Q(
√
5) and I = (−1+3φ)OK as shown in Figure 2.

Points of ΛOK
are plotted in red and points of ΛI are in blue.

Integers a and b show lattice points σ(a+bφ). Circles at three

special shells of ΛOK
are drawn, those at squared radius 2, 3,

and 7. The 11 points of ΛOK
on these three shells represent

the quotient ring OK/I. Each of these points is the image via

the homomorphism Φ of an element from F11.

IV. ALPHABET SIZE WITH DOUBLE DIVERSITY

As a continuation of the previous section, we limit our study

to real quadratic number fields K = Q(
√
d), d ≥ 2. Distance

inside the coset ΛI should be large enough to avoid error floors

on a Gaussian channel. Similarly to Lemma (1), we state the

following lemma for OK-lattices defined by (7).

Lemma 2: Let Λ ⊂ Rn be a real lattice built via Con-

struction A as in (7). Then, its sublattice Λm
I has an error

probability Pe(ΛI) per two dimensions ([K : Q] = 2) on a

Gaussian channel that admits the following lower and upper

bounds

2Q

(
√

∆
πe

2
γI pR

)

≤ Pe(ΛI), (13)

Pe(ΛI) ≤ 2Q

(
√

∆
πe

2
γI pR

)

+

3
∑

ℓ=2

2Q

(

√

∆
πe

2

d2ℓ (I) pR
vol(ΛI)

)

,
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Figure 2. The bidimensional double-diversity lattices ΛOK
and ΛI built

from the field K = Q(
√
5) and OK/I shown on the first three shells.

where R = k
m = k

n/2 is the coding rate of C, ∆ is

the SNR-distance to Poltyrev limit, the Hermite constant is

γI = d2Emin(I)/vol(ΛI) with vol(ΛI) = N(I)
√
dK and

d2Emin(I) being the minimal squared Euclidean distance of

the lattice ΛI . The second term in the upper bound involves

d2Emin(I) = d21(I) ≤ d22(I) ≤ d23(I), where d2ℓ(I) for

ℓ = 1 . . . 3 correspond to the squared Euclidean norms of the

six closest lattice points to the origin.

Proof: In the bidimensional lattice ΛI , consider a point xℓ

at distance dℓ(I) from the origin 0. Assuming 0 is transmitted

over a Gaussian channel, the error probability with respect to

xℓ, known as the pairwise error probability, is given by

Pe(ℓ) = Q

(

dℓ(I)
2σ

)

. (14)

Notice that the noise level affecting ΛI is identical to that

affecting the lattice Λ. The noise variance is σ2 = σ2
max/∆ =

vol(Λ)2/n

∆×2πe . By its definition (7), the lattice fundamental volume

is vol(Λ) = volm(ΛI)/p
k so we get

1

σ2
=

∆ 2πe

vol(ΛI)
pR.

Substituting the expression of 1
σ2 in (14) gives the final

expression of Pe(ℓ)

Pe(ℓ) = Q

(

√

∆
πe

2

d2ℓ(I) pR
vol(ΛI)

)

. (15)

For ℓ = 1, Pe(1) = Q
(√

∆πe
2 γI pR

)

and 2Pe(1) is a lower

bound to Pe(ΛI) because of the Voronoi facets corresponding

to points x1 and −x1. This proves the lower bound to Pe(ΛI).
For the upper bound, one should notice that the number

of Voronoi facets cannot exceed 6 in dimension 2. Then we

obtain Pe(ΛI) ≤ 2Pe(1) + 2Pe(2) + 2Pe(3).



It is clear from Lemma 2 that a good choice of ΛI , for a

given finite field size p, is to maximize its Hermite constant

γI . Of course, dropping the constraint N(I) = p will allow

us to build the densest bidimensional lattice ΛI = A2 [3]

with Hermite constant γI = 2/
√
3 = 0.62dB. Unfortunately,

attaining ΛI = A2 leads to huge ideal norms for d ≥ 7. For

Q(
√
3), the construction of the hexagonal lattice A2 can be

made as follows with a non-prime alphabet size N(I):

I = ℓ(3 +
√
3)Z[

√
3], N(I) = 6ℓ2, ∀ℓ ∈ Z∗. (16)

Construction πA proposed by Huang and Narayanan [15]

works with an alphabet which is equal to the product of distinct

primes. It is not so simple to build non-binary codes over an

alphabet of size 6k2 and keep ΛI = A2. Plugging back the

constraint N(I) = p, we look for ideals in real quadratic

fields with the highest possible γI . Table I shows such ideals

for p = 11, 13, 17 and 31. Ideals from Q(
√
5) and Q(

√
14)

considered in the previous section are also listed for reference

in Table I. The first six terms of the Theta series of these

lattices are found in Table II.

p d dK g d2
Emin

(I) γI(dB)

11 5 5 −1 + 3φ 23 −0.29

11 14 56 5 + φ 78 −0.23

11 341 341 26 + 3φ 231 0.56

13 127 508 ±34 + 3φ 326 0.46

17 973 973 −338 + 21φ 578 0.37

31 341 341 44 + 5φ 651 0.56

Table I
PARAMETERS FOR LATTICES σ(I) WHERE I = gOK IS A PRINCIPAL

IDEAL IN THE RING OF INTEGERS OK OF QUADRATIC NUMBER FIELDS

K = Q(
√
d). THE IDEAL NORM N(I) = p, THE DISCRIMINANT dK , THE

GENERATOR g, THE MINIMUM EUCLIDEAN DISTANCE, AND HERMITE

CONSTANT γI (dB) = 10 log10(γI ) ARE GIVEN.

p d θΛI
(z)

11 5 1 + 2q23 + 2q27 + 2q42 + 2q58 + 2q92 + . . .

11 14 1 + 2q78 + 2q100 + 2q114 + 2q242 + 2q284 + . . .

11 341 1 + 4q231 + 2q242 + 2q682 + 4q715 + 4q924 + . . .

13 127 1 + 2q326 + 2q338 + 2q352 + 2q976 + 2q1018 + . . .

17 973 1 + 2q578 + 2q599 + 2q667 + 2q1687 + 2q1891 + . . .

31 341 1 + 4q651 + 2q682 + 2q1922 + 4q2015 + 4q2604 + . . .

Table II
THETA SERIES FOR ΛI = σ(I) OF LATTICES GIVEN IN TABLE I.

The Euclidean distances d1, d2, d3 required for the lower

and upper bounds in Lemma 2 are easily determined from

Table II. Notice that Q(
√
341) reaches γI = 0.56dB (very

close to A2) for p = 11 and p = 31. The kissing number

is 4 in these two cases. We plotted the error probability of

the ideal in Figure 3 versus the coding rate R. Depending

on the kissing number τ , we plotted 2Pe(1) if τ = 2 and

Pe(1) + Pe(2) = 4Pe(1) if τ = 4. Indeed, τPe(1) is a very

accurate approximation for Pe(ΛI) at low error rates. From

the results in Figure 3, we conclude that the error floor due

to Λm
I can be guaranteed to be less than 10−6 by choosing

a large enough coding rate, e.g. R ≥ 0.69 for p = 11 and

R ≥ 0.48 for p = 31.
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Figure 3. Performance of best found ideals I = gOK in OK in real

quadratic fields K = Q(
√
d). The plot shows the point error probability (in

two dimensions) versus the coding rate R of Construction A, at ∆ = 0dB
from Poltyrev limit.

To understand how p2R in Lemma 1 switches down to

pR in Lemma 2, let us rewrite the expression of Pe(1)
for any diversity L = r1 + r2 ≥ 2 and [K : Q] ≥ 2.

Since n = m · [K : Q], the normalized volume becomes

[vol(Λ)]
2
n = [vol(ΛI)]

2
[K:Q] /p

2R
[K:Q] and

d2
Emin(I)

[vol(ΛI)]
2

[K:Q]
= γI . The

general expression is

Pe(1) = Q

(
√

∆
πe

2
γI p

2R
[K:Q]

)

. (17)

The lattice diversity produced by the number field comes with

a drawback. The price to pay for L ≤ [K : Q] is a factor of

1/[K : Q] in the exponent of p.

V. CONSTRUCTION A FOR HIGHER DIVERSITY AND

NON-PRIME FIELDS

As revealed by (17), p should be enlarged to p[K:Q] in

order to get back to the factor p2R found in Lemma 1. For

simplicity, we limit our study here to totally real number fields

and to lattices as modules over Z. Most of the constructions

and results can be extended from Z-modules to modules over

the Gaussian integers [10] or Eisenstein integers [20]. We

discuss below three constructions for diversity orders L ≥ 2
and non-prime finite fields.

• Construction over a non-prime finite field. Consider

the ideal I = pOK of OK where p is inert in K. Then,

N(I) = pL, where L = [K : Q] ≥ 2 is the diversity order.

Also, OK/I is isomorphic to FpL . In this case, Construction A

can utilize a linear code C[m, k]pL of length m = n/L
over the non-prime field FpL . From a performance point of

view, this is similar to a Construction A with a prime field



of order close to pL. But the non-prime field may help in

finding faster decoding algorithms for C. Finally, in a slightly

different construction, it is possible to consider N(I) = pℓ,
ℓ < L, and look for the ideal I with the highest γI .

• Construction with p totally split. Consider again

the ideal I = pOK where p is totally split in K. Then,

I =
∏L

j=1 Ij is the product of L ideals with OK/Ij
isomorphic to Fp. In this case, the lattice Λ is built from

a linear code of length n over Fp. There is no need for a

non-prime field. However, the Hermite constant of OK should

be maximized which may reduce the freedom while looking

for an adequate number field. In this method, for example,

Q(
√
5) is the best candidate for L = 2. For L > 2, a number

field with a ring OK of acceptable Hermite constant should

be chosen. Recall that γOK
and γI can never exceed the

Hermite constant of the densest lattice in real dimension

[K : Q]. So, even if the performance is dominated by the

factor p2R/[K:Q], a ring OK with bad density should be avoided.

• Naive construction with rotated cubic lattices. Number

fields for this method were well studied in [5], [2]. Let ZL

be a rotated version of diversity L of the integer cubic lattice

ZL. In this case, ZL = σ(I) for a specific ideal I in OK and

the generator matrix GI is orthogonal. The quotient ZL/pZL

has order pL. Construction A becomes Λ = C[m, k]pL+pZm
L ,

where m = n/L. But ZL/pZL = GI · (Z/pZ)L, this allows

us to go back to Fp. Let Γ be a n×n orthogonal matrix built

by m copies of GI placed on its main diagonal. The naive

construction is

Λ = Γ · (C[n, k]p + pZn) . (18)

The performance is now given by Lemma 1. Assuming C
is a sparse code (LDPC or GLD), decoding can be made

via belief propagation on a factor graph that includes the

checknodes of C and the L × L-rotation checknodes. In this

method, the best choice of ZL is not known yet. In [5], [2],

the L × L rotation yields the maximal product distance, or

a high product distance if the maximum cannot be attained.

The best ZL by itself does not necessarily lead to the best

Construction A. This behavior was already observed in GLD

lattices where a good component lattice may degrade the

larger Construction-A GLD lattice.

VI. CONCLUSIONS AND PERSPECTIVES

Two decades ago, small-dimensional lattices that are good

for both Gaussian and Rayleigh fading channels were con-

structed [4]. In large dimensions, Construction A with non-

binary codes is one of the most successful recent tools

for building lattices. This paper proposed methods to build

Construction-A lattices that are good for both Gaussian and

fading channels. The alphabet size p of the inherent non-

binary linear code should be large enough (reasonable values

are found) in order to avoid error floors generated by the

sublattice pZn or Λm
I . In the last section, three methods

for high diversity orders were described. Our future work

will be dedicated to these methods, the study of their lattice

parameters, their performance analysis under lattice decoding

and iterative decoding, and their practical implementation.
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